JP2006030845A - Method of manufacturing optical device, optical head device, and optical disk device - Google Patents

Method of manufacturing optical device, optical head device, and optical disk device Download PDF

Info

Publication number
JP2006030845A
JP2006030845A JP2004212732A JP2004212732A JP2006030845A JP 2006030845 A JP2006030845 A JP 2006030845A JP 2004212732 A JP2004212732 A JP 2004212732A JP 2004212732 A JP2004212732 A JP 2004212732A JP 2006030845 A JP2006030845 A JP 2006030845A
Authority
JP
Japan
Prior art keywords
optical
substrate
optical device
manufacturing
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004212732A
Other languages
Japanese (ja)
Inventor
Eizo Ono
栄三 小野
Takatoshi Minoda
孝敏 蓑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004212732A priority Critical patent/JP2006030845A/en
Publication of JP2006030845A publication Critical patent/JP2006030845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical device having a high optical efficiency, an optical head device, and an optical disk device. <P>SOLUTION: In the method of manufacturing the optical device for forming a diffraction grating pattern for diffracting light on a polymerizable liquid crystal thin film, a substrate, a counter substrate, and projections formed at least on one of the substrates are prepared, and the surface of at least one of the two substrates facing each other is subjected to orientation treatment, and a polymerizable material is disposed and held between the transparent substrates and is hardened, and then one substrate is removed, and a rugged grating is formed on the polymerizable liquid crystal thin film, and an isotropic organic film is disposed on the rugged grating part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ビームを用いて情報記録媒体に記録、再生、消去などを行う光ディスクドライブ装置に用いられる光ヘッド装置用の接着剤で貼り合わせる光学デバイスや複屈折材料の膜厚規制を必要とする光学デバイスの製造方法に関するものである。   The present invention requires regulation of the film thickness of an optical device or a birefringent material bonded with an adhesive for an optical head device used in an optical disk drive device that performs recording, reproduction, erasing, etc. on an information recording medium using a light beam. The present invention relates to a method for manufacturing an optical device.

光学記録媒体として、DVD(デジタルビデオディスク)、CD−R(書き込み可能なコンパクトディスク)、CD−RW(書き換え可能なコンパクトディスク)等の種々の光ディスクが開発されている。DVDにおいては、波長約650nmのレーザ光により情報の記録または再生が行われる。一方、CD−RやCD−RWにおいては、波長約780nmのレーザー光により情報の記録または再生が行われる。このような複数種類の光ディスクに対して情報の記録または再生を行う光ディスク装置が提案されている。   As optical recording media, various optical discs such as DVD (digital video disc), CD-R (writeable compact disc), CD-RW (rewritable compact disc) have been developed. In a DVD, information is recorded or reproduced by a laser beam having a wavelength of about 650 nm. On the other hand, in CD-R and CD-RW, information is recorded or reproduced by laser light having a wavelength of about 780 nm. An optical disc apparatus that records or reproduces information on a plurality of types of optical discs has been proposed.

また、このような複数種類の光ディスクに対して情報の記録または再生を行う光ディスクドライブ装置において、光ディスクドライブ装置に搭載される光ヘッド装置の光源としては、複数の異なる波長の光束を出射するレーザー素子を1つのパッケージに隣接して配置したもの(いわゆるハイブリッド型2波長半導体レーザー)や1つの半導体基板に複数の波長の光源を集積化したもの(いわゆるモノリシック型2波長半導体レーザー)などが用いられている。   Further, in such an optical disc drive apparatus that records or reproduces information on a plurality of types of optical discs, a laser element that emits a plurality of light beams having different wavelengths is used as a light source of an optical head device mounted on the optical disc drive apparatus. Are arranged adjacent to one package (so-called hybrid type two-wavelength semiconductor laser), or one in which light sources of a plurality of wavelengths are integrated on one semiconductor substrate (so-called monolithic type two-wavelength semiconductor laser) are used. Yes.

これらのユニットと光学デバイスを組み合わせることによりDVD系の往路(集光系)と復路(検出系)を共通化するとともにCDとDVDとでコリメートレンズ、対物レンズを共有して部品点数を削減し小型な光ヘッド装置を提供できる。   By combining these units and optical devices, the DVD forward path (condensing system) and return path (detection system) are shared, and the CD and DVD share the collimator lens and objective lens, reducing the number of parts and miniaturization. An optical head device can be provided.

ところで、前記光学デバイスを製造する方法として、従来は、図8に示すように、対向する2枚の基板の少なくとも一方に配向処理を形成し、基板301と対向するダミー基板302間に間隔を一定に保持するスペーサ305と重合性液晶薄膜304を狭持し液晶膜を光照射によって硬化させた構造としていた(特許文献1)。   By the way, as a method for manufacturing the optical device, conventionally, as shown in FIG. 8, an alignment process is formed on at least one of two opposing substrates, and a distance between the substrate 301 and the dummy substrate 302 is constant. The structure is such that the spacer 305 and the polymerizable liquid crystal thin film 304 are held between the liquid crystal film and the liquid crystal film is cured by light irradiation (Patent Document 1).

また、基板の外周縁の少なくとも2辺に外枠部分を形成し、基板間の重合性液晶モノマーの塗布厚の均一化を図る方法があった(特許文献2)。
特開平11−211905号公報 特開2002−365417号公報
In addition, there has been a method in which an outer frame portion is formed on at least two sides of the outer peripheral edge of the substrate to make the coating thickness of the polymerizable liquid crystal monomer uniform between the substrates (Patent Document 2).
Japanese Patent Application Laid-Open No. 11-211905 JP 2002-365417 A

しかしながら、前記(特許文献1)のように、対向する基板間にスペーサと高分子液晶膜を狭持して基板間隔を一定にする方法によると、スペーサによって光の散乱が発生し、また透過性が悪化する課題があった。またスペーサの影響で重合性物質の配向性が乱れる課題があった。   However, as described above (Patent Document 1), according to the method in which the spacer and the polymer liquid crystal film are sandwiched between the opposing substrates to make the substrate interval constant, light is scattered by the spacers, and the transparency is increased. There was a problem to get worse. In addition, the orientation of the polymerizable substance is disturbed due to the influence of the spacer.

また、前記(特許文献2)のように、基板の外周縁の少なくとも2辺に外周枠を形成し、基板間隔を均一化する方法では、外周縁を面で支持する為、支持する面の均一性を精度よく確保しなければ、液晶樹脂厚の精度決定に影響することになり、歩留りの改善上課題があった。   Further, as described above (Patent Document 2), in the method in which the outer peripheral frame is formed on at least two sides of the outer peripheral edge of the substrate and the distance between the substrates is made uniform, the outer peripheral edge is supported by the surface. If accuracy is not ensured with high accuracy, it will affect the accuracy determination of the thickness of the liquid crystal resin, and there has been a problem in improving the yield.

かかる課題を解決するため、本発明の光学デバイスの製造方法は、少なくとも一方の光学材料に複数の突起を設けた、少なくとも一対の光学材料を対向配置させ、前記光学材料間に、重合性物質を充填し、前記重合性物質を硬化した構成を採る。   In order to solve this problem, an optical device manufacturing method according to the present invention includes at least a pair of optical materials provided with a plurality of protrusions on at least one optical material, and a polymerizable substance disposed between the optical materials. The structure which filled and hardened the said polymeric substance is taken.

かかる構成によれば、前記突起部により、複数の光学材料間の重合性物質の膜厚を制御できるとともに光透過性の優れた光学デバイスを提供できる。   According to this configuration, it is possible to provide an optical device that can control the film thickness of the polymerizable substance between the plurality of optical materials and has excellent light transmittance by the protrusions.

本発明の製造方法によれば、透明基板の間隔を形成された突起で回折格子形成部の膜厚を均一にでき、また重合性液晶部にスペーサ等の材料を配置していないため、スペーサによって光が散乱することがなくまた光の透過性もよくなる。さらに重合性物質の配向性もよくなるため光効率のよい光学デバイスを提供できるとともにこの素子を使用した光効率のよい光ヘッド装置および光ドライブ装置を提供できる。   According to the manufacturing method of the present invention, the film thickness of the diffraction grating forming portion can be made uniform by the projections formed with the interval between the transparent substrates, and no material such as a spacer is disposed in the polymerizable liquid crystal portion. Light is not scattered and the light transmission is improved. Furthermore, since the orientation of the polymerizable material is improved, an optical device with high light efficiency can be provided, and an optical head device and an optical drive device with high light efficiency using this element can be provided.

請求項1の光学デバイスの製造方法は、少なくとも一方の光学材料に複数の突起を設けた、少なくとも一対の光学材料を対向配置させ、前記光学材料間に、重合性物質を充填し、前記重合性物質を硬化した構成を採る。   The method of manufacturing an optical device according to claim 1, wherein at least one pair of optical materials provided with a plurality of protrusions on at least one optical material is arranged to face each other, a polymerizable substance is filled between the optical materials, and the polymerizable property is set. Uses a cured composition.

かかる光学デバイスの製造方法によれば、前記突起部により、複数の光学材料間の重合性物質の膜厚を制御できるとともに光透過性の優れた光学デバイスを提供できる。   According to this method of manufacturing an optical device, it is possible to provide an optical device that can control the film thickness of a polymerizable substance between a plurality of optical materials and has excellent light transmittance by the protrusions.

請求項2の光学デバイスの製造方法は、請求項1の光学デバイスの製造方法に於いて、前記複数の突起は、前記光学材料の間隙が光学材料の全面に亘って略等しくなるように配置される構成を採る。   The method of manufacturing an optical device according to claim 2 is the method of manufacturing an optical device according to claim 1, wherein the plurality of protrusions are arranged so that gaps between the optical materials are substantially equal over the entire surface of the optical material. The structure is adopted.

かかる光学デバイスの製造方法によれば、前記重合性物質の膜厚を光学材料全面に亘って均一にすることができる。   According to this method for manufacturing an optical device, the film thickness of the polymerizable substance can be made uniform over the entire surface of the optical material.

請求項3の光学デバイスの製造方法は、少なくとも一方の光学材料に複数の突起を設けた、少なくとも一対の光学材料の少なくとも一方の基板表面に配向処理を行い、前記光学部材を対向配置し、前記光学材料間に、重合性物質を充填し、前記重合性物質を硬化したことを特徴とする光学デバイスの製造方法。   According to a third aspect of the present invention, there is provided a method for manufacturing an optical device, comprising: performing alignment processing on at least one substrate surface of at least one pair of optical materials provided with a plurality of protrusions on at least one optical material; A method for producing an optical device, wherein a polymerizable substance is filled between optical materials and the polymerizable substance is cured.

かかる光学デバイスの製造方法によれば、対向する一対の基板間の重合性物質の光学特性が優れた光学デバイスを提供できる。   According to such an optical device manufacturing method, an optical device having excellent optical characteristics of a polymerizable substance between a pair of opposing substrates can be provided.

請求項4の光学デバイスの製造方法は、請求項3の製造方法に於いて、前記重合性物質を硬化したのち、一方の光学材料を除去し、前記重合性物質に回折格子を形成する構成を採る。   According to a fourth aspect of the present invention, there is provided a method for producing an optical device according to the third aspect, wherein after the polymerizable substance is cured, one optical material is removed and a diffraction grating is formed on the polymerizable substance. take.

かかる光学デバイスの製造方法によれば、前記基板形成された突起の厚みによる規制で基板の間隔をで均一にでき、また重合性液晶部にスペーサ等の材料を配置していないため、スペーサによって光が散乱することがなくまた光の透過性もよくなる。さらに重合性物質の配向性もよくなるため光効率のよい光学デバイスを提供できる。   According to this method of manufacturing an optical device, the distance between the substrates can be made uniform by the restriction by the thickness of the protrusions formed on the substrate, and no material such as a spacer is disposed in the polymerizable liquid crystal part. Is not scattered and the light transmission is improved. Furthermore, since the orientation of the polymerizable substance is improved, an optical device with high light efficiency can be provided.

請求項5の光学デバイスの製造方法は、請求項4の光学デバイスの製造方法において、前記基板に形成した突起は回折格子パタン形成領域以外に設けた構成を採る。   According to a fifth aspect of the present invention, there is provided an optical device manufacturing method according to the fourth aspect, wherein the protrusion formed on the substrate is provided in a region other than the diffraction grating pattern forming region.

かかる光学デバイスの製造方法によれば、突起部が回折格子形成領域外に配設されるこ
とにより、基板に形成された突起部による光効率低下、光の散乱の影響がなくなる。
According to this method of manufacturing an optical device, the protrusions are disposed outside the diffraction grating formation region, thereby eliminating the effects of light efficiency reduction and light scattering caused by the protrusions formed on the substrate.

請求項6の光学デバイスの製造方法は、請求項4記載の光学デバイス製造方法において、前記基板に形成した突起の形状は、突起の根本より突起の先端部が細く形成された構成を採る。   The optical device manufacturing method according to claim 6 is the optical device manufacturing method according to claim 4, wherein the shape of the protrusion formed on the substrate is such that the tip of the protrusion is narrower than the base of the protrusion.

かかる光学デバイスの製造方法によれば、配設された突起の根本より先端部が細く形成されることにより、透明基板を対向させて配置する際に2枚の基板の接触部の面積を小さくでき、重合性物質の樹脂厚のコントロールが容易である。   According to such a method for manufacturing an optical device, the tip portion is formed to be narrower than the root of the arranged protrusion, so that the area of the contact portion between the two substrates can be reduced when the transparent substrates are arranged to face each other. It is easy to control the resin thickness of the polymerizable substance.

請求項7記載の光学デバイスの製造方法は、請求項4記載の光学デバイス製造方法において、前記重合性物質の厚みは、突起部の高さと同じかまたは、それ以上の厚みとした構成を採る。   The optical device manufacturing method according to claim 7 is the optical device manufacturing method according to claim 4, wherein the thickness of the polymerizable substance is equal to or greater than the height of the protrusion.

かかる光学デバイスの製造方法によれば、2枚の基板間の加重コントロールが容易で、重合性物質の厚みを均一にコントロールすることができ、厚みのむらがなくなって歩留まりが向上する。   According to such a method for manufacturing an optical device, it is easy to control the weight between two substrates, the thickness of the polymerizable substance can be controlled uniformly, and there is no unevenness in thickness, thereby improving the yield.

請求項8記載の光学デバイス製造方法は、請求項4記載の光学デバイス製造方法において、前記基板に配置される突起の密度は、0.001〜1個/mm2の範囲とした構成を採る。 An optical device manufacturing method according to an eighth aspect of the invention is the optical device manufacturing method according to the fourth aspect, wherein the density of the protrusions arranged on the substrate is in the range of 0.001 to 1 piece / mm 2 .

かかる光学デバイスの製造方法によれば、前記対向する基板の間隔を均一にすることができるとともに、回折格子形成領域の突起部による光の透過性および光の散乱が少ない光学デバイスを提供できる。   According to this method of manufacturing an optical device, it is possible to provide an optical device in which the distance between the opposing substrates can be made uniform, and light transmission and light scattering by the protrusions in the diffraction grating formation region are small.

請求項9記載の光ヘッド装置は、光ディスク記録媒体に情報を記録および光ディスク媒体の情報を再生するとして、請求項1から請求項8の光学デバイス製造方法で製造した光学デバイスを用いた構成を採る。   An optical head device according to a ninth aspect adopts a configuration using an optical device manufactured by the optical device manufacturing method according to any one of the first to eighth aspects, wherein information is recorded on and reproduced from the optical disk recording medium. .

かかる光学デバイスの製造方法によれば、光の散乱が少なくまた透過性もよく、重合性物質の配向性がよい光学デバイスを使用することでき、光利用効率の高い光ヘッド装置を提供できる。   According to such a method for manufacturing an optical device, an optical device that has low light scattering, good transparency, and good orientation of the polymerizable substance can be used, and an optical head device with high light utilization efficiency can be provided.

請求項10記載の光ディスクドライブ装置は、光ディスク記録媒体に情報を記録および光ディスク媒体の情報を再生する手段として請求項9記載の光ヘッド装置を用いる構成を採る。   An optical disk drive apparatus according to a tenth aspect employs a configuration in which the optical head apparatus according to the ninth aspect is used as means for recording information on an optical disk recording medium and reproducing information on the optical disk medium.

かかる光学デバイスの製造方法によれば、前記請求項9記載の光ヘッド装置を用いることで、コンパクトで光利用効率の高いディスクドライブ装置を提供できる。   According to this method of manufacturing an optical device, a disk drive device that is compact and has high light utilization efficiency can be provided by using the optical head device according to the ninth aspect.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、各図において同一の構成または機能を有する構成要素および相当部分には、同一の符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, components having the same configuration or function and corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

(実施の形態1)
図1において、光ディスクドライブ装置1には筐体2及びトレイ3があり、トレイ3にはピックアップモジュール4及びベゼル5が構成されている。図1は筐体2からトレイ3を引き出した状態を示している。トレイ3の両側部にはレール部6があり、両側部共にレール7とディスク引き出し方向に摺動自在に嵌合している。また、レール7は筐体2両側
部内面に設けられたレールガイド(図示せず)ともディスク引き出し方向に摺動自在に嵌合しており、トレイ3は筐体2からディスクが着脱出来るよう引き出すことが出来る。ピックアップモジュール4には光学系を構成した光ヘッド装置9とディスクを回転させるスピンドルモータ4aが設けられている。スピンドルモータ4aにはディスク装着部4bがあり、ディスクを装着し回転駆動させる。
(Embodiment 1)
In FIG. 1, the optical disc drive apparatus 1 includes a housing 2 and a tray 3, and a pickup module 4 and a bezel 5 are configured on the tray 3. FIG. 1 shows a state in which the tray 3 is pulled out from the housing 2. Rails 6 are provided on both sides of the tray 3, and both sides are fitted to the rails 7 so as to be slidable in the disk drawing direction. The rail 7 is also slidably fitted in a disk pull-out direction with rail guides (not shown) provided on the inner surfaces of both sides of the housing 2, and the tray 3 is pulled out from the housing 2 so that the disk can be attached and detached. I can do it. The pickup module 4 is provided with an optical head device 9 constituting an optical system and a spindle motor 4a for rotating the disk. The spindle motor 4a has a disk mounting portion 4b for mounting and rotating the disk.

図2に光ヘッド装置について示す。DVD用レーザ101からの光はダイクロイックプリズム102表面で反射され、コリメートレンズ103により平行光となり、反射ミラー104を経て、光学デバイス105を全透過し、600〜700nmの波長に対して1/4波長の位相差を与える1/4波長板106で円偏光に変換され、対物レンズ107により、基材厚0.6mmのディスク108面に集光される。ディスク108を反射した光は1/4波長板106で往路と直交する直線偏光となり、光学デバイス105でほぼ全光量回折される。回折光は光源に隣接して設けられたフォトディテクタ(図示せず)に入射し、信号検出される。一方、CD用レーザ110からの光は、集積ユニットと一体化したガラスホログラム111、ダイクロイックプリズム102を透過し、コリメートレンズ103、反射ミラー104を経て、光学デバイス105、1/4波長板106を透過する。1/4波長板106は700〜800nmの光に対してほぼ1波長相当の位相差となり、往路、復路ともに透過光の偏光は変わらない。透過光は、対物レンズ107により基材厚1.2mmのディスク面に集光される。ディスク108を反射した光は、1/4波長板106を経て、光学デバイス105で回折されずに全透過し、往路と逆の光路をたどってガラスホログラム111で回折分岐され、フォトディテクタ(図示せず)により信号検出される。この光ヘッドにおいては、一対の対物レンズ107、コリメートレンズ103で2つの波長の光、異なる基材厚のディスク108に対応できる。   FIG. 2 shows an optical head device. The light from the DVD laser 101 is reflected by the surface of the dichroic prism 102, becomes parallel light by the collimating lens 103, passes through the reflection mirror 104, is totally transmitted through the optical device 105, and is ¼ wavelength with respect to a wavelength of 600 to 700 nm. Is converted into circularly polarized light by the quarter-wave plate 106 that gives a phase difference of λ and is focused on the surface of the disk 108 having a substrate thickness of 0.6 mm by the objective lens 107. The light reflected from the disk 108 becomes linearly polarized light orthogonal to the forward path by the quarter-wave plate 106 and is diffracted almost entirely by the optical device 105. The diffracted light is incident on a photodetector (not shown) provided adjacent to the light source, and a signal is detected. On the other hand, the light from the CD laser 110 passes through the glass hologram 111 and the dichroic prism 102 integrated with the integrated unit, passes through the collimating lens 103 and the reflection mirror 104, and passes through the optical device 105 and the quarter wavelength plate 106. To do. The quarter-wave plate 106 has a phase difference of approximately one wavelength with respect to light of 700 to 800 nm, and the polarization of transmitted light does not change in the forward path and the return path. The transmitted light is collected by the objective lens 107 onto the disk surface having a substrate thickness of 1.2 mm. The light reflected from the disk 108 passes through the quarter-wave plate 106 and is totally transmitted without being diffracted by the optical device 105, and is diffracted and branched by the glass hologram 111 along an optical path opposite to the forward path. ) Is detected. In this optical head, a pair of objective lens 107 and collimator lens 103 can deal with light of two wavelengths and disks 108 having different substrate thicknesses.

図3に前記光学デバイス105と1/4波長板204と開口フィルタ404を組み合わせた開口ホログラム波長板400を示す。基板301表面に配向膜306を配置し重合性液晶薄膜304で生成された有機膜401と、等方性膜402とで形成された光学デバイス105に1/4波長板204を貼り合わせ、さらに開口フィルタ404を配置しチップ両面をAR膜403で形成された構成としている。   FIG. 3 shows an aperture hologram wavelength plate 400 in which the optical device 105, the quarter wavelength plate 204, and the aperture filter 404 are combined. An alignment film 306 is disposed on the surface of the substrate 301, and the quarter wavelength plate 204 is bonded to the optical device 105 formed by the organic film 401 generated by the polymerizable liquid crystal thin film 304 and the isotropic film 402, and the opening is further opened. The filter 404 is arranged and both surfaces of the chip are formed by the AR film 403.

図4に光学デバイス105の製造方法の一例を示す。   FIG. 4 shows an example of a method for manufacturing the optical device 105.

図4(a)、図5(b)に本実施の形態の透明な基板301上に回折用の格子を設ける回折素子であって、回折格子(ホログラムパタン)を形成するための重合性液晶薄膜を作製する一例を以下に示す。   4 (a) and 5 (b) are diffractive elements in which a diffraction grating is provided on the transparent substrate 301 of the present embodiment, and a polymerizable liquid crystal thin film for forming a diffraction grating (hologram pattern). An example of producing is shown below.

図4(a)に示すように、透明な基板301とダミー基板302を対向させ配置する。ダミー基板302には凸状の突起303を設ける。前記凸状の突起303は、透明な基板301とダミー基板302の間隔を均一に確保するために設けるものであり、前記基板301とダミー基板302間の間隔を均一化によって、この間に配置する重合性液晶薄膜304を均一化するように設定する。重合性液晶薄膜304の膜厚が均一でないと均一な回折効果が得られなくなるため、透明な基板301と対向するダミー基板302の間隔を均一にするため、前記突起303の形状は、球状、円柱状、角柱状、円錐状、角錐状等が選択できるが基板間の樹脂厚規制精度を高くするには、
円錐状>角錐状>球面状>平面上
のように突起303の先端は細く点で接触する構成とした方が望ましい。
As shown in FIG. 4A, a transparent substrate 301 and a dummy substrate 302 are arranged to face each other. The dummy substrate 302 is provided with a convex protrusion 303. The convex protrusions 303 are provided in order to ensure a uniform spacing between the transparent substrate 301 and the dummy substrate 302, and the gap between the substrate 301 and the dummy substrate 302 is made uniform by overlapping. The liquid crystal thin film 304 is set to be uniform. Since the uniform diffraction effect cannot be obtained unless the film thickness of the polymerizable liquid crystal thin film 304 is uniform, the protrusion 303 has a spherical, circular shape in order to make the distance between the transparent substrate 301 and the dummy substrate 302 uniform. Columnar, prismatic, conical, pyramidal, etc. can be selected, but in order to increase the resin thickness regulation accuracy between substrates,
It is desirable that the tip of the protrusion 303 is thin and contacted at a point, such as conical>pyramidal>spherical> planar.

突起303の高さは、前記重合性液晶薄膜304の厚みと同等もしくは前記重合性液晶薄膜304の厚みより、低く設定するほうがよく、2〜5μm厚に設定する。また透明な基板301およびダミー基板302の材料は、ガラスや、アクリル、プラスチック等の透
明の樹脂が利用できるが強度や耐久性の点でガラス材が望ましい。また、突起303は、回折格子を形成する領域309の外側に配置したほうが、光学特性への影響が少なくできる。
The height of the protrusion 303 is preferably set to be equal to the thickness of the polymerizable liquid crystal thin film 304 or lower than the thickness of the polymerizable liquid crystal thin film 304, and is set to 2 to 5 μm. The transparent substrate 301 and the dummy substrate 302 can be made of glass or a transparent resin such as acrylic or plastic, but a glass material is desirable in terms of strength and durability. Further, if the protrusion 303 is disposed outside the region 309 forming the diffraction grating, the influence on the optical characteristics can be reduced.

透明な基板301およびダミー基板302は、厚みを0.3〜0.8mmとする。基板301の表面のゴミや酸化膜を除去するため、純水等で洗浄したのち重合性液晶薄膜304に接する面に重合性液晶薄膜304の分子配向を調整するために配向膜306を形成し、この配向膜306の配向処理を行う。   The transparent substrate 301 and the dummy substrate 302 have a thickness of 0.3 to 0.8 mm. An alignment film 306 is formed to adjust the molecular orientation of the polymerizable liquid crystal thin film 304 on the surface in contact with the polymerizable liquid crystal thin film 304 after cleaning with pure water or the like to remove dust and oxide film on the surface of the substrate 301. An alignment process is performed on the alignment film 306.

配向膜306の材料としては、ポリイミド膜やポリアミド膜の高分子膜やSiO2等が使用できる。 As a material for the alignment film 306, a polymer film such as a polyimide film or a polyamide film, or SiO 2 can be used.

前記配向膜306形成後の配向処理の方法は、図7に示す。図7で、ロール501に布502を巻き付けて回転させながら透明な基板301に配置した配向膜306を擦るラビング処理を行う。   A method of alignment treatment after the formation of the alignment film 306 is shown in FIG. In FIG. 7, a rubbing process is performed in which the alignment film 306 disposed on the transparent substrate 301 is rubbed while the cloth 502 is wound around the roll 501 and rotated.

また、図4(a)に示すように、ダミー基板302に対しても、配向処理を行う。ダミー基板は、重合性液晶薄膜304の硬化後に除去する必要があるため、剥離性および配向膜の双方の特性を持った材料307を塗布する。   Further, as shown in FIG. 4A, the alignment process is also performed on the dummy substrate 302. Since the dummy substrate needs to be removed after the polymerizable liquid crystal thin film 304 is cured, a material 307 having both the peelability and alignment film characteristics is applied.

また、前記基板301とダミー基板302の配向処理は、180度の逆方向で配向処理したほうが、液晶分子の配向が一軸配向となりやすい。前記配向の方向は、ラビング処理の方向を含めた方向で、基板とダミー基板で同じ向きで方向が、180度ずれる(アンチパラレル)の向きとする。   Further, the alignment treatment of the substrate 301 and the dummy substrate 302 is more likely to be uniaxial alignment of the liquid crystal molecules when the alignment treatment is performed in the reverse direction of 180 degrees. The direction of the orientation is a direction including the rubbing direction, and the direction is the same for the substrate and the dummy substrate, and the directions are shifted by 180 degrees (anti-parallel).

配向処理実施に際しては、透明な基板301,ダミー基板302の両基板に対してラビング処理時の布502の押しつけ量は、およそ100〜800μm程度とすることで、ダミー基板302に凸部があっても配向性に影響を及ぼすことは少ない。なお、押しつけ量は望ましくは、200〜600μmとする。100μmより少ないと、配向処理の効果が薄れ、また800μmより大きいと、突起形状の先端部に影響を与える場合がある。   When the alignment process is performed, the pressing amount of the cloth 502 during the rubbing process on both the transparent substrate 301 and the dummy substrate 302 is about 100 to 800 μm, so that the dummy substrate 302 has a convex portion. Does not affect the orientation. The pressing amount is desirably 200 to 600 μm. When the thickness is less than 100 μm, the effect of the alignment treatment is reduced. When the thickness is larger than 800 μm, the tip of the protrusion shape may be affected.

この配向処理された透明な基板301とダミー基板302の間隙は、図4(b)に示すように、ダミー基板302に配設された突起303による手段で両基板を所定の加重を加え、基板間隔を均一間隔に保持する。   As shown in FIG. 4B, the gap between the orientation-treated transparent substrate 301 and the dummy substrate 302 is obtained by applying a predetermined load to both substrates by means of the projections 303 provided on the dummy substrate 302. Maintain a uniform spacing.

前記基板間隔の空隙には重合性液晶薄膜304を塗布して重合性液晶薄膜304材硬化手段にて硬化させ重合性液晶薄膜304とする。重合性液晶薄膜304の硬化手段としては、UV光や可視光、レーザ光や加熱による方法があるが、本実施の形態では波長365nmのUV光の照射で重合性液晶薄膜304を硬化した。   A polymerizable liquid crystal thin film 304 is applied to the gap between the substrates and is cured by a material curing means for the polymerizable liquid crystal thin film 304 to obtain a polymerizable liquid crystal thin film 304. As a curing means for the polymerizable liquid crystal thin film 304, there is a method using UV light, visible light, laser light, or heating. In this embodiment, the polymerizable liquid crystal thin film 304 is cured by irradiation with UV light having a wavelength of 365 nm.

このようにして製造された重合性液晶薄膜304のダミー基板302を除去する。図4(c)に示すように、ダミー基板302を除去すると、前記重合性液晶薄膜304には、ダミー基板302に配置した凸部の影響による凹部308が残る。この凹部308は数が多くなると光学特性に影響が出る為、基板間の間隔を均一化できる範囲でできるだけ少なく配置したがよい。本実施の形態では、突起303の数は、対向する基板301とダミー基板302の間隔を維持し、かつ光学デバイス105の光効率をよくするために、1mm2あたり0.001〜1個程度配置した。0.001より少ない配置にすると、一対の基板間の均一性が保たれず重合性液晶膜厚の厚みが不均一となる。また、1個より多く配置すると、光の散乱等による光効率が悪化する。 The dummy substrate 302 of the polymerizable liquid crystal thin film 304 thus manufactured is removed. As shown in FIG. 4C, when the dummy substrate 302 is removed, the polymerizable liquid crystal thin film 304 has a recess 308 due to the effect of the protrusion disposed on the dummy substrate 302. As the number of the concave portions 308 increases, the optical characteristics are affected. Therefore, it is preferable that the number of the concave portions 308 be as small as possible within a range in which the distance between the substrates can be made uniform. In this embodiment, the number of projections 303 maintain the spacing of the opposing substrate 301 and the dummy substrate 302, and in order to improve the light efficiency of the optical device 105, 1 mm 2 per 0.001 or so disposed did. If the arrangement is less than 0.001, the uniformity between the pair of substrates cannot be maintained, and the thickness of the polymerizable liquid crystal film becomes non-uniform. If more than one are arranged, light efficiency due to light scattering or the like deteriorates.

図9に基板を示す。本実施の形態では、図9(a)に示すように、3インチのウエーハに対しチップをダイシング等により256個程度に切断する。1つのウエーハにおよそ10個程度のダミー基板302に凸部303をおよそ10個程度配置すると、重合性液晶薄膜にも対応する凹部308が10個程度配置され、1mm2あたりおよそ0.002個の凹部308を配置することになる。 FIG. 9 shows the substrate. In the present embodiment, as shown in FIG. 9A, about 256 chips are cut into a 3-inch wafer by dicing or the like. When about 10 convex portions 303 are arranged on about 10 dummy substrates 302 on one wafer, about 10 concave portions 308 corresponding to the polymerizable liquid crystal thin film are also arranged, and about 0.002 pieces per 1 mm 2. The recess 308 is arranged.

かかる構成にすると、1チップ内に配置される凹部308の1チップあたりでは平均0.04個程度の凹部308が発生するが、一チップ内に凹部308が発生することは最大でも1個となり、光学特性への影響は無視できる。   With such a configuration, an average of about 0.04 recesses 308 are generated per chip of the recesses 308 arranged in one chip, but the generation of the recesses 308 in one chip is at most one, The effect on optical properties can be ignored.

また、図9(b)に示すように、この前記凹部308を回折格子形成領域の外に配置すれば、さらに光学特性への影響がなくなる。   Further, as shown in FIG. 9B, if the concave portion 308 is disposed outside the diffraction grating formation region, the optical characteristics are not further affected.

次に、図4(d)に示すように、重合性液晶薄膜304に、フォトリソグラフィ法にてパターンを転写し、ドライエッチング方法で断面が凹凸の回折格子を形成し光学デバイス105ができる。   Next, as shown in FIG. 4D, a pattern is transferred to the polymerizable liquid crystal thin film 304 by a photolithography method, and a diffraction grating having a concavo-convex section is formed by a dry etching method, whereby the optical device 105 is formed.

次に、図3に示すように、光学デバイス105のパターン形成部401に1/4波長板204を等方性の有機膜402で貼り合わせる。   Next, as shown in FIG. 3, a quarter-wave plate 204 is bonded to the pattern forming unit 401 of the optical device 105 with an isotropic organic film 402.

さらに、開口フィルタ404を形成するための透明基板310上に開口フィルタ404を成膜する。その後、前記光学デバイス105と1/4波長板204を貼り合わせた部材と前記開口フィルタ404を貼り合わせ、表および裏面をAR膜(反射防止膜)403を形成して開口ホログラム波長板400ができる。   Further, the aperture filter 404 is formed on the transparent substrate 310 for forming the aperture filter 404. Thereafter, a member obtained by bonding the optical device 105 and the quarter wavelength plate 204 and the aperture filter 404 are bonded together, and an AR film (antireflection film) 403 is formed on the front and back surfaces to form the aperture hologram wavelength plate 400. .

反射防止膜の材料としては、TiO2/SiO2の多層膜、MgF2/Al23の多層膜、TiO2/MgF2/Al23/SiO2の多層膜を使用できる。 As a material for the antireflection film, a multilayer film of TiO 2 / SiO 2, a multilayer film of MgF 2 / Al 2 O 3, and a multilayer film of TiO 2 / MgF 2 / Al 2 O 3 / SiO 2 can be used.

前記実施の形態では、対向する基板間隔を均一にする手段の突起303を、透明な基板301とダミー基板302のうちダミー基板302に形成して光学デバイス105を形成する構成をとったが、基板301とダミー基板間302の間隔を均一にする方法であれば、図5に示すように、透明な基板301側に突起303を設けてもよい。   In the above embodiment, the optical device 105 is formed by forming the projection 303 of the means for uniforming the interval between the opposing substrates on the dummy substrate 302 of the transparent substrate 301 and the dummy substrate 302. As long as the distance between the 301 and the dummy substrate 302 is uniform, as shown in FIG. 5, a projection 303 may be provided on the transparent substrate 301 side.

このような構成にすることで、ダミー基板302を除去後も突起303が重合性液晶薄膜304の中に配置され残る。透明な基板301に配置された突起303は数が多くなると光学特性に影響が出る為、基板間の間隔を均一化できる範囲でできるだけ少なく配置したがよい。本実施の形態では、突起303の数は、対向する基板301とダミー基板302の間隔を維持し、かつ光学デバイス105の光効率をよくするために、1mm2あたり0.001〜1個程度配置した。また、できるだけ回折格子形成部分の領域309の外側に配置した構成とした。 With this configuration, the protrusion 303 remains in the polymerizable liquid crystal thin film 304 even after the dummy substrate 302 is removed. As the number of protrusions 303 arranged on the transparent substrate 301 increases, the optical characteristics are affected. Therefore, it is preferable to arrange the protrusions 303 as few as possible within a range where the distance between the substrates can be made uniform. In the present embodiment, the number of the protrusions 303 is about 0.001 to 1 per 1 mm 2 in order to maintain the distance between the opposing substrate 301 and the dummy substrate 302 and improve the light efficiency of the optical device 105. did. In addition, it is configured to be disposed outside the region 309 of the diffraction grating forming portion as much as possible.

また図6に示すようにダミー基板302側に突起303を設けて基板301側の凹部311を設けて、突起部303と凹部311をあわせて組み込む構成を取ってもよいし、逆に基板301側に突起303を設けてダミー基板側の凹部と嵌合させる構成としてもよい。この構成によれば、突起303の配置精度がよくなり、光学特性がさらによくなり、回折効率のよい光学デバイス105が提供できるようになる。   Further, as shown in FIG. 6, the projection 303 may be provided on the dummy substrate 302 side, the recess 311 on the substrate 301 side may be provided, and the projection 303 and the recess 311 may be assembled together. It is good also as a structure which provides the processus | protrusion 303 to a recessed part by the side of a dummy substrate. According to this configuration, the arrangement accuracy of the protrusions 303 is improved, the optical characteristics are further improved, and the optical device 105 having good diffraction efficiency can be provided.

なお、前記実施の形態では、回折格子を構成する光学デバイスに関して述べたが、他の光学素子を接着剤で貼り合わせた光学デバイス、例えばプリズム等の組み立て部材にも適用ができる。この構成を採ることで、光学デバイス間の間隔を、少なくとも一方の光学材
料に設けた突起の高さで調整することができる。
In the above embodiment, the optical device constituting the diffraction grating has been described. However, the present invention can also be applied to an optical device in which other optical elements are bonded together with an adhesive, for example, an assembly member such as a prism. By adopting this configuration, the interval between the optical devices can be adjusted by the height of the protrusion provided on at least one of the optical materials.

また、接着剤の厚みを均一化することもでき、屈折率が均一化ができるため光の収差に悪影響を及ぼすことがなく、光学特性のよい光学デバイスを提供できる。   Further, the thickness of the adhesive can be made uniform, and the refractive index can be made uniform, so that an optical device having good optical characteristics can be provided without adversely affecting the aberration of light.

また重合性物質として、複屈折材料を配置する場合にも厚みを均等にできるため、複屈折材料のファクターの1つであるリタデーション値が均一になる。   Further, even when a birefringent material is arranged as a polymerizable substance, the thickness can be made uniform, so that the retardation value which is one of the factors of the birefringent material becomes uniform.

リタデーション=Δn・d
Δn:常光、異常光の屈折率差、d:複屈折材料厚み
Retardation = Δn · d
Δn: difference in refractive index between ordinary light and extraordinary light, d: birefringent material thickness

本発明は、光ビームを用いて情報記録媒体に情報を記録また前記記録媒体の情報を再生、消去などを行う光ヘッド装置、並びにこの光ヘッド装置を用いた光ディスクドライブ装置として利用することができ、光学特性のよい光ヘッド装置および光ディスクドライブ装置を実現することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as an optical head device that records information on an information recording medium using a light beam, reproduces and erases information on the recording medium, and an optical disk drive device using the optical head device. An optical head device and an optical disk drive device with good optical characteristics can be realized.

本発明の実施の形態における光ディスクドライブ装置の一例を示す外観図1 is an external view showing an example of an optical disk drive device according to an embodiment of the present invention. 本発明の実施の形態における光ヘッド装置の構成図Configuration diagram of an optical head device in an embodiment of the present invention 本発明の実施の形態における開口ホログラム波長板の断面図Sectional drawing of aperture hologram wavelength plate in embodiment of this invention 本発明の実施の形態における製造の工程図Manufacturing process diagram according to an embodiment of the present invention 本発明の別の実施の形態における製造の一例の工程図Process drawing of an example of manufacture in another embodiment of the present invention 本発明の別の実施の形態における製造の一例の工程図Process drawing of an example of manufacture in another embodiment of the present invention 本発明の実施の形態における配向処理の構成図Configuration diagram of orientation processing in an embodiment of the present invention 従来の実施の形態の断面図Sectional view of a conventional embodiment 本発明の実施の形態における基板図The board | substrate figure in embodiment of this invention

符号の説明Explanation of symbols

9 光ヘッド装置
105 光学デバイス
106 1/4波長板
108a DVDディスク
108b CDディスク
301 基板
302 ダミー基板
303 突起
304 重合性液晶薄膜
305 スペーサ
306 配向膜
307 剥離性配向膜
308 凹部
309 回折格子形成領域
400 開口ホログラム波長板
DESCRIPTION OF SYMBOLS 9 Optical head apparatus 105 Optical device 106 1/4 wavelength plate 108a DVD disk 108b CD disk 301 Substrate 302 Dummy substrate 303 Protrusion 304 Polymerizable liquid crystal thin film 305 Spacer 306 Alignment film 307 Peelable alignment film 308 Concave 309 Diffraction grating formation area 400 Aperture Hologram wave plate

Claims (10)

少なくとも一方の光学材料に複数の突起を設けた、少なくとも一対の光学材料を対向配置させ、
前記光学材料間に、重合性物質を充填し、
前記重合性物質を硬化したことを特徴とする光学デバイスの製造方法。
At least one optical material provided with a plurality of protrusions on at least one optical material,
A polymerizable substance is filled between the optical materials,
A method for producing an optical device, wherein the polymerizable substance is cured.
前記複数の突起は、前記光学材料の間隙が光学材料の全面に亘って略等しくなるように配置されることを特徴とする請求項1の光学デバイスの製造方法。 2. The method of manufacturing an optical device according to claim 1, wherein the plurality of protrusions are arranged such that gaps between the optical materials are substantially equal over the entire surface of the optical material. 少なくとも一方の基板に複数の突起を設けた、少なくとも一対の基板の少なくとも一方の基板表面に配向処理を行い、
前記基板を対向配置し、
前記基板間に、重合性物質を充填し、
前記重合性物質を硬化したことを特徴とする光学デバイスの製造方法。
An alignment treatment is performed on at least one substrate surface of at least one pair of substrates, wherein a plurality of protrusions are provided on at least one substrate,
The substrates are arranged opposite to each other,
Between the substrates, filled with a polymerizable material,
A method for producing an optical device, wherein the polymerizable substance is cured.
前記重合性物質を硬化したのち一方の基板を除去し、
前記重合性物質に回折格子を形成することを特徴とする請求項3記載の光学デバイスの製造方法。
After curing the polymerizable material, one substrate is removed,
4. The method of manufacturing an optical device according to claim 3, wherein a diffraction grating is formed on the polymerizable substance.
前記基板に形成した突起は、前記回折格子形成領域外に設けたことを特徴とする請求項4の光学デバイスの製造方法。 5. The method of manufacturing an optical device according to claim 4, wherein the protrusion formed on the substrate is provided outside the diffraction grating formation region. 前記基板に形成した突起の形状は、突起の根本より突起の先端部が細く形成されたことを特徴とする請求項1から請求項5記載の光学デバイスの製造方法。 6. The method of manufacturing an optical device according to claim 1, wherein the protrusion formed on the substrate is formed such that a tip of the protrusion is narrower than a base of the protrusion. 前記重合性物質を配置する際の厚みは、前記突起の高さと同じかまたは、それ以上の厚みとしたことを特徴とする請求項1から請求項6記載の光学デバイスの製造方法。 7. The method of manufacturing an optical device according to claim 1, wherein a thickness when the polymerizable substance is arranged is equal to or greater than a height of the protrusion. 前記基板に配置される突起の密度は、0.001〜1個/mm2の範囲にあることを特徴とする請求項1から請求項7記載の光学デバイスの製造方法。 The density of protrusions that are disposed on the substrate, method of manufacturing an optical device according to claim 7 according to claims 1, characterized in that in the range of 0.001 pieces / mm 2. 光ディスク記録媒体に情報を記録および光ディスク媒体の情報を再生する手段として、請求項1から請求項8の光学デバイス製造方法で製造した光学デバイスを用いたことを特徴とする光ヘッド装置。 9. An optical head device using an optical device manufactured by the optical device manufacturing method according to claim 1 as means for recording information on an optical disk recording medium and reproducing information on the optical disk medium. 光ディスク記録媒体に情報を記録および光ディスク媒体の情報を再生する手段として請求項9記載の光ヘッド装置を用いることを特徴とする光ディスク装置。 10. An optical disk device using the optical head device according to claim 9 as means for recording information on an optical disk recording medium and reproducing information on the optical disk medium.
JP2004212732A 2004-07-21 2004-07-21 Method of manufacturing optical device, optical head device, and optical disk device Pending JP2006030845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212732A JP2006030845A (en) 2004-07-21 2004-07-21 Method of manufacturing optical device, optical head device, and optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212732A JP2006030845A (en) 2004-07-21 2004-07-21 Method of manufacturing optical device, optical head device, and optical disk device

Publications (1)

Publication Number Publication Date
JP2006030845A true JP2006030845A (en) 2006-02-02

Family

ID=35897228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212732A Pending JP2006030845A (en) 2004-07-21 2004-07-21 Method of manufacturing optical device, optical head device, and optical disk device

Country Status (1)

Country Link
JP (1) JP2006030845A (en)

Similar Documents

Publication Publication Date Title
JP3067665B2 (en) Optical pickup device for dual discs
JP2001290017A (en) Diffraction device for two wavelengths and optical head device
JP4300784B2 (en) Optical head device
JP3861270B2 (en) Optical pickup and optical element used therefor
JP3624561B2 (en) Optical modulation element and optical head device
JP4631135B2 (en) Phaser
JP2002311242A (en) Polarized light separating element, semiconductor laser unit and optical pickup device
JPH11174226A (en) Polarizing hologram and optical head using the same
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
JP2006030845A (en) Method of manufacturing optical device, optical head device, and optical disk device
JP4649748B2 (en) Two-wavelength phase plate and optical head device
JP2006030752A (en) Method for manufacturing diffraction element, optical head device and optical disk device
JP4599763B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP4139140B2 (en) Polarization hologram element and manufacturing method thereof
JP4537616B2 (en) Optical pickup device and optical disk drive device
JP3713778B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JP2004069977A (en) Diffraction optical element and optical head unit
JP2006099946A (en) Optical head device
KR100244223B1 (en) Manufacturing method of the polarizing liquid crystal hologram and optical pickup device thereof
JP2003043235A (en) Polarizing hologram element
JP2004133074A (en) Diffraction grating and optical pickup
KR100244224B1 (en) Manufacturing method of the polarizing liquid crystal hologram and optical pickup device thereof
JPH09180234A (en) Optical head device