JP2006029968A - Instrument and method for measuring concentration - Google Patents

Instrument and method for measuring concentration Download PDF

Info

Publication number
JP2006029968A
JP2006029968A JP2004209045A JP2004209045A JP2006029968A JP 2006029968 A JP2006029968 A JP 2006029968A JP 2004209045 A JP2004209045 A JP 2004209045A JP 2004209045 A JP2004209045 A JP 2004209045A JP 2006029968 A JP2006029968 A JP 2006029968A
Authority
JP
Japan
Prior art keywords
light
substance
measured
concentration
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004209045A
Other languages
Japanese (ja)
Inventor
Michiya Hayashi
道也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2004209045A priority Critical patent/JP2006029968A/en
Publication of JP2006029968A publication Critical patent/JP2006029968A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To directly measure a concentration of a measured substance in a medium, without requiring sampling and pretreatment for the medium containing the measured substance and a measuring error generating substance. <P>SOLUTION: A pulse light is emitted toward the medium comprising the measured substance and the measuring error generating substance to detect a received luminous energy of the pulse light transmitted through the medium and fluorescence luminous energy due to fluorescence of the measured substance generated by the irradiation of the pulse light, and the true concentration of the measured substance in the medium is obtained by setting off the first apparent concentration of the measured substance assumed with no measuring error generating substance contained in the medium, in which a received luminous energy value of the received pulse light is found pursuant to a correlation expression between the received luminous energy value and the concentration prepared in the medium under the condition the medium comprises only the measured substance and contains no measuring error generating substance, and the second apparent concentration of the measured substance assumed with no measuring error generating substance contained in the medium, in which the detected fluorescence luminous energy value is found pursuant to a correlation expression between the fluorescence luminous energy value and the concentration prepared in the medium under the condition the medium comprises only the measured substance and contains no measuring error generating substance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被測定物質および測定誤差発生物質を含む媒体中の被測定物質の濃度を測定する濃度測定技術に関する。   The present invention relates to a concentration measurement technique for measuring the concentration of a substance to be measured in a medium containing the substance to be measured and a substance that generates a measurement error.

ボイラなどからの排ガス中のNOx、SOxや排水処理装置などからの排水中の窒素、リンなどの物質の濃度制御や性状評価を行うには、該物質の濃度を測定することが重要である。   In order to perform concentration control and property evaluation of substances such as NOx and SOx in exhaust gas from a boiler and the like, and nitrogen and phosphorus in wastewater from a wastewater treatment device, it is important to measure the concentration of the substance.

従来の濃度測定法としては以下の方法が知られている。
(1)化学分析法
被測定物質を含む媒体により発色試薬溶液を発色させ、その発色の程度を吸光光量法によって測定し被測定物質濃度を測定する方法。
The following methods are known as conventional concentration measurement methods.
(1) Chemical analysis method A method in which a coloring reagent solution is colored with a medium containing a substance to be measured, and the concentration of the substance to be measured is measured by measuring the degree of coloration by the absorption light amount method.

(2)自動分析法
化学発光方式:NOとオゾン(O3)との化学反応に代表される、化学反応により励起された被測定物質分子が励起状態から基底状態に戻るときに発光する強度を測定することによって被測定物質濃度を測定する方法。
(2) Automatic analysis method Chemiluminescence method: Measures the intensity of light emitted when a molecule to be measured excited by a chemical reaction returns from the excited state to the ground state, represented by a chemical reaction between NO and ozone (O3). To measure the concentration of the substance to be measured.

赤外線吸収法:NOまたはNO2に代表される、被測定物質の赤外線吸収を利用して、赤外線の吸光度を測定して、被測定物質濃度を測定する方法。吸光度による方法のほかに、被測定物質が赤外線を吸収することにより加熱膨張することで発する圧力増加を測定して、被測定物質濃度を測定する方法。   Infrared absorption method: A method of measuring the concentration of a substance to be measured by measuring the absorbance of infrared light using the infrared absorption of the substance to be measured, represented by NO or NO2. In addition to the method based on the absorbance, a method of measuring the concentration of the substance to be measured by measuring the increase in pressure generated when the substance to be measured is heated and expanded by absorbing infrared rays.

紫外線吸光法:NOまたはNO2に代表される、被測定物質の紫外線吸収を利用して、紫外線の吸光度を測定して、被測定物質濃度を測定する方法。
定電位電解法:電解用電極に一定の直流電圧を与えておき、これを検出器とし、電解液中に通気した被測定物質を含む媒体中の被測定物質が電解酸化するときの電解電流を取り出して、被測定物質濃度を測定する方法。
Ultraviolet absorption method: A method of measuring the concentration of a substance to be measured by measuring the absorbance of the ultraviolet ray using the ultraviolet absorption of the substance to be measured, represented by NO or NO2.
Constant-potential electrolysis method: Applying a constant DC voltage to the electrode for electrolysis, using this as a detector, the electrolysis current when the measured substance in the medium containing the measured substance aerated in the electrolyte is electrolytically oxidized A method of taking out and measuring the concentration of the substance to be measured.

上記化学分析法では、被測定物質を含む媒体の採取から発色完了、濃度測定まで時間がかかるとともに、濃度測定の都度、被測定物質を含む媒体の採取から発色完了、濃度測定という作業を繰り返すことになり、連続測定は適さないという問題があった。   In the above chemical analysis method, it takes time from collection of the medium containing the substance to be measured to completion of color development and concentration measurement, and each time the concentration measurement is performed, the process of collecting the medium containing the substance to be measured, completion of color development and concentration measurement is repeated. Therefore, there is a problem that continuous measurement is not suitable.

上記自動分析法では、いずれも煤煙粒子やCO2、水蒸気などの測定誤差発生成分により干渉を受けるため、これら測定誤差発生成分の除去などの前処理を必要とするなどの問題があった。さらに、一定の精度を保証するためには、被測定物質および測定誤差発生成分を含む媒体の温度と流量を一定にする必要があった。   All of the above-described automatic analysis methods are subject to interference by measurement error generating components such as smoke particles, CO 2, and water vapor, and thus have a problem of requiring preprocessing such as removal of these measurement error generating components. Furthermore, in order to guarantee a certain accuracy, it is necessary to keep the temperature and flow rate of the medium containing the substance to be measured and the measurement error generating component constant.

また、従来の自動分析方法では、被測定物質を含む媒体中内で濃度検出が直接できないという問題があった。このため、被測定物質を含む媒体を濃度検出機器まで配管、チューブなどで導入する必要があることから、この経路を被測定物質を含む媒体が通過する時間が媒体採取から濃度検出までの測定時間遅れとなる問題がある。   Further, the conventional automatic analysis method has a problem that the concentration cannot be directly detected in the medium containing the substance to be measured. For this reason, since the medium containing the substance to be measured needs to be introduced to the concentration detection device by piping, tubes, etc., the time for the medium containing the substance to be measured to pass through this path is the measurement time from the collection of the medium to the concentration detection. There is a problem of delay.

また、被測定物質に特有な光の吸収を利用した窒素酸化物濃度測定装置が提案されているが(特許文献1参照)、共存ガスや煤煙粒子などの測定誤差発生成分の干渉を無視できないものと考えられるし、真の窒素酸化物濃度について高精度に測定できるかどうか明確でない。
特開平10−142147号公報
In addition, a nitrogen oxide concentration measuring device using light absorption peculiar to the substance to be measured has been proposed (see Patent Document 1), but interference of components causing measurement error such as coexisting gas and smoke particles cannot be ignored. It is not clear whether true nitrogen oxide concentration can be measured with high accuracy.
JP-A-10-142147

本発明の目的は、被測定物質および測定誤差発生成分(測定誤差発生物質)を含む媒体のサンプリングや前処理を必要とせず、ボイラ炉内や煙道内、空気中、水路などでの被測定物質および測定誤差発生物質を含む媒体中の被測定物質濃度の直接測定を可能とし、さらに、被測定物質および測定誤差発生物質を含む媒体中の被測定物質の濃度を極めて短時間で、かつ連続的に測定することが可能な媒体中の被測定物質の濃度測定装置および方法を提供することにある。   It is an object of the present invention to do not require sampling or pretreatment of a medium containing a substance to be measured and a measurement error generating component (measurement error generating substance), and to be measured in a boiler furnace, in a flue, in the air, in a water channel, etc. In addition, it is possible to directly measure the concentration of the substance to be measured in the medium containing the measurement error generating substance, and to measure the concentration of the substance to be measured in the medium containing the measurement substance and the measurement error generating substance in a very short time and continuously. An object of the present invention is to provide an apparatus and a method for measuring the concentration of a substance to be measured in a medium that can be measured in a simple manner.

上記課題を解決するための本発明の第1の発明は、
被測定物質と測定誤差発生物質を含む媒体中の被測定物質の濃度を測定する濃度測定装置であって、
被測定物質に特有な吸収光波長のパルス光を上記媒体に照射するパルス光源と、
上記媒体を通過して被測定物質および測定誤差発生物質の光の吸収により減光されたパルス光の光量を検出する光量検出手段と、
上記パルス光の照射により被測定物質が蛍光する蛍光光量を検出する蛍光光量検出手段と、
上記光量検出手段で検出された受光光量値に基づいて、媒体が被測定物質のみから成り、測定誤差発生物質を含まない状態の媒体で予め作成した受光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第1の見掛け濃度を算出する第1の見掛け濃度算出手段と、
上記蛍光光量検出手段で検出された蛍光光量値に基づいて、媒体が被測定物質のみから成り、測定誤差発生物質を含まない状態の媒体で予め作成した蛍光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第2の見掛け濃度を算出する第2の見掛け濃度算出手段と、
上記第1及び第2の見掛け濃度算出手段で得られた被測定物質の見掛け濃度に基づき相殺演算して上記第1及び第2の見掛け濃度における測定誤差発生物質による測定誤差を相殺して媒体中の被測定物質の真の濃度を算出する濃度算出手段と
を具備する濃度測定装置である。
The first invention of the present invention for solving the above-mentioned problems is
A concentration measuring device for measuring the concentration of a substance to be measured in a medium containing the substance to be measured and a substance that generates a measurement error,
A pulsed light source that irradiates the medium with pulsed light having an absorption light wavelength specific to the substance to be measured;
A light amount detecting means for detecting the light amount of the pulsed light that has passed through the medium and is attenuated by the absorption of the light of the substance to be measured and the measurement error generating substance;
A fluorescence light amount detecting means for detecting a fluorescence light amount that the substance to be measured fluoresces by irradiation with the pulsed light; and
Based on the received light quantity value detected by the above light quantity detection means, it is obtained from the correlation equation between the received light quantity value and the density created in advance in a medium in which the medium consists only of the substance to be measured and does not contain the measurement error generating substance. A first apparent concentration calculating means for calculating a first apparent concentration of a substance to be measured, assuming that the medium does not contain a measurement error generating substance;
Based on the correlation formula between the fluorescence light amount value and the concentration prepared in advance in the medium in which the medium is made of only the substance to be measured and does not include the measurement error generating substance based on the fluorescence light quantity value detected by the fluorescence light quantity detection means. A second apparent concentration calculating means for calculating a second apparent concentration of the substance to be measured, which is calculated on the assumption that the medium does not contain a measurement error generating substance;
The offset calculation is performed based on the apparent concentrations of the substance to be measured obtained by the first and second apparent concentration calculation means to cancel the measurement error due to the measurement error generating substance at the first and second apparent concentrations, and in the medium. The concentration measuring device comprises a concentration calculating means for calculating the true concentration of the substance to be measured.

前記パルス光の光源は被測定物質特有の吸収光波長を発光する。
前記光量検出手段は、パルス光を被測定物質および測定誤差発生物質を含む媒体中に照射して、媒体中を通過したあとの被測定物質及び測定誤差発生物質により吸収され減光された後の光の光量を検出し、第1の見掛け濃度算出手段は、前記検出された光量に基づき、媒体が被測定物質のみから成ると仮定し、測定誤差発生物質を含まない清浄な状態において予め作成した受光光量値と濃度との相関関係式から見掛けの濃度として濃度を算出する。
The pulsed light source emits an absorption light wavelength specific to the substance to be measured.
The light amount detecting means irradiates a medium containing a measured substance and a measurement error generating substance with pulsed light, and is absorbed and attenuated by the measured substance and the measurement error generating substance after passing through the medium. Based on the detected light quantity, the first apparent density calculation means assumes that the medium is made of only the substance to be measured, and is prepared in a clean state that does not include a measurement error generating substance. The density is calculated as an apparent density from the correlation equation between the received light quantity value and the density.

また、前記蛍光光量検出手段は、上記パルス光の照射により被測定物質が蛍光する蛍光光量、すなわち、パルス光の照射と照射の間の、光が遮光した直後の被測定物質による蛍光の光量を検出し、第2の見掛け濃度算出手段は、前記検出された蛍光光量に基づき、媒体が被測定物質のみから成ると仮定し、測定誤差発生物質を含まない清浄な状態において予め作成した蛍光光量値と濃度との相関関係式から見掛けの濃度として濃度を算出する。   In addition, the fluorescence light quantity detection means detects the fluorescence light quantity that the substance to be measured fluoresces by the irradiation of the pulse light, that is, the light quantity of the fluorescence by the substance to be measured immediately after the light is shielded between the irradiation of the pulse light. The second apparent density calculation means detects and assumes that the medium is composed of only the substance to be measured based on the detected fluorescence light quantity, and the fluorescence light quantity value created in advance in a clean state that does not include the measurement error generating substance. The density is calculated as an apparent density from the correlation between the density and the density.

一般に分子は、その分子に特有の波長の光を照射すると、光が分子に吸収され、分子内の電子が基底状態から励起状態に励起される。このとき吸収される光の量(吸光量)は分子数に比例するので、上記光量検出手段で測定された受光光量は、濃度測定に利用することができる(吸光光量法)。   In general, when a molecule is irradiated with light having a wavelength specific to the molecule, the light is absorbed by the molecule, and electrons in the molecule are excited from the ground state to the excited state. Since the amount of light absorbed at this time (absorption amount) is proportional to the number of molecules, the received light amount measured by the light amount detecting means can be used for concentration measurement (absorbed light amount method).

一方、前記励起状態において照射している光を遮断すると、分子内の電子は励起状態から基底状態に戻るときに、前記の吸収される光と同一波長の光を蛍光する。このとき蛍光される光の量(蛍光光量)は分子数に比例するので、蛍光光量検出手段で測定された蛍光光量は、濃度測定に利用することができる(蛍光光量法)。   On the other hand, when the light irradiated in the excited state is blocked, the electrons in the molecule fluoresce light having the same wavelength as the absorbed light when returning from the excited state to the ground state. At this time, the amount of fluorescent light (fluorescent light amount) is proportional to the number of molecules, so the fluorescent light amount measured by the fluorescent light amount detecting means can be used for concentration measurement (fluorescent light amount method).

実際の媒体での被測定物質濃度測定の際には、例えば煙道中の窒素酸化物の濃度を測る場合には、CO、CO2、煤煙粒子、水蒸気等の共存する物質の干渉を受け誤差が発生することから、また例えば排水処理装置からの排水中の窒素成分の濃度を測る場合には、排水に含まれる懸濁物質等の共存する物質の干渉を受け測定誤差が発生することから、干渉分を補正する必要が生じる。
この出願の特許請求の範囲及び明細書において、このような被測定物質の濃度測定に干渉する共存物質を測定誤差発生物質といっている。
When measuring the concentration of a substance to be measured in an actual medium, for example, when measuring the concentration of nitrogen oxides in a flue, an error occurs due to interference from coexisting substances such as CO, CO2, soot particles, and water vapor. For example, when measuring the concentration of nitrogen components in wastewater from wastewater treatment equipment, measurement errors occur due to interference from coexisting substances such as suspended substances contained in wastewater. Need to be corrected.
In the claims and specification of this application, such a coexisting substance that interferes with the concentration measurement of the substance to be measured is referred to as a measurement error generating substance.

上記共存する物質(測定誤差発生物質)による誤差は、吸光光量法では被測定物質濃度を見かけ上、高める作用が働き、蛍光光量法では被測定物質濃度を見かけ上低める作用が働くため、それぞれの方法で計測された被測定物質の濃度に基づき相殺演算し、誤差分を相殺することで、共存物質(測定誤差発生物質)による誤差を補正した真の被測定物質の濃度測定が可能となる。   The error due to the coexisting substances (measurement error generating substances) works by apparently increasing the concentration of the substance to be measured in the absorbance method, and apparently lowering the concentration of the substance in the fluorescence method. By performing an offset calculation based on the concentration of the substance to be measured measured by the method and canceling the error, it is possible to measure the concentration of the true substance to be measured while correcting the error due to the coexisting substance (measurement error generating substance).

かかる相殺演算は、加算平均にて行う。なお、加算平均は後述する検量線作成後に、該濃度測定装置を使って、既知の被測定物質濃度の媒体(標準ガスまたは標準液)に測定誤差発生物質を含入させて作製した媒体の濃度測定を行い、その濃度測定値を既知の被測定物質濃度となるように加算平均に使う分母の値を事前に求めておくことが望ましい。   Such cancellation calculation is performed by addition averaging. Note that the addition average is the concentration of a medium prepared by creating a calibration curve, which will be described later, and using the concentration measuring device to contain a measurement error generating substance in a medium (standard gas or standard solution) having a known substance concentration to be measured. It is desirable to measure in advance and obtain a denominator value to be used for addition averaging so that the measured concentration value becomes a known substance concentration to be measured.

本発明の第2の発明は、
上記パルス光源の測定時の発光光量の初期発光光量値に対するパルス光光源の光量変動率を求めるパルス光光量変動検出手段と、前記パルス光光源の光量変動率に基づき上記光量検出手段で検出されたパルス光の受光光量値と上記蛍光量検出手段で検出された蛍光光量値とを補正するパルス光光量変動補正手段と
を具備する請求項1記載の濃度測定装置である。
The second invention of the present invention is:
A pulsed light quantity fluctuation detecting means for obtaining a light quantity fluctuation rate of the pulsed light source with respect to an initial emitted light quantity value of the emitted light quantity at the time of measurement of the pulsed light source, and detected by the light quantity detecting means based on the light quantity fluctuation rate of the pulsed light source 2. The concentration measuring apparatus according to claim 1, further comprising: a pulsed light amount fluctuation correcting unit that corrects the received light amount value of the pulsed light and the fluorescent light amount value detected by the fluorescence amount detecting unit.

一般的に光源から発せられる光の光量は時々刻々変化しており、長期的にみても経年劣化に伴い発光光量は減少していく。前記、被測定物質および測定誤差発生物質の光の吸収により減光されて検出されたパルス光の受光光量値とパルス光の照射により被測定物質が蛍光されて検出された蛍光光量値は、このパルス光の光量の大小と比例関係がある。例えば、パルス光の光量が大きければ検出される受光光量値も蛍光光量値も比例して大きくなり、パルス光の光量が小さくなれば、検出される受光光量値も蛍光光量値も比例して小さくなる。   In general, the amount of light emitted from a light source changes from moment to moment, and the amount of emitted light decreases with age over the long term. The received light quantity value of the pulsed light detected by the light absorption of the substance to be measured and the measurement error generating substance and the fluorescence light quantity value detected by the fluorescence of the measured substance by the irradiation of the pulse light It is proportional to the amount of pulsed light. For example, if the light intensity of the pulsed light is large, the detected light intensity value and the fluorescent light intensity value are proportionally increased. If the light intensity of the pulse light is small, the detected light intensity value and the fluorescent light intensity value are proportionally small. Become.

このため、本発明では上記パルス光光量変動検出手段とパルス光光量変動補正手段を設けることにより、検出されるパルス光の受光光量値と蛍光光量値を、時々刻々変化するパルス光の光量に比例して常に補正することで、基準となるパルス光の初期発光光量における受光光量値と蛍光光量値に変換することができる。   Therefore, in the present invention, by providing the pulsed light quantity fluctuation detecting unit and the pulsed light quantity fluctuation correcting unit, the received light quantity value and the fluorescent light quantity value of the detected pulsed light are proportional to the light quantity of the pulsed light that changes every moment. Thus, by always correcting, it is possible to convert the received light amount value and the fluorescent light amount value in the initial emitted light amount of the reference pulse light.

本発明の第3の発明は、
上記被測定物質に特有な吸収光波長とは異なる波長の補正用光源を用い、該補正用光源の光を上記パルス光に重畳し、上記パルス光源から上記光量検出手段にいたる光路を通過した後の補正用光源の光の光量値に基づき前記光路における光路構成部材の汚損に伴う受光光量の初期値に対する測定時の減光率を求め、上記受光光量値および上記蛍光光量値をそれぞれ前記減光率に基づき補正をする光路汚損補正手段
を具備する請求項1記載の濃度測定装置である。
The third invention of the present invention is:
After using a correction light source having a wavelength different from the absorption light wavelength peculiar to the substance to be measured, superimposing the light of the correction light source on the pulse light, and passing through the optical path from the pulse light source to the light amount detection means Based on the light intensity value of the correction light source, the light attenuation rate at the time of measurement with respect to the initial value of the received light intensity due to the contamination of the optical path constituent member in the optical path is obtained, and the received light intensity value and the fluorescent light intensity value are respectively reduced. The density measuring apparatus according to claim 1, further comprising an optical path contamination correcting unit that performs correction based on the rate.

媒体以外でも光の減光が生じる。媒体以外での光の減光を検出するためには、媒体内で媒体内物質による光の吸収が発生しない波長の光である被測定物質に特有な吸収光波長とは別波長の光を、被測定物質に特有な吸収光波長の光と同一光路で通過させ、この通過したあとの光量を検出する。なお、媒体以外での光の減光は光路構成部材の汚損による減光で、例えば光源から媒体の光の照射場所までの光路および媒体での光の受光箇所から光検出器までの光路構成部材である光ファイバ内での減光や鏡に蓄積した物体による鏡の反射率低下である。   Light dimming also occurs outside of the medium. In order to detect the attenuation of light other than the medium, light having a wavelength different from the absorption light wavelength specific to the substance to be measured, which is light having a wavelength at which light absorption by the substance in the medium does not occur in the medium, The light having an absorption light wavelength peculiar to the substance to be measured is passed through the same optical path, and the amount of light after passing is detected. In addition, the light attenuation other than the medium is a light attenuation due to the contamination of the optical path constituent member. For example, the optical path from the light source to the irradiation position of the light of the medium and the optical path constituent member from the light receiving position of the medium to the photodetector. This is dimming within the optical fiber or reduction in the reflectivity of the mirror due to objects accumulated in the mirror.

このような光路構成部材の汚損は、受光光量の測定及び蛍光光量の測定による被測定物質の濃度測定にあたり誤差をもたらす。
本発明では、光路汚損による光の減光量検出のため、上記被測定物質に特有な吸収光波長とは異なる波長の補正用光源を用い、測定時に被測定物質に特有な吸収光波長の光と同一光路を通過させ、通過させたあとの光量を検出し、補正用光源の初期、すなわち相関関係式作成時の該光路通過後の光量と比較して減光率を求め、この減光率で光路汚損による光の減光補正を行っている。
Such contamination of the optical path component causes an error in the measurement of the concentration of the substance to be measured by measuring the amount of received light and measuring the amount of fluorescent light.
In the present invention, in order to detect light loss due to optical path contamination, a correction light source having a wavelength different from the absorption light wavelength unique to the substance to be measured is used. Pass the same optical path, detect the amount of light after passing, find the light attenuation rate compared with the initial light source for correction, that is, the light amount after passing the optical path when creating the correlation equation, Light dimming correction due to optical path contamination is performed.

本発明の第4の発明は、
上記パルス光源の測定時の発光光量の初期発光光量値に対するパルス光光源の光量変動率を求めるパルス光光量変動検出手段と、
前記パルス光光源の光量変動率に基づき上記光量検出手段で検出されたパルス光の受光光量値と上記蛍光量検出手段で検出された蛍光光量値とを補正するパルス光光量変動補正手段と、
上記補正用光源の測定時の発光光量の初期発光光量値に対する補正用光源の光量変動率を求める補正用光源光量変動検出手段と、前記補正用光源の光量変動率に基づき上記測定時の減光率を補正する補正用光源光量変動補正手段と
を具備する請求項3記載の濃度測定装置である。
The fourth invention of the present invention is:
A pulsed light amount fluctuation detecting means for obtaining a light amount fluctuation rate of the pulsed light source with respect to an initial emitted light amount value of the emitted light amount at the time of measurement of the pulsed light source;
A pulsed light amount fluctuation correcting unit that corrects a received light amount value of the pulsed light detected by the light amount detecting unit and a fluorescent light amount value detected by the fluorescent amount detecting unit based on a light amount fluctuation rate of the pulsed light source;
A correction light source light quantity fluctuation detecting means for obtaining a light quantity fluctuation rate of the correction light source with respect to an initial light emission light quantity value of the light emission quantity at the time of measurement of the correction light source, and a light attenuation at the time of measurement based on the light quantity fluctuation rate of the correction light source 4. The density measuring apparatus according to claim 3, further comprising a correction light source light quantity fluctuation correcting means for correcting the rate.

補正用光源においてもパルス光光源と同様、長期的にみても経年劣化に伴い発光光量は減少していく。本発明では補正用光源光量変動検出手段と補正用光源光量変動補正手段を設けることにより、検出される受光光量値と蛍光光量値に対する上記光路汚損による減光補正を、時々刻々変化する補正用光源の光量に比例して常に補正することで、正しい補正を行うものとしている。   In the light source for correction, as in the case of the pulse light source, the amount of emitted light decreases with aging over the long term. In the present invention, the correction light source light quantity fluctuation detecting means and the correction light source light quantity fluctuation correcting means are provided, so that the light attenuation correction due to the optical path contamination for the detected received light quantity value and the fluorescent light quantity value is changed every moment. It is assumed that correct correction is performed by always correcting in proportion to the amount of light.

本発明の第5の発明は、
被測定物質と測定誤差発生物質からなる媒体に被測定物質に特有な吸収光波長のパルス光を照射し、媒体を通過したパルス光の受光光量とパルス光照射による被測定物質が蛍光する蛍光光量を検出し、検出されたパルス光の受光光量値を媒体が被測定物質のみから成り、測定誤差発生物質を含まない状態の媒体で作成した受光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第1の見掛け濃度と、検出された蛍光光量値を媒体が被測定物質のみから成り測定誤差発生物質を含まない状態の媒体で作成した蛍光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第2の見掛け濃度に基づき相殺演算して上記第1及び第2の見掛け濃度における測定誤差発生物質による測定誤差を相殺して媒体中の測定誤差発生物質から発する測定誤差を取り除いた被測定物質の濃度測定方法である。
The fifth invention of the present invention is:
Irradiate the medium consisting of the substance to be measured and the substance causing the measurement error with pulsed light with a wavelength of absorption light unique to the substance to be measured. And the received light quantity value of the detected pulsed light was determined from the correlation equation between the received light quantity value and the concentration created with the medium consisting only of the substance to be measured and not including the measurement error generating substance, The first apparent concentration of the substance to be measured, which is assumed that the medium does not contain a measurement error generating substance, and the detected fluorescence light quantity value are created on a medium in which the medium consists only of the substance to be measured and does not contain the measurement error generating substance. The first and second apparent values are calculated by performing an offset operation based on the second apparent concentration of the substance to be measured, which is calculated from the correlation equation between the measured fluorescence light quantity value and the concentration, and that the medium does not contain the measurement error generating substance. In concentration Remove measurement errors producing the measuring error due to measurement error generating material from the measurement error generating substance in the medium to offset the concentration measurement method of the measured substance.

本発明によれば、測定誤差発生物質を含む媒体中の被測定物質の濃度を、媒体中に光路を設定するのみで、媒体中の測定誤差発生物質の被測定物質の濃度測定への干渉を排除して、測定時間遅れなく、簡単に、かつ精度よく測定できる。   According to the present invention, the concentration of the substance to be measured in the medium containing the measurement error generating substance can be set to interfere with the measurement of the substance to be measured of the measurement error generating substance in the medium only by setting the optical path in the medium. Eliminates and can measure easily and accurately without measuring time delay.

本発明では、被測定物質が存在すると思われる空間において、反射鏡の設置位置を光の照射箇所から距離を隔て、媒体中の光路を長距離にした場合には、その空間での平均濃度を測定することができる。一方、光の照射箇所から反射鏡の設置位置を極めて短距離とした場合はこの極短距離空間における濃度測定となりピンポイント箇所の濃度として測定することができる。   In the present invention, in a space where a substance to be measured is supposed to exist, when the installation position of the reflecting mirror is separated from the light irradiation location and the optical path in the medium is made long, the average concentration in the space is calculated. Can be measured. On the other hand, when the installation position of the reflecting mirror is set to a very short distance from the light irradiation location, the concentration is measured in this very short distance space and can be measured as the concentration at the pinpoint location.

図1に本発明の全体構成を示す。
媒体200は、濃度の測定対象である被測定物質を含む気体や液体である。この媒体には既述のように濃度測定に干渉する成分(測定誤差発生物質)が含まれており、本発明ではかかる成分の影響を取り除いた濃度測定を可能としている。
FIG. 1 shows the overall configuration of the present invention.
The medium 200 is a gas or a liquid containing a substance to be measured whose concentration is to be measured. As described above, this medium contains a component (measurement error generating substance) that interferes with the concentration measurement. In the present invention, the concentration measurement can be performed without the influence of the component.

被測定物質は、物質特有の吸収光波長を有しており、パルス光源100は、このような被測定物質に特有な吸収光波長のパルス光を媒体200に照射する。光量検出手段300は、媒体200を通過することにより減光されたパルス光を受光し、受光光量を検出する。蛍光光量検出手段350は、パルス光照射により被測定物質が蛍光する蛍光光量を検出する。   The substance to be measured has an absorption light wavelength peculiar to the substance, and the pulse light source 100 irradiates the medium 200 with pulsed light having an absorption light wavelength peculiar to such a substance to be measured. The light quantity detection means 300 receives the pulsed light that has been attenuated by passing through the medium 200 and detects the received light quantity. The fluorescence light amount detection means 350 detects the fluorescence light amount that the substance to be measured fluoresces by the pulsed light irradiation.

第1の見掛け濃度算出手段400は、前記受光光量の値にもとづき、媒体が被測定物質のみから成り測定誤差発生物質を含まない状態の媒体であるとして予め得られている受光光量値と濃度との相関関係式から、この受光光量値が、媒体が被測定物質のみから成ると仮定した場合の濃度、すなわち第1の見掛け濃度を算出する。   Based on the value of the received light quantity, the first apparent density calculation means 400 is configured to obtain the received light quantity value and the density obtained in advance as a medium in which the medium is composed of only the substance to be measured and does not include the measurement error generating substance. From this correlation formula, the received light quantity value is calculated as the density when the medium is assumed to be composed of only the substance to be measured, that is, the first apparent density.

第2の見掛け濃度算出手段450は、検出された蛍光光量値に基づき、媒体が被測定物質のみから成り測定誤差発生物質を含まない状態の媒体であるとして予め得られている蛍光光量値と濃度との相関関係式から、この蛍光光量値が、媒体が被測定物質のみから成ると仮定した場合の濃度、すなわち第2の見掛け濃度を算出する。   The second apparent density calculation means 450 is based on the detected fluorescence light quantity value, and the fluorescence light quantity value and density obtained in advance as a medium in which the medium is made of only the substance to be measured and does not contain the measurement error generating substance. From this correlation equation, the concentration of this fluorescence light amount value when the medium is assumed to be composed only of the substance to be measured, that is, the second apparent concentration is calculated.

濃度算出手段500は、既述のように第1の見掛け濃度においては測定誤差発生物質により濃度が高めに算出されること、および第2の見掛け濃度においては測定誤差発生物質により濃度が低めに算出されることから、この両者に基づき、測定誤差発生物質による影響を相殺して媒体中200の真の被測定物質の濃度を算出することができる。   As described above, the concentration calculation means 500 calculates a higher concentration by the measurement error generating substance at the first apparent concentration, and calculates a lower concentration by the measurement error generating substance at the second apparent concentration. Therefore, based on the both, the influence of the measurement error generating substance can be offset and the concentration of the true measured substance in the medium 200 can be calculated.

光路を構成する部材、例えば光ファイバー、鏡等は、経年変化により汚損され濃度測定に誤差をもたらす。本発明ではこの光路の汚損度合いを検出して減光率を算出し、この汚損度合い(減光率)で受光光量値および蛍光光量値を補正する光路汚損補正手段800を適宜設けている。   Members constituting the optical path, such as optical fibers and mirrors, are fouled by aging and cause errors in density measurement. In the present invention, an optical path contamination correcting means 800 for detecting the degree of contamination of the optical path to calculate the light attenuation rate and correcting the received light amount value and the fluorescent light amount value based on the degree of contamination (light attenuation rate) is appropriately provided.

光路汚損補正手段800は、上記被測定物質に特有な吸収光波長とは異なる波長の補正用光源600を用い、該補正用光源600の光を上記パルス光に重畳し、上記パルス光源100から上記光量検出手段にいたる光路を通過した補正用光源600の光の光量値に基づき前記光路における光路構成部材の汚損に伴う受光光量の初期値に対する測定時の減光率を求め、上記受光光量値および上記蛍光光量値をそれぞれ前記減光率に基づきそれぞれ補正をしている。
ここで、光路汚損補正手段800は、後述する光量検出部と減光率演算部とで構成される。
The optical path contamination correcting means 800 uses a correction light source 600 having a wavelength different from the absorption light wavelength peculiar to the substance to be measured, superimposes the light of the correction light source 600 on the pulsed light, and from the pulse light source 100 to the above Based on the light quantity value of the light from the correction light source 600 that has passed through the optical path leading to the light quantity detection means, the light reduction rate at the time of measurement with respect to the initial value of the received light quantity accompanying the contamination of the optical path constituent member in the optical path is obtained, The fluorescent light quantity values are respectively corrected based on the dimming rate.
Here, the optical path contamination correcting unit 800 includes a light amount detection unit and a light reduction rate calculation unit, which will be described later.

また、被測定物質に特有な吸収光波長の光を発光するパルス光源100および、この光に重畳する別波長の補正用光源600は、発光光量が時々刻々と変動している。この変動による測定誤差をなくすためには、変動光量に合わせて受光光量または蛍光光量の測定結果の補正を要する。   Further, in the pulsed light source 100 that emits light having an absorption light wavelength peculiar to the substance to be measured and the correction light source 600 having another wavelength that is superimposed on this light, the amount of emitted light varies every moment. In order to eliminate the measurement error due to this variation, it is necessary to correct the measurement result of the received light amount or the fluorescent light amount in accordance with the varying light amount.

前記パルス光の光源の光量変動については、パルス光源100の発光光量変動を検出する手段900,発光光量変動補正手段950を必要に応じ設け、光量検出手段300及び蛍光光量検出手段350で検出された受光光量や蛍光光量の値を発光光量の変動による誤差がないものに補正している。   The light quantity fluctuation of the light source of the pulsed light is detected by the light quantity detection means 300 and the fluorescence light quantity detection means 350 provided as necessary with a means 900 for detecting the light emission quantity fluctuation of the pulse light source 100 and a light emission quantity fluctuation correction means 950. The values of the received light quantity and the fluorescent light quantity are corrected so that there is no error due to fluctuations in the emitted light quantity.

前記補正用光源600の光量変動については、補正用光源光量変動検出手段700,補正用光源光量変動補正手段750を必要に応じ設け、光路汚損補正手段800で算出される減光率について発光光量の変動を補正して、光路汚損補正を正しくし、光量検出手段300及び蛍光光量検出手段350で検出された受光光量や蛍光光量の値を光路汚損による誤差がないものに補正している。   As for the light amount fluctuation of the correction light source 600, a correction light source light quantity fluctuation detection means 700 and a correction light source light quantity fluctuation correction means 750 are provided as necessary. The fluctuation is corrected to correct the optical path contamination correction, and the values of the received light amount and the fluorescent light amount detected by the light amount detecting means 300 and the fluorescent light amount detecting means 350 are corrected so that there is no error due to the optical path contamination.

一般に、光量測定結果から相関関係式を求める方法は、当該濃度測定装置において、吸光光量法および蛍光光量法とも既知の各種濃度の標準ガスまたは標準液を用いて、それぞれ受光光量値または蛍光光量値を測定し、この結果から、濃度と受光光量値または蛍光光量値との相関関係式(検量線)を求める。濃度測定時には測定された受光光量値または蛍光光量値と、上記相関関係式との対比から見掛けの濃度を求める。   In general, the correlation equation is obtained from the light intensity measurement result by using a standard gas or a standard solution of various concentrations known for both the light absorption light intensity method and the fluorescence light intensity method in the concentration measuring device. From this result, a correlation equation (calibration curve) between the concentration and the received light amount value or the fluorescent light amount value is obtained. At the time of density measurement, an apparent density is obtained from a comparison between the measured received light quantity value or fluorescent light quantity value and the correlation equation.

本発明の実施の形態を、主に煙道中のガスの濃度を測定する場合について以下に図面を参照して詳細に説明する。
図2は本発明に係わる被測定物質濃度測定装置の機器構成を示す模式図である。
Embodiments of the present invention will be described in detail below with reference to the drawings, mainly for measuring the concentration of gas in a flue.
FIG. 2 is a schematic diagram showing the equipment configuration of the measurement substance concentration measuring apparatus according to the present invention.

機器構成について説明する。
測定用光源2は、被測定物質に特有な吸収光波長の光を発光する光源である。たとえば、被測定物質が煙道中の窒素酸化物の濃度測定であれば波長1.28〜1.86μmの近赤外領域を発光することが望ましい。この光は、振動数が一定で、位相が揃い、光が広がらず、極細の光軸で照射できるレーザ光である。
The device configuration will be described.
The measurement light source 2 is a light source that emits light having an absorption light wavelength unique to the substance to be measured. For example, if the substance to be measured is a concentration measurement of nitrogen oxides in a flue, it is desirable to emit light in the near infrared region having a wavelength of 1.28 to 1.86 μm. This light is laser light that has a constant frequency, is in phase, does not spread light, and can be irradiated with a very thin optical axis.

測定用光源2からの光の光路上に固定鏡6が配置されている。固定鏡6は半通過性のハーフミラーとなっており光は2分される。2分された光の一方は該光源2の発光光量を測定する光量変動補正用光検出器4に入射される。もう一方の光は固定鏡6から被測定物質濃度測定のために媒体200に照射されるが、その光路上には光パルス発生器14、光合成器7、固定鏡12が配置されている。   A fixed mirror 6 is disposed on the optical path of light from the measurement light source 2. The fixed mirror 6 is a half-passing half mirror, and the light is divided into two. One of the divided lights is incident on a light quantity fluctuation correcting photodetector 4 that measures the light emission quantity of the light source 2. The other light is irradiated from the fixed mirror 6 to the medium 200 for measuring the concentration of the substance to be measured, and an optical pulse generator 14, a light synthesizer 7, and a fixed mirror 12 are disposed on the optical path.

媒体200に照射された光は固定鏡12で反射される。この反射した光の光路上には光分離器9、固定鏡15が配置されている。固定鏡15は半通過性のハーフミラーとなっており光は2分される。2分された光の光路上には光パルス発生器14が配置されている。2分された光の一方の光は、光パルス発生器14のスリットを通過して光量を検出する光量検出手段300である測定用光検出器16に入射される。もう一方の光は光パルス発生器14のスリット間に邪魔され光パルス発生器14を通過できないがその光路の延長上には蛍光光量検出手段350である測定用蛍光検出器10が配置されている。なお、光合成器7と光分離器9は同一プリズムとしても良い。   The light irradiated on the medium 200 is reflected by the fixed mirror 12. An optical separator 9 and a fixed mirror 15 are disposed on the optical path of the reflected light. The fixed mirror 15 is a half-passing half mirror, and the light is divided into two. An optical pulse generator 14 is disposed on the optical path of the divided light. One of the halved lights passes through the slit of the optical pulse generator 14 and is incident on the measurement photodetector 16 which is a light amount detection means 300 that detects the light amount. The other light is obstructed between the slits of the optical pulse generator 14 and cannot pass through the optical pulse generator 14, but the measurement fluorescence detector 10 which is a fluorescence light amount detection means 350 is disposed on the extension of the optical path. . The light combiner 7 and the light separator 9 may be the same prism.

本発明における補正用光源光量変動補正手段750、光路汚損補正手段800の減光率演算部、パルス光光量変動補正手段950、第1の見掛け濃度算出手段400、第2の見掛け濃度算出手段450および濃度算出手段500は、図示しないROM等に記憶された所定のプログラムによって演算動作する演算器13、すなわち、処理装置(CPU)で実現することができる。上記各手段はこのようなソフトウエアによる構成でなく個々の手段ごとに電子部品を使ったハードウエアで構成することもできる。   In the present invention, the correction light source light quantity fluctuation correcting means 750, the light attenuation rate calculating part of the optical path contamination correcting means 800, the pulsed light quantity fluctuation correcting means 950, the first apparent density calculating means 400, the second apparent density calculating means 450, and The density calculation means 500 can be realized by the arithmetic unit 13 that operates by a predetermined program stored in a ROM (not shown), that is, a processing device (CPU). Each of the above means can be constituted by hardware using electronic components for each means instead of such software.

パルス光光量変動検出手段900である光量変動補正用光検出器4、測定用蛍光検出器10、測定用光検出器16で検出された信号が演算器13に入力されている。光検出器とは、光量を定量的に検出できる、例えば光半導体である。   Signals detected by the light quantity fluctuation correcting photodetector 4, the measurement fluorescence detector 10, and the measurement photodetector 16, which are the pulsed light quantity fluctuation detecting means 900, are input to the calculator 13. The photodetector is, for example, an optical semiconductor that can quantitatively detect the amount of light.

補正用光源1(補正用光源600)は、測定用光源2の被測定物質に特有な吸収光波長の光に重畳する別波長の光の光源である。補正用光源1からの光の光路上に固定鏡5が配置されている。固定鏡5は半通過性のハーフミラーとなっており光は2分される。2分された光の一方は該光源1の発光光量を測定する光路汚損補正用第1光検出器3に入射する。もう一方の光は固定鏡5から媒体に照射されるが、その光路上には光合成器7が配置されており、被測定物質に特有な吸収光波長の光に重畳される。   The correction light source 1 (correction light source 600) is a light source of light having a different wavelength that is superimposed on light having an absorption light wavelength unique to the substance to be measured of the measurement light source 2. A fixed mirror 5 is disposed on the optical path of the light from the correction light source 1. The fixed mirror 5 is a half-passing half mirror, and the light is divided into two. One of the divided lights is incident on a first optical path contamination correction photodetector 3 that measures the amount of light emitted from the light source 1. The other light is emitted from the fixed mirror 5 to the medium. A light combiner 7 is disposed on the optical path, and is superimposed on the light having the absorption light wavelength peculiar to the substance to be measured.

照射された光は固定鏡12で反射される。この反射した光の光路上には光分離器9が配置されており、光は受光光量を測定する光路汚損補正用第2光検出器11に入射する。なお、光合成器7と光分離器9は同一プリズムとしても良い。
光路汚損補正手段800における光量検出部である光路汚損補正用第1光検出器3と光路汚損補正用第2光検出器11で検出された信号が演算器13に入力されている。
The irradiated light is reflected by the fixed mirror 12. An optical separator 9 is disposed on the optical path of the reflected light, and the light enters the optical path contamination correction second photodetector 11 that measures the amount of received light. The light combiner 7 and the light separator 9 may be the same prism.
Signals detected by the optical path contamination correction first photodetector 3 and the optical path contamination correction second photodetector 11 which are light quantity detection units in the optical path contamination correction means 800 are input to the calculator 13.

補正用光源1および測定用光源2から発光する光は、スペクトル幅が狭く、振動数が一定で、位相が揃い、光が広がらず、極細の光軸を照射できるレーザ光である。また、鏡固定器具8は光路を邪魔しないよう内部が空洞となった管であり、片端に発光部21と受光部22が設置されており、もう片端には固定鏡12が設置されている。   The light emitted from the correction light source 1 and the measurement light source 2 is laser light that has a narrow spectrum width, constant frequency, uniform phase, does not spread light, and can irradiate a very thin optical axis. The mirror fixing device 8 is a tube having a hollow inside so as not to disturb the optical path. A light emitting unit 21 and a light receiving unit 22 are installed at one end, and a fixed mirror 12 is installed at the other end.

鏡固定器具8は、媒体200の流路構築物、たとえば煙道に穴を開けて鏡固定器具8を固定する役目である検出座に固定設置され、流路内に挿入される。これにより固定鏡15が媒体の流れに負けることなく固定される。発光部21とは、前記光を媒体200に照射する箇所で、受光部22とは、媒体200からの前記光を受ける箇所である。発光部21と受光部22は、煙道に設けられた検出座に開けられた窓であり、光ファイバー20にて濃度測定装置本体との間で光の送受を行う場合には、光ファイバー20の発光端または受光端が接続されている。   The mirror fixing device 8 is fixedly installed at a detection seat which serves to fix the mirror fixing device 8 by making a hole in a flow path structure of the medium 200, for example, a flue, and is inserted into the flow channel. As a result, the fixed mirror 15 is fixed without losing the medium flow. The light emitting unit 21 is a part that irradiates the light to the medium 200, and the light receiving part 22 is a part that receives the light from the medium 200. The light emitting unit 21 and the light receiving unit 22 are windows opened in a detection seat provided in the flue, and when the optical fiber 20 transmits and receives light to and from the concentration measuring device main body, the light emission of the optical fiber 20 is performed. End or light receiving end is connected.

上記の場合は媒体200への光の送受を同一方向とするために固定鏡15を使って、光を反射させていたが、光の送受を向かい合って行う、すなわち媒体200の流路構築物たとえば煙道の対向する位置に発光部21と受光部22を設置しても良い。   In the above case, the light is reflected by using the fixed mirror 15 in order to make the light transmission / reception to the medium 200 the same direction. However, the light transmission / reception is performed opposite to each other. You may install the light emission part 21 and the light-receiving part 22 in the position where a path | route opposes.

光パルス発生器14は図3に示す等間隔で同一空隙幅のスリットが設けられた回転する円板である。測定用光源2からの光は固定鏡6で反射して測定光の照射位置17のスリットを通して媒体中に照射される。このようにスリットを有する円板の回転により測定用光源2からの光はパルス光となって媒体に照射されることとなる。測定用光源2と光パルス発生器14とで本発明のパルス光源100を構成している。   The optical pulse generator 14 is a rotating disk provided with slits having the same gap width at equal intervals shown in FIG. The light from the measurement light source 2 is reflected by the fixed mirror 6 and irradiated into the medium through the slit at the measurement light irradiation position 17. In this way, the light from the measurement light source 2 becomes pulsed light and is irradiated onto the medium by the rotation of the disk having the slits. The measurement light source 2 and the optical pulse generator 14 constitute the pulse light source 100 of the present invention.

また固定鏡12からの反射光は固定鏡15により測定用光検出器16に向かっての受光光量測定位置19への光軸と測定用蛍光検出器10に向かっての蛍光光量測定位置18への光軸に2分される。   The reflected light from the fixed mirror 12 is reflected by the fixed mirror 15 to the received light amount measuring position 19 toward the measuring light detector 16 and to the fluorescent light amount measuring position 18 toward the measuring fluorescence detector 10. Divided by 2 along the optical axis.

図4に測定用光源2の測定光の照射位置17と受光光量測定位置19と蛍光光量測定位置18のスリットの位置関係を示す。測定光の照射位置17のスリットが開となってスリットを通して光を媒体中に照射している間中のみ受光光量測定位置19のスリットが開となる一方、蛍光光量測定位置18ではスリットが閉となって遮光する。測定光の照射位置17のスリットが閉となって遮光すると同時に受光光量測定位置19も閉となるが蛍光光量測定位置18では逆にスリットが開となる位置関係である。   FIG. 4 shows the positional relationship of the slits of the measurement light irradiation position 17, the received light quantity measurement position 19, and the fluorescent light quantity measurement position 18 of the measurement light source 2. While the slit at the measurement light irradiation position 17 is opened and the light is irradiated into the medium through the slit, the slit at the received light quantity measurement position 19 is opened, while at the fluorescence light quantity measurement position 18, the slit is closed. Become shielded from light. The slit at the measurement light irradiation position 17 is closed and shielded, and at the same time the received light quantity measurement position 19 is also closed, but at the fluorescent light quantity measurement position 18, the slit is opened.

スリットの幅とスリット間間隔および円板の回転速度については測定用光検出器16の90%応答時定数よりかなり長時間な受光光量計測に十分な時間確保と測定用蛍光検出器10の90%応答時定数よりかなり長時間な蛍光光量計測に十分な時間確保ができる時間となるよう設定される。   With respect to the width of the slit, the interval between the slits, and the rotational speed of the disk, a sufficient time for measuring the amount of received light that is considerably longer than the 90% response time constant of the measuring photodetector 16 and 90% of the measuring fluorescence detector 10 are obtained. The time is set so that a sufficient time can be secured for the measurement of the amount of fluorescent light, which is considerably longer than the response time constant.

各機器の動作について説明する。
被測定物質に特有な吸収光波長の光の光源である測定用光源2から出射した光は、ハーフミラーの固定鏡6によって2分される。2分された光の一方の光である固定鏡6の通過光は、光量変動補正用光検出器4で光量を測定される。測定された光量は測定用光源2の発光光量変動を測定するのに使われる。2分されたもう一方の光である固定鏡6の反射光は光パルス発生器14を通過してパルス状の光に加工され、光合成器7で補正用光源1から放射される被測定物質に特有な吸収光波長の光とは別の波長の光と重畳される。
The operation of each device will be described.
Light emitted from the measurement light source 2 which is a light source of light having an absorption light wavelength peculiar to the substance to be measured is divided into two by a half mirror fixed mirror 6. The amount of light passing through the fixed mirror 6, which is one of the halved lights, is measured by the light amount fluctuation correcting photodetector 4. The measured light quantity is used to measure the fluctuation of the emitted light quantity of the measurement light source 2. The reflected light of the fixed mirror 6, which is the other light divided into two, passes through the optical pulse generator 14, is processed into pulsed light, and is converted into a substance to be measured emitted from the correction light source 1 by the light combiner 7. Superposed on light having a wavelength different from that of light having a specific absorption light wavelength.

被測定物質に特有な吸収光波長の光に重畳する別波長の光の光源である補正用光源1から出射した光はハーフミラーの固定鏡5によって2分される。2分された光の一方の光である固定鏡5の通過光は、光路汚損補正用第1光検出器3で光量を測定される。測定された光量は、補正用光源1の発光光量変動を測定するのに使われる。2分されたもう一方の光である固定鏡5の反射光は光合成器7で測定用光源2から出射される被測定物質に特有な吸収光波長の光に重畳する。   The light emitted from the correction light source 1 that is a light source of light of another wavelength superimposed on the light of the absorption light wavelength peculiar to the substance to be measured is divided into two by the half mirror fixed mirror 5. The amount of light passing through the fixed mirror 5, which is one of the two divided lights, is measured by the first optical path contamination correction first photodetector 3. The measured light amount is used to measure the light emission amount fluctuation of the correction light source 1. The reflected light of the fixed mirror 5, which is the other divided light, is superimposed on the light having the absorption light wavelength specific to the substance to be measured emitted from the measurement light source 2 by the light combiner 7.

光合成器7で被測定物質に特有な吸収光波長の光とそれとは別波長の光(補正用光)が重畳された光は鏡固定器具8管内の空洞内を通過して固定鏡12で反射される。鏡固定器具8出口と固定鏡12の間は既知の固定長さとなっており、この間に存在する被測定物質により被測定物質に特有な吸収光波長の光が吸収または蛍光される。   The light of the absorption light wavelength peculiar to the substance to be measured and the light of a different wavelength (correction light) superimposed by the light combiner 7 pass through the cavity in the mirror fixing device 8 and are reflected by the fixed mirror 12. Is done. The distance between the mirror fixing device 8 outlet and the fixed mirror 12 has a known fixed length, and light having an absorption light wavelength peculiar to the substance to be measured is absorbed or fluorescent by the substance to be measured existing therebetween.

固定鏡12で反射した光または固定鏡12と鏡固定器具8出口との間で蛍光した光は鏡固定器具8管内の空洞内を通過して光分離器9で被測定物質に特有な吸収光波長の測定用の光とそれとは別波長の光が重畳された光路汚損補正用の光とに分離される。   Light reflected by the fixed mirror 12 or light fluorescent between the fixed mirror 12 and the exit of the mirror fixing device 8 passes through a cavity in the tube of the mirror fixing device 8 and is absorbed by the light separator 9 and is specific to the substance to be measured. The light is separated into light for wavelength measurement and light for optical path contamination correction on which light of a different wavelength is superimposed.

光分離器9で分離された被測定物質に特有な吸収光波長の光はハーフミラーの固定鏡15により2分される。2分された光の一方は光パルス発生器14を通過して測定用蛍光検出器10に入射される。測定用蛍光検出器10で測定される光量は鏡固定器具8出口と固定鏡12の間に存在する被測定物質により蛍光された光量である。もう一方の光は光パルス発生器14を通過して測定用光検出器16に入射される。測定用光検出器16で測定される光量は測定用光源2から出射された光が鏡固定器具8出口と固定鏡12の間に存在する被測定物質により吸収され減光されて測定用光検出器16に到達する光量である。   The light having the absorption light wavelength peculiar to the substance to be measured separated by the light separator 9 is divided into two by the half mirror fixed mirror 15. One of the divided lights passes through the optical pulse generator 14 and is incident on the measurement fluorescence detector 10. The amount of light measured by the measurement fluorescence detector 10 is the amount of light that is fluorescent by the substance to be measured that exists between the exit of the mirror fixing device 8 and the fixed mirror 12. The other light passes through the optical pulse generator 14 and enters the measurement photodetector 16. The amount of light measured by the measurement light detector 16 is detected by the light emitted from the measurement light source 2 being absorbed and reduced by the substance to be measured present between the exit of the mirror fixing device 8 and the fixed mirror 12. The amount of light that reaches the device 16.

光分離器9で分離された被測定物質に特有な吸収光波長の光に重畳している別波長の補正用光は、光路汚損補正用第2光検出器11に入射される。光路汚損補正用第2光検出器11で測定される光量は、補正用光源1から出射される光が光ファイバなどの光路中や固定鏡12の反射率低下など、光路の汚損により減光されて光路汚損補正用第2光検出器11に到達する光量である。   The correction light having another wavelength superimposed on the light having the absorption light wavelength peculiar to the substance to be measured separated by the light separator 9 is incident on the second optical detector 11 for correcting optical path contamination. The amount of light measured by the second optical detector 11 for correcting optical path contamination is reduced due to optical path contamination such as the light emitted from the correcting light source 1 being in the optical path of an optical fiber or the like, or the reflectance of the fixed mirror 12 being reduced. The amount of light reaching the second optical detector 11 for correcting optical path contamination.

測定された光量から濃度への演算について図5を参照して説明する。
第1の見掛け濃度算出手段400や第2の見掛け濃度算出手段450において用いる相関関係式は次のように求める。
種々の既知濃度の標準ガスまたは標準液だけで測定を行い、このとき、測定用蛍光検出器10で測定される蛍光光量値と濃度の相関関係式(検量線)および測定用光検出器16で測定される受光光量値と濃度の相関関係式(検量線)を作成しておく。
The calculation from the measured light amount to the density will be described with reference to FIG.
Correlation equations used in the first apparent density calculation unit 400 and the second apparent density calculation unit 450 are obtained as follows.
Measurement is performed only with standard gases or standard solutions having various known concentrations. At this time, the correlation formula (calibration curve) between the fluorescence light quantity value and the concentration measured by the measurement fluorescence detector 10 and the measurement photodetector 16 are used. A correlation equation (calibration curve) between the measured received light quantity value and concentration is prepared in advance.

上記検量線を作成するときには併せて光量変動補正用光検出器4にてパルス光光量変動補正手段950で用いる、測定用光源2の発光光量変動補正の基準となる初期発光光量値を測定しておく。   At the time of creating the calibration curve, an initial light emission quantity value used as a reference for correction of emission light quantity fluctuation of the measurement light source 2 is also measured by the light quantity fluctuation correction photodetector 4 in the pulse light quantity fluctuation correction means 950. deep.

また、上記検量線作成するときには併せて光路汚損補正用第1光検出器3にて補正用光源光量変動補正手段750で用いる、補正用光源1の発光光量変動補正の基準となる初期発光光量値Aと、光路汚損補正用第2光検出器11にて光路汚損補正手段800の減光率演算部における減光率算出に用いる、煤煙粒子などの粒子が存在せず、かつ固定鏡12が清浄であるなど、光路に汚損がない状態での光路汚損による受光光量変動補正の基準となる補正用光源1の初期受光光量値Bを測定しておく。   In addition, when the calibration curve is created, the initial light emission amount value used as a reference for correction of the light emission amount variation of the correction light source 1 is used in the correction light source light amount variation correction means 750 in the optical path contamination correction first photodetector 3. A and the second optical detector 11 for correcting optical path contamination, there is no particle such as smoke particles used for calculating the attenuation rate in the attenuation rate calculation unit of the optical path contamination correcting means 800, and the fixed mirror 12 is clean. For example, an initial received light amount value B of the correction light source 1 which is a reference for correction of received light amount fluctuation due to optical path contamination in a state where the optical path is not contaminated is measured.

光量変動補正用光検出器4で被測定物質および測定誤差発生物質を含む媒体中の被測定物質濃度測定時における測定用光源2からの受光光量を測定する。その受光光量値を前記測定用光源2の初期発光光量値Cで除算して測定用光源2の発光光量変動補正係数aを求めておく(パルス光光量変動補正手段950)。   The amount of light received from the measurement light source 2 at the time of measuring the concentration of the substance to be measured in the medium containing the substance to be measured and the substance having the measurement error is measured by the light quantity fluctuation correcting photodetector 4. The received light quantity value is divided by the initial emitted light quantity value C of the measurement light source 2 to obtain the emission light quantity fluctuation correction coefficient a of the measurement light source 2 (pulse light quantity fluctuation correction means 950).

光路汚損補正用第1光検出器3で被測定物質および測定誤差発生物質を含む媒体中の被測定物質濃度測定時における補正用光源1からの受光光量を測定する(補正用光源光量変動検出手段700)。その受光光量値を前記補正用光源1の初期発光光量値Aで除算して補正用光源1の発光光量変動補正係数bを求めておく(補正用光源光量変動補正手段750)。   The first light detector 3 for correcting optical path contamination measures the amount of light received from the correction light source 1 when measuring the concentration of the measurement substance in the medium containing the measurement substance and the measurement error generating substance (correction light source light quantity fluctuation detecting means). 700). The received light quantity value is divided by the initial emission light quantity value A of the correction light source 1 to obtain the emission light quantity fluctuation correction coefficient b of the correction light source 1 (correction light source quantity fluctuation correction means 750).

光路汚損補正用第2光検出器11で被測定物質および測定誤差発生物質を含む媒体中の被測定物質濃度測定時における補正用光源1からの受光光量を測定する。この受光状況は光ファイバ等光路内での減光や固定鏡12の反射率低下など光路が汚損している状況である。   The second light detector 11 for correcting optical path contamination measures the amount of light received from the correction light source 1 when measuring the concentration of the substance to be measured in the medium containing the substance to be measured and the substance having the measurement error. This light reception state is a state in which the optical path is contaminated, such as dimming in the optical path such as an optical fiber, and a decrease in the reflectance of the fixed mirror 12.

光路汚損補正用第2光検出器11の受光光量値に補正用光源1の発光光量変動補正係数bを除算して受光光量値の補正用光源1の発光光量変動による影響を補正した後、この補正後の受光光量値を、光路汚損補正用第2光検出器11にて前記検量線作成時の光路汚損なしのときの初期受光光量値Bで除算することで光ファイバ等の光路内での減光による受光光量変動や固定鏡12など光路の汚損による受光光量変動を補正する、光路汚損による光量変動補正係数、すなわち、減光率を求める(光路汚損補正手段800)。   After correcting the influence of the received light quantity value of the correction light source 1 on the received light quantity value by dividing the received light quantity value of the second optical detector 11 for correcting optical path contamination by the emission light quantity fluctuation correction coefficient b of the correction light source 1, The corrected received light amount value is divided by the initial received light amount value B when there is no optical path contamination at the time of creating the calibration curve by the optical path contamination correction second photodetector 11, so that it can be obtained in the optical path of an optical fiber or the like. A light quantity fluctuation correction coefficient due to optical path contamination, that is, a light reduction rate is obtained to correct fluctuations in received light quantity due to light reduction and fluctuations in received light quantity due to optical path contamination of the fixed mirror 12 (optical path contamination correction means 800).

ここで、光路汚損による光量変動補正係数(減光率)は、濃度測定時における、光路汚損により光路を通過した後の光量が、光路に入射する光量の何割になっているかを表している。   Here, the light quantity fluctuation correction coefficient (dimming rate) due to the optical path contamination represents what percentage of the light quantity incident on the optical path the light quantity after passing through the optical path due to the optical path contamination at the time of density measurement. .

測定用光検出器16で測定された被測定物質に吸収された後の測定用光源2からの受光光量値を、光量変動補正用光検出器4の受光光量値から作成した測定用光源2の発光光量変動補正係数aで除算して測定用光源2の発光光量変動を補正する(発光光量変動補正、パルス光光量変動補正手段950)。   The light quantity of light received from the measurement light source 2 after being absorbed by the substance to be measured measured by the measurement light detector 16 is obtained from the light quantity of light for measurement 2 created from the light quantity of light received by the light quantity fluctuation correcting photodetector 4. Dividing the emission light quantity fluctuation correction coefficient a to correct the emission light quantity fluctuation of the measurement light source 2 (light emission quantity fluctuation correction, pulsed light quantity fluctuation correction means 950).

その後、光路汚損補正用第2光検出器11の受光光量値から作成した光路汚損による光量変動補正係数(減光率)で除算して、測定用光検出器16の受光光量値を補正する(光路汚損補正、光路汚損補正手段800)。
これらの補正をすることで測定条件を前記検量線作成時と同条件にできるので補正後の受光光量値を、受光光量値と濃度の相関関係式に代入することで受光光量から、測定誤差発生物質による誤差を含んだ見かけ上の被測定物質濃度を求める(第1の見掛け濃度算出手段400)。
Thereafter, the received light quantity value of the measurement photodetector 16 is corrected by dividing by the light quantity fluctuation correction coefficient (dimming rate) due to the optical path dirt created from the received light quantity value of the second optical path detector 11 for correcting optical path pollution ( Optical path contamination correction, optical path contamination correction means 800).
By making these corrections, the measurement conditions can be made the same as when creating the calibration curve, so by substituting the corrected received light quantity value into the correlation equation between the received light quantity value and the density, a measurement error occurs from the received light quantity. An apparent measured substance concentration including an error due to the substance is obtained (first apparent concentration calculating means 400).

測定用蛍光検出器10で測定された被測定物質による蛍光光量値を、光量変動補正用光検出器4の受光光量値から作成した測定用光源2の発光光量変動補正係数aで除算して測定用光源2の発光光量変動を補正する(発光光量変動補正、パルス光光量変動補正手段950)。   Measured by dividing the fluorescence light quantity value measured by the measurement fluorescence detector 10 with the light emission quantity fluctuation correction coefficient a of the measurement light source 2 created from the received light quantity value of the light quantity fluctuation correction photodetector 4. The light emission fluctuation of the light source 2 is corrected (light emission fluctuation correction, pulsed light quantity fluctuation correction means 950).

その後、光路汚損補正用第2光検出器11の受光光量値から作成した光路汚損による光量変動補正係数(減光率)で除算して、測定用蛍光検出器10の蛍光光量値を補正する(光路汚損補正、光路汚損補正手段800)。
これらの補正をすることで測定条件を前記検量線作成時と同条件にできるので補正後の蛍光光量値を、蛍光光量・濃度相関関係式に代入することで蛍光光量から、測定誤差発生物質による誤差を含んだ見かけ上の被測定物質濃度を求める(第2の見掛け濃度算出手段450)。
Thereafter, the fluorescence light quantity value of the measurement fluorescence detector 10 is corrected by dividing by the light quantity fluctuation correction coefficient (dimming rate) due to the optical path dirt created from the received light quantity value of the second optical path detector 11 for optical path dirt correction ( Optical path contamination correction, optical path contamination correction means 800).
By making these corrections, the measurement conditions can be made the same as when creating the calibration curve, so by substituting the corrected fluorescent light quantity value into the fluorescent light quantity / concentration correlation equation, the fluorescent light quantity can be determined from the measurement error generating substance. An apparent measured substance concentration including an error is obtained (second apparent concentration calculation means 450).

濃度算出手段500において、前記受光光量から求めた測定誤差発生物質による誤差を含んだ見かけ上の被測定物質濃度(第1の見掛け濃度)と上記蛍光光量から求めた測定誤差発生物質による誤差を含んだ見かけ上の被測定物質濃度(第2の見掛け濃度)とでは、測定誤差発生物質による誤差が、それぞれ高めと低めになるため、お互いに相殺演算させることで真の被測定物質濃度を求めることができる。   In the concentration calculation means 500, an apparent measured substance concentration (first apparent density) including an error due to a measurement error generating substance obtained from the received light quantity and an error due to a measurement error generating substance obtained from the fluorescent light quantity are included. With the apparent measured substance concentration (second apparent concentration), the error due to the measurement error generating substance becomes higher and lower, respectively. Can do.

以上、被測定物質が煙道中のガスである場合について主に説明したが、本発明の測定法は、被測定物質が排水中に含まれる物質(リンや窒素など)である場合にも、同様の機器構成で適用できる。   As mentioned above, the case where the substance to be measured is a gas in the flue has been mainly described. However, the measurement method of the present invention is the same when the substance to be measured is a substance (phosphorus, nitrogen, etc.) contained in the waste water. Applicable in equipment configurations of

本発明に係わる被測定物質濃度測定装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the to-be-measured substance concentration measuring apparatus concerning this invention. 本発明に係わる被測定物質濃度測定装置の機器構成を示す模式図である。It is a schematic diagram which shows the apparatus structure of the to-be-measured substance concentration measuring apparatus concerning this invention. 光パルス発生器に係わる形状、機器構成を示す模式図である。It is a schematic diagram which shows the shape and apparatus structure concerning an optical pulse generator. 図3の発生器での光パルスと受光光量測定および蛍光光量測定のタイミングを示す模式図である。It is a schematic diagram which shows the timing of the light pulse in the generator of FIG. 3, light reception light quantity measurement, and fluorescence light quantity measurement. 被測定物質濃度算出に係わる演算模式図である。It is a calculation schematic diagram related to the measurement substance concentration calculation.

符号の説明Explanation of symbols

1 補正用光源
2 測定用光源
3 光路汚損補正用第1光検出器
4 光量変動補正用光検出器
5、6、12、15 固定鏡
7 光合成器
8 鏡固定器具
9 光分離器
10 測定用蛍光検出器
11 光路汚損補正用第2光検出器
13 演算器
14 光パルス発生器
16 測定用光検出器
17 測定光の照射位置
18 蛍光光量測定位置
19 受光光量測定位置
100 パルス光源(濃度測定用光)
200 媒体
300 光量検出手段
350 蛍光光量検出手段
400 第1の見掛け濃度算出手段
450 第2の見掛け濃度算出手段
500 濃度算出手段
600 補正用光源
700 補正用光源光量変動検出手段
750 補正用光源光量変動補正手段
800 光路汚損補正手段
900 パルス光光量変動検出手段
950 パルス光光量変動補正手段
DESCRIPTION OF SYMBOLS 1 Correction light source 2 Measurement light source 3 Optical path contamination correction 1st photodetector 4 Light quantity fluctuation correction photodetectors 5, 6, 12, 15 Fixed mirror 7 Photosynthesis device 8 Mirror fixing device 9 Optical separator 10 Measurement fluorescence Detector 11 Second optical detector 13 for correcting optical path contamination 13 Operation unit 14 Optical pulse generator 16 Measuring photodetector 17 Measuring light irradiation position 18 Fluorescent light amount measuring position 19 Received light amount measuring position 100 Pulse light source (Concentration measuring light) )
200 Medium 300 Light quantity detection means 350 Fluorescence light quantity detection means 400 First apparent density calculation means 450 Second apparent density calculation means 500 Concentration calculation means 600 Correction light source 700 Correction light source light quantity fluctuation detection means 750 Correction light source light quantity fluctuation correction Means 800 Optical path contamination correction means 900 Pulsed light quantity fluctuation detecting means 950 Pulsed light quantity fluctuation correcting means

Claims (5)

被測定物質と測定誤差発生物質を含む媒体中の被測定物質の濃度を測定する濃度測定装置であって、
被測定物質に特有な吸収光波長のパルス光を上記媒体に照射するパルス光源と、
上記媒体を通過して被測定物質および測定誤差発生物質の光の吸収により減光されたパルス光の光量を検出する光量検出手段と、
上記パルス光の照射により被測定物質が蛍光する蛍光光量を検出する蛍光光量検出手段と、
上記光量検出手段で検出された受光光量値に基づいて、媒体が被測定物質のみから成り、測定誤差発生物質を含まない状態の媒体で予め作成した受光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第1の見掛け濃度を算出する第1の見掛け濃度算出手段と、
上記蛍光光量検出手段で検出された蛍光光量値に基づいて、媒体が被測定物質のみから成り、測定誤差発生物質を含まない状態の媒体で予め作成した蛍光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第2の見掛け濃度を算出する第2の見掛け濃度算出手段と、
上記第1及び第2の見掛け濃度算出手段で得られた被測定物質の見掛け濃度に基づき相殺演算して上記第1及び第2の見掛け濃度における測定誤差発生物質による測定誤差を相殺して媒体中の被測定物質の真の濃度を算出する濃度算出手段とを具備する濃度測定装置。
A concentration measuring device for measuring the concentration of a substance to be measured in a medium containing the substance to be measured and a substance that generates a measurement error,
A pulsed light source that irradiates the medium with pulsed light having an absorption light wavelength specific to the substance to be measured;
A light amount detecting means for detecting the light amount of the pulsed light that has passed through the medium and is attenuated by the absorption of the light of the substance to be measured and the measurement error generating substance;
A fluorescence light amount detecting means for detecting a fluorescence light amount that the substance to be measured fluoresces by irradiation with the pulsed light; and
Based on the received light quantity value detected by the above light quantity detection means, it is obtained from the correlation formula between the received light quantity value and the density created in advance in a medium in which the medium consists only of the substance to be measured and does not contain the measurement error generating substance. A first apparent concentration calculating means for calculating a first apparent concentration of a substance to be measured, assuming that the medium does not contain a measurement error generating substance;
Based on the correlation formula between the fluorescence light quantity value and the concentration prepared in advance in a medium in which the medium is made of only the substance to be measured and does not contain the measurement error generating substance based on the fluorescence light quantity value detected by the fluorescence light quantity detection means. A second apparent concentration calculating means for calculating a second apparent concentration of the substance to be measured, on the assumption that the medium does not contain a measurement error generating substance;
The offset calculation is performed based on the apparent concentrations of the substance to be measured obtained by the first and second apparent concentration calculation means to cancel the measurement error due to the measurement error generating substance at the first and second apparent concentrations, and in the medium. A concentration measuring device comprising: concentration calculating means for calculating the true concentration of the substance to be measured.
上記パルス光源の測定時の発光光量の初期発光光量値に対するパルス光光源の光量変動率を求めるパルス光光量変動検出手段と、前記パルス光光源の光量変動率に基づき上記光量検出手段で検出されたパルス光の受光光量値と上記蛍光量検出手段で検出された蛍光光量値とを補正するパルス光光量変動補正手段と
を具備する請求項1記載の濃度測定装置。
A pulsed light quantity fluctuation detecting means for obtaining a light quantity fluctuation rate of the pulsed light source with respect to an initial emitted light quantity value of the emitted light quantity at the time of measurement of the pulsed light source, and detected by the light quantity detecting means based on the light quantity fluctuation rate of the pulsed light source 2. The concentration measuring apparatus according to claim 1, further comprising: a pulsed light amount fluctuation correcting unit that corrects the received light amount value of the pulsed light and the fluorescent light amount value detected by the fluorescent amount detecting unit.
上記被測定物質に特有な吸収光波長とは異なる波長の補正用光源を用い、該補正用光源の光を上記パルス光に重畳し、上記パルス光源から上記光量検出手段にいたる光路を通過した後の補正用光源の光の光量値に基づき前記光路における光路構成部材の汚損に伴う受光光量の初期値に対する測定時の減光率を求め、上記受光光量値および上記蛍光光量値をそれぞれ前記減光率に基づき補正をする光路汚損補正手段
を具備する請求項1記載の濃度測定装置。
After using a correction light source having a wavelength different from the absorption light wavelength peculiar to the substance to be measured, superimposing the light of the correction light source on the pulse light, and passing through the optical path from the pulse light source to the light amount detection means Based on the light intensity value of the correction light source, the light attenuation rate at the time of measurement with respect to the initial value of the received light intensity due to the contamination of the optical path constituent member in the optical path is obtained, and the received light intensity value and the fluorescent light intensity value are respectively reduced. The density measuring apparatus according to claim 1, further comprising optical path contamination correcting means for correcting based on the rate.
上記パルス光源の測定時の発光光量の初期発光光量値に対するパルス光光源の光量変動率を求めるパルス光光量変動検出手段と、
前記パルス光光源の光量変動率に基づき上記光量検出手段で検出されたパルス光の受光光量値と上記蛍光量検出手段で検出された蛍光光量値とを補正するパルス光光量変動補正手段と、
上記補正用光源の測定時の発光光量の初期発光光量値に対する補正用光源の光量変動率を求める補正用光源光量変動検出手段と、前記補正用光源の光量変動率に基づき上記測定時の減光率を補正する補正用光源光量変動補正手段と
を具備する請求項3記載の濃度測定装置。
A pulsed light amount fluctuation detecting means for obtaining a light amount fluctuation rate of the pulsed light source with respect to an initial emitted light amount value of the emitted light amount at the time of measurement of the pulsed light source;
A pulsed light amount fluctuation correcting unit that corrects a received light amount value of the pulsed light detected by the light amount detecting unit and a fluorescent light amount value detected by the fluorescent amount detecting unit based on a light amount fluctuation rate of the pulsed light source;
A correction light source light quantity fluctuation detecting means for obtaining a light quantity fluctuation rate of the correction light source with respect to an initial light emission light quantity value of the light emission quantity at the time of measurement of the correction light source, and a light attenuation at the time of measurement based on the light quantity fluctuation rate of the correction light source The density measuring apparatus according to claim 3, further comprising a correction light source light quantity fluctuation correcting unit that corrects the rate.
被測定物質と測定誤差発生物質からなる媒体に被測定物質に特有な吸収光波長のパルス光を照射し、媒体を通過したパルス光の受光光量とパルス光照射による被測定物質が蛍光する蛍光光量を検出し、検出されたパルス光の受光光量値を媒体が被測定物質のみから成り、測定誤差発生物質を含まない状態の媒体で作成した受光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第1の見掛け濃度と、検出された蛍光光量値を媒体が被測定物質のみから成り測定誤差発生物質を含まない状態の媒体で作成した蛍光光量値と濃度との相関関係式から求めた、媒体が測定誤差発生物質を含まないと仮定した被測定物質の第2の見掛け濃度に基づき相殺演算して上記第1及び第2の見掛け濃度における測定誤差発生物質による測定誤差を相殺して媒体中の測定誤差発生物質から発する測定誤差を取り除いた被測定物質の濃度測定方法

Irradiate the medium consisting of the substance to be measured and the substance causing the measurement error with pulsed light with a wavelength of absorption light unique to the substance to be measured. And the received light quantity value of the detected pulsed light was determined from the correlation equation between the received light quantity value and the concentration created with the medium consisting only of the substance to be measured and not including the measurement error generating substance, The first apparent concentration of the substance to be measured, which is assumed that the medium does not contain a measurement error generating substance, and the detected fluorescence light quantity value are created on a medium in which the medium consists only of the substance to be measured and does not contain the measurement error generating substance. The first and second apparent values are calculated by performing an offset operation based on the second apparent concentration of the substance to be measured, which is calculated from the correlation equation between the measured fluorescence light quantity value and the concentration, and that the medium does not contain the measurement error generating substance. In concentration A method for measuring the concentration of measurement error generating material measured substance removing measurement errors emanating from the measurement error generating substance in the medium by canceling a measurement error due to

JP2004209045A 2004-07-15 2004-07-15 Instrument and method for measuring concentration Pending JP2006029968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209045A JP2006029968A (en) 2004-07-15 2004-07-15 Instrument and method for measuring concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209045A JP2006029968A (en) 2004-07-15 2004-07-15 Instrument and method for measuring concentration

Publications (1)

Publication Number Publication Date
JP2006029968A true JP2006029968A (en) 2006-02-02

Family

ID=35896511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209045A Pending JP2006029968A (en) 2004-07-15 2004-07-15 Instrument and method for measuring concentration

Country Status (1)

Country Link
JP (1) JP2006029968A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757013A (en) * 1993-08-13 1995-03-03 Center For Polytical Pub Relations:The Voting terminal equipment
JP2008134234A (en) * 2006-10-31 2008-06-12 Kyocera Mita Corp Concentration measuring instrument for liquid sample, and image forming device
JP2009019886A (en) * 2007-07-10 2009-01-29 Nippon Instrument Kk Fluorescence analyzer of mercury atom
JP2009099118A (en) * 2007-09-26 2009-05-07 Sharp Corp Smoke sensor and electronic equipment provided therewith
JP2011191164A (en) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd Laser-type gas analyzer
JP2013228296A (en) * 2012-04-26 2013-11-07 Shimadzu Corp Gas concentration measuring device
JP2014055858A (en) * 2012-09-12 2014-03-27 Tokyo Metropolitan Sewerage Service Corp Gas concentration measurement device
JP2015515624A (en) * 2012-03-27 2015-05-28 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Sensor configuration for measuring substance concentration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194886A (en) * 1975-02-19 1976-08-19
JPS58211632A (en) * 1982-06-04 1983-12-09 Hitachi Ltd Method and device for measuring laser excited fluorescence
JPS59218936A (en) * 1983-05-27 1984-12-10 Nec Corp Remote spectrum analyzer
JPS6394136A (en) * 1986-10-08 1988-04-25 Hitachi Ltd Method and instrument for fluorometric analysis
JPH01253635A (en) * 1988-04-01 1989-10-09 Hitachi Ltd Method and apparatus for fluorescence analysis
JPH0915145A (en) * 1995-06-30 1997-01-17 Mitsubishi Heavy Ind Ltd Multiplex measurement analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194886A (en) * 1975-02-19 1976-08-19
JPS58211632A (en) * 1982-06-04 1983-12-09 Hitachi Ltd Method and device for measuring laser excited fluorescence
JPS59218936A (en) * 1983-05-27 1984-12-10 Nec Corp Remote spectrum analyzer
JPS6394136A (en) * 1986-10-08 1988-04-25 Hitachi Ltd Method and instrument for fluorometric analysis
JPH01253635A (en) * 1988-04-01 1989-10-09 Hitachi Ltd Method and apparatus for fluorescence analysis
JPH0915145A (en) * 1995-06-30 1997-01-17 Mitsubishi Heavy Ind Ltd Multiplex measurement analyzer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757013A (en) * 1993-08-13 1995-03-03 Center For Polytical Pub Relations:The Voting terminal equipment
JP2008134234A (en) * 2006-10-31 2008-06-12 Kyocera Mita Corp Concentration measuring instrument for liquid sample, and image forming device
JP2009019886A (en) * 2007-07-10 2009-01-29 Nippon Instrument Kk Fluorescence analyzer of mercury atom
JP2009099118A (en) * 2007-09-26 2009-05-07 Sharp Corp Smoke sensor and electronic equipment provided therewith
JP2011191164A (en) * 2010-03-15 2011-09-29 Fuji Electric Co Ltd Laser-type gas analyzer
JP2015515624A (en) * 2012-03-27 2015-05-28 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Sensor configuration for measuring substance concentration
US9625383B2 (en) 2012-03-27 2017-04-18 Tetra Laval Holdings & Finance S.A. Sensor arrangement for measuring the concentration of a substance
JP2013228296A (en) * 2012-04-26 2013-11-07 Shimadzu Corp Gas concentration measuring device
JP2014055858A (en) * 2012-09-12 2014-03-27 Tokyo Metropolitan Sewerage Service Corp Gas concentration measurement device

Similar Documents

Publication Publication Date Title
EP2944945B1 (en) Laser gas analyzer
US8237926B2 (en) Method and apparatus for measuring density
US5807750A (en) Optical substance analyzer and data processor
WO2012161067A1 (en) Measuring unit and gas analyzer
EP0634646B1 (en) Method of and apparatus for analyzing nitrogen compounds and phosphorus compounds contained in water
CN206920324U (en) Water quality monitoring probe based on ultraviolet-visible absorption spectroscopy and fluorescence spectrum
WO2015181879A1 (en) Gas analyzer
JP4467674B2 (en) Gas concentration measuring device
JP2012137429A (en) Laser measuring device
JP2006029968A (en) Instrument and method for measuring concentration
US7295319B2 (en) Method for measuring concentration of nitrogen dioxide in air by single-wavelength laser induced fluorescence method, and apparatus for measuring concentration of nitrogen dioxide by the method
KR102114557B1 (en) A NDIR analyzer using Two Functional Channels
JP5351742B2 (en) Method for measuring dust concentration in gas and operation method for combustion equipment
KR100910871B1 (en) Method and apparatus for measuring water contained in the chimney gas
US5155545A (en) Method and apparatus for the spectroscopic concentration measurement of components in a gas mixture
CN108593631A (en) A kind of method of aerosol auxiliary laser probe in detecting molecular radical spectrum
CN106353263A (en) Gas ingredient detection device
JP2019502126A (en) Wide-range gas detection method using infrared gas detector
Chen et al. Determination of the tropospheric hydroxyl radical by liquidphase scrubbing and HPLC: preliminary results
JPH10142148A (en) Concentration measuring device
Dreyer et al. Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames
JP2004279339A (en) Concentration measuring instrument
JPH10115584A (en) Fluorescent flow cell
JP2760681B2 (en) Method and apparatus for measuring iodine concentration in gas
JPH0452891B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Effective date: 20091127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091208

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406