JPS59218936A - Remote spectrum analyzer - Google Patents

Remote spectrum analyzer

Info

Publication number
JPS59218936A
JPS59218936A JP9252883A JP9252883A JPS59218936A JP S59218936 A JPS59218936 A JP S59218936A JP 9252883 A JP9252883 A JP 9252883A JP 9252883 A JP9252883 A JP 9252883A JP S59218936 A JPS59218936 A JP S59218936A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
gas
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9252883A
Other languages
Japanese (ja)
Inventor
Akifumi Yoshida
吉田 明章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9252883A priority Critical patent/JPS59218936A/en
Publication of JPS59218936A publication Critical patent/JPS59218936A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a remote spectrum analyzer which is economically effective, capable of highly accurate measurement by removing an error factor by providing said device with a light transmitting optical fiber, light branching means, by- pass optical fiber, photocoupling means, and a spectrum analyzing part. CONSTITUTION:Light as a light pulse is transmitted from a light source 1 to a place where a gas case 4 to be measured is arranged through the light transmitting optical fiber 2. The light from the light source 1 is branched by a light branching element 3 placed immediately before the case 4; one is passed through gas and outputted as signal light selectively absorbed at wavelength lambda1 and the other is guided to the by-pass optical fiber 5 and outputted as reference light which is not absorbed by the sample gas. These light beams are guided to the same light returning optical fiber 6 by a wave composing photocoupler 3'. The light returned to an observing point through the fiber 6 is transmitted to the spectrum analyzing part 12 consisting of a spectroscope 7, photodetectors 8, 8', amplifiers 9, 9', and a data processor 10 and electric signals corresponding to the signal light pulse and the reference light pulse are independently detected by the time sharing method.

Description

【発明の詳細な説明】 本発明は、たとえば、雰囲気中の微量気体成分や、試料
中の水分などを光の吸収率の変化を利用して定量的に遠
隔計測する分光分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectroscopic analyzer that quantitatively and remotely measures, for example, trace gas components in an atmosphere, moisture in a sample, etc. using changes in light absorption.

雰囲気中の微量気体成分や、試料中の水分などを遠隔計
測する分光分析装置においては、誤差要因を除いた精度
の高い測定、簡単な構成、及び高い信頼性が望まれる。
In a spectroscopic analyzer that remotely measures trace gas components in the atmosphere, moisture in a sample, etc., highly accurate measurement that eliminates error factors, a simple configuration, and high reliability are desired.

光ファイバを用いて離れた地点まで光信号を伝送した後
、被測定対象を通過させ、これを再び光ファイバで観測
地点まで送り返して2分光測定し。
After transmitting an optical signal to a distant point using an optical fiber, it is passed through the object to be measured, and then sent back to the observation point using an optical fiber for two-spectrum measurements.

特定の波長における光の吸収を測定することによって、
特定物質を定量的に遠隔測定する分光分析装置としては
、たとえばメタンガスセンサや水分センサなどが考えら
れる。
By measuring the absorption of light at specific wavelengths,
Examples of spectroscopic analyzers that quantitatively and remotely measure specific substances include methane gas sensors and moisture sensors.

一般にガスや水分は、その物質固有の分子構造に基づく
性質として、特定の波長の光を吸収する。
Generally, gases and moisture absorb light of specific wavelengths based on their unique molecular structure.

これらの波長の光を被測定雰囲気や試料中に通すとそこ
に含捷れるガスや水分の量に応じて、光エネルギーが吸
収されるから、この光量の減衰量からそこに含まれてい
る物質の量を知ることが出来る。たとえば、第1図に示
すように、メタンガス中にInGaAsP発光ダイオー
ドからの光を通した場合は、1331μm 、 ]、、
 324μm、]、、322μmの波長において吸収ス
被りトルが生ずる。これらの光の吸収量のみからメタン
ガスの濃度を測定することは可能であるが、光源の強度
変動などガス濃度以外の要因で受光光量が変動し誤差を
生ずる。
When light of these wavelengths is passed through the atmosphere or sample to be measured, the light energy is absorbed depending on the amount of gas or moisture contained therein, so the amount of attenuation of this amount of light indicates the substances contained therein. You can know the amount of For example, as shown in Figure 1, when light from an InGaAsP light emitting diode is passed through methane gas, the distance is 1331 μm.
Absorption shear occurs at wavelengths of 324 μm, ], 322 μm. Although it is possible to measure the concentration of methane gas only from the amount of absorbed light, the amount of received light fluctuates due to factors other than the gas concentration, such as fluctuations in the intensity of the light source, resulting in errors.

つ¥l:b、吸収波長のみの受光光量を基にガス濃度を
求める方法では外乱に対して弱い。
The method of determining the gas concentration based on the amount of light received only at the absorption wavelength is vulnerable to disturbances.

そこで、このような外乱の影響を除去するために、たと
えば第1図に示す吸収波長λ1の他に。
Therefore, in order to eliminate the influence of such disturbance, for example, in addition to the absorption wavelength λ1 shown in FIG.

外乱の影響は同じ割合で受けると考えられるこの受光光
量の比から、外乱の影響を受けずに、ガス濃度を求める
ことが考えられる。即ち、この測定方法ては、第’、2
i(’図に示すように、送光点において。
From this ratio of received light amounts, which are considered to be affected by disturbances at the same rate, it is possible to determine the gas concentration without being affected by disturbances. That is, in this measurement method,
i('At the light transmitting point, as shown in the figure.

光源]よりの光信号を光分岐素子20で分岐し。An optical branching element 20 branches an optical signal from a light source].

更に分光器21で分光して、光源の強度レベルをそれぞ
れの波長λ1 、]2において測定していた。
Further, the light was separated by a spectroscope 21 to measure the intensity level of the light source at each wavelength λ1, ]2.

試料気体容器4内の被測定気体を通過した光は。The light that has passed through the gas to be measured in the sample gas container 4 is:

これを返送光用光ファイ・ぐ6で観測地点に送シ返した
後に分光器7で分光して、波長λ藁および]2における
強度レベルの比を求め、これを先の光源1が設置されて
いる場所で測定されたこれらの波長における強度レベル
の比と比較することによって、ガス濃度の測定がなされ
ていた。なお。
This is sent back to the observation point using the optical fiber 6 for return light, and then separated into spectra by the spectrometer 7 to find the ratio of the intensity level at the wavelength λ and ]2. Measurements of gas concentration were made by comparing the ratio of intensity levels at these wavelengths measured at the same location. In addition.

22及び22′は光検出器、23及び23′は増幅器。22 and 22' are photodetectors, and 23 and 23' are amplifiers.

8及び8′は光検出器、9及び9′は増幅器、10はガ
ス濃度を算出するだめのデータ処理装置、11は測定結
果の表示・記録装置である。
8 and 8' are photodetectors, 9 and 9' are amplifiers, 10 is a data processing device for calculating the gas concentration, and 11 is a measurement result display/recording device.

この従来考えられている方法では、光源1からの光を分
光するだめの分光器21と、さらに被測定気体を通過し
て返送されてきた光を分光するだめの分光器7との合わ
せて二組の分光器と、各分光器に付ずいする光検出器及
び増幅器が必要になり、装置が複雑かつ高価になる上に
、二組の分光器の分光特性の違いが誤差要因になること
が考えられる。また、伝送経路中に被測定気体によるも
の以外の原因による波長依存性の吸収や散乱があった場
合、これも測定誤差要因になるという欠点があった。
In this conventional method, a spectrometer 21 is used to separate the light from the light source 1, and a spectrometer 7 is used to separate the light that has passed through the gas to be measured and is returned. A set of spectrometers and a photodetector and amplifier attached to each spectrometer are required, which makes the equipment complex and expensive, and the difference in spectral characteristics between the two sets of spectrometers can become a source of error. Conceivable. Furthermore, if there is wavelength-dependent absorption or scattering due to causes other than the gas to be measured in the transmission path, there is a drawback that this also becomes a cause of measurement error.

本発明の目的は、上記欠点を除去し、比較的簡単な構成
で、経済的にも有利で、かつ、誤差要因を除いた精度の
高い測定を可能にする遠隔分光分析装置を提供すること
にある。
An object of the present invention is to provide a remote spectroscopic analysis device that eliminates the above-mentioned drawbacks, has a relatively simple configuration, is economically advantageous, and enables highly accurate measurement without error factors. be.

本発明によれば、一端に光源からの光パルスを受ける送
光用光ファイバと、該送光用光ファイバの他端に位置し
、該送光用光ファイバの出力光を二分岐し2分岐した一
方の光を被測定対象に力える光分岐手段と、該光分岐手
段にて分岐された他方の光を受けるバイパス用光ファイ
バと、前記被測定対象中を通過した光と前記バイパス用
光ファイバからの光とを同一の返送光用光ファイバに導
く光結合手段と、該返送光用光ファイバの出力光を受け
、前記被測定対象中を通過した光パルスに対する前記パ
イ・ぐス用光ファイバを通過i〜だ光・ぐルスの時間遅
れを利用して、これらの光・、++ 7レスに対応する
電気信号を時分割的に区別し、所定の信号処理を行なう
分光分析部とを有することを特徴とする遠隔分光分析装
置が得られる。
According to the present invention, there is provided a light transmitting optical fiber at one end which receives a light pulse from a light source, and a light transmitting optical fiber located at the other end of the light transmitting optical fiber, which branches the output light of the light transmitting optical fiber into two. a bypass optical fiber that receives the other light branched by the optical branching means; and a bypass optical fiber that receives the other light branched by the optical branching means, and the light that has passed through the object to be measured and the bypass light. an optical coupling means for guiding the light from the fiber to the same optical fiber for returning light; and an optical coupling means for receiving the output light of the optical fiber for returning light and for the optical pulse passing through the object to be measured. A spectroscopic analysis unit that uses the time delay of the light/waves passing through the fiber to time-divisionally differentiate the electrical signals corresponding to these lights/waves and performs predetermined signal processing. A remote spectroscopic analysis device is obtained.

即ち2本発明は、光源からの光を被測定対象に導く直前
において分岐し、一方は、被測定対象中を通過させ、他
方は・ぐイ・やス用光ファイ/N+を通過させた後、再
びこれらを同一の光ファイ/<中に導いて観測地点に送
り、被測定対象を通過した光・ぐルスに対する。バイパ
ス周光ファイ/<を通過した光パルスの時間遅れを利用
して、これらに対応する検波後の電気信号を時分割方式
によって区別し。
That is, in the present invention, the light from the light source is branched immediately before being guided to the object to be measured, one branch is passed through the object to be measured, and the other is split after passing through the optical fiber/N+ for , and again guide them into the same optical fiber and send them to the observation point, and detect the light/gusrus that has passed through the object to be measured. Using the time delay of the optical pulses that have passed through the bypass optical fiber, the corresponding electrical signals after detection are distinguished by a time division method.

所定の信号処理を行なうようにしたものである。It is designed to perform predetermined signal processing.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第3図を参照すると9本発明の一実施例による光吸収が
スセンサが示されている。光源1の出力光は、少なくと
もλ璽および]2の二つの波長を含んでいるものとする
。波長λ1の光は、被測定ガスによって選択的に吸収を
受けるが、波長λ2の光は吸収を受けないものとする。
Referring to FIG. 3, a light absorption sensor according to one embodiment of the present invention is shown. It is assumed that the output light of the light source 1 includes at least two wavelengths, λ and ]2. It is assumed that the light with the wavelength λ1 is selectively absorbed by the gas to be measured, but the light with the wavelength λ2 is not absorbed.

光は光パルスの形で光源1から送光用光ファイバ2によ
って被測定fス容器4が設置されている場所まで送られ
る。ここで、光源1からの光は、容器4の直前におかれ
ている光分岐素子3によって分岐され、一方はガス中を
通過して選択的に波長λ1において吸収を受けた光(以
下信号光と呼ぶ)となシ、他方ハ、バイパス用の光ファ
イバ5に導かれて試料気体によって吸収を受けていない
参照用の光(以下参照光と呼ぶ)となる。これらの信号
光と参照光は2合波用の光結合素子3′によって同一の
返送光用光ファイバ6に導かれる。バイパス用光ファイ
バ5の長さを適当に選ぶことによって、第4図IA)に
示しだ送光用光フアイバ2中のパルス、たとえばパルス
P1 およびパルスP2が、返送光用光フアイバ6中で
は、第4図(B)に示しだように、被測定気体を通った
信号光・ぐルスP1およびP2と。
Light is transmitted in the form of optical pulses from a light source 1 via a light transmitting optical fiber 2 to a location where an f/s container 4 to be measured is installed. Here, the light from the light source 1 is branched by the light branching element 3 placed just before the container 4, and one of the lights passes through the gas and is selectively absorbed at the wavelength λ1 (hereinafter signal light On the other hand, the reference light (hereinafter referred to as reference light) is guided to the bypass optical fiber 5 and is not absorbed by the sample gas. These signal light and reference light are guided to the same optical fiber 6 for return light by an optical coupling element 3' for two-way multiplexing. By appropriately selecting the length of the bypass optical fiber 5, the pulses, such as pulses P1 and pulses P2, in the light transmission optical fiber 2 shown in FIG. As shown in FIG. 4(B), the signal light/gurus P1 and P2 pass through the gas to be measured.

バイ/、oス用光ファイバ5を通っり参照光パルスp 
、 /およびP2′とに、たとえば時間間隔t1で時間
的に分離される。返送光用光ファイバ6で観測地点に送
り返された光は、信号光および参照光に共通の分光器7
で分光された後、波長λ冨およびλ2における光強度レ
ベルが光検出器8および8′によって検出され、電気信
号に変換されて、増幅器9および9′を通して、データ
処理装置10に送られる。データ処理装置10では、波
長λオおよびλ2での信号光パルスおよび参照光・ぐル
スに対応する電気信号が時分割方式によって別々に検出
され、それぞれの光ノ々ルスにおける波長λ!およびλ
2の強度比が求められる。更に、データ処理装置]0で
は、信号光パルスにおける波長λ1及びλ2の強度比と
参照光パルスにおける波長λ1とλ2の強度比とから吸
収波長λ2の、試料気体による吸収量を求め、ガスの濃
度を算出する。即ち2分光器7.光検出器8及び8′、
増幅器9及び表示・記録装置11によって表示、記録さ
れる。
The reference light pulse p passes through the bi/os optical fiber 5.
, / and P2', for example, by a time interval t1. The light sent back to the observation point via the return light optical fiber 6 is passed through a spectrometer 7 common to the signal light and reference light.
After the light intensity level at wavelengths λ and λ2 are detected by photodetectors 8 and 8', converted into electrical signals and sent to data processing device 10 through amplifiers 9 and 9'. In the data processing device 10, electric signals corresponding to the signal light pulses and the reference light beam at wavelengths λo and λ2 are detected separately by a time division method, and the wavelength λ! and λ
The intensity ratio of 2 is required. Furthermore, in the data processing device]0, the amount of absorption by the sample gas of the absorption wavelength λ2 is determined from the intensity ratio of the wavelengths λ1 and λ2 in the signal light pulse and the intensity ratio of the wavelengths λ1 and λ2 in the reference light pulse, and the concentration of the gas is determined. Calculate. That is, 2 spectrometers 7. photodetectors 8 and 8';
It is displayed and recorded by the amplifier 9 and the display/recording device 11.

以上のことから2本発明によれば、被測定対象によって
吸収を受けた信号光と、吸収を受けていない参照光とに
対して分光検出部分が共通になシ。
From the above, according to the present invention, the spectral detection portion is not common for the signal light that has been absorbed by the object to be measured and the reference light that has not been absorbed.

装置の構成が簡単かつ経済的に々る上に、被測定対象に
よるもの以外の原因による波長依存性の損失に起因する
誤差要因をl (8号光および参照光を光源から光検出
器まで同一の光路(ただし、被測定対象部分を除いて)
を通すことによって除くことが出来、測定の精度が向上
し、信頼性が上がるなどの効果を発揮するものである。
The configuration of the device is simple and economical, and error factors caused by wavelength-dependent losses due to causes other than those caused by the object to be measured can be eliminated. optical path (excluding the part to be measured)
It can be removed by passing it through, which has the effect of improving measurement accuracy and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、メタンガスの1.331Lm付近の吸収ス被
りトルを示す図である。選択的に吸収を受けている波長
をλl (ここでは、たとえば1331μm)とし、吸
収を受けていない波長をλ2で表わしている。 第2図は、従来のがスセンサの構成を示す図である。 第3図は1本発明の実施例の構成を示す図である。 第4図(A)及び(B)は、第3図における送光用光フ
アイバ中の光・ぐルスお」:び返送光用光ノアイ・ぐ中
の光、oルスの状態を示ずクイノ・チーv −l・であ
る。 1・・・光源、2・・・送光用光ファイ・く、3・・・
光分岐素子、3′・・光結合素子、4・・・試料気体容
器、5・・・バインぐス用光ファイバ、6・・・返送光
用光ファイノぐ。 7・・・分光器、 8 、8’・・・光検出器+ 9 
+ 9′・・・増幅器。 10・・・データ処理装置、11・・・表示・記録装置
。 12・・・分光分析部、20・・・光分岐素子、21・
・・分光器p 22 + 22’・・・光検出器+ 2
3 + 23’・・・増幅器。
FIG. 1 is a diagram showing the absorption shear torque of methane gas near 1.331 Lm. The wavelength that is selectively absorbed is represented by λl (here, for example, 1331 μm), and the wavelength that is not absorbed is represented by λ2. FIG. 2 is a diagram showing the configuration of a conventional gas sensor. FIG. 3 is a diagram showing the configuration of an embodiment of the present invention. Figures 4 (A) and (B) show the state of the light in the optical fiber for light transmission in Figure 3;・Chi v −l・. 1...Light source, 2...Optical fiber for light transmission, 3...
Optical branching element, 3'... Optical coupling element, 4... Sample gas container, 5... Optical fiber for binder gas, 6... Optical fiber for returning light. 7... Spectrometer, 8, 8'... Photodetector + 9
+9′...Amplifier. 10... Data processing device, 11... Display/recording device. 12... Spectroscopic analysis section, 20... Optical branching element, 21.
・・Spectrometer p 22 + 22' ・・Photodetector + 2
3 + 23'...Amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1、一端に光源からの光パルスを受ける送光用光ファイ
バと、該送光用光ファイバの他端に位置し、該送光用光
ファイバの出力光を二分岐し2分岐した一方の光を被測
定対象に与える光分岐手段と、該光分岐手段にて分岐さ
れた他方の光を受けるバイパス用光ファイバと、前記被
測定対象中を通過した光と前記バイパス用光ファイバか
らの光とを同一の返送光用光ファイバに導く光結合手段
と、該返送光用光ファイバの出力光を受け、前記被測定
対象中を通過した光パルスに対する前記パイiRス用光
ファイバを通過した光パルスの時間遅れを利用して、こ
れらの光パルスに対応する電気信号を時分割的に区別し
、所定の信号処理を行なう分光分析部とを有することを
特徴とする遠隔分光分析装置。
1. A light transmitting optical fiber that receives a light pulse from a light source at one end, and a light transmitting optical fiber located at the other end of the light transmitting optical fiber, which branches the output light of the light transmitting optical fiber into two, and one of the two branches. a bypass optical fiber that receives the other light branched by the optical branching means; and a bypass optical fiber that receives the other light branched by the optical branching means, and a light that has passed through the measurement target and light from the bypass optical fiber. an optical coupling means for guiding the optical fiber to the same optical fiber for returning light; and an optical coupling means that receives the output light of the optical fiber for returning light and connects the optical pulse that has passed through the optical fiber for piracy with respect to the optical pulse that has passed through the object to be measured. 1. A remote spectroscopic analysis device comprising: a spectroscopic analysis section that time-divisionally distinguishes electrical signals corresponding to these optical pulses using the time delay of the optical pulses, and performs predetermined signal processing.
JP9252883A 1983-05-27 1983-05-27 Remote spectrum analyzer Pending JPS59218936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9252883A JPS59218936A (en) 1983-05-27 1983-05-27 Remote spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9252883A JPS59218936A (en) 1983-05-27 1983-05-27 Remote spectrum analyzer

Publications (1)

Publication Number Publication Date
JPS59218936A true JPS59218936A (en) 1984-12-10

Family

ID=14056844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9252883A Pending JPS59218936A (en) 1983-05-27 1983-05-27 Remote spectrum analyzer

Country Status (1)

Country Link
JP (1) JPS59218936A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480753A2 (en) * 1990-10-12 1992-04-15 Tytronics, Inc. Optical analytical instrument and method
FR2677120A1 (en) * 1991-05-30 1992-12-04 Bussotti Jean Device for photometric measurements based on optical fibres, and apparatuses equipped with such a device
EP0591758A1 (en) * 1992-09-26 1994-04-13 Forschungszentrum Karlsruhe GmbH Multi-components analysing device
JP2006029968A (en) * 2004-07-15 2006-02-02 Chubu Electric Power Co Inc Instrument and method for measuring concentration
WO2006033635A1 (en) * 2004-09-23 2006-03-30 Artema Medical Ab An optical arrangement for determining the concentration of a substance in a fluid
JP2014002101A (en) * 2012-06-20 2014-01-09 Ihi Corp Concentration measurement apparatus and concentration measurement method
JP2017125859A (en) * 2017-03-16 2017-07-20 株式会社Ihi Concentration measurement apparatus and concentration measurement method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480753A2 (en) * 1990-10-12 1992-04-15 Tytronics, Inc. Optical analytical instrument and method
FR2677120A1 (en) * 1991-05-30 1992-12-04 Bussotti Jean Device for photometric measurements based on optical fibres, and apparatuses equipped with such a device
EP0591758A1 (en) * 1992-09-26 1994-04-13 Forschungszentrum Karlsruhe GmbH Multi-components analysing device
JP2006029968A (en) * 2004-07-15 2006-02-02 Chubu Electric Power Co Inc Instrument and method for measuring concentration
WO2006033635A1 (en) * 2004-09-23 2006-03-30 Artema Medical Ab An optical arrangement for determining the concentration of a substance in a fluid
US7961325B2 (en) 2004-09-23 2011-06-14 Mindray Medical Sweden Ab Optical arrangement for determining the concentration of a substance in a fluid
JP2014002101A (en) * 2012-06-20 2014-01-09 Ihi Corp Concentration measurement apparatus and concentration measurement method
JP2017125859A (en) * 2017-03-16 2017-07-20 株式会社Ihi Concentration measurement apparatus and concentration measurement method

Similar Documents

Publication Publication Date Title
US4081215A (en) Stable two-channel, single-filter spectrometer
US4859065A (en) Temperature measurement
US5945666A (en) Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
US8496376B2 (en) Dual source auto-correction in distributed temperature systems
EP0190001B1 (en) Temperature measurement
US6525308B1 (en) Apparatus and method for wavelength detection with fiber bragg grating sensors
CN100480678C (en) A measuring apparatus for optical fiber gas concentration
US4061918A (en) Measurement of low concentration gases
US3364351A (en) Method and apparatus for detecting and measuring water vapor and oxygen in the ambient atmosphere
CN103499545A (en) Semiconductor laser gas detection system with function of gas reference cavity feedback compensation
US3976883A (en) Infrared analyzer
JPS59218936A (en) Remote spectrum analyzer
SE439544B (en) PROCEDURE AND DEVICE FOR DETERMINING A INGREDIENT IN A MEDIUM
EP0903571A2 (en) Apparatus and method for determining the concentration of specific substances
GB2215038A (en) Improvements relating to optical sensing arrangements
JPS58156837A (en) Measuring device for optical gas analysis
RU2061224C1 (en) Lydar
EP0094706A2 (en) Gas analyser
RU2045040C1 (en) Device for remote measuring of concentrations of air pollutions
US20230375468A1 (en) Multi-monochromatic light source system for slope spectroscopy
KR100211725B1 (en) Optical wavelength division demultiplexer using optical interference filter
Frish Overview of sensitive detection and multiplexing techniques for tunable diode laser absorption spectroscopy
SU922597A1 (en) Device for measuring absorption factor
RU2110065C1 (en) Device which measures fat and protein concentration in milk and diary products
RU1831675C (en) Correlation gas analyzer