JP2006031894A - 3次元光ディスク媒体及び3次元情報記録再生装置 - Google Patents

3次元光ディスク媒体及び3次元情報記録再生装置 Download PDF

Info

Publication number
JP2006031894A
JP2006031894A JP2004212945A JP2004212945A JP2006031894A JP 2006031894 A JP2006031894 A JP 2006031894A JP 2004212945 A JP2004212945 A JP 2004212945A JP 2004212945 A JP2004212945 A JP 2004212945A JP 2006031894 A JP2006031894 A JP 2006031894A
Authority
JP
Japan
Prior art keywords
dimensional
optical disk
mark
disk medium
dimensional optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004212945A
Other languages
English (en)
Other versions
JP2006031894A5 (ja
Inventor
Takeshi Maeda
武志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004212945A priority Critical patent/JP2006031894A/ja
Publication of JP2006031894A publication Critical patent/JP2006031894A/ja
Publication of JP2006031894A5 publication Critical patent/JP2006031894A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 3次元光ディスクにおいて、光スポットを3次元的に位置決めする方法を提案する。
【解決手段】 全体構成として、少なくとも情報を記録再生するための微小光スポットを案内するための案内領域を2次元面上に設け、その2次元面を含む立体構造体4を用いて3次元光ディスクを構成する。3次元光ディスク内に埋め込まれた案内領域を用いて微小光スポットの3次元方向の位置決めを行い、情報を3次元方向に記録再生する。2次元面を含む立体構造体としては、シート状構造体2を使用することができる。
【選択図】 図6

Description

本発明は、光学的特性変化を用いて媒体に情報を3次元的に記録再生する方式及び装置に関する。
媒体の3次元方向に情報を記録する方法に関して最近のISOM2003の国際学会で2件の発表があった。いずれも、現在主流の情報をビット毎に一つのマークに対応させて1層の面内に記録する光ディスクの記録方法をディスクの厚さ方向に拡張して、3次元方向に情報を記録する方法である。
"Bit-Wise Volumetric Optical Memory Utilizing Two-Photon Absorption in Aluminum Oxide Medium" Technical Digest of International Symposium on Optical Memory 2003, We-E-04 "Mechanism of Recording on Electrochromic Information Layers of Multi-Information-Layer", Technical Digest of International Symposium on Optical Memory 2003, We-E-05
上記発表では記録再生の原理的な動作については示されているが、3次元記録の実用化に不可欠な光スポットを3次元方向に位置決めする手段の詳細については示されていない。3次元記録を実用化するためには、光スポットの位置決め手段は光ディスクの大量生産に適合したものでなくてはならない。これまでの光ディスクでは、2次元平面上に光スポットを位置決めするにあたって、2次元平面に垂直な方向(光学ピックアップに搭載された対物レンズの光軸方向)に焦点検出用の特別なマークを設けることなく、光学ピックアップ側で戻ってくる光束の状態を見ることにより合焦状態を検出していた。これは、記録層が1層しかないため、記録層に合焦しているか否かを反射光束の状態から判定することができたためである。しかし、光軸方向に情報を記憶するためには光スポットの光軸方向の位置を高精度に検出することが必要となる。また、これまでの光ディスクと同様に、2次元平面内を光スポットが進行していく方向(トラックの円周方向)に垂直な方向(トラックの半径方向)の光スポット位置を検出することも同時に必要となる。トラック半径方向の位置検出のためにはこれまで、案内溝、または特別なマーク群が用いられてきたが、焦点方向には特別な考慮はなされてこなかった。
本発明は、3次元方向に情報ビットをマークに対応させて記録する方法において、光スポットを3次元的に位置決めする方法について提案する。
本発明においては、全体構成として、少なくとも情報を記録再生するための微小光スポットを案内するための案内領域を2次元面上に設け、その2次元面を含む立体構造体を用いて3次元光ディスクを構成する。3次元光ディスク内に埋め込まれた案内領域を用いて微小光スポットの3次元方向の位置決めを行い、情報を3次元方向に記録再生する。2次元面を含む立体構造体としては、シート状構造体を使用することができる。
シート状構造体を用いて構成した3次元光ディスクの中を光スポットが通過していくときに、案内領域から光スポットの進行方向に対して垂直な2つの方向に対する光スポット制御信号を発生することができるようにし、この制御信号を用いて光スポット位置を制御する。
制御信号発生領域には、例えば、2次元平面内の一方向に沿って、該方向とは垂直で2次元平面内にある方向と2次元平面に垂直な方向に対して、互いに異なる方向にずれて配置されている3次元構造を持つマーク群が形成されているか、3次元構造を持つ連続的なマーク列または溝が蛇行するように形成されている。他の例の制御信号発生領域は、2次元平面に垂直な方向に沿って、該方向とは垂直で2次元平面とは平行な面内にある互いに垂直な2つの方向に対して、互いに異なる方向にずれて配置されている3次元構造を持つマーク群が形成されているか、3次元構造を持つ連続的なマーク列または溝が蛇行するように形成されている。
制御信号発生領域では焦点ずれ信号、トラックずれ信号の2つの信号を検出するが、前記領域を分けて、各領域で独立して前記2つの信号を検出するか、同時に検出するかいずれかの方法を用いることができる。分ける場合には、3次元構造を持つマーク群においては、互いに垂直な方向にずれているマーク群はそれぞれ独立した領域に分けるが、分け方にも2つの垂直な方向のうち、一つの方向が同じで、もう一つの方向に対して互いにずれているマーク群を、それぞれの垂直方向について、独立した領域に分けて設けていることもできるし、さらにそれぞれ独立した領域に分かれているマーク群は特定の間隔でもう一方の垂直方向に配列され、該特定間隔を該独立領域ごとに異ならせることもできる。前記領域を分けなくて、2つの信号を同じ領域から同時に検出する場合には、互いに垂直な方向に、互いに異なる方向にずれて配置されている各マークは、それぞれの垂直な方向のうち、一つの方向にも、もう一つの方向に対しても互いにずれている構成とし、連続的なマーク列または溝では、蛇行する2つの垂直な方向のうち、一つの方向にも、もう一つの方向に対しても互いに蛇行している構成とする。
本発明によると、3次元方向に光スポットを位置決めする案内トラックを有する3次元光ディスクを短時間に大量に作成することができる。
以下、図面を参照して本発明の実施の形態を説明する。以下の図において、同じ機能部分には同じ符号を付けて説明する。
図1は、記録媒体として3次元光ディスクを用いた本発明による3次元記録再生装置の概略図である。本発明では、3次元的に情報を記録する3次元光ディスク1は、後述するように、2次元平面を持ち、かつ厚さを持つ構造体を種々の方法で積層することにより作製する。3次元光ディスク1は円柱の形状をしており、回転中心10を持ち、上から見ると仮想回転中心10から内周r1までの部分が中空になり、内周r1から外周r2までの部分が情報を記録する記録領域となる。情報の記録再生のためにはこの円柱体を半径r1のハブに嵌め合わせ、モータによって仮想回転中心10を中心に回転させる。光ピックアップ80から発生される光スポットによる3次元光ディスクの記録領域へのアクセス制御は、円柱体の円周方向、円柱体の半径方向及び厚さ方向の3方向から行われる。
さらに詳細に記録再生の動作を説明する。図2は、3次元光ディスク1内に設定される情報トラック27と光スポットの関係を示す模式図である。複数の光源35から放射された光は結合レンズ33により平行光に変換され、プリズム34を通過し、収差補正用光学素子30を通過し、折り返しミラー29により光路を折り曲げられ、対物レンズ9に入射し、ディスク1内に光スポット23,24,25,26を形成する。スポット23は情報トラック27の上に制御によって位置づけられる。情報トラックには光スポットを制御する為の制御情報を検出するための領域(制御領域)21,22が設けられている。この領域21,22は、図13、図14、図15を用いて後述するーク群から構成されている。
トラックからの反射光は対物レンズ9、ミラー29、光学素子30を通過し、プリズム34により光路を曲げられ、光学フィルタ31を通過して、集光レンズ32によって光検出器36に集光される。光検出器36からの光電流46は再生回路39に入力され、制御情報検出、クロック検出を行い、上位コントローラ37から送られたユーザ情報を検出したクロックに従って、記録回路38により光源35を変調する信号44を作成して、ディスク1内のスポット24,25,26をそれぞれ強度変調する。また、再生回路39から検出された制御情報、アドレス情報はアクセス制御回路45に入力され、上位コントローラ37から指令される情報の記録位置に光スポットを位置づけるために、対物レンズ9の2次元アクチュエータ28を駆動する信号42を作成するとともに、収差補正素子30を駆動する信号43を作成する。収差補正は、対物レンズの性能は基板表面から特定厚さの面で最良になるように一般的には設計される。すると、基板厚さ方向に焦点位置をずらしていくと、光学系の球面収差が増加し、焦点位置でのスポットが歪んでくる。これを補正するために収差補正素子30を用い、焦点位置に応じて球面収差を補正する。収差補正素子として一番簡単な構成のものは、複数のレンズの組み合わせを用い、レンズ間の距離を動かすことにより、対物レンズに入射する光束の発散、収束角度を変えるものである。そのほか、液晶素子などにより、光波の位相を遅れさせたり、進めたりして、光束の波面を部分的に変化させることにより、補正するものもある。
図3を用いて、さらに詳細に記録再生回路の動作を説明する。光源35は複数の光源、例えば半導体レーザ100,101,102,103から構成されている。各光源からの光はディスク1内のスポット26,25,24,23として集光される。従って、スポット23の位置を決めると、その他のスポット24,25,26の位置は特定の間隔で自動的に決められる。光源103には、駆動回路111により直流電流が供給され、一定光量で発光するように設定されている。光源103から発光した光はディスクから反射して、光検出器36にある受光器107に集光され、光電流がプリアンプ116により電圧に変換され、クロック発生回路115とデータ弁別回路120、領域検出回路117に入力される。
領域検出回路111では、制御領域21,22を他の領域と区別して検出し、制御領域を示す信号を制御情報発生回路119に入力する。制御情報発生回路119から後述するトラックずれ信号、焦点ずれ信号を発生し、2次元アクチュエータを駆動する駆動回路118に入力される。一方データ弁別回路120において検出された、トラックアドレス信号はアドレス比較回路127に入力され、上位コントローラ37からのアドレス指令のレジスタ128からの出力と比較され、スポットを制御する信号を発生する回路129により、2次元アクチュエータ28の制御信号を駆動回路118に送出するとともに、アクチュエータの移動によって発生する収差を補正する信号43を送出する。
また、上位コントローラ37から送出されるユーザデータをレジスタ130で受け取り、変調回路124,125,126に入力し、クロック発生回路115の出力によって、変調し、レーザ駆動回路108,109,110に入力して、光源100,101,102をそれぞれ強度変調する。これにより3次元光ディスク内ではトラック27の横に決まった間隔でデータが記録されて行く。
記録されたデータは、トラック27にスポット23を位置づけ、スポット24,25,26を記録されたデータの上に配置させ、反射光を検出器36上の受光器104,105,106にそれぞれ集光し、受光する。各光電流はプリアンプ112,113,114により電圧に変換され、データ弁別回路123,122,121により、クロック発生回路115から発生させられたクロックにより検出、復調され、レジスタ131にストアされて、上位コントローラ37に送られる。トラック27には制御情報を検出する領域22,21のほかに、当該トラックがディスク厚さ方向に何番目のトラックで、半径位置のどこに対応するかを表すアドレス情報を検出する領域がある。アドレス情報は、後述する単位マークの配列パターンで表すことができる。また、クロック作成のために特定間隔を持ったマークパターンを入れておく。
光源103と光源100,101,102の波長を変えておくと、記録の影響が制御信号検出に及ぶことを避けることができる。すなわち、フィルタ31により特定波長の光のみを通過させるようにできるため、光源103の光のみ通し、記録時の光源100,101,102の影響を受けることなく、位置決め信号を検出し、案内マークにスポット23を追従させることができる。また、このフィルタ31は3次元記録材料として2光子吸収のような材料では再生波長とは異なる蛍光を検出するために特定波長を透過させる光学素子としても使用できる。
図4は、記録媒体として3次元光ディスクを用いた本発明による他の3次元記録再生装置の実施例を示す概略図である。図5は、3次元光ディスク内に設定される情報トラックと光スポットの関係を示す模式図である。本実施例の3次元記録再生装置に用いられる3次元光ディスクは、後述するように、円形のシートを積み重ねて作製されたものである。
本実施例では、光源103の波長を他の光源とは異ならせ、結合レンズ47を用いて平行光とし、プリズム48により他の光源の平行光と光路をあわせ、対物レンズ9によりディスク1内に集光する。その反射光は他の光源の光と同様に光検出器36に集光され、光受光器107に達する。他の光源100,101,102から出た平行光は光スポット24,25,26を光軸方向に動かす光学素子49を通過し、対物レンズ9によりディスク1内に集光される。このような光学素子として、別のレンズ群を組み合わせ、レンズ間の距離を変えることにより、対物レンズに入射する光源100,101,102から出た光束の収束または発散の角度を変えることにより、対物レンズによって集光されるスポット24,25,26をスポット23の位置を変えることなく、光軸方向(Y方向)に移動させることができる。従って、シート状構造体でも、トラック27をスポット23で追跡しながら、信号43で指定されるディスク厚さ方向位置に情報を読み書きすることができる。
このような3次元光ディスク1を構成するための2次元平面を持つ構造体としては、シート状構造体を利用することができる。図6は、シート状の構造体を組み合わせて3次元光ディスクを作製する方法の一例を示す説明図である。図6(a)は、長尺シート状の構造体2を軸心となる円柱の周りにロール状に巻きつけて3次元光ディスクとなる3次元構造体4を作る方法を示す。また、図6(b)は、長尺シート状の構造体3を折り畳みながら重ねて、ある厚さになったところで丸型に切り抜き、3次元光ディスクとなる3次元構造体5を作る方法を示している。シートは光記録に適した材料及び構造を有し、例えばポリカーボネート、アクリルなどのプラスティック材料が好適である。
図7は、シート状の構造体を組み合わせて3次元光ディスクを作製する方法の他の例を示す説明図である。この方法は、図7(a)に示すように、シート状の構造体8を折り畳みながら、左右の押し付け圧力を変えて、図7(b)に示す楔型形状の構造体6を作る。その後、複数の楔形形状の構造体6を、図7(c)に示すように円周方向に配置して、3次元光ディスクとなる3次元構造体7を作る方法である。
図6あるいは図7に示すようにして作られた3次元光ディスクに光スポットを照射し、前述のような3次元方向のアクセスを行うためには、光スポットを導くための仮想的な案内トラックが必要となる。この仮想トラック27は、3次元光ディスクの円周方向に沿って略同心状のチューブ形状であり、このチューブは3次元光ディスクの厚さ方向に垂直な平面内に閉じた形状か、閉じることなく、同一平面内を内周から外周、または外周から内周方向に連続する形状か、さらに同一平面内に閉じられることなく、3次元ディスクの厚さ方向連続につながる形状かのいずれかである。
上記案内トラックにスポットを導くためには、トラックの位置を表す情報を記録した領域を連続的、あるいは離散的に設ける。この領域から光スポットを位置決めするための制御信号を検出する。その信号は光スポットの進行方向、すなわち3次元光ディスク1の円周方向に対して垂直な2つの方向に対する、スポットと案内トラックの位置ずれを表す信号である。これらの信号をこれまでの光ディスクの名称を使用し、ディスク厚さ方向を焦点ずれ信号、ディスク半径方向をトラックずれ信号と呼ぶ。
本発明は、3次元光ディスク1をシート状構造体2,3で作成するとき、組み立て方によって上記情報マークをどのように設けるかを規定するものである。まず、図6(a)に示した、長尺のシート状構造体をロール状に巻いて3次元光ディスク1を作製する場合について説明する。この場合には、3次元ディスク1の回転とともに、光スポットはシート状構造体2の2次元平面内に平行な方向に進行する。従って、3次元光ディスク1の厚さ方向Yは、シート状構造体の2次元平面内にあって光スポットの進行方向Zとは直角の方向になる。さらに、3次元光ディスク1の半径方向Xは、シート状構造体の厚さ方向になる。これらの方向に対する光スポットの位置ずれを検出するための領域を、シート状構造体2に作成する。領域の形態としては、光スポットの進行方向に離散的に配置するか、連続的に配置するかの2つの形態がある。さらに、領域内には位置ずれ検出信号を発生するためのマーク群、マーク列またはマークを設ける。マークは3次元の形状をしており、後述するように、スポット進行方向の長さを異ならせる。
本発明の動作原理を、離散マークを例にとって図8を用いて説明する。光スポットの進行方向Zと垂直な方向X,Yに複数のマークを配置する。ここでは4つのマーク11,12,13,14から成るマーク群を取り上げる。4つのマークは形状が等しいが、それら位置が異なる。これらの位置を光スポットの進行方向Zに垂直な平面40に投影し、この平面内にディスク厚さ方向Yとディスク半径方向Xの互いに直交する座標を用いてマークの投影位置を表現する。マーク11,12,13,14をそれぞれX軸及びY軸上に設定し、マークの座標(x,y)を(a,0),(0,b),(−a,0),(0,−b)とする。これらのマークを光スポットの進行方向に順番に配置するが、各マークは光スポットの進行する軸Zを回転中心とするスパイラス線41の上に配置させる。
図9(a)にY−Z平面に投影したスパイラル線81を、図9(b)にX−Z平面に投影したスパイラル線82を示す。2つの投影波形81,82はいずれも正弦波となり、周期Tが等しく、位相が90度ずれたものとなる。各マーク11,12,13,14はそれらの正弦波の最大点、最小点に配置される。各正弦波の振幅はbとaとなる。光スポットのZ軸からのX,Y方向のずれは、各マークにおける検出信号を演算して求められる。すなわち、X方向のずれを知るためにはマーク11からの信号S(1)、とマーク13からの信号S(3)の差をとる。すなわち
S(1)−S(3) …(1)
Y方向のずれを知るためには、マーク12からの信号S(2)、とマーク14からの信号S(4)の差をとる。
S(2)−S(4) …(2)
この演算方式はX方向とY方向のマークを検出するときには、互いの変位がゼロであることから、干渉がないことから成立する。
しかし、信号検出のタイミングがずれるとX方向とY方向の干渉が生じる。これを回避するために、よく知られた同期検波を行う。図9(c)(d)のような検波信号83,84のように90度位相を変えて、図3のプリアンプ116の出力である検出信号と掛け算を行い、X方向、Y方向のずれをそれぞれ検出できる。
同期検波を用いる方法について、より詳細に説明する。マーク11と13が光スポットの進行方向に垂直なトラック半径方向に仮想正弦波82の最大値と最小値のところに配置され、かつ、マーク12と14が光軸方向に仮想正弦波81の最大値と最小値のところに配置されているとする。光スポットの進行に従って、同期信号波形83,84を発生し、トラックずれ信号を検出するときには前述のマークが読み出し信号に与える変化量の時間的な信号S(t)と同期信号波形83を掛け算して、その結果を同期信号波形の繰り返し周波数よりカットオフ周波数が低い低域フィルタに通して検出する。焦点ずれ信号を検出するときには前述のマークが読み出し信号に与える変化量の時間的な信号S(t)と同期信号波形84を掛け算して、その結果を同期信号波形の繰り返し周波数よりカットオフ周波数が低い低域フィルタに通して検出する。
同期検波ならば、検波信号の位相ずれはある程度許容できる。しかし、掛け算処理を伴う為回路が複雑になる。単純なサンプリングと線形演算による方法が望ましい。そこで図10に示すように、図8に示したマークの位置から45度回転した位置にマーク91,92,93,94を配置する。この場合、X方向とY方向の干渉はあるが、演算により取り除くことができる。図10に示したマーク配置の場合、各投影正弦波とマーク位置の関係は、図11(a)(b)のようになる。図11(a)はY−Z平面に投影したスパイラル線85を示し、図11(b)はX−Z平面に投影したスパイラル線86を示している。検出信号のサンプルタイミングはパルス87の位置となる。マーク91からの信号をP1、マーク92からの信号をP2、マーク93からの信号をP3、マーク94からの信号をP4とすると、X軸方向(すなわち、トラックずれ方向)のずれEXは次式から検出できる。
X=P1+P4−P2−P3 …(3)
また、Y軸方向(すなわち、焦点ずれ方向)のずれEYは、次式により検出できる。タイミングがシフトしてもある程度は許容できる。
Y=P1+P2−P3−P4 …(4)
以下、上記マークによって検出される信号について、図12(a),(b)を用いて詳細に述べる。図12(a)において、光スポット77がX軸、Y軸、Z軸の3次元座標の中心にあるとする。X軸上rの位置にマーク78があるとき、マーク78が光スポット77による読み出し信号へ与える変化は、スポット中心からマーク78までの距離のみの関数であり、図12(b)に示すような単峰特性を示す。すなわち、距離rが零で最大となり、距離rが大きくなるにつれて、スポットの光強度が減少するのに応じて単純に減衰していき、最後は零となる。
図13は、光スポットが移動するとき、光スポット中心からマークまでの距離rが正弦波状に変化したとき、得られる読み出し信号波形を模式的に示した図である。相対的に距離rが正弦波状に変化し、その中心位置がずれているように距離71,72,73が変化すると、マークが読み出し信号に与える変化量は各距離71,72,73に対応して信号変化波形74,75,76となる。ここで、タイミングt1あるいはt2で距離rが最大となり、タイミングt1とt2の間で距離rが最小となる。このときの信号変化波形を見ると、距離変化72のように相対的に中心位置が零ではタイミングt1とt2での信号変化の大きさは等しくなる。また、中心位置がプラスにあると、タイミングt1における信号変化の大きさはタイミングt2のときよりも小さく、中心位置がマイナスにあると、タイミングt1における信号変化の大きさはタイミングt2のときよりも大きくなる。中心位置を知るためには、タイミングt1とタイミングt2での信号変化量の差をとればよい。タイミングt1とタイミングt2での信号変化量の差から、正弦波状に位置が変化するマークの振動中心に対する光スポット中心のずれの大きさと方向を知ることができる。
このことから、光スポットの進行方向(Z軸)と垂直なX軸方向(トラック半径)で決まる平面内に、振幅aの仮想正弦波を描き、その振幅が最大の位置と最小の位置にマークを設ける。すると、スポットがトラック半径方向にずれると、相対的にマークとスポット中心との距離rが変化し、マークが読み出し信号に与える変化量が図12(b)のように変化する。図8のマーク11と13の配列に対応するタイミングt1とt2の信号変化量S(1),S(3)を式(1)のように演算して、光スポットのトラック半径方向のずれと方向、すなわちトラッキング信号を検出できる。
同様に、マークを光スポットの進行方向(Z軸)と垂直なY軸方向(光軸)で決まる平面内に、振幅bの仮想正弦波を描き、その振幅が最大の位置と最小の位置にマーク12と14を設ける。すると、光スポットが光軸方向(焦点ずれ方向)にずれると、相対的にマークとスポット中心との距離rが変化し、マークが読み出し信号に与える変化量が図12(b)のように変化する。図8のマーク12と14の配列に対応するタイミングt1とt2の信号変化量S(2),S(4)を式(2)のように演算して、光スポットの光軸方向のずれと方向、すなわち焦点ずれ信号を検出できる。
以上説明した動作原理をシート状構造体を積層して構成された3次元光ディスクにそのまま適用するときには問題が発生する。3次元光ディスクを低コストで大量に作製しようとすると、制御領域を設けたシート状構造体を短い時間で大量に作成する必要がある。シート状構造体に上記マークを作成するために、一つ一つマークを記録していては時間がかかる。従って、従来の光ディスクのように、予め型を作り、それを転写していく製造方法が好適である。しかし、この方法では一方向からの型押ししかできず、押し出す面から見て閉じたマークを作成することができない。そこで、型押し方法で作成できるマーク(ピット)でも制御信号を検出できる方法を提案する。
まず、図6(a)に示したように、長尺シート状の構造体をロール状に巻いて製造した3次元光ディスクの場合について説明する。光スポットはシート状構造体の2次元平面内に平行な方向(Z軸となる)に回転ともに進行する。従って、3次元光ディスク1の厚さ方向(Y方向とする)はシート状構造体の2次元平面内の光スポットの進行方向とは直角の方向になる。さらに、3次元光ディスク1の半径方向はシート状構造体の厚さ方向(X方向とする)になる。すると、型押しはX方向に押すことになり、作成できるマークとしては、X方向に型押し面から押し出された深さの異なるマークしかない。
そこで本発明では、図14に示すようなマーク群51,52,53,54を用いる。図14はシートに形成したマーク群の概略斜視図と、そのX−Z面への投影図、及びY−Z面への投影図を表している。図において、平面50が型押しの開始面である。図10との対応で言うと、スパイラルの回転方向が逆になっており、マーク91とマーク51、マーク92とマーク52、マーク93とマーク53、マーク94とマーク54が対応する。型押しで作成するために、マーク51とマーク54は同じ深さである。マーク52とマーク53も同じ深さで、かつマーク51,54よりは深く形成する。
型押しされたマーク51はマーク52と形状が異なることから、X方向のZからのずれを式(3)から計算するとオフセットを生じる。しかし、このオフセットは取り除くことができる。すなわち、マーク52による信号からマーク51による信号を引くと、マーク52の深さからマーク51の深さの分だけ取り除かれたマークからの信号を得ることができる。そこで、式(3)において、マーク51からの信号S(51)はP1、マーク52からの信号S(52)はP1+P2、マーク53からの信号S(53)はP3+P4、マーク54からの信号S(54)はP4とみなすと、式(3)より式(5)が得られる。
X=S(51)+S(54)−(S(52)−S(51))−(S(53)−S(54))
=2S(51)+2S(54)−(S(52)+S(53)) …(5)
同様にして、式(4)よりY方向の検出信号は式(6)のようになる。
Y=S(51)−S(54)+(S(52)−S(51))−(S(53)-S(54))
=S(52)-S(53) …(6)
上記マーク51,52,53,54から成る制御信号を生成する領域はディスク円周上に、間隔を置いて離散的に配置することができる。このとき、ディスク一回転中には約1000ヶ所程度の間隔で配置することが、制御系の追従特性から望ましい。すなわち、制御信号の検出間隔が短いと、制御系の応答性が良くなるとともに、検出誤差も少なくなる。さらに、間隔を短くし、制御領域が連続的につながるように配置するとさらに制御系の特性を向上できる。
次に、図6(b)に示したように、シートを一定の厚さまで積み重ね、同心円状にくり抜いて作製した3次元光ディスクの場合について説明する。この場合には、予めシートに円盤状の形にマークを作成する必要がある。その方法としてはシートにダイレクトに情報マークをスタンプする以下の方法が知られている。
文献;“Optical Disk Replication Using Direct Embossing”, Technical Digest of ISOM 2003, We-F-04
この場合には、図15に示すように、光スポットの進む方向(Z軸方向)はシートの2次元平面内の円板形状の円周方向となり、シートの半径方向がX軸となり、シート厚さ方向がY軸となる。型押し方向はY軸方向からになり、焦点ずれ方向に型押して形成されるマークの深さが異なる。前述の実施例と同様な信号処理を行う焦点ずれ信号EYは次式(7)の演算により、トラックずれ方向信号EXは次式(8)の演算により検出できる。
Y=2S(61)+2S(64)−(S(62)+S(63)) …(7)
X=S(62)−S(63) …(8)
上記マーク61,62,63,64から成る制御信号を生成する領域はディスク円周上に、間隔を置いて離散的に配置することができる。このとき、ディスク一回転中には約1000ヶ所程度の間隔で配置することが、制御系の追従特性から望ましい。すなわち、制御信号の検出間隔が短いと、制御系の応答性が良くなるとともに、検出誤差も少なくなる。さらに、間隔を短くし、制御領域が連続的につながるように配置するとさらに制御系の特性を向上できる。
次に、図7に示したように、シート状構造体を折り畳んで作った楔型形状の構造体を円周方向に配置して作製した3次元光ディスクの場合について説明する。この3次元光ディスクにおいては、シートの厚さ方向が光スポットの進行方向(Z軸)となり、シートの2次元平面の互いに直交する方向がそれぞれX軸、Y軸となる。
図16は、楔型形状の構造体を構成するシートに形成するマーク群の概略斜視図と、そのX−Z面への投影図、及びY−Z面への投影図を表している。図において、平面70が型押しの開始面である。この場合には、光スポットの進行方向に型押しされるため、4つのマーク71,72,73,74をいずれも深さを変えることしかできない。ここで、各マークはそれぞれ単位マーク(最小単位はマーク74)4つ、3つ、2つ、一つから成り立っているとする。
光スポットが紙面の奥から手前にZ軸に沿って進んでくるとすると、光スポットによる検出の順番はz1,z2,z3,z4となる。z1のタイミングで検出される信号S(z1)はマーク71の最後尾の単位マークからの信号が主になる。次に、z2のタイミングではマーク71の最後尾の単位マークからとマーク72の最後尾の単位マークからの信号が主になる。そこで、z2のタイミングで検出された信号S(z2)からz1のタイミングで検出される信号S(z1)を引くと、マーク72の最後尾の単位マークからの信号を検出できる。同様に、z3のタイミングで検出される信号S(z3)からz2のタイミングで検出される信号S(z2)を引くとマーク73の最後尾の単位マークからの信号を検出できる。また、z4のタイミングで検出される信号S(z4)からz3のタイミングで検出される信号S(z3)を引くと、マーク74からの信号を検出できる。
各マークの最後尾の単位マークからの信号は、図10のスパイラル41上にあるマーク91,92,93,94からの信号とみなせる。つまり、P1はS(z1)、P2はS(z2)−S(z1),P3はS(z3)−S(z2),P4はS(z4)−S(z3)と対応する。従って、トラックずれ信号EXは式(9)によって演算でき、焦点ずれ信号EYは次式(10)から演算できる。
X=S(z1)+S(z4)−S(z3)−(S(z2)−S(z1))−(S(z3)−S(z2))
=2S(z1)+S(z4)−2S(z3) …(9)
Y=S(z1)−(S(z4)−S(z3))+(S(z2)−S(z1))−(S(z3)−S(z2))
=2S(z2)−S(z4) …(10)
この場合には、制御信号を発生する領域はシート厚さの間隔に離散的に配置されるのみである。
本発明による3次元記録再生装置の実施例を示す概略図。 3次元光ディスク内に設定される情報トラックと光スポットの関係を示す模式図。 記録再生回路の詳細図。 本発明による3次元記録再生装置の他の実施例を示す概略図。 3次元光ディスク内に設定される情報トラックと光スポットの関係を示す模式図。 シート状の構造体を組み合わせて3次元光ディスクを作製する方法の一例を示す説明図。 シート状の構造体を組み合わせて3次元光ディスクを作製する方法の他の例を示す説明図。 本発明の動作原理の説明図。 スパイラル線の投影図。 本発明の動作原理の説明図。 スパイラル線の投影図。 マークによって検出される信号についての説明図。 マークから読み出される信号波形の模式的に示した説明図。 マーク群の説明図。 マーク群の説明図。 マーク群の説明図。
符号の説明
1:3次元光ディスク、2:長尺シート状の構造体、3:長尺シート状の構造体、4:3次元構造体、5:3次元構造体、6:楔型形状の構造体、7:3次元構造体、8:シート状の構造体、9:対物レンズ、11〜14:マーク、21,22:制御領域、23,24,25,26:光スポット、27:情報トラック、28:2次元アクチュエータ、35:光源、36:光検出器、37:上位コントローラ、38:記録回路、39:再生回路、45:アクセス制御回路、51〜54:マーク、61〜64:マーク、71〜74:マーク、77:光スポット、80:光ピックアップ

Claims (20)

  1. 表面に深さの異なる複数種類のマークが設けられた光記録用シートを積層して構成され、
    前記複数種類のマークは、情報トラックに沿って配置され、光スポットを前記情報トラックに案内するための信号を発生する案内マークとして用いられることを特徴とする3次元光ディスク媒体。
  2. 請求項1記載の3次元光ディスク媒体において、前記光記録用シートは長尺シートであり、当該長尺シートをロール状に巻いて肉厚円筒状の媒体とされ、前記情報トラックは前記長尺シートの長手方向に沿って螺旋を描くように設定されていることを特徴とする3次元光ディスク媒体。
  3. 請求項2記載の光ディスク媒体において、前記深さの異なる複数種類のマークは、各マークの先端によって前記情報トラックを螺旋状に包囲するように配置されていることを特徴とする3次元光ディスク媒体。
  4. 請求項2記載の光ディスク媒体において、前記マークは前記情報トラックに沿って離散的に設けられた制御信号発生領域に設けられていることを特徴とする3次元光ディスク媒体。
  5. 請求項2記載の光ディスク媒体において、前記マークは前記情報ラックに沿って連続的に設けられていることを特徴とする3次元光ディスク媒体。
  6. 請求項2記載の3次元光ディスク媒体において、前記マークは2種類の深さを有することを特徴とする3次元光ディスク媒体。
  7. 請求項1記載の3次元光ディスク媒体において、前記光記録用シートは円形シートであり、複数の円形シートを厚さ方向に積み重ねて円柱状の媒体とされ、前記情報トラックは前記円形シートの面に沿って同心円あるいは螺旋を描くように設定されていることを特徴とする3次元光ディスク媒体。
  8. 請求項5記載の3次元光ディスク媒体において、前記円形シートは中央に穴を有することを特徴とする3次元光ディスク媒体。
  9. 請求項5記載の3次元光ディスク媒体において、前記深さの異なる複数種類のマークは、各マークの先端によって前記情報トラックを螺旋状に包囲するように配置されていることを特徴とする3次元光ディスク媒体。
  10. 請求項5記載の光ディスク媒体において、前記マークは前記情報トラックに沿って離散的に設けられた制御信号発生領域に設けられていることを特徴とする3次元光ディスク媒体。
  11. 請求項5記載の光ディスク媒体において、前記マークは前記情報ラックに沿って連続的に設けられていることを特徴とする3次元光ディスク媒体。
  12. 請求項5記載の3次元光ディスク媒体において、前記マークは第1の深さのマークと第2の深さのマークからなることを特徴とする3次元光ディスク媒体。
  13. 請求項1記載の3次元光ディスク媒体において、前記光記録用シートは内径側の膜厚が外界側の膜厚より薄い楔形をした矩形状シートであり、当該矩形状シートを積み重ねて肉厚円筒状の媒体とされ、前記情報トラックは全ての矩形状シートの表面を横切って同心円あるいは螺旋を描くように設定されていることを特徴とする3次元光ディスク媒体。
  14. 請求項13記載の3次元光ディスク媒体において、前記ピットは前記記録トラックを螺旋状に包囲するように配置されていることを特徴とする3次元光ディスク媒体。
  15. 請求項13記載の3次元光ディスク媒体において、前記マークは前記情報トラックに沿って離散的に設けられた制御信号発生領域に設けられていることを特徴とする3次元光ディスク媒体。
  16. 請求項13記載の3次元光ディスク媒体において、前記マークは4種類の深さを有することを特徴とする3次元光ディスク媒体。
  17. 表面に深さの異なる複数種類のマークが設けられた光記録用シートを積層して構成され、前記複数種類のマークは、情報トラックに沿って配置され、光スポットを前記情報トラックに案内するための信号を発生する案内マークとして用いられる3次元光ディスク媒体と、
    前記3次元光ディスク媒体を回転駆動する駆動部と、
    前記3次元光ディスク媒体に対して光スポットを照射する光照射部と、
    前記3次元光ディスク媒体からの反射光を受光する受光部と、
    前記案内マークの再生信号を処理して光スポットの3次元方向の位置決めを行う制御部とを備える3次元情報記録再生装置。
  18. 請求項17記載の3次元情報記録再生装置において、前記光記録用シートは長尺シートであり、当該長尺シートをロール状に巻いて肉厚円筒状の媒体とされ、前記情報トラックは前記長尺シートの長手方向に沿って螺旋を描くように設定されていることを特徴とする3次元情報記録再生装置。
  19. 請求項17記載の3次元情報記録再生装置において、前記光記録用シートは円形シートであり、複数の円形シートを厚さ方向に積み重ねて円柱状の媒体とされ、前記情報トラックは前記円形シートの面に沿って同心円あるいは螺旋を描くように設定されていることを特徴とする3次元情報記録再生装置。
  20. 請求項17記載の3次元情報記録再生装置において、前記光記録用シートは内径側の膜厚が外界側の膜厚より薄い楔形をした矩形状シートであり、当該矩形状シートを積み重ねて肉厚円筒状の媒体とされ、前記情報トラックは全ての矩形状シートの表面を横切って同心円あるいは螺旋を描くように設定されていることを特徴とする3次元情報記録再生装置。
JP2004212945A 2004-07-21 2004-07-21 3次元光ディスク媒体及び3次元情報記録再生装置 Pending JP2006031894A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212945A JP2006031894A (ja) 2004-07-21 2004-07-21 3次元光ディスク媒体及び3次元情報記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212945A JP2006031894A (ja) 2004-07-21 2004-07-21 3次元光ディスク媒体及び3次元情報記録再生装置

Publications (2)

Publication Number Publication Date
JP2006031894A true JP2006031894A (ja) 2006-02-02
JP2006031894A5 JP2006031894A5 (ja) 2007-05-31

Family

ID=35898032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212945A Pending JP2006031894A (ja) 2004-07-21 2004-07-21 3次元光ディスク媒体及び3次元情報記録再生装置

Country Status (1)

Country Link
JP (1) JP2006031894A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821884B2 (en) 2007-03-08 2010-10-26 Hitachi, Ltd. Information recording and retrieval method, and its apparatus
US8134905B2 (en) 2007-11-01 2012-03-13 Hitachi, Ltd. Information storage device and storage media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821884B2 (en) 2007-03-08 2010-10-26 Hitachi, Ltd. Information recording and retrieval method, and its apparatus
US8134905B2 (en) 2007-11-01 2012-03-13 Hitachi, Ltd. Information storage device and storage media

Similar Documents

Publication Publication Date Title
JP4686391B2 (ja) 光情報記録媒体、光情報記録装置および光情報記録方法
US8111604B2 (en) Fabrication method of multilayer optical record medium and recording apparatus for multilayered optical record medium
WO2007055107A1 (ja) 多層ディスク及びその情報記録再生装置
EP1235209B1 (en) Information recording and reproducing apparatus
JP4209106B2 (ja) 光ディスク記録媒体
JP4284209B2 (ja) 再生装置、記録再生装置及び再生方法
EP2455937B1 (en) Servoing system for multiple spot registration for holographic replication system
JP4162886B2 (ja) 光ディスク記録方法、光ディスク記録装置及び光ディスク再生装置
EP2164067A1 (en) Optical disc and recording/reproducing method and apparatus for the optical disc
JP2013182633A (ja) 記録装置、記録方法、再生装置、再生方法
JPWO2011125157A1 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
JP2006031894A (ja) 3次元光ディスク媒体及び3次元情報記録再生装置
JP4540730B2 (ja) 光ディスク記録媒体
JP2008052793A (ja) 記録媒体およびそれを用いたサーボ信号検出方法、情報記録再生装置
JP4548762B2 (ja) 光情報記録媒体
TWI530944B (zh) 在全像複製系統中用於具平行軌之主碟片之伺服系統
JP4934655B2 (ja) 情報記録再生装置、光情報記録媒体の製造装置、及び光情報記録媒体。
JP2006343368A (ja) 記録方法、再生方法、光ピックアップ装置、光情報記録装置及び光情報再生装置
CN102623020B (zh) 单比特体全息记录和读出中的伺服结构
JP5675460B2 (ja) ディスク装置
JP2982431B2 (ja) 情報記録媒体、それを用いた情報処理方法および装置
JP2005235282A (ja) 光記録媒体、光記録再生装置及び方法、フォーカス及びトラッキング制御方法
JP2006172600A (ja) 3次元情報記録方法及び再生方法
JP2003157571A (ja) 透過式多層記録媒体及びその記録再生装置
JP2003132551A (ja) 光学式記録媒体及び光学式情報記録再生装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317