JPH09324958A - Cryogenic temperature refrigerating machine - Google Patents

Cryogenic temperature refrigerating machine

Info

Publication number
JPH09324958A
JPH09324958A JP16935396A JP16935396A JPH09324958A JP H09324958 A JPH09324958 A JP H09324958A JP 16935396 A JP16935396 A JP 16935396A JP 16935396 A JP16935396 A JP 16935396A JP H09324958 A JPH09324958 A JP H09324958A
Authority
JP
Japan
Prior art keywords
gas passage
pressure gas
flow path
unit
path switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16935396A
Other languages
Japanese (ja)
Other versions
JP2829589B2 (en
Inventor
Etsuji Kawaguchi
悦治 川口
Tomio Nishitani
富雄 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Iwatani International Corp
Original Assignee
Iwatani Plantech Corp
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26424531&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09324958(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Iwatani Plantech Corp, Iwatani International Corp filed Critical Iwatani Plantech Corp
Priority to JP8169353A priority Critical patent/JP2829589B2/en
Publication of JPH09324958A publication Critical patent/JPH09324958A/en
Application granted granted Critical
Publication of JP2829589B2 publication Critical patent/JP2829589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cryogenic temperature refrigerating machine capable of using the compressor of a low flow rate. SOLUTION: A compressor unit 1 is connected to a cold generating unit 2 through a passage selector valve 12. The passage selector valve 12 is formed with a four-way valve. The first port 14 of the passage selector valve 12 formed with the four-way valve is connected to and communicates with the high pressure gas passage 5 of the compressor unit 1, a second port 15 is connected to and communicates with the low pressure gas passage 11 of the compressor unit 1, a third port 16 is connected and communicates with the cold generating unit 2 and a fourth port 17 is connected and communicate with a buffer tank 18, respectively. The cold generating unit 2 selectively communicates with the high pressure gas passage 5 of the compressor unit 1, the low pressure gas passage 11 or the buffer tank 18 in accordance with the switching operation of the passage selector valve 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、冷媒としてガスを使用
する極低温冷凍機に関する。
The present invention relates to a cryogenic refrigerator using gas as a refrigerant.

【0002】[0002]

【従来の技術】従来、ガスを作動流体としている極低温
冷凍機にあっては、図7に示すように、圧縮機ユニット
(50)と寒冷発生ユニット(51)とをロータリ弁で構成した
流路切換弁(52)を介して接続し、流路切換弁(52)の切り
換え作動で寒冷発生ユニット(51)が圧縮機ユニット(50)
の高圧ガス通路(53)に連通する状態と、寒冷発生ユニッ
ト(51)が圧縮機ユニット(50)の低圧ガス通路(54)に連通
する状態とに切り換えられるように構成してある。
2. Description of the Related Art Conventionally, in a cryogenic refrigerator using gas as a working fluid, as shown in FIG.
(50) and the cold generation unit (51) are connected via a flow path switching valve (52) constituted by a rotary valve, and the cold generation unit (51) is compressed by a switching operation of the flow path switching valve (52). Unit (50)
And a state in which the cold generation unit (51) communicates with the low pressure gas passage (54) of the compressor unit (50).

【0003】[0003]

【発明が解決しようとする課題】ところが、前記従来の
極低温冷凍機では、寒冷発生ユニット(51)が流路切換弁
(52)を介して圧縮機ユニット(52)の高圧ガス通路(53)及
び低圧ガス通路(54)に連通されていることから、寒冷発
生ユニット(51)内を高圧ガスで満たす際も、寒冷発生ユ
ニット(51)から高圧ガスを吸引する際にも出入りするガ
ス量が多いことから、同じ吐出圧力の圧縮機でも大流量
の圧縮機を使用しなければならないという問題があっ
た。本発明は、このような点に着目し、小流量の圧縮機
を使用することのできる極低温冷凍機を提供することを
目的とする。
However, in the conventional cryogenic refrigerator, the cold generation unit (51) is provided with a flow path switching valve.
(52) is connected to the high pressure gas passage (53) and the low pressure gas passage (54) of the compressor unit (52). Since a large amount of gas enters and exits when suctioning high-pressure gas from the generating unit (51), there is a problem that a compressor having a large flow rate must be used even with a compressor having the same discharge pressure. It is an object of the present invention to provide a cryogenic refrigerator capable of using a compressor with a small flow rate, focusing on such a point.

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
めに本発明は、バッファタンクを寒冷発生ユニットに連
通可能に配置し、このバッファタンクへのガス給排を流
路切換弁の切換作動に連動して行うことにより、バッフ
ァタンク内に圧縮機の吐出圧力と圧縮機への戻り圧力と
の中間圧力で作動流体(冷媒ガス)を貯溜するように構成
したことを特徴としている。
In order to achieve the above object, according to the present invention, a buffer tank is disposed so as to be able to communicate with a cold generation unit, and gas supply / discharge to / from this buffer tank is switched by a switching operation of a flow path switching valve. In this case, the working fluid (refrigerant gas) is stored in the buffer tank at an intermediate pressure between the discharge pressure of the compressor and the return pressure to the compressor.

【0005】[0005]

【作用】本発明では、バッファタンクを寒冷発生ユニッ
トに連通可能に配置し、このバッファタンクへのガス給
排を流路切換弁の切換作動に連動して行い、寒冷発生ユ
ニットが圧縮機ユニットのいずれのガス通路にも連通し
ない状態に流路切換弁が位置している際に寒冷発生ユニ
ットとバッファタンクとを連通させる。これにより、バ
ッファタンク内に圧縮機の吐出圧力と圧縮機への戻り圧
力との中間圧力で作動流体(冷媒ガス)を貯溜することが
できる。そして、寒冷発生ユニットが圧縮機ユニットに
連通する前にバッファタンク内に貯溜されているガスが
寒冷発生ユニット内に流入し、寒冷発生ユニット内を中
間圧まで上昇させる。この中間圧の状態での寒冷発生ユ
ニットが圧縮機ユニットの高圧ガス通路に連通して、圧
縮機の吐出圧力まで昇圧される。次いで、寒冷発生ユニ
ットと高圧ガス通路との連通が遮断された状態でバッフ
ァタンクと寒冷発生ユニットとが連通して、寒冷発生ユ
ニット内の圧力ガスがバッファタンク内に流入して、寒
冷発生ユニット内の圧力が中間圧まで減圧される。次い
で寒冷発生ユニットと圧縮機ユニットの低圧ガス通路と
が連通し、寒冷発生ユニット内の作動ガスが圧縮機で吸
引される。
According to the present invention, the buffer tank is arranged so as to be able to communicate with the cold generation unit, and the supply and discharge of gas to and from this buffer tank are performed in conjunction with the switching operation of the flow path switching valve. When the flow path switching valve is positioned so as not to communicate with any of the gas passages, the cold generation unit and the buffer tank are communicated. Thus, the working fluid (refrigerant gas) can be stored in the buffer tank at an intermediate pressure between the discharge pressure of the compressor and the return pressure to the compressor. Then, before the cold generation unit communicates with the compressor unit, the gas stored in the buffer tank flows into the cold generation unit to raise the inside of the cold generation unit to an intermediate pressure. The cold generating unit in the state of the intermediate pressure communicates with the high pressure gas passage of the compressor unit, and the pressure is increased to the discharge pressure of the compressor. Next, the buffer tank and the cold generating unit communicate with each other in a state where the communication between the cold generating unit and the high-pressure gas passage is interrupted, and the pressure gas in the cold generating unit flows into the buffer tank, and Is reduced to an intermediate pressure. Next, the cold generation unit and the low-pressure gas passage of the compressor unit communicate with each other, and the working gas in the cold generation unit is sucked by the compressor.

【0006】[0006]

【発明の実施の形態】図1は本発明の1つの実施形態を
示す概略構成図、図2はその概念図であり、図中符号
(1)は圧縮機ユニット、(2)はピストン昇降式のコール
ドヘッドで構成した寒冷発生ユニットであり、この圧縮
機ユニット(1)と寒冷発生ユニット(2)とはバルブユニ
ット(3)を介して接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, and FIG. 2 is a conceptual diagram thereof.
(1) is a compressor unit, (2) is a cold generating unit composed of a piston elevating cold head, and the compressor unit (1) and the cold generating unit (2) are connected via a valve unit (3). Connected.

【0007】圧縮機ユニット(1)は、圧縮機(4)の吐出
口から導出した高圧ガス通路(5)に冷却器(6)、油分離
器(7)、油吸着器(8)を直列に配置し、油分離器(7)と
油吸着器(8)との間から分岐導出したバイパス路(9)を
調圧弁(10)を介して圧縮機(4)の吸込口に連通されてい
る低圧ガス通路(11)に連通接続している。
The compressor unit (1) includes a cooler (6), an oil separator (7), and an oil adsorber (8) connected in series to a high-pressure gas passage (5) derived from a discharge port of the compressor (4). And a bypass passage (9) branching out from between the oil separator (7) and the oil adsorber (8) is connected to the suction port of the compressor (4) through the pressure regulating valve (10). Connected to the low pressure gas passage (11).

【0008】バルブユニット(3)はロータリ式四方弁で
構成した流路切換弁(12)と、この流路切換弁(12)の駆動
用電動モータ(13)とで構成してあり、流路切換弁(12)の
第1ポート(14)を圧縮機ユニット(1)の高圧ガス通路
(5)に、第2ポート(15)を圧縮機ユニット(1)の低圧ガ
ス通路(11)に、第3ポート(16)を寒冷発生ユニット(2)
に、第4ポート(17)をバッファタンク(18)にそれぞれ連
通接続してある。
The valve unit (3) comprises a flow path switching valve (12) formed of a rotary type four-way valve and an electric motor (13) for driving the flow path switching valve (12). The first port (14) of the switching valve (12) is connected to the high-pressure gas passage of the compressor unit (1).
In (5), the second port (15) is connected to the low-pressure gas passage (11) of the compressor unit (1), and the third port (16) is connected to the cold generation unit (2).
The fourth port (17) is connected to the buffer tank (18).

【0009】流路切換弁(12)は、図示を省略したロータ
の回転により、高圧ガス通路(5)が寒冷発生ユニット
(2)に連通する状態、バッファタンク(18)が寒冷発生ユ
ニット(2)に連通する状態、低圧ガス通路(11)が寒冷発
生ユニット(2)に連通する状態、バッファタンク(18)が
寒冷発生ユニット(2)に連通する状態の4つの状態を順
次繰り返すようにしてある。
The passage switching valve (12) is connected to a high-pressure gas passage (5) by the rotation of a rotor (not shown).
(2), the buffer tank (18) communicates with the cold generating unit (2), the low-pressure gas passage (11) communicates with the cold generating unit (2), the buffer tank (18) cools The four states of communicating with the generating unit (2) are sequentially repeated.

【0010】図3は本発明の別の実施形態の概念図を示
し、これは、流路切換弁(12)をロータリ式三方弁で構成
し、この流路切換弁(12)の第1ポート(14)を圧縮機ユニ
ット(1)の高圧ガス通路(5)に、第2ポート(15)を圧縮
機ユニット(1)の低圧ガス通路(11)に第3ポート(16)を
寒冷発生ユニット(2)にそれぞれ連通接続するととも、
流路切換弁(12)と寒冷発生ユニット(2)とを接続する冷
媒ガス通路(19)に開閉弁(20)を介してバッファタンク(1
8)を連通接続し、開閉弁(20)を流路切換弁(12)の作動に
連動して開閉作動するように構成したもので、この開閉
弁(20)は流路切換弁(12)の作動により寒冷発生ユニット
(2)が圧縮機ユニット(1)の高・低圧いずれのガス通路
(5)(11)にも連通しない状態で開弁し、寒冷発生ユニッ
ト(2)が圧縮機ユニット(1)の高・低圧いずれかのガス
通路(5)(11)に連通している状態では閉弁するように構
成してある。
FIG. 3 shows a conceptual diagram of another embodiment of the present invention, in which the flow path switching valve (12) is constituted by a rotary three-way valve, and the first port of the flow path switching valve (12) is provided. (14) is a high pressure gas passage (5) of the compressor unit (1), a second port (15) is a low pressure gas passage (11) of the compressor unit (1), and a third port (16) is a cold generation unit. (2)
The buffer tank (1) is connected to a refrigerant gas passage (19) connecting the flow path switching valve (12) and the cold generation unit (2) via an on-off valve (20).
8), and the on-off valve (20) is configured to open and close in conjunction with the operation of the flow path switching valve (12). Operation unit generates cold
(2) High or low pressure gas passage of the compressor unit (1)
(5) The valve is opened without communicating with (11), and the cold generation unit (2) is in communication with either the high or low pressure gas passage (5) (11) of the compressor unit (1). Is configured to close.

【0011】上述のように構成した極低温冷凍機では、
寒冷発生ユニット(2)と圧縮機ユニット(1)とが連通す
る状態ではバッファタンク(18)と寒冷発生ユニット(2)
とは非導通の状態となり、寒冷発生ユニット(2)と圧縮
機ユニット(1)とが非連通の状態ではバッファタンク(1
8)と寒冷発生ユニット(2)とは導通することになるか
ら、バッファタンク(18)内に圧縮機(4)の吐出圧と圧縮
機(4)への戻し圧との中間圧力で作動流体(冷媒ガス)が
封入されたり、その中間圧の作動流体が寒冷発生ユニッ
ト(2)に供給されたりすることになるから、圧縮機(4)
を通過する作動流体の量が少なくなり、小流量の圧縮機
(4)で寒冷発生ユニット(2)内の圧力変動幅を大きく取
ることができる。
In the cryogenic refrigerator configured as described above,
When the cold generating unit (2) and the compressor unit (1) are in communication, the buffer tank (18) and the cold generating unit (2)
When the cold generation unit (2) and the compressor unit (1) are not in communication, the buffer tank (1) is disconnected.
8) and the cold generation unit (2) are electrically connected to each other, so that the working fluid flows into the buffer tank (18) at an intermediate pressure between the discharge pressure of the compressor (4) and the return pressure to the compressor (4). (Refrigerant gas) is enclosed or the working fluid of the intermediate pressure is supplied to the cold generation unit (2).
The amount of working fluid that passes through the
(4) The pressure fluctuation width in the cold generation unit (2) can be made large.

【0012】図4から図6は寒冷発生ユニット(2)とし
てパルス管式のコールドヘッドを使用した場合を示し、
この寒冷発生ユニット(2)は、蓄冷器(21)とパルス管(2
2)と、蓄冷器(21)とパルス管(22)とを接続する吸熱用連
結路(23)とで構成してある。
FIGS. 4 to 6 show a case where a pulse tube type cold head is used as the cold generation unit (2),
This cold generation unit (2) comprises a regenerator (21) and a pulse tube (2).
2) and a heat absorbing connecting path (23) connecting the regenerator (21) and the pulse tube (22).

【0013】図4及び図5に示すものは、圧縮機ユニッ
ト(1)と寒冷発生ユニット(2)との接続路に配置した流
路切換弁(12)をロータリ式五方弁で構成し、流路切換弁
(12)の第1ポート(14)を圧縮機ユニット(1)の高圧ガス
通路(5)に、第2ポート(15)を圧縮機ユニット(1)の低
圧ガス通路(11)に、第3ポート(16)を寒冷発生ユニット
(2)の蓄冷器(21)に、第4ポート(17)をバッファタンク
(18)に、第5ポート(24)をパルス管(22)にそれぞれ連通
接続してある。
4 and 5, the flow path switching valve (12) arranged in the connection path between the compressor unit (1) and the cold generation unit (2) is constituted by a rotary five-way valve. Flow path switching valve
The first port (14) of (12) is connected to the high-pressure gas passage (5) of the compressor unit (1), the second port (15) is connected to the low-pressure gas passage (11) of the compressor unit (1), and the third port is connected to the third port. Port (16) for cold generation unit
Connect the fourth port (17) to the buffer tank in the regenerator (21) of (2).
In (18), the fifth port (24) is connected to each of the pulse tubes (22).

【0014】流路切換弁(12)は、図示を省略したロータ
の回転により、高圧ガス通路(5)が蓄冷器(21)に連通す
る状態、バッファタンク(18)がパルス管(22)に連通する
状態、低圧ガス通路(11)が蓄冷器(21)に連通する状態、
バッファタンク(18)がパルス管(22)に連通する状態の4
つの状態を順次繰り返すようにしてある。
The flow path switching valve (12) is in a state in which the high pressure gas passage (5) communicates with the regenerator (21) by rotation of a rotor (not shown), and the buffer tank (18) is connected to the pulse tube (22). Communicating, the low-pressure gas passage (11) communicating with the regenerator (21),
4 when the buffer tank (18) is in communication with the pulse tube (22)
The two states are sequentially repeated.

【0015】図6は別の実施態様での概念図を示し、こ
れは、流路切換弁(12)をロータリ式三方弁で構成し、こ
の流路切換弁(12)の第1ポート(14)を圧縮機ユニット
(1)の高圧ガス通路(5)に、第2ポート(15)を圧縮機ユ
ニット(1)の低圧ガス通路(11)に第3ポート(16)を寒冷
発生ユニット(2)の蓄冷器(21)にそれぞれ連通接続する
ととも、寒冷発生ユニット(2)のパルス管(22)の高温端
部に開閉弁(20)を介してバッファタンク(18)を連通接続
し、開閉弁(20)を流路切換弁(12)の作動に連動して開閉
作動するように構成したもので、この開閉弁(20)は流路
切換弁(12)の作動により蓄冷器(21)が圧縮機ユニット
(1)の高・低圧いずれのガス通路(5)(11)にも連通しな
い状態で開弁し、寒冷発生ユニット(2)が圧縮機ユニッ
ト(1)の高・低圧いずれかのガス通路(5)(11)に連通し
ている状態では閉弁するように構成してある。
FIG. 6 shows a conceptual diagram of another embodiment, in which the flow path switching valve (12) is constituted by a rotary three-way valve, and the first port (14) of the flow path switching valve (12) is provided. ) The compressor unit
The second port (15) is connected to the high-pressure gas passage (5) of (1), the third port (16) is connected to the low-pressure gas passage (11) of the compressor unit (1), and the regenerator (2) of the cold generation unit (2). And the buffer tank (18) is connected to the high-temperature end of the pulse tube (22) of the cold generation unit (2) via the on-off valve (20), and the on-off valve (20) is connected. The on-off valve (20) is configured to open and close in conjunction with the operation of the flow path switching valve (12).
The valve is opened without being connected to either the high or low pressure gas passage (5) or (11) of (1), and the cold generation unit (2) is connected to either the high or low pressure gas passage of the compressor unit (1). 5) It is configured to close the valve when it is in communication with (11).

【0016】[0016]

【発明の効果】本発明では、バッファタンクを寒冷発生
ユニットに連通可能に配置し、このバッファタンクへの
ガス給排を流路切換弁の切換作動に連動して行い、寒冷
発生ユニットが圧縮機ユニットのいずれのガス通路にも
連通しない状態のみ寒冷発生ユニットとバッファタンク
とを連通させるように構成してあることから、バッファ
タンク内に圧縮機の吐出圧力と圧縮機への戻り圧力との
中間圧力で作動流体(冷媒ガス)を貯溜することができ
る。これにより、寒冷発生ユニットが圧縮機ユニットに
連通する前にバッファタンク内に貯溜されているガスが
寒冷発生ユニット内に流入して、寒冷発生ユニット内を
中間圧まで上昇させ、中間圧の状態での寒冷発生ユニッ
トが圧縮機ユニットの高圧ガス通路に連通して、圧縮機
の吐出圧力まで昇圧されることになるから、流路切換弁
の切り換え後短時間のうちに寒冷発生ユニット内の圧力
を所定の高圧状態にすることができる。
According to the present invention, the buffer tank is arranged so as to be able to communicate with the cold generation unit, and the supply and discharge of gas to and from this buffer tank are performed in conjunction with the switching operation of the flow path switching valve. Since the configuration is such that the cold generation unit and the buffer tank are communicated only in a state that does not communicate with any of the gas passages of the unit, the intermediate pressure between the discharge pressure of the compressor and the return pressure to the compressor in the buffer tank. The working fluid (refrigerant gas) can be stored under pressure. As a result, the gas stored in the buffer tank flows into the cold generation unit before the cold generation unit communicates with the compressor unit, raises the cold generation unit to an intermediate pressure, and in the intermediate pressure state. Since the cold generation unit of is communicated with the high pressure gas passage of the compressor unit and the pressure is increased to the discharge pressure of the compressor, the pressure in the cold generation unit is reduced within a short time after switching the flow path switching valve. A predetermined high pressure state can be achieved.

【0017】また、寒冷発生ユニット内が高圧になった
のちには、寒冷発生ユニットと高圧ガス通路との連通が
遮断されるが、その状態でバッファタンクと寒冷発生ユ
ニットとが連通して、寒冷発生ユニット内の圧力ガスが
バッファタンク内に流入し、寒冷発生ユニット内の圧力
は中間圧まで減圧され、次いで寒冷発生ユニットと圧縮
機ユニットの低圧ガス通路とが連通し、寒冷発生ユニッ
ト内の作動ガスが圧縮機で吸引され、寒冷発生ユニット
内は所定の低圧状態になるが、この場合にも、寒冷発生
ユニット内の圧力(中間圧)と圧縮機の吸込圧との差圧が
小さいことから短時間のうちに寒冷発生ユニット内を所
定の低圧状態にすることができる。
After the internal pressure of the cold generating unit becomes high, the communication between the cold generating unit and the high-pressure gas passage is cut off. The pressure gas in the generating unit flows into the buffer tank, the pressure in the cold generating unit is reduced to the intermediate pressure, and then the cold generating unit communicates with the low-pressure gas passage of the compressor unit to operate the cold generating unit. The gas is sucked by the compressor, and the inside of the cold generation unit becomes a predetermined low pressure state.In this case, too, the pressure difference between the pressure (intermediate pressure) in the cold generation unit and the suction pressure of the compressor is small. The inside of the cold generation unit can be brought into a predetermined low pressure state in a short time.

【0018】これにより、極低温冷凍機を構成する圧縮
機を小能力のものにすることができるうえ、寒冷発生ユ
ニットでの圧力切り換えサイクルを短くすることがで
き、冷凍機としての能力を向上させることができる。
As a result, the capacity of the compressor constituting the cryogenic refrigerator can be reduced, the pressure switching cycle in the cold generation unit can be shortened, and the performance of the refrigerator can be improved. be able to.

【0019】さらに、流路切換弁をロータリ式弁で構成
した場合には、寒冷発生ユニットと圧縮機ユニットとの
断続及び寒冷発生ユニットとバッファタンクとの断続の
切り換え制御を容易に行うことができる。
Further, when the flow path switching valve is constituted by a rotary valve, it is possible to easily control the switching between the cold generating unit and the compressor unit and the switching between the cold generating unit and the buffer tank. .

【図面の簡単な説明】[Brief description of drawings]

【図1】1つの実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing one embodiment.

【図2】その概念図である。FIG. 2 is a conceptual diagram thereof.

【図3】異なる実施形態を示す概念図である。FIG. 3 is a conceptual diagram showing a different embodiment.

【図4】別の実施形態を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing another embodiment.

【図5】その概念図である。FIG. 5 is a conceptual diagram thereof.

【図6】異なる実施形態を示す概念図である。FIG. 6 is a conceptual diagram showing a different embodiment.

【図7】従来技術の概念図である。FIG. 7 is a conceptual diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1…圧縮機ユニット、2…寒冷発生ユニット、5…高圧
ガス通路、11…低圧ガス通路、12…流路切換弁、14…流
路切換弁の第1ポート、15…流路切換弁の第2ポート、
16…流路切換弁の第3ポート、17…流路切換弁の第4ポ
ート、18…バッファタンク、19…冷媒ガス通路、20…開
閉弁、21…蓄冷器、22…パルス管、23…吸熱用連結路、
24…流路切換弁の第5ポート。
DESCRIPTION OF SYMBOLS 1 ... Compressor unit, 2 ... Cold generation unit, 5 ... High pressure gas passage, 11 ... Low pressure gas passage, 12 ... Flow switching valve, 14 ... First port of flow switching valve, 15 ... Flow switching valve 2 ports,
16: third port of the flow path switching valve, 17: fourth port of the flow path switching valve, 18: buffer tank, 19: refrigerant gas passage, 20: open / close valve, 21: regenerator, 22: pulse tube, 23 ... Endothermic connection path,
24… Fifth port of the flow path switching valve.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機ユニット(1)と寒冷発生ユニット
(2)とを流路切換弁(12)を介して接続し、この流路切換
弁(12)の切換作動で寒冷発生ユニット(2)が圧縮機ユニ
ット(1)の高圧ガス通路(5)に連通する状態と、寒冷発
生ユニット(2)が圧縮機ユニット(1)の低圧ガス通路(1
1)に連通する状態とに切換えられるように構成されてい
る極低温冷凍機において、 流路切換弁(12)を四方弁で構成し、四方弁で構成した流
路切換弁(12)の第1ポート(14)を圧縮機ユニット(1)の
高圧ガス通路(5)に、第2ポート(15)を圧縮機ユニット
(1)の低圧ガス通路(11)に、第3ポート(16)を寒冷発生
ユニット(2)に、第4ポート(17)をバッファタンク(18)
にそれぞれ連通接続し、流路切換弁(12)の切り換え作動
で寒冷発生ユニット(2)を圧縮機ユニット(1)の高圧ガ
ス通路(5)と、低圧ガス通路(11)及びバッファタンク(1
8)とに択一的に連通させるように構成したことを特徴と
する極低温冷凍機。
1. Compressor unit (1) and cold generation unit
(2) is connected via a flow path switching valve (12), and the switching operation of the flow path switching valve (12) causes the cold generation unit (2) to be connected to the high pressure gas passage (5) of the compressor unit (1). And the cold generation unit (2) is connected to the low pressure gas passage (1) of the compressor unit (1).
In a cryogenic refrigerator configured to switch to the state of communicating with (1), the flow path switching valve (12) is a four-way valve, and the flow path switching valve (12) with a four-way valve 1 port (14) to the high pressure gas passage (5) of the compressor unit (1), 2nd port (15) to the compressor unit
In the low-pressure gas passage (11) of (1), the third port (16) is connected to the cold generation unit (2), and the fourth port (17) is connected to the buffer tank (18).
The cold generating unit (2) is connected to the high pressure gas passage (5), the low pressure gas passage (11) and the buffer tank (1) of the compressor unit (1) by the switching operation of the flow path switching valve (12).
8) A cryogenic refrigerator characterized in that the cryogenic refrigerator is configured to selectively communicate with 8).
【請求項2】 流路切換弁(12)をロータリ弁で構成した
請求項1に記載の極低温冷凍機。
2. The cryogenic refrigerator according to claim 1, wherein the flow path switching valve (12) is constituted by a rotary valve.
【請求項3】 圧縮機ユニット(1)と寒冷発生ユニット
(2)とを流路切換弁(12)を介して接続し、この流路切換
弁(12)の切換作動で寒冷発生ユニット(2)が圧縮機ユニ
ット(1)の高圧ガス通路(5)に連通する状態と、寒冷発
生ユニット(2)が圧縮機ユニット(1)の低圧ガス通路(1
1)に連通する状態とに切換えられるように構成されてい
る極低温冷凍機において、 流路切換弁(12)と寒冷発生ユニット(2)とを接続する冷
媒ガス通路(19)にバッファタンク(18)を開閉弁(20)を介
して分岐接続し、この開閉弁(20)を前記流路切換弁(12)
の切換作動に連動して開閉作動させることにより、寒冷
発生ユニット(2)が圧縮機ユニット(1)の高圧ガス通路
(5)に連通する状態と、寒冷発生ユニット(2)が圧縮機
ユニット(1)の低圧ガス通路(11)に連通する状態と、寒
冷発生ユニット(2)がバッファタンク(18)に連通する状
態とに切換られるようにしたことを特徴とする極低温冷
凍機。
3. A compressor unit (1) and a cold generation unit
(2) is connected via a flow path switching valve (12), and the switching operation of the flow path switching valve (12) causes the cold generation unit (2) to be connected to the high pressure gas passage (5) of the compressor unit (1). And the cold generation unit (2) is connected to the low pressure gas passage (1) of the compressor unit (1).
In a cryogenic refrigerator configured to be able to switch to a state communicating with (1), a buffer tank (19) is connected to a refrigerant gas passage (19) connecting the flow path switching valve (12) and the cold generation unit (2). 18) is branched and connected via an on-off valve (20), and this on-off valve (20) is connected to the flow path switching valve (12).
By opening and closing in conjunction with the switching operation of the compressor, the cold generation unit (2) is connected to the high pressure gas passage of the compressor unit (1).
(5), the cold generating unit (2) is in communication with the low pressure gas passage (11) of the compressor unit (1), and the cold generating unit (2) is in communication with the buffer tank (18). A cryogenic refrigerator characterized by being switched to a state.
【請求項4】 流路切換弁(12)と開閉弁(20)とをそれぞ
れロータリ弁で構成した請求項3に記載の極低温冷凍
機。
4. The cryogenic refrigerator according to claim 3, wherein the flow path switching valve (12) and the on-off valve (20) are each constituted by a rotary valve.
【請求項5】 圧縮機ユニット(1)と寒冷発生ユニット
(2)とを流路切換弁(12)を介して接続し、この流路切換
弁(12)の切換作動で寒冷発生ユニット(2)が圧縮機ユニ
ット(1)の高圧ガス通路(5)に連通する状態と、寒冷発
生ユニット(2)が圧縮機ユニット(1)の低圧ガス通路(1
1)に連通する状態とに切換えられるように構成されてい
る極低温冷凍機において、 蓄冷器(21)とパルス管(22)とを吸熱用連結路(23)を介し
て接続して寒冷発生ユニット(2)を構成し、流路切換弁
(12)の第1ポート(14)を圧縮機ユニット(1)の高圧ガス
通路(5)に、第2ポート(15)を圧縮機ユニット(1)の低
圧ガス通路(11)に、第3ポート(16)を寒冷発生ユニット
(2)の蓄冷器(21)に、第4ポート(17)をバッファタンク
(18)に、第5ポート(24)をパルス管(22)にそれぞれ連通
接続し、流路切換弁(12)の作動で寒冷発生ユニット(2)
の蓄冷器(21)が圧縮機ユニット(1)の高圧ガス通路(5)
に連通する状態、寒冷発生ユニット(2)の蓄冷器(21)が
圧縮機ユニット(1)の低圧ガス通路(11)に連通する状
態、寒冷発生ユニット(2)のパルス管(22)がバッファタ
ンク(18)に連通する状態を択一的に切り換えるように構
成したことを特徴とする極低温冷凍機。
5. A compressor unit (1) and a cold generation unit
(2) is connected via a flow path switching valve (12), and the switching operation of the flow path switching valve (12) causes the cold generation unit (2) to be connected to the high pressure gas passage (5) of the compressor unit (1). And the cold generation unit (2) is connected to the low pressure gas passage (1) of the compressor unit (1).
In the cryogenic refrigerator configured to be switched to the state communicating with 1), cold is generated by connecting the regenerator (21) and the pulse tube (22) via the heat absorption connection path (23). Unit (2) comprising a flow path switching valve
The first port (14) of (12) is connected to the high-pressure gas passage (5) of the compressor unit (1), the second port (15) is connected to the low-pressure gas passage (11) of the compressor unit (1), and the third port is connected to the third port. Port (16) for cold generation unit
Connect the fourth port (17) to the buffer tank in the regenerator (21) of (2).
(18), the fifth port (24) is connected to the pulse tube (22), respectively, and the operation of the flow path switching valve (12) causes the cold generation unit (2) to operate.
The regenerator (21) of the compressor is the high pressure gas passage (5) of the compressor unit (1).
To the low pressure gas passage (11) of the compressor unit (1), the pulse tube (22) of the cold generation unit (2) is a buffer. A cryogenic refrigerator characterized in that it is configured to selectively switch the state of communication with the tank (18).
【請求項6】 流路切換弁(12)をロータリ弁で構成した
請求項5に記載の極低温冷凍機。
6. The cryogenic refrigerator according to claim 5, wherein the flow path switching valve (12) is constituted by a rotary valve.
【請求項7】 圧縮機ユニット(1)と寒冷発生ユニット
(2)とを流路切換弁(12)を介して接続し、この流路切換
弁(12)の切換作動で寒冷発生ユニット(2)が圧縮機ユニ
ット(1)の高圧ガス通路(5)に連通する状態と、寒冷発
生ユニット(2)が圧縮機ユニット(1)の低圧ガス通路(1
1)に連通する状態とに切換えられるように構成されてい
る極低温冷凍機において、 蓄冷器(21)とパルス管(22)とを吸熱用連結路(23)を介し
て接続して寒冷発生ユニット(2)を構成し、流路切換弁
(12)を蓄冷器(21)に連通接続するとともに、パルス管(2
2)の高温端部にバッフアタンク(18)を開閉弁(25)を介し
て連通接続し、この開閉弁(25)を前記流路切換弁(12)の
切換作動に連動して開閉作動させることにより、蓄冷器
(21)が圧縮機ユニット(1)の高圧ガス通路(5)に連通す
る状態と、蓄冷器(21)が圧縮機ユニット(1)の低圧ガス
通路(11)に連通する状態と、パルス管(22)がバッファタ
ンク(18)に連通する状態とに切換られるようにしたこと
を特徴とする極低温冷凍機。
7. A compressor unit (1) and a cold generation unit
(2) is connected via a flow path switching valve (12), and the switching operation of the flow path switching valve (12) causes the cold generation unit (2) to be connected to the high pressure gas passage (5) of the compressor unit (1). And the cold generation unit (2) is connected to the low pressure gas passage (1) of the compressor unit (1).
In the cryogenic refrigerator configured to be switched to the state communicating with 1), cold is generated by connecting the regenerator (21) and the pulse tube (22) via the heat absorption connection path (23). Unit (2) comprising a flow path switching valve
(12) is connected to the regenerator (21) and the pulse tube (2
A buffer tank (18) is connected to the high-temperature end of 2) through an on-off valve (25), and the on-off valve (25) is opened and closed in conjunction with the switching operation of the flow path switching valve (12). By regenerator
A state where (21) communicates with the high pressure gas passage (5) of the compressor unit (1), a state where the regenerator (21) communicates with the low pressure gas passage (11) of the compressor unit (1), and a pulse tube A cryogenic refrigerator characterized in that (22) is switched to a state of communicating with the buffer tank (18).
【請求項8】 流路切換弁(12)と開閉弁(20)とをそれぞ
れロータリ弁で構成した請求項7に記載の極低温冷凍
機。
8. The cryogenic refrigerator according to claim 7, wherein each of the flow path switching valve (12) and the on-off valve (20) is constituted by a rotary valve.
JP8169353A 1996-04-05 1996-06-28 Cryogenic refrigerator Expired - Fee Related JP2829589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8169353A JP2829589B2 (en) 1996-04-05 1996-06-28 Cryogenic refrigerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8350596 1996-04-05
JP8-83505 1996-04-05
JP8169353A JP2829589B2 (en) 1996-04-05 1996-06-28 Cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH09324958A true JPH09324958A (en) 1997-12-16
JP2829589B2 JP2829589B2 (en) 1998-11-25

Family

ID=26424531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8169353A Expired - Fee Related JP2829589B2 (en) 1996-04-05 1996-06-28 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JP2829589B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032173A (en) * 2004-07-16 2006-02-02 Sanyo Electric Co Ltd Fuel cell power generation system and stopping method for it
WO2011158281A1 (en) * 2010-06-14 2011-12-22 住友重機械工業株式会社 Ultra-low temperature freezer and cooling method
CN103033000A (en) * 2011-09-30 2013-04-10 住友重机械工业株式会社 Cryogenic refrigerator
JP2014139498A (en) * 2013-01-21 2014-07-31 Sumitomo Heavy Ind Ltd Cryogenic refrigerator
CN106766322A (en) * 2016-12-16 2017-05-31 浙江大学 The G M refrigeration machines and method of a kind of cool end heat exchanger motion
KR20170143028A (en) * 2015-06-03 2017-12-28 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 A gas equilibrium engine with a buffer
CN108489570A (en) * 2018-02-02 2018-09-04 中国科学院理化技术研究所 liquid filling metering device and pulse refrigeration system
CN108775724A (en) * 2018-06-29 2018-11-09 浙江大学 A kind of pulse tube type refrigeration system with four-way reversing valve
GB2566024A (en) * 2017-08-30 2019-03-06 Siemens Healthcare Ltd A Fault-Tolerant Cryogenically Cooled System
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032173A (en) * 2004-07-16 2006-02-02 Sanyo Electric Co Ltd Fuel cell power generation system and stopping method for it
WO2011158281A1 (en) * 2010-06-14 2011-12-22 住友重機械工業株式会社 Ultra-low temperature freezer and cooling method
CN102939506A (en) * 2010-06-14 2013-02-20 住友重机械工业株式会社 Ultra-low temperature freezer and cooling method
JP5579268B2 (en) * 2010-06-14 2014-08-27 住友重機械工業株式会社 Cryogenic refrigerator and cooling method
US10006669B2 (en) 2010-06-14 2018-06-26 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator and cooling method
CN103033000A (en) * 2011-09-30 2013-04-10 住友重机械工业株式会社 Cryogenic refrigerator
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration
JP2014139498A (en) * 2013-01-21 2014-07-31 Sumitomo Heavy Ind Ltd Cryogenic refrigerator
JP2018516352A (en) * 2015-06-03 2018-06-21 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッドSumitomo(SHI)Cryogenics of America,Inc. Gas pressure balanced engine with buffer
KR20170143028A (en) * 2015-06-03 2017-12-28 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 A gas equilibrium engine with a buffer
US11137181B2 (en) 2015-06-03 2021-10-05 Sumitomo (Shi) Cryogenic Of America, Inc. Gas balanced engine with buffer
CN106766322B (en) * 2016-12-16 2019-05-07 浙江大学 A kind of the G-M refrigeration machine and method of cool end heat exchanger movement
CN106766322A (en) * 2016-12-16 2017-05-31 浙江大学 The G M refrigeration machines and method of a kind of cool end heat exchanger motion
GB2566024A (en) * 2017-08-30 2019-03-06 Siemens Healthcare Ltd A Fault-Tolerant Cryogenically Cooled System
GB2566024B (en) * 2017-08-30 2020-08-12 Siemens Healthcare Ltd A Fault-Tolerant Cryogenically Cooled System
CN108489570A (en) * 2018-02-02 2018-09-04 中国科学院理化技术研究所 liquid filling metering device and pulse refrigeration system
CN108489570B (en) * 2018-02-02 2020-02-14 中国科学院理化技术研究所 Liquid filling metering device and pulse refrigeration system
CN108775724A (en) * 2018-06-29 2018-11-09 浙江大学 A kind of pulse tube type refrigeration system with four-way reversing valve

Also Published As

Publication number Publication date
JP2829589B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP3832038B2 (en) Pulse tube refrigerator
JP3051405B2 (en) A scroll compressor with an unloading valve between the economizer and the suction section
JP2829589B2 (en) Cryogenic refrigerator
US6276149B2 (en) Air conditioner
CN107191372B (en) Rotary compressor and refrigerating device with same
CN108007004A (en) Refrigerating plant
JP2008051408A (en) Pulse tube refrigerator
JP2007232280A (en) Refrigeration unit
CN215059704U (en) Reversing valve and air conditioning system with same
CN210292479U (en) Double-evaporation-temperature refrigerating system
CN107806717A (en) Refrigeration system and there is its air conditioner, heat pump
CN209943589U (en) Four-way valve and air conditioning unit
JP4261023B2 (en) Cryogenic refrigerator
CN212718162U (en) Four-way reversing valve and refrigerating system with same
JP2000234815A (en) Air-conditioner
JP2844444B2 (en) Pulse tube refrigerator
JP2006266603A (en) Method of driving separate type two-stage pulse pipe refrigerator
CN219798268U (en) Position detection system with high-pressure purging function
JPH1163738A (en) Freezer device
JPH05203271A (en) Two-stage compression type refrigerating cycle apparatus
CN217357651U (en) Check valve, heat exchanger and air conditioner
CN107806415A (en) Compressor assembly and there is its refrigerating plant
JP2000046426A (en) Temperature raising method for pulse pipe refrigerating machine
JP2000018741A (en) Pulse tube refrigerating machine
JPS6049823B2 (en) refrigeration cycle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees