WO2015181879A1 - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
WO2015181879A1
WO2015181879A1 PCT/JP2014/063926 JP2014063926W WO2015181879A1 WO 2015181879 A1 WO2015181879 A1 WO 2015181879A1 JP 2014063926 W JP2014063926 W JP 2014063926W WO 2015181879 A1 WO2015181879 A1 WO 2015181879A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
light
unit
absorbing
absorption
Prior art date
Application number
PCT/JP2014/063926
Other languages
French (fr)
Japanese (ja)
Inventor
幸造 赤尾
亮一 東
谷口 裕
和裕 小泉
平山 紀友
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to PCT/JP2014/063926 priority Critical patent/WO2015181879A1/en
Priority to CN201480050835.6A priority patent/CN105556284B/en
Priority to JP2016523000A priority patent/JP6024856B2/en
Publication of WO2015181879A1 publication Critical patent/WO2015181879A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to a gas analyzer that measures gas concentrations of a plurality of gases contained in a sample gas.
  • Patent Literature 1 discloses a conventional gas analyzer. This prior art will be described with reference to the drawings.
  • FIG. 12 is a conventional absorption spectrometer described in Patent Document 1.
  • the absorption spectrometer 300 measures the concentration of NO 2 gas (nitrogen dioxide gas) contained in the sample gas by the ultraviolet absorption method.
  • the absorption spectrometer 300 includes an ultraviolet light source 301, a visible light source 302, a reference cell 303, a sample cell 304, a light guide mechanism 305, a light detection unit 306, a control unit 307, and a calculation unit 308. ing.
  • the ultraviolet light source 301 is a light emitting diode that emits ultraviolet light.
  • the central emission wavelength of the ultraviolet light is 360 to 400 nm, and is included in the absorption wavelength band of NO 2 gas as shown in the wavelength-absorption coefficient characteristic diagram of FIG. Upon irradiation of such ultraviolet light to NO 2 gas, absorption by NO 2 gas.
  • the visible light source 302 is a light emitting diode that emits visible light.
  • the central emission wavelength of visible light is larger than the wavelength of ultraviolet light and is included in the absorption wavelength band of NO 2 gas as shown in the wavelength-absorption coefficient characteristic diagram of FIG. Is different. As such it absorbance of visible light by the NO 2 gas is irradiated to NO 2 gas is carried out, when compared with the absorption of ultraviolet light by the above-mentioned NO 2 gas, the absorbance of visible light is reduced by the NO 2 gas, The wavelength of the visible light source 302 is set.
  • the reference cell 303 is filled with a reference gas.
  • This reference gas is, for example, nitrogen gas.
  • Ultraviolet light or visible light is incident through the windows 303a and 303b.
  • the sample cell 304 is supplied with a sample gas that is a measurement target. Ultraviolet light or visible light is incident through the windows 304a and 304b. The sample gas flows into the sample cell 304 through the gas inlet 304c and flows out through the gas outlet 304d.
  • the light guide mechanism 305 includes a mirror 305a and a half mirror 305b.
  • the ultraviolet light from the ultraviolet light source 301 and the visible light from the visible light source 302 are reflected by the half mirror 305b and the mirror 305a and introduced into the reference cell 303 from one end side through the window 303a of the reference cell 303.
  • ultraviolet light from the ultraviolet light source 301 and visible light from the visible light source 302 are transmitted through the half mirror 305 b and introduced into the sample cell 304 from one end side through the window 304 a of the sample cell 304.
  • absorption by NO 2 gas is performed.
  • the light detection unit 306 includes light detectors 306a and 306b.
  • the photodetector 306a is provided on the other end side of the reference cell 303, and detects ultraviolet light or visible light transmitted through the window 303b of the reference cell 303.
  • the photodetector 306b is provided on the other end side of the sample cell 304, and detects ultraviolet light and visible light transmitted through the window 304b of the sample cell 304.
  • the control unit 307 causes the ultraviolet light source 301 and the visible light source 302 to emit light in a time-sharing manner.
  • the light detection unit 306 obtains two-wavelength transmitted light that passes through the reference cell 303 and the sample cell 304. As a result, there are two optical paths and two wavelengths, and four signals are obtained: a sample signal for ultraviolet transmitted light, a sample signal for visible transmitted light, a reference signal for ultraviolet transmitted light, and a reference signal for visible transmitted light.
  • the calculation unit 308 receives the four signals from the light detection unit 306 via the control unit 307, and calculates the NO 2 gas concentration based on the four signals. Thereby, compensation of drift of the ultraviolet light source 301 and the visible light source 302, correction of interference of other components other than the measurement component, correction of light amount decrease due to dirt and clouding of the transmission windows 304a and 304b of the sample cell 304, correction of sensitivity drift, Make it possible.
  • the NO 2 gas concentration can be calculated after performing these corrections, and the measurement accuracy is improved.
  • the measurable gas component is limited to one type. Therefore, in order to measure the concentration of two or more kinds of gases by the absorption method, a plurality of light emitting means for emitting a wavelength for absorbing a certain gas and a plurality of light receiving means for receiving the light are required for each gas. Become. Thus, in the prior art, there is a problem that the configuration increases in order to measure the concentration of two or more kinds of gases.
  • the absorption of NO gas in the ultraviolet wavelength region includes the absorption of SO 2 gas and NO 2 gas, and is affected by other gases. Further, in the absorption of SO 2 gas in the ultraviolet wavelength region, there is also absorption of NO 2 gas, which is influenced by other gases.
  • NO gas and SO 2 gas do not absorb, and visible transmitted light does not contain information about NO gas and SO 2 gas. Therefore, it is impossible to correct interference caused by NO gas or SO 2 gas, or to use it for concentration measurement of NO gas or SO 2 gas.
  • the sample gas contains the gas components of NO gas and SO 2 gas as described above, it has been difficult to analyze the gas components of these NO gas and SO 2 gas in the prior art.
  • a light source that emits light at a wavelength of 226 nm or less is required as shown in FIG.
  • a light source that emits light in this wavelength region is limited to a lamp light source such as a deuterium lamp or a xenon lamp, or a light emitting diode using an aluminum nitride compound semiconductor (such as AlGaN).
  • the former lamp light sources such as deuterium lamps and xenon lamps have problems with the heat generation, life and stability of the light source, and it is necessary to add an optical system such as a wavelength filter, and the apparatus is large and complicated.
  • the latter light-emitting diode can reduce the size and simplification of the device as compared with the lamp light source, but has a short optical power and a short life. Further, in the wavelength region of wavelength 226 nm or less, various gases absorb light other than SO 2 gas and NO 2 gas, and it is difficult to remove the interference.
  • an object of the present invention is to provide at least nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) contained in the sample gas with a simple configuration. It is to provide a gas analyzer that can measure the gas concentration of two components. It is preferable to provide a gas analyzer capable of measuring the three component gas concentrations of sulfur dioxide gas (SO 2 gas), nitric oxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas).
  • SO 2 gas sulfur dioxide gas
  • NO gas nitric oxide gas
  • NO 2 gas nitrogen dioxide gas
  • the present invention A gas analyzer that measures the gas concentrations of two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) contained in a sample gas, All nitric oxide gas contained in the sample gas (NO gas) by oxidation of ozone reacted in a nitrogen dioxide gas (NO 2 gas), further pentoxide a portion of the nitrogen dioxide gas (NO 2 gas) by oxidation of ozone
  • a gas adjustment unit that performs an oxidation output that is output as a measurement target gas reacted with dinitrogen gas (N 2 O 5 gas), and a normal output that is output as a measurement target gas without any reaction;
  • a light emitting part for absorbing O 3 gas that irradiates irradiation light for absorbing O 3 gas having a wavelength
  • c m is calculated,
  • the gas conditioning unit by using a signal from the transmitted light receiving unit and the reference light receiving unit when the emitting O 3 irradiation light gas absorption by controlling the oxidation output state, gas concentration c 3 of ozone (O 3 gas) To calculate The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the irradiation light for NO 2 gas absorption is emitted.
  • NO 2 gas nitrogen dioxide gas
  • c 2 is calculated, From the gas concentration c 0 of the ozone gas (O 3 gas) supplied, the gas concentration c 3 of the measured ozone (O 3 gas), the gas concentration in the reaction consumption calculated by subtracting the, in the gas as the object of measurement based on the equal to the gas concentration (c 1 + c 2 -c m ) / 2 gas concentration by adding gas concentration c 1 to nitric oxide gas (N 2 O 5 gas) of nitric oxide gas (NO gas)
  • the gas analyzer was configured to calculate the gas concentration c 1 of nitric oxide gas (NO gas) from the calculated c 0 , c m , c 3 , c 2 .
  • the present invention also provides: A gas analyzer that measures the concentration of three components of nitrogen monoxide gas (NO gas), nitrogen dioxide gas (NO 2 ), and sulfur dioxide gas (SO 2 gas) contained in a sample gas, All nitric oxide gas contained in the sample gas (NO gas) by oxidation of ozone reacted in a nitrogen dioxide gas (NO 2 gas), further pentoxide a portion of the nitrogen dioxide gas (NO 2 gas) by oxidation of ozone
  • a gas adjustment unit that performs an oxidation output that is output as a measurement target gas reacted with dinitrogen gas (N 2 O 5 gas), and a normal output that is output as a measurement target gas without any reaction;
  • a light emitting part for absorbing O 3 gas that irradiates light for absorbing O 3 gas
  • the gas conditioning unit by using a signal from the transmitted light receiving unit and the reference light receiving unit when the emitting O 3 irradiation light gas absorption by controlling the oxidation output state, gas concentration c 3 of ozone (O 3 gas) And the gas concentration c s of sulfur dioxide gas (SO 2 gas),
  • the gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the irradiation light for NO 2 gas absorption is emitted.
  • c 2 is calculated, The gas concentration of sulfur dioxide gas (SO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the O 3 gas absorption irradiation light is emitted.
  • c s is calculated, From the gas concentration c 0 of the ozone gas (O 3 gas) supplied, the gas concentration c 3 of the measured ozone (O 3 gas), the gas concentration in the reaction consumption calculated by subtracting the, in the gas as the object of measurement Based on the gas concentration c 1 of nitrogen monoxide gas (NO gas) plus the gas concentration (c 1 + c 2 ⁇ c m ) / 2 of nitrous oxide (N 2 O 5 gas) / 2.
  • the gas analyzer was configured to calculate the gas concentration c 1 of nitric oxide gas (NO gas) from the calculated c 0 , c m , c 3 , c 2 .
  • a correction unit connected to the reference light receiving unit, the NO 2 gas absorbing light emitting unit, and the O 3 gas absorbing light emitting unit;
  • the reference light receiving unit receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas partially reflected by the partial reflection unit, and outputs a detection signal to the correction unit,
  • the correction unit may be a gas analyzer that outputs a drive current that suppresses fluctuations based on the detection signal to the NO 2 gas absorption light emission unit and the O 3 gas absorption light emission unit.
  • Collecting the O 3 irradiation light gas absorption from the NO 2 lens and the O 3 gas absorption for the light emitting portion condenses the NO 2 gas absorption for the irradiation light from the gas absorption for the light emitting portion is incident on the gas flow cell
  • a gas analyzer that includes a lens that emits light and enters the gas flow cell may be used.
  • a light emitting unit that integrally accommodates the NO 2 gas absorbing light emitting unit and the O 3 gas absorbing light emitting unit adjacent to each other;
  • a lens for incident condenses O 3 irradiation light gas absorption from the NO 2 NO 2 gas absorption irradiation light and the O 3 gas absorption for the light emitting portion of the gas absorption for the light emitting portion to the gas flow cell, It is good to make it a gas analyzer equipped with.
  • the gas analyzer has a lens for collecting the irradiation light for absorbing NO 2 gas after passing through the gas circulation cell and the irradiation light for absorbing O 3 gas after passing through the gas circulation cell.
  • the gas flow cell has a light transmission window on one side and a reflection part on the other side, and transmits the light transmission window and reflects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas at the reflection part.
  • the transmitted light receiving unit detects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas reflected by the partial reflection unit so as to reciprocate in the detection space so as to pass through the light transmission window later.
  • a good gas analyzer is recommended.
  • a light emitting / receiving unit that integrally accommodates the NO 2 gas absorbing light emitting unit, the O 3 gas absorbing light emitting unit, and the transmitted light receiving unit adjacent to each other;
  • the gas flow cell has a light transmission window on one side and a reflection part on the other side, The NO 2 gas absorption irradiation light and the O 3 gas absorption irradiation light emitted from the light emitting / receiving section through the light transmission window are reflected by the reflection section and then pass through the light transmission window to pass through the light transmission window.
  • the gas analyzer may be configured such that the transmitted light receiving unit of the light emitting / receiving unit detects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas transmitted through the partial reflection unit.
  • the signal processing / drive control unit is a pulse that alternately performs output and stop of the NO 2 gas absorption light-emitting unit and the O 3 gas absorption light-emitting unit, and has a duty ratio that makes the output shorter than the stop. It is better to use a gas analyzer that uses the drive current.
  • a gas analyzer capable of measuring the gas concentrations of at least two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) contained in a sample gas with a simple configuration. be able to.
  • a gas analyzer that can measure the three component gas concentrations of sulfur dioxide gas (SO 2 gas), nitrogen monoxide gas (NO gas), and nitrogen dioxide gas (NO 2 gas).
  • FIG. 3 is a wavelength-absorption coefficient characteristic diagram showing absorption coefficients of NO gas, NO 2 gas, SO 2 gas, and O 3 gas in the visible region and ultraviolet region. It is a whole block diagram of the gas analyzer which concerns on the other form for implementing this invention. It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention.
  • FIG. 6 is a characteristic diagram showing a duty ratio-allowable current characteristic of a light emitting diode. It is explanatory drawing of the time change of the drive signal of the light emitting diode produced
  • FIG. 4 is a wavelength-absorption coefficient characteristic diagram showing absorption coefficients of NO gas, NO 2 gas, and SO 2 gas in the visible region and the ultraviolet region.
  • FIG. 1 is an overall configuration diagram of a gas analyzer according to this embodiment.
  • the sample gas contains two components of nitrogen monoxide gas (hereinafter simply referred to as NO gas) and nitrogen dioxide gas (hereinafter simply referred to as NO 2 gas), but sulfur dioxide gas (hereinafter simply referred to as SO 2 gas). Shall not be included.
  • the gas analyzer analyzes these NO gas and NO 2 gas.
  • a thick solid arrow indicates a gas flow path
  • a dotted arrow indicates a light path
  • a thin solid arrow indicates an electrical signal path.
  • the gas analyzer 100 includes an NO 2 gas absorbing light emitting unit 11, an O 3 gas absorbing light emitting unit 12, a partial reflecting unit 13, a gas flow cell 21, a transmitted light receiving unit 31, and a reference light receiving unit.
  • Unit 32 gas adjustment unit 41, gas suction unit 51, and signal processing / drive control unit 61.
  • the NO 2 gas absorption light emitting unit 11 is a light emitting unit that emits NO 2 gas absorption irradiation light having a wavelength at which NO 2 gas absorbs and a wavelength at which O 3 gas does not absorb.
  • a light emitting diode (LED) of irradiation light having a central emission wavelength in a wavelength range of 350 nm to 500 nm in a region extending from ultraviolet light to visible light. As shown in FIG. 2, only NO 2 gas absorbs light in this wavelength region.
  • O 3 light-emitting unit 12 for gas absorption is a light-emitting unit that O 3 gas emits O 3 gas absorption for the irradiation light of a wavelength absorption.
  • O 3 gas emits O 3 gas absorption for the irradiation light of a wavelength absorption.
  • a light emitting diode (LED) for irradiation light having a central emission wavelength in the wavelength range of 240 nm to 330 nm in the ultraviolet region can be selected.
  • LED light emitting diode
  • NO 2 gas absorbs in this wavelength region. It is not taken into account because no SO 2 gas is present.
  • the partial reflection unit 13 is a half mirror, and has a predetermined transmittance for irradiation light for absorbing NO 2 gas and irradiation light for absorbing O 3 gas (hereinafter simply referred to as irradiation light for absorbing light for absorbing NO 2 gas and for absorbing O 3 gas). Both the irradiation light and the irradiation light for NO 2 gas absorption and the irradiation light for O 3 gas absorption are not output at the same time, for example, each is output separately by time). Further, the irradiation light is reflected at a predetermined reflectance.
  • Irradiation light emitted from the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 is incident on the partial reflection unit 13.
  • the partial reflection unit 13 a part of the irradiation light is reflected and the rest of the irradiation light is transmitted.
  • the irradiation light reflected by the partial reflection unit 13 enters the reference light receiving unit 32. Further, the irradiation light transmitted through the partial reflection portion 13 is incident on the gas flow cell 21.
  • the gas distribution cell 21 further includes a tube 22, light transmission windows 23 and 24, a detection space 25, a gas inlet 26, and a gas outlet 27.
  • the tube 22 is a cylinder.
  • the inner surface of the tube 22 can be, for example, a polished stainless steel inner surface. Thereby, the reflectance of irradiation light can be kept favorable, preventing adsorption of measurement object gas. In the tube 22, the irradiation light propagates while being reflected by the inner surface of the tube 22.
  • the light transmission window 23 and the light transmission window 24 are made of a material exhibiting light transmittance in the emission wavelength region of the irradiation light emitted from the NO 2 gas absorption light emitting portion 11 and the O 3 gas absorption light emission portion 12.
  • synthetic quartz or calcium fluoride can be used as the material.
  • the detection space 25 is a closed space defined by the tube 22, the light transmission window 23, and the light transmission window 24.
  • the gas inlet 26 and the gas outlet 27 communicate with the detection space 25.
  • the measurement target gas flows into the detection space 25 from the gas inlet 26 and flows out of the gas outlet 27.
  • irradiation light is irradiated to the flowing measurement target gas, and light absorption occurs.
  • the transmitted light receiving unit 31 receives the irradiation light transmitted through the gas flow cell 21 and outputs a detection signal corresponding to the light intensity.
  • the transmitted light receiving unit 31 includes a photodiode or a photomultiplier tube having sensitivity to the emission wavelength of irradiation light emitted from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12. You can choose. For example, a silicon photodiode can be selected.
  • Such a transmitted light receiving unit 31 has a function of detecting light absorption by the measurement target gas. That is, compared with the case where there is no light absorption due to the measurement target gas, the light intensity of the irradiation light received by the transmitted light receiving unit 31 decreases when there is light absorption.
  • the gas concentration is measured using the correlation.
  • the irradiation light transmitted through the partial reflection portion 13 passes through the light-transmitting light transmission window 23 constituting one end of the gas flow cell 21, propagates through the detection space 25 inside the tube 22, and constitutes the other end.
  • the light is transmitted through the light transmissive window 24 and enters the transmitted light receiving unit 31.
  • the reference light receiving unit 32 is provided to receive the irradiation light reflected by the partial reflection unit 13.
  • the reference light receiving unit 32 includes a photodiode, a photomultiplier tube, or the like that is sensitive to the emission wavelength of the irradiation light emitted from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12. You can choose. For example, a silicon photodiode can be selected.
  • the reference light receiving unit 32 has a function of detecting fluctuations in irradiation light emitted from the NO 2 gas absorbing light emitting unit 11 and the O 3 gas absorbing light emitting unit 12.
  • the irradiation light varies, the light intensity of the irradiation light received by the reference light receiving unit 32 varies.
  • the gas concentration is corrected using the fluctuation amount of the light intensity.
  • the gas adjustment unit 41 further includes an ozone generation unit 42 and a gas mixing unit 43.
  • the ozone generator 42 has a function of generating ozone gas. Atmosphere containing oxygen to the ozone generator 42, instrument air, or the raw material gas G O such as oxygen gas (O 2 gas) flows. The operation of the ozone generator 42 is controlled by a signal processing / drive controller 61. In operation of the ozone generator 42, ozone generator 42, by electrical means, such as silent discharge, using an O 2 gas of the raw material gas G O generates O 3 gas, sufficiently containing the O 3 gas The source gas GO is caused to flow out. In an off-state, the ozone generator 42 is directly passing the raw material gas G O without generating the O 3 gas. In this way, the signal processing / drive control unit 61 controls the operation / non-operation of the ozone generation unit 42.
  • the signal processing / drive control unit 61 controls the operation / non-operation of the ozone generation unit 42.
  • Gas mixing unit 43 at the time the raw material gas G O (operation from the sample gas G S and ozone generator 42 is a raw material gas G O containing O 3 gas in large quantities, also in an off-state free of O 3 gas is provided to mix the free feed gas is G O).
  • the gas mixing unit 43 causes the gas mixing unit 43 to directly flow out as a measurement target gas.
  • the measurement target gas flowing out from the gas mixing unit 43 flows through the detection space 25 in the gas flow cell 21 from the gas inlet 26 and flows out from the gas outlet 27.
  • the gas suction unit 51 has a function of sucking gas.
  • the measurement target gas from the gas mixing unit 43 is drawn into the detection space 25 by exhausting the detection space 25 of the gas flow cell 21.
  • the gas suction part 51 can also be provided between the gas mixing part 43 and the gas inlet 26.
  • the signal processing / drive control unit 61 has a function of supplying a driving current necessary for causing the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 to emit light. Further, the signal processing / drive control unit 61 has a received light signal processing function for calculating the gas concentration based on the received light signals from the transmitted light receiving unit 31 and the reference light receiving unit 32. Further, the signal processing / drive control unit 61 has a control function for switching operation / non-operation of the ozone generation unit 42.
  • the configuration of the gas analyzer 100 is as described above.
  • the principle of measurement is an absorption method based on the following Lambert-Beer law.
  • P 1 is the output intensity of the transmitted light that has passed through the measurement target gas flowing in the detection space 25
  • P 0 is the output intensity of the reference light before passing through the measurement target gas
  • is the molar extinction coefficient
  • c is The gas concentration, L, represents the optical path length.
  • the molar extinction coefficient ⁇ is uniquely determined by determining the type of gas and the wavelength of the light source, and since the optical path length L is constant, the ratio between the output intensities P 1 and P 0 is an exponential function of the gas concentration c.
  • the output intensities P 1 and P 0 are measured, and the gas concentration is detected by the above equation ( 1).
  • the gas analyzer 100 emits irradiation light that is either NO 2 gas absorption irradiation light or O 3 gas absorption irradiation light.
  • a part of the irradiation light at this time is reflected by the partial reflection unit 13 with a known constant reflectance and is incident on the reference light receiving unit 32.
  • the output intensity P 0 by the reference light can be obtained from the signal of the reference light receiving unit 32.
  • a part of the irradiation light is transmitted through the partial reflection unit 13 with a known constant transmittance, propagates through the detection space 25 through the light transmission window 23, and is transmitted through the light transmission window 24 after being absorbed. The light enters the light receiving unit 31.
  • the output intensity P 1 by the transmitted light can be obtained from the signal of the transmitted light receiving unit 31. Therefore, the gas concentration c can be obtained from the ratio between the output intensities P 1 and P 0 .
  • This principle can be applied to both the analysis using the irradiation light for absorbing NO 2 gas and the analysis using the irradiation light for absorbing O 3 gas. The detection principle is like this.
  • the transmitted light receiving unit 31 and the reference light receiving unit 32 are commonly used when measuring the NO 2 gas concentration and the O 3 gas concentration. Therefore, if the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 emit light at the same time, the light reception signal becomes the sum of the two and cannot be separated.
  • the signal processing / drive control unit 61 controls the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 to alternately emit light without simultaneously emitting light. Further, the measurement and processing of the received light signal are also performed in synchronization with the light emission period, thereby separating the signals. Measurement by absorption is like this.
  • Such measurement is performed when the ozone generation unit 42 is in an operating state and the gas adjustment unit 41 is in an oxidized output, and when the ozone generation unit 42 is in a non-operational state and the gas adjustment unit 41 is in a normal output.
  • a gas analyzer 100 is (A) Analysis with irradiation light for absorbing NO 2 gas at the time of oxidation output, (B) Analysis by irradiation light for absorbing O 3 gas at the time of oxidation output, (C) Analysis with irradiation light for absorbing NO 2 gas at normal output, (D) Normal analysis by the O 3 gas absorption for the irradiation light at the time of output, Four types of analysis are possible.
  • the ozone generator 42 is in an operating state. At this time, the ozone generating unit 42 generates ozone gas (hereinafter simply referred to as O 3 gas) from O 2 gas contained in the source gas G 0 such as the atmosphere, instrument air, or oxygen gas. Although the generation amount of O 3 gas can be determined as appropriate, it is supplied in excess of at least the maximum amount in the measured concentration range of NO gas. From the ozone generator 42 to the gas mixing unit 43 supplies the raw material gas G O containing O 3 gas sufficiently.
  • O 3 gas ozone gas
  • O 3 gas amount supplied from the ozone generator 42 is, because it is excessive relative to NO gas amount in the sample gas G S, NO gas in the sample gas G S is according to the chemical reaction formula (1), All are converted to NO 2 gas.
  • the gas mixing unit 43 and converted all NO gas in the sample gas G S is the NO 2 gas.
  • some of the NO 2 gas in the sample gas G S, and, in some NO 2 gas produced by a chemical reaction formula (1) is converted to N 2 O 5 gas. Therefore, the amount of gas NO 2 gas, and NO 2 gas in the gas amount produced from NO in the sample gas G S, the sum of the amount of gas NO 2 gas in the sample gas G S, further N 2 O 5 The amount of gas is reduced by twice the amount of gas. This is because the amount of N 2 O 5 gas after the reaction is half of the amount of NO 2 gas according to the chemical reaction formula (2). Furthermore, a part of the surplus O 3 gas remains.
  • the gas conditioning unit 41 as performs oxidation output for outputting a NO gas contained in the sample gas G S as a measurement object gas reacted to all oxidized NO 2 gas by the O 3 gas.
  • a NO gas contained in the sample gas G S as a measurement object gas reacted to all oxidized NO 2 gas by the O 3 gas.
  • NO 2 gas, N 2 O 5 gas, excess O 3 gas, the measurement object gas containing the raw material gas G O and excess sample gas G S excess is introduced into the gas flow cell 21.
  • NO 2 irradiation light gas absorption incident on the detection space 25 of the passes through the partial reflection unit 13 light transmissive window 23 via a gas flow cell 21, while propagating the detection space 25, absorption by NO 2 gas Is done.
  • Such absorbed light for absorbing NO 2 gas passes through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the signal of the transmitted light receiving unit 31.
  • the transmitted light receiving unit 31 and the reference light receiving unit 32 as the light receiving elements in this way, not only can the concentration be measured, but also the output of the NO 2 gas absorbing light emitting unit 11 varies due to various factors. Also, there is an effect that an error in density measurement can be reduced by calculating the ratio of the two received light signals.
  • Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61.
  • the signal processing / drive control unit 61 calculates the NO 2 gas concentration in the detection space 25 of the gas flow cell 21 based on the above mathematical formula 1. Since the raw material gas G O for producing O 3 gas is mixed in the gas mixing unit 43, NO 2 gas concentration is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S Yes. Therefore, by multiplying the flow mixing ratio of a gas mixing section 43, calculates the NO 2 gas concentration c m contained in the sample gas G S.
  • the O 3 gas absorption light emitting unit 12 emits light. Irradiation light for absorbing O 3 gas from the light emitting unit 12 for absorbing O 3 gas is reflected by the partial reflection unit 13 with a known constant reflectance and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the signal from the reference light receiving unit 32.
  • the irradiation light for absorbing O 3 gas that has passed through the partial reflection portion 13 and entered the detection space 25 in the gas flow cell 21 through the light transmission window 23 propagates through the detection space 25, while O 3 gas and NO. Absorbed by two gases.
  • Such absorbed light for absorbing O 3 gas is transmitted through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, it is possible to determine the output intensity P 1 from the signal of the transmitted light receiving unit 31.
  • the output intensity P 1 includes light absorption by NO 2 gas.
  • the transmitted light receiving unit 31 and the reference light receiving unit 32 as the light receiving elements in this way, not only can the concentration be measured, but the output of the light emitting unit 12 for absorbing O 3 gas varies due to various factors. Also, there is an effect that an error in density measurement can be reduced by calculating the ratio of the two received light signals.
  • Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61.
  • the signal processing / drive control unit 61 calculates the output intensities P 0 and P 1 , calculates the O 3 gas concentration + NO 2 gas concentration based on Equation 1, and multiplies the flow rate mixing ratio in the gas mixing unit 43. by, O 3 calculates the gas concentration c 3 + NO 2 gas concentration c m contained in the sample gas G S.
  • the measurement is performed after the ozone generating unit 42 is in an inoperative state and the gas adjusting unit 41 is normally output.
  • the ozone generator 42 is in an inoperative state. At this time, the raw material gas G O is passes through the ozone generator 42 as described above, is mixed with the sample gas G S in the gas mixing portion 43. O 3 never since the gas is not present chemical reaction occurs, and the raw material gas G O and the sample gas G S-free reaction as it flows out from the gas mixing unit 43. Gas conditioning unit 41 performs a normal output that outputs the sample gas G S and the raw material gas G O unresponsive as a measurement target gas.
  • the detection of the gas concentration itself is obtained in the same manner as the operation of the ozone generator 42 described above (during oxidation output). In this way, the NO 2 gas concentration c 2 is calculated.
  • the NO 2 gas concentration c m oxidation output state, of the measurement target gas, from the sum of the sample gas G of the original that was included in the S NO gas concentration c 1 and the original NO 2 gas concentration c 2 The concentration obtained by subtracting twice the N 2 O 5 gas concentration. This is because the production of N 2 O 5 requires two NO 2 .
  • the N 2 O 5 gas concentration is 1 ⁇ 2 of the concentration obtained by subtracting the NO 2 gas concentration cm from the sum of the original NO gas concentration c 1 and the original NO 2 gas concentration c 2 .
  • the O 3 gas concentration supplied by the ozone generator 42 can be known in advance by an ozone meter or the like built in the ozone generator 42, and the value is c 0 .
  • the O 3 gas consumed by the reaction is used for a reaction from NO gas to NO 2 gas, and further used for a reaction from NO 2 gas to N 2 O 5 gas. Therefore, the following equation is obtained.
  • the NO gas concentration c 1 is expressed by the following equation.
  • the NO gas concentration c 1 and the NO 2 gas concentration c 2 can be measured.
  • the gas concentrations of NO gas and NO 2 can be measured.
  • zero gas G ZERO or span gas G SPAN can be used for gas concentration calibration.
  • the zero gas G ZERO is a gas in which the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 do not absorb light, for example, nitrogen gas (N 2 gas).
  • Span gas G SPAN is a gas that has been calibrated at a maximum concentration value of the desired measurement range, such as NO gas, NO 2 gas is used.
  • Stopping the supply of the sample gas G S, followed by performing the supply of the zero gas G ZERO calibrated by measuring the light signal at the zero gas G ZERO distribution, or at the time span G SPAN flow by performing the supply of the span gas G SPAN Calibration can be performed by measuring the absorbed light-receiving signal. Although this calibration can be performed at any time, it is performed when it is assumed that the gas concentration indicating value fluctuates due to aging of the component parts, and an accurate value is indicated.
  • the gas analyzer 100 is like this.
  • the configuration as a gas analyzer is the same as that of the first embodiment described with reference to FIG. 1, but the analysis object is different.
  • the NO gas concentration c 1 and the NO 2 gas concentration c 2 are calculated, but the SO 2 gas concentration c S is measured simultaneously with the above measurement.
  • the sample gas contains NO gas, NO 2 gas, and SO 2 gas, and these NO gas concentration c 1 , NO 2 gas concentration c 2 , and SO 2 gas concentration c S are measured.
  • UV absorption spectrum of the SO 2 gas is near 270 nm ⁇ 310 nm, as shown in FIG. 2, overlaps the ultraviolet absorption spectrum of the O 3 gas.
  • the central wavelength of the O 3 gas light-absorbing light emitting portion 12 is around 280 nm, an SO 2 gas absorption signal can be obtained.
  • Such measurement is performed when the ozone generation unit 42 is in an operating state and the gas adjustment unit 41 is in an oxidized output, and when the ozone generation unit 42 is in a non-operational state and the gas adjustment unit 41 is in a normal output. Is called.
  • such a gas analyzer 100 is (A) Analysis with irradiation light for absorbing NO 2 gas at the time of oxidation output, (B) analysis by the O 3 gas absorption for the irradiation light at the time of oxidation output, (C) Analysis with irradiation light for absorbing NO 2 gas at normal output, (D) Analysis with irradiation light for absorbing O 3 gas at normal output,
  • A Analysis with irradiation light for absorbing NO 2 gas at the time of oxidation output
  • B analysis by the O 3 gas absorption for the irradiation light at the time of oxidation output
  • C Analysis with irradiation light for absorbing NO 2 gas at normal output
  • D Analysis with irradiation light for absorbing O 3 gas at normal output
  • the following four types of analysis are possible: (a), (b), (c), and (d) are all analyzed, and the gas concentration is calculated using the measured values obtained by these.
  • the ozone generator 42 is in an operating state.
  • Gas conditioning unit 41 as described above this time, an oxidation output for outputting a NO gas contained in the sample gas G S as a measurement object gas reacted to all oxidized NO 2 gas by the O 3 gas.
  • the SO 2 gas and the O 3 gas do not cause a chemical reaction.
  • Such as these SO 2 gas, NO 2 gas is introduced into the N 2 O 5 gas, excess O 3 gas, the excess of the raw material gas G O and excess sample gas G S measurement target gas is gas flow cell 21 comprising The
  • NO 2 gas concentration cm of the gas analyzer 100 is calculated.
  • NO 2 gas concentration measurement emits light only NO 2 gas absorption for the light emitting unit 11.
  • NO 2 irradiation light gas absorption from NO 2 gas absorption for the light emitting unit 11 is reflected by the known constant reflectivity by the partial reflection unit 13 and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the signal from the reference light receiving unit 32.
  • NO 2 irradiation light gas absorption incident on the detection space 25 of the passes through the partial reflection unit 13 light transmissive window 23 via a gas flow cell 21, while propagating the detection space 25, absorption by NO 2 gas Is done.
  • Such absorbed light for absorbing NO 2 gas passes through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the signal of the transmitted light receiving unit 31.
  • Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61.
  • the signal processing / drive control unit 61 calculates the NO 2 gas concentration in the detection space 25 of the gas flow cell 21 based on the above mathematical formula 1. Since the raw material gas G O for producing O 3 gas is mixed in the gas mixing unit 43, NO 2 gas concentration is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S Yes. Therefore, by multiplying the flow mixing ratio of a gas mixing section 43, calculates the NO 2 gas concentration c m contained in the sample gas G S.
  • the O 3 gas absorption light emitting unit 12 emits light. Irradiation light for absorbing O 3 gas from the light emitting unit 12 for absorbing O 3 gas is reflected by the partial reflection unit 13 with a known constant reflectance and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the signal from the reference light receiving unit 32.
  • O 3 irradiation light gas absorption incident on the detection space 25 in the gas flow cell 21 passes through the partial reflection unit 13 through the light transmission window 23, while propagating the detection space 25, SO 2 gas, O Absorbed by 3 gas and NO 2 gas.
  • Such absorbed light for absorbing O 3 gas is transmitted through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the signal of the transmitted light receiving unit 31.
  • the output intensity P 1 includes light absorption by SO 2 gas, O 3 gas and NO 2 gas.
  • Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61.
  • the signal processing / drive control unit 61 calculates the output intensities P 0 and P 1 , calculates the O 3 gas concentration + SO 2 gas concentration + NO 2 gas concentration based on Equation 1, and further mixes the flow rate in the gas mixing unit 43. by multiplying the ratio to calculate the sample gas G O 3 gas concentration is being included in the S c 3 + SO 2 gas concentration c S + NO 2 gas concentration c m.
  • the measurement is performed after the ozone generating unit 42 is in an inoperative state and the gas adjusting unit 41 is normally output.
  • the ozone generator 42 is in an inoperative state.
  • This state gas contained in the sample gas G S that circulates in the gas flow cell 21, NO gas contained in the sample gas G S, NO 2 gas, SO 2 gas has become all intact state.
  • the raw material gas G O are mixed in the gas mixing portion 43, the concentration of NO gas, NO 2 gas, SO 2 gas is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S ing. And such feed gas G O and the sample gas G S is introduced into the gas flow cell 21.
  • the gas concentration detection itself is obtained in the same manner as the operation of the ozone generator 42 described above (at the time of oxidation output), and the NO 2 gas concentration is calculated. Further, by multiplying the flow mixing ratio of a gas mixing section 43, it calculates the NO 2 gas concentration c 2 contained in the sample gas G S.
  • the measurement is performed after the ozone generating unit 42 is in an inoperative state and the gas adjusting unit 41 is normally output. At this time, obtaining the SO 2 gas concentration c S + NO 2 gas concentration c 2 in the sample gas G S. This is the analysis by the above (d) irradiation light for absorbing O 3 gas at normal output.
  • the ozone generator 42 is in an inoperative state.
  • This state gas contained in the sample gas G S that circulates in the gas flow cell 21, NO gas contained in the sample gas G S, NO 2 gas, SO 2 gas has become all intact state.
  • the raw material gas G O are mixed in the gas mixing portion 43, the concentration of NO gas, NO 2 gas, SO 2 gas is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S ing. And such feed gas G O and the sample gas G S is introduced into the gas flow cell 21.
  • the gas concentration detection itself is obtained in the same manner as described above, and the SO 2 gas concentration + NO 2 gas concentration is calculated. Further, by multiplying the flow mixing ratio of a gas mixing section 43, and calculates the SO 2 gas concentration c S + NO 2 gas concentration c 2 contained in the sample gas G S.
  • the SO 2 gas concentration c S is determined.
  • the O 3 gas concentration c 3 is determined.
  • the NO gas concentration c 1 is also expressed by the above [Equation 5].
  • the NO gas concentration c 1 , the NO 2 gas concentration c 2 , and the SO 2 gas concentration c S can be measured.
  • the gas concentrations of NO gas, NO 2 gas, and SO 2 gas can be measured.
  • zero gas G ZERO or span gas G SPAN can be used for gas concentration calibration.
  • Zero gas G ZERO is a gas, for example, nitrogen gas, in which the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 do not absorb light.
  • the span gas G SPAN is a gas calibrated with the maximum concentration value of a desired measurement range, and for example, NO, NO 2 , SO 2 gas is used.
  • Stopping the supply of the sample gas G S, followed by performing the supply of the zero gas G ZERO calibrated by measuring the light signal at the zero gas G ZERO distribution, or at the time span G SPAN flow by performing the supply of the span gas G SPAN Calibration can be performed by measuring the absorbed light-receiving signal. Although this calibration can be performed at any time, it is performed when it is assumed that the gas concentration indicating value fluctuates due to aging of the component parts, and an accurate value is indicated.
  • the gas analyzer 100 is like this.
  • the gas analyzer 100 performs the analysis in this way. According to the present invention, the gas concentrations of NO gas, NO 2 gas, and SO 2 gas can be accurately measured with a simple configuration.
  • the gas analyzer 200 includes a light emitting unit 11 for absorbing NO 2 gas, a light emitting unit 12 for absorbing O 3 gas, a partial reflecting unit 13, a gas flow cell 21, a transmitted light receiving unit 31, and a reference light receiving unit.
  • Unit 32 gas adjustment unit 41, gas suction unit 51, signal processing / drive control unit 61, and correction unit 71.
  • correction unit 71 is added.
  • the correction unit 71 and its operation will be described with emphasis, and the other components will be assigned the same numbers and redundant description will be omitted.
  • the correction unit 71 is connected to the reference light receiving unit 32, the signal processing / drive control unit 61, the NO 2 gas absorption light emitting unit 11, and the O 3 gas absorption light emitting unit 12. Based on this, it has a function of correcting the current for driving the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12.
  • Reference-light receiving part 32 by receiving the reference light by NO 2 gas absorption for the irradiation light from the NO 2 gas absorption for the light emitting unit 11 and outputs the intensity signal. Based on the intensity signal, the correction unit 71 corrects and outputs the drive signal, which is a light emitting diode drive current, so that the output intensity is constant.
  • the reference light receiving unit 32 by receiving the reference light by the O 3 gas absorption for the irradiation light from the O 3 gas absorption for the light emitting unit 12 and outputs the intensity signal. Based on the intensity signal, the correction unit 71 corrects and outputs the drive signal, which is a light emitting diode drive current, so that the output intensity is constant.
  • a lens 14 is further provided on the optical axis of the NO 2 gas absorption light emitting unit 11, and O 3
  • a lens 15 is provided on the optical axis of the gas absorption light emitting unit 12.
  • NO 2 gas light-absorbing light-emitting unit 11 and the lens 14 may be integrally configured by modularization
  • O 3 gas light-absorbing light-emitting unit 12 and the lens 15 may be integrally configured by modularization
  • the light emitting portion 16 is arranged in place of NO 2 gas absorption for the light emitting portion 11 and the O 3 light-emitting unit 12 for gas absorption.
  • the light emitting unit 16 is a light emitting diode array in which the NO 2 gas absorbing light emitting unit 11 and the O 3 gas absorbing light emitting unit 12 are integrated in close proximity.
  • a lens 17 is disposed on the optical axis of the light emitting unit 11 for absorbing NO 2 gas and the light emitting unit 12 for absorbing O 3 gas.
  • the optical axes of the NO 2 gas absorbing light emitting portion 11 and the O 3 gas absorbing light emitting portion 12 are close to each other, so that only one lens 17 for enhancing directivity is required. Further, since the optical axes are close to each other, the incident efficiency to the reference light receiving unit 32 is also improved. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.
  • the lens 18 is further disposed between the light transmitting window 24 and the transmitted light receiving unit 31. It is arranged.
  • the lens 18 collects the NO 2 gas absorption irradiation light and the O 3 gas absorption irradiation light transmitted through the light transmission window 24, and efficiently enters the transmitted light receiving unit 31. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.
  • the light transmission window 24 and the lens 18 may be integrally configured by modularization.
  • the light transmission window 24 itself may be a convex lens 18 that is light transmissive and has a light collecting effect, and the gas flow cell 21 may be configured by fixing the lens 18 to the tube 22.
  • the light transmission window 24 of the gas flow cell 21 is replaced with a reflection part 28, and the transmitted light receiving part 31 is arranged at a position where the return light is reflected by the partial reflection part 13.
  • forward light that is irradiation light emitted from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 passes through the light transmission window 23 and propagates in the detection space 25 of the tube 22. Then, the light is reflected by the reflecting portion 28 and becomes return path light. The reflected return light propagates in the detection space 25 of the tube 22 in the opposite direction, exits from the light transmission window 23, is reflected by the partial reflection unit 13, and enters the transmitted light receiving unit 31.
  • the optical path length with light absorption by gas is doubled, so that the light absorption signal is improved and the gas concentration measurement accuracy is improved. And can improve the stability.
  • FIG. 1 This is provided with a light emitting / receiving part 19 integrated by modularization while bringing the NO 2 gas absorbing light emitting part 11, the O 3 gas absorbing light emitting part 12 and the transmitted light receiving part 31 close to each other. Further, the light transmission window 24 of the gas flow cell 21 is replaced with the reflection portion 28, and the transmitted light receiving portion 31 is disposed at a position where the return light is transmitted by the partial reflection portion 13.
  • the lens 17 condenses the irradiation light incident on the transmitted light receiving unit 31 and the function of increasing the directivity of the irradiation light from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12. It will have the function to do. Further, since the optical path length with light absorption by gas is doubled, it is possible to expect the effect of improving the light absorption signal and improving the accuracy and stability of gas concentration measurement.
  • FIG. 9 is a duty ratio-allowable current characteristic diagram of the light emitting diode. This embodiment further improves the measurement accuracy of the gas analyzers of the first, second, third, fourth, fifth, sixth, and seventh embodiments described above.
  • the allowable current of the light emitting diode is characterized in that, generally, the smaller the duty ratio and the shorter the output period, the larger the current value can be secured. Therefore, the drive current of the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 is changed from a large duty ratio as shown in FIG. 10 to a small duty ratio as shown in FIG. Shorter). At this time, the output time is shortened as shown in FIG. 11, but the drive current value can be increased. Therefore, the output intensity of the irradiation light can be increased to ensure a high signal level, the signal level against noise is relatively high, and a stable gas concentration value can be calculated.
  • the light emission time of the light emitting diode 11 for absorbing NO 2 gas and the light emitting portion 12 for absorbing O 3 gas can be shortened, deterioration due to heat or the like is suppressed, and the lifetime is longer than that of continuous light emission. It becomes possible to keep for a long time.
  • Such a gas analyzer of the present invention comprises two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 ), or nitrogen monoxide gas (NO gas), nitrogen dioxide gas (NO 2 ) and It is good for analysis for measuring three components of sulfur dioxide gas (SO 2 ), and is optimal for measurement of combustion exhaust gas such as boiler and garbage incineration.
  • NO gas nitrogen monoxide gas
  • NO 2 nitrogen dioxide gas
  • SO 2 sulfur dioxide gas
  • gas analysis for steel blast furnace, converter, heat treatment furnace, sintering (pellet equipment), coke oven], fruit and vegetable storage and ripening, biochemistry (microorganism) [fermentation], air pollution [incinerator, flue gas desulfurization / Denitration], exhaust gas (removal tester) of internal combustion engines such as automobiles and ships, disaster prevention [explosive gas detection, toxic gas detection, new building material combustion gas analysis], plant growth, chemical analysis [oil refinery plant, petrochemical Plants, gas generation plants], environmental [landing concentration, concentration in tunnels, parking lots, building management], and analytical instruments for various physics and chemistry experiments.

Abstract

 Provided is a gas analyzer capable of measuring, by a simple configuration, the gas concentration of two components including nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO2 gas), or three components also including sulfur dioxide gas (SO2 gas), included in a sample gas. A gas analyzer for calculating the gas concentration c1 of nitrogen monoxide gas (NO gas) from a calculated c0, cm, c3, and c2 on the basis of the gas concentration at the time of reaction consumption calculated by subtracting the measured gas concentration c3 of ozone gas (O3 gas) from the gas concentration c0 of supplied ozone gas (O3 gas) being equal to the gas concentration obtained by adding the gas concentration (c1 + c2 – cm)/2 of dinitrogen pentoxide gas (N2O5 gas) to the gas concentration c1 of nitrogen monoxide gas (NO gas) in a measurement subject gas.

Description

ガス分析計Gas analyzer
 本発明は、サンプルガスに含まれる複数ガスのガス濃度を測定するガス分析計に関する。 The present invention relates to a gas analyzer that measures gas concentrations of a plurality of gases contained in a sample gas.
 ガス分析計の従来技術が、例えば、特許文献1に開示されている。この従来技術について、図を参照しつつ説明する。図12は、特許文献1に記載の従来技術の吸光分析計である。
 吸光分析計300は、サンプルガスに含まれるNOガス(二酸化窒素ガス)濃度を紫外吸収法により測定する。吸光分析計300は、紫外光源301と、可視光源302と、リファレンスセル303と、サンプルセル304と、光案内機構305と、光検出部306と、制御部307と、演算部308と、を備えている。
For example, Patent Literature 1 discloses a conventional gas analyzer. This prior art will be described with reference to the drawings. FIG. 12 is a conventional absorption spectrometer described in Patent Document 1. In FIG.
The absorption spectrometer 300 measures the concentration of NO 2 gas (nitrogen dioxide gas) contained in the sample gas by the ultraviolet absorption method. The absorption spectrometer 300 includes an ultraviolet light source 301, a visible light source 302, a reference cell 303, a sample cell 304, a light guide mechanism 305, a light detection unit 306, a control unit 307, and a calculation unit 308. ing.
 紫外光源301は、紫外光を発光する発光ダイオードである。この紫外光の中心発光波長は波長360~400nmであり、図13の波長-吸光係数特性図で示すように、NOガスの吸光波長帯域内に含まれる。このような紫外光をNOガスに照射すると、NOガスによる吸光が行われる。 The ultraviolet light source 301 is a light emitting diode that emits ultraviolet light. The central emission wavelength of the ultraviolet light is 360 to 400 nm, and is included in the absorption wavelength band of NO 2 gas as shown in the wavelength-absorption coefficient characteristic diagram of FIG. Upon irradiation of such ultraviolet light to NO 2 gas, absorption by NO 2 gas.
 可視光源302は、可視光を発光する発光ダイオードである。この可視光の中心発光波長は、紫外光の波長よりも大きく、図13の波長-吸光係数特性図で示すように、NOガスの吸光波長帯域内に含まれるが、紫外光の中心波長とは異なる。このような可視光をNOガスに照射するとNOガスによる吸光が行われるが、上記のNOガスによる紫外光の吸光と比較すると、NOガスによる可視光の吸光が小さくなるように、可視光源302の波長が設定される。 The visible light source 302 is a light emitting diode that emits visible light. The central emission wavelength of visible light is larger than the wavelength of ultraviolet light and is included in the absorption wavelength band of NO 2 gas as shown in the wavelength-absorption coefficient characteristic diagram of FIG. Is different. As such it absorbance of visible light by the NO 2 gas is irradiated to NO 2 gas is carried out, when compared with the absorption of ultraviolet light by the above-mentioned NO 2 gas, the absorbance of visible light is reduced by the NO 2 gas, The wavelength of the visible light source 302 is set.
 リファレンスセル303は、基準ガスが封入されている。この基準ガスは例えば窒素ガスである。窓303a、303bを通じて紫外光や可視光が入射される。 The reference cell 303 is filled with a reference gas. This reference gas is, for example, nitrogen gas. Ultraviolet light or visible light is incident through the windows 303a and 303b.
 サンプルセル304は、測定対象であるサンプルガスが供給される。窓304a、304bを通じて紫外光や可視光が入射される。サンプルガスは、ガス入口304cを通じてサンプルセル304内に流入し、ガス出口304dを通じて流出する。 The sample cell 304 is supplied with a sample gas that is a measurement target. Ultraviolet light or visible light is incident through the windows 304a and 304b. The sample gas flows into the sample cell 304 through the gas inlet 304c and flows out through the gas outlet 304d.
 光案内機構305は、ミラー305a、ハーフミラー305bを備える。紫外光源301からの紫外光や可視光源302からの可視光がハーフミラー305bおよびミラー305aで反射し、リファレンスセル303の窓303aを介してリファレンスセル303内に一端側から導入される。また、紫外光源301からの紫外光や可視光源302からの可視光が、ハーフミラー305bを透過し、サンプルセル304の窓304aを介してサンプルセル304内に一端側から導入される。サンプルセル304内ではNOガスによる吸光が行われる。 The light guide mechanism 305 includes a mirror 305a and a half mirror 305b. The ultraviolet light from the ultraviolet light source 301 and the visible light from the visible light source 302 are reflected by the half mirror 305b and the mirror 305a and introduced into the reference cell 303 from one end side through the window 303a of the reference cell 303. Also, ultraviolet light from the ultraviolet light source 301 and visible light from the visible light source 302 are transmitted through the half mirror 305 b and introduced into the sample cell 304 from one end side through the window 304 a of the sample cell 304. In the sample cell 304, absorption by NO 2 gas is performed.
 光検出部306は、光検出器306a、306bを備える。光検出器306aは、リファレンスセル303の他端側に設けられ、このリファレンスセル303の窓303bを透過した紫外光や可視光を検出する。光検出器306bは、サンプルセル304の他端側に設けられ、サンプルセル304の窓304bを透過した紫外光や可視光を検出する。 The light detection unit 306 includes light detectors 306a and 306b. The photodetector 306a is provided on the other end side of the reference cell 303, and detects ultraviolet light or visible light transmitted through the window 303b of the reference cell 303. The photodetector 306b is provided on the other end side of the sample cell 304, and detects ultraviolet light and visible light transmitted through the window 304b of the sample cell 304.
 制御部307は、紫外光源301および可視光源302を時分割発光させる。光検出部306は、リファレンスセル303およびサンプルセル304を透過する2波長の透過光を得る。これにより二光路、二波長を有することとなり、紫外透過光のサンプル信号、可視透過光のサンプル信号、紫外透過光のリファレンス信号、および、可視透過光のリファレンス信号という4つの信号を得る。 The control unit 307 causes the ultraviolet light source 301 and the visible light source 302 to emit light in a time-sharing manner. The light detection unit 306 obtains two-wavelength transmitted light that passes through the reference cell 303 and the sample cell 304. As a result, there are two optical paths and two wavelengths, and four signals are obtained: a sample signal for ultraviolet transmitted light, a sample signal for visible transmitted light, a reference signal for ultraviolet transmitted light, and a reference signal for visible transmitted light.
 演算部308は、光検出部306からの4つの信号を制御部307経由で受信し、この4つの信号に基づいてNOガス濃度を演算する。これにより、紫外光源301および可視光源302のドリフトの補償、測定成分以外の他成分干渉の補正、サンプルセル304の透過窓304a、304bの汚れや曇りによる光量低下の補正、感度ドリフトの補正、を可能とする。これら補正を行った上でNOガス濃度を算出することができ、測定精度を向上させている。 The calculation unit 308 receives the four signals from the light detection unit 306 via the control unit 307, and calculates the NO 2 gas concentration based on the four signals. Thereby, compensation of drift of the ultraviolet light source 301 and the visible light source 302, correction of interference of other components other than the measurement component, correction of light amount decrease due to dirt and clouding of the transmission windows 304a and 304b of the sample cell 304, correction of sensitivity drift, Make it possible. The NO 2 gas concentration can be calculated after performing these corrections, and the measurement accuracy is improved.
特開2011-149965号公報(発明の名称「吸光分析計」)JP 2011-149965 (Title of Invention “Absorption Spectrometer”)
 しかしながら、上記の従来技術は、測定可能なガス成分が1種類に限られていた。したがって、2種類以上のガスの濃度を吸光法によって測定するためには、あるガスを吸光する波長を発光する発光手段と、この光を受光する受光手段と、が、それぞれガス別に複数個必要となる。このように従来技術では2種類以上のガスの濃度を測定するには、構成が多くなるという課題があった。 However, in the above-described conventional technology, the measurable gas component is limited to one type. Therefore, in order to measure the concentration of two or more kinds of gases by the absorption method, a plurality of light emitting means for emitting a wavelength for absorbing a certain gas and a plurality of light receiving means for receiving the light are required for each gas. Become. Thus, in the prior art, there is a problem that the configuration increases in order to measure the concentration of two or more kinds of gases.
 また、従来技術では、測定しようとするガスが1種類であっても、SOガス(二酸化硫黄ガス)やNOガス(一酸化窒素ガス)を測定できなかった。例えば図13に示すように、紫外波長領域のNOガスの吸光では、SOガスおよびNOガスの吸光もあり、他のガスの影響を受ける。また、紫外波長領域のSOガスの吸光では、NOガスの吸光もあり、他のガスの影響を受ける。 Further, in the prior art, even if there is only one kind of gas to be measured, SO 2 gas (sulfur dioxide gas) and NO gas (nitrogen monoxide gas) cannot be measured. For example, as shown in FIG. 13, the absorption of NO gas in the ultraviolet wavelength region includes the absorption of SO 2 gas and NO 2 gas, and is affected by other gases. Further, in the absorption of SO 2 gas in the ultraviolet wavelength region, there is also absorption of NO 2 gas, which is influenced by other gases.
 さらに、可視波長領域(波長400nm以上)のNOガスの吸光波長では、NOガスおよびSOガスの吸光はなく、可視透過光にNOガスおよびSOガスについての情報が含まれていない。したがって、NOガスやSOガスによる干渉を補正すること、または、NOガスやSOガスの濃度測定に利用することが不可能である。
 このようにサンプルガスにNOガスおよびSOガスのガス成分が含まれている場合には、従来技術では、これらのNOガスおよびSOガスのガス成分の分析が困難であった。
Further, at the absorption wavelength of NO 2 gas in the visible wavelength region (wavelength of 400 nm or more), NO gas and SO 2 gas do not absorb, and visible transmitted light does not contain information about NO gas and SO 2 gas. Therefore, it is impossible to correct interference caused by NO gas or SO 2 gas, or to use it for concentration measurement of NO gas or SO 2 gas.
When the sample gas contains the gas components of NO gas and SO 2 gas as described above, it has been difficult to analyze the gas components of these NO gas and SO 2 gas in the prior art.
 また、NOガスを吸光により測定する場合、図13に示すように波長226nm以下の波長で発光する光源が必要となる。この波長領域で発光する光源は、重水素ランプやキセノンランプなどのランプ光源、または、窒化アルミニウム系化合物半導体(AlGaNなど)を用いた発光ダイオードに限られる。 Further, when NO gas is measured by absorption, a light source that emits light at a wavelength of 226 nm or less is required as shown in FIG. A light source that emits light in this wavelength region is limited to a lamp light source such as a deuterium lamp or a xenon lamp, or a light emitting diode using an aluminum nitride compound semiconductor (such as AlGaN).
 前者の重水素ランプやキセノンランプなどのランプ光源は、光源の発熱や寿命、安定性に問題があるうえ、波長フィルタなどの光学系を追加する必要があり、装置が大型、複雑である。 The former lamp light sources such as deuterium lamps and xenon lamps have problems with the heat generation, life and stability of the light source, and it is necessary to add an optical system such as a wavelength filter, and the apparatus is large and complicated.
 後者の発光ダイオードは、ランプ光源と比べて装置の小型化や簡略化が可能であるが、光パワーが不足し、寿命も短い。また、波長226nm以下の波長領域においては、SOガス、NOガス以外にもさまざまなガスの吸光があり、それらの干渉を除去することは困難である。 The latter light-emitting diode can reduce the size and simplification of the device as compared with the lamp light source, but has a short optical power and a short life. Further, in the wavelength region of wavelength 226 nm or less, various gases absorb light other than SO 2 gas and NO 2 gas, and it is difficult to remove the interference.
 そこで本発明は、上記の課題を全て解決するためになされたものであり、その目的は、簡易な構成でサンプルガスに含まれる少なくとも一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の2成分のガス濃度を計測可能とするガス分析計を提供することにある。
 好ましくは、二酸化硫黄ガス(SOガス)、一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の3成分のガス濃度を計測可能とするガス分析計を提供することにある。
Therefore, the present invention has been made to solve all of the above problems, and an object of the present invention is to provide at least nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) contained in the sample gas with a simple configuration. It is to provide a gas analyzer that can measure the gas concentration of two components.
It is preferable to provide a gas analyzer capable of measuring the three component gas concentrations of sulfur dioxide gas (SO 2 gas), nitric oxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas).
 本発明は、
 サンプルガスに含まれる一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の2成分のガス濃度を測定するガス分析計であって、
 サンプルガスに含まれる一酸化窒素ガス(NOガス)をオゾンの酸化により全て二酸化窒素ガス(NOガス)に反応させ、さらに二酸化窒素ガス(NOガス)の一部をオゾンの酸化により五酸化二窒素ガス(Nガス)に反応させた測定対象ガスとして出力する酸化出力と、サンプルガスを無反応のまま測定対象ガスとして出力する通常出力と、を行うガス調整部と、
 二酸化窒素ガス(NOガス)が吸光する紫外領域から可視領域までの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
 オゾンガス(Oガス)および二酸化窒素ガス(NOガス)が吸光する紫外領域の波長のOガス吸光用照射光を照射するOガス吸光用発光部と、
 NOガス吸光用照射光およびOガス吸光用照射光の一部を反射し、残りを透過する部分反射部と、
 ガス調整部からの測定対象ガスが流通する検出空間と、部分反射部を透過したNOガス吸光用照射光およびOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
 光透過窓を透過しガス流通セル内を伝播したNOガス吸光用照射光およびOガス吸光用照射光を受光する透過光受光部と、
 部分反射部で反射したNOガス吸光用照射光およびOガス吸光用照射光を受光する基準光受光部と、
 ガス調整部、NOガス吸光用発光部、Oガス吸光用発光部、透過光受光部および基準光受光部と接続される信号処理・駆動制御部と、
 を備え、
 この信号処理・駆動制御部は、
 ガス調整部を酸化出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
 ガス調整部を酸化出力状態に制御してOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、オゾンガス(Oガス)のガス濃度cを算出し、
 ガス調整部を通常出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
 供給されるオゾンガス(Oガス)のガス濃度cから、測定されたオゾンガス(Oガス)のガス濃度cを、減じて算出された反応消費時のガス濃度が、測定対象ガス中の一酸化窒素ガス(NOガス)のガス濃度cに五酸化二窒素ガス(Nガス)のガス濃度(c+c-c)/2を加えたガス濃度に等しいことに基づいて、算出されたc、c、c、c、から一酸化窒素ガス(NOガス)のガス濃度cを算出するようなガス分析計とした。
The present invention
A gas analyzer that measures the gas concentrations of two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) contained in a sample gas,
All nitric oxide gas contained in the sample gas (NO gas) by oxidation of ozone reacted in a nitrogen dioxide gas (NO 2 gas), further pentoxide a portion of the nitrogen dioxide gas (NO 2 gas) by oxidation of ozone A gas adjustment unit that performs an oxidation output that is output as a measurement target gas reacted with dinitrogen gas (N 2 O 5 gas), and a normal output that is output as a measurement target gas without any reaction;
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength from an ultraviolet region to a visible region in which nitrogen dioxide gas (NO 2 gas) absorbs;
A light emitting part for absorbing O 3 gas that irradiates irradiation light for absorbing O 3 gas having a wavelength in the ultraviolet region where ozone gas (O 3 gas) and nitrogen dioxide gas (NO 2 gas) absorb;
A partially reflecting portion that reflects part of the irradiation light for NO 2 gas absorption and part of the irradiation light for O 3 gas absorption and transmits the rest;
Gas having a detection space which the measurement target gas from the gas conditioning unit flows, and the light transmission window for entering the partial reflection region permeated NO 2 gas absorption irradiation light and the O 3 irradiation light gas absorption into the detection space, the A distribution cell;
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas transmitted through the light transmission window and propagated in the gas flow cell;
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas reflected by the partial reflection unit;
A signal processing / drive control unit connected to the gas adjusting unit, the NO 2 gas absorbing light emitting unit, the O 3 gas absorbing light emitting unit, the transmitted light receiving unit, and the reference light receiving unit;
With
This signal processing / drive control unit
The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled by using the signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the oxidation output state and the irradiation light for NO 2 gas absorption is emitted. c m is calculated,
The gas conditioning unit by using a signal from the transmitted light receiving unit and the reference light receiving unit when the emitting O 3 irradiation light gas absorption by controlling the oxidation output state, gas concentration c 3 of ozone (O 3 gas) To calculate
The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the irradiation light for NO 2 gas absorption is emitted. c 2 is calculated,
From the gas concentration c 0 of the ozone gas (O 3 gas) supplied, the gas concentration c 3 of the measured ozone (O 3 gas), the gas concentration in the reaction consumption calculated by subtracting the, in the gas as the object of measurement based on the equal to the gas concentration (c 1 + c 2 -c m ) / 2 gas concentration by adding gas concentration c 1 to nitric oxide gas (N 2 O 5 gas) of nitric oxide gas (NO gas) Thus, the gas analyzer was configured to calculate the gas concentration c 1 of nitric oxide gas (NO gas) from the calculated c 0 , c m , c 3 , c 2 .
 また、本発明は、
 サンプルガスに含まれる一酸化窒素ガス(NOガス)、二酸化窒素ガス(NO)および二酸化硫黄ガス(SOガス)の3成分のガス濃度を測定するガス分析計であって、
 サンプルガスに含まれる一酸化窒素ガス(NOガス)をオゾンの酸化により全て二酸化窒素ガス(NOガス)に反応させ、さらに二酸化窒素ガス(NOガス)の一部をオゾンの酸化により五酸化二窒素ガス(Nガス)に反応させた測定対象ガスとして出力する酸化出力と、サンプルガスを無反応のまま測定対象ガスとして出力する通常出力と、を行うガス調整部と、
 二酸化窒素ガス(NOガス)が吸光する紫外領域から可視領域までの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
 オゾンガス(Oガス)、二酸化硫黄ガス(SOガス)および二酸化窒素ガス(NOガス)が吸光する紫外領域の波長のOガス吸光用照射光を照射するOガス吸光用発光部と、
 NOガス吸光用照射光およびOガス吸光用照射光の一部を反射し、残りを透過する部分反射部と、
 ガス調整部からの測定対象ガスが流通する検出空間と、部分反射部を透過したNOガス吸光用照射光およびOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
 光透過窓を透過しガス流通セル内を伝播したNOガス吸光用照射光およびOガス吸光用照射光を受光する透過光受光部と、
 部分反射部で反射したNOガス吸光用照射光およびOガス吸光用照射光を受光する基準光受光部と、
 ガス調整部、NOガス吸光用発光部、Oガス吸光用発光部、透過光受光部および基準光受光部と接続される信号処理・駆動制御部と、
 を備え、
 この信号処理・駆動制御部は、
 ガス調整部を酸化出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
 ガス調整部を酸化出力状態に制御してOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、オゾンガス(Oガス)のガス濃度cおよび二酸化硫黄ガス(SOガス)のガス濃度cを算出し、
 ガス調整部を通常出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
 ガス調整部を通常出力状態に制御してOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化硫黄ガス(SOガス)のガス濃度cを算出し、
 供給されるオゾンガス(Oガス)のガス濃度cから、測定されたオゾンガス(Oガス)のガス濃度cを、減じて算出された反応消費時のガス濃度が、測定対象ガス中の一酸化窒素ガス(NOガス)のガス濃度cに五酸化二窒素ガス(Nガス)のガス濃度(c+c-c)/2を加えたガス濃度に等しいことに基づいて、算出されたc、c、c、c、から一酸化窒素ガス(NOガス)のガス濃度cを算出するようなガス分析計とした。
The present invention also provides:
A gas analyzer that measures the concentration of three components of nitrogen monoxide gas (NO gas), nitrogen dioxide gas (NO 2 ), and sulfur dioxide gas (SO 2 gas) contained in a sample gas,
All nitric oxide gas contained in the sample gas (NO gas) by oxidation of ozone reacted in a nitrogen dioxide gas (NO 2 gas), further pentoxide a portion of the nitrogen dioxide gas (NO 2 gas) by oxidation of ozone A gas adjustment unit that performs an oxidation output that is output as a measurement target gas reacted with dinitrogen gas (N 2 O 5 gas), and a normal output that is output as a measurement target gas without any reaction;
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength from an ultraviolet region to a visible region in which nitrogen dioxide gas (NO 2 gas) absorbs;
A light emitting part for absorbing O 3 gas that irradiates light for absorbing O 3 gas having a wavelength in the ultraviolet region where ozone gas (O 3 gas), sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas (NO 2 gas) absorb; ,
A partially reflecting portion that reflects part of the irradiation light for NO 2 gas absorption and part of the irradiation light for O 3 gas absorption and transmits the rest;
A gas having a detection space in which a measurement target gas from the gas adjustment unit flows, and a light transmission window through which the irradiation light for NO 2 gas absorption and the irradiation light for O 3 gas absorption transmitted through the partial reflection unit enter the detection space A distribution cell;
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas transmitted through the light transmission window and propagated in the gas flow cell;
A reference light receiving unit for receiving the reflected NO 2 irradiated light and gas absorption O 3 irradiation light gas absorption by the partially reflecting portion,
A signal processing / drive control unit connected to the gas adjusting unit, the NO 2 gas absorbing light emitting unit, the O 3 gas absorbing light emitting unit, the transmitted light receiving unit, and the reference light receiving unit;
With
This signal processing / drive control unit
The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled by using the signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the oxidation output state and the irradiation light for NO 2 gas absorption is emitted. c m is calculated,
The gas conditioning unit by using a signal from the transmitted light receiving unit and the reference light receiving unit when the emitting O 3 irradiation light gas absorption by controlling the oxidation output state, gas concentration c 3 of ozone (O 3 gas) And the gas concentration c s of sulfur dioxide gas (SO 2 gas),
The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the irradiation light for NO 2 gas absorption is emitted. c 2 is calculated,
The gas concentration of sulfur dioxide gas (SO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the O 3 gas absorption irradiation light is emitted. c s is calculated,
From the gas concentration c 0 of the ozone gas (O 3 gas) supplied, the gas concentration c 3 of the measured ozone (O 3 gas), the gas concentration in the reaction consumption calculated by subtracting the, in the gas as the object of measurement Based on the gas concentration c 1 of nitrogen monoxide gas (NO gas) plus the gas concentration (c 1 + c 2 −c m ) / 2 of nitrous oxide (N 2 O 5 gas) / 2. Thus, the gas analyzer was configured to calculate the gas concentration c 1 of nitric oxide gas (NO gas) from the calculated c 0 , c m , c 3 , c 2 .
 そして、好ましくは、
 前記基準光受光部、前記NOガス吸光用発光部および前記Oガス吸光用発光部と接続される補正部を有し、
 前記基準光受光部は、部分反射部により一部反射したNOガス吸光用照射光およびOガス吸光用照射光を受光して検出信号を補正部へ出力し、
 補正部は、この検出信号に基づいて変動を抑止するような駆動電流を前記NOガス吸光用発光部および前記Oガス吸光用発光部へ出力するようなガス分析計にするとよい。
And preferably,
A correction unit connected to the reference light receiving unit, the NO 2 gas absorbing light emitting unit, and the O 3 gas absorbing light emitting unit;
The reference light receiving unit receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas partially reflected by the partial reflection unit, and outputs a detection signal to the correction unit,
The correction unit may be a gas analyzer that outputs a drive current that suppresses fluctuations based on the detection signal to the NO 2 gas absorption light emission unit and the O 3 gas absorption light emission unit.
 また、好ましくは、
 前記NOガス吸光用発光部からのNOガス吸光用照射光を集光して前記ガス流通セルへ入射させるレンズおよび前記Oガス吸光用発光部からのOガス吸光用照射光を集光して前記ガス流通セルへ入射させるレンズを備えるようなガス分析計にするとよい。
Also preferably,
Collecting the O 3 irradiation light gas absorption from the NO 2 lens and the O 3 gas absorption for the light emitting portion condenses the NO 2 gas absorption for the irradiation light from the gas absorption for the light emitting portion is incident on the gas flow cell A gas analyzer that includes a lens that emits light and enters the gas flow cell may be used.
 また、好ましくは、
 前記NOガス吸光用発光部および前記Oガス吸光用発光部を隣接させて一体収容した発光部と、
 前記NOガス吸光用発光部からのNOガス吸光用照射光および前記Oガス吸光用発光部からのOガス吸光用照射光を集光して前記ガス流通セルへ入射させるレンズと、
 を備えるようなガス分析計にするとよい。
Also preferably,
A light emitting unit that integrally accommodates the NO 2 gas absorbing light emitting unit and the O 3 gas absorbing light emitting unit adjacent to each other;
A lens for incident condenses O 3 irradiation light gas absorption from the NO 2 NO 2 gas absorption irradiation light and the O 3 gas absorption for the light emitting portion of the gas absorption for the light emitting portion to the gas flow cell,
It is good to make it a gas analyzer equipped with.
 また、好ましくは、
 前記ガス流通セルを透過した後のNOガス吸光用照射光および前記ガス流通セルを透過した後のOガス吸光用照射光を集光するレンズを備えるようなガス分析計にするとよい。
Also preferably,
It is preferable that the gas analyzer has a lens for collecting the irradiation light for absorbing NO 2 gas after passing through the gas circulation cell and the irradiation light for absorbing O 3 gas after passing through the gas circulation cell.
 また、好ましくは、
 前記ガス流通セルは一方に光透過窓を、また、他方に反射部を備え、光透過窓を透過してNOガス吸光用照射光およびOガス吸光用照射光を反射部で反射させた後に光透過窓を通過するようにして検出空間内を往復させ、前記部分反射部で反射させたNOガス吸光用照射光およびOガス吸光用照射光を前記透過光受光部が検出するようなガス分析計にするとよい。
Also preferably,
The gas flow cell has a light transmission window on one side and a reflection part on the other side, and transmits the light transmission window and reflects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas at the reflection part. The transmitted light receiving unit detects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas reflected by the partial reflection unit so as to reciprocate in the detection space so as to pass through the light transmission window later. A good gas analyzer is recommended.
 また、好ましくは、
 前記NOガス吸光用発光部、前記Oガス吸光用発光部および前記透過光受光部を隣接させて一体収容した発受光部を更に備え、
 前記ガス流通セルは一方に光透過窓を、また、他方に反射部を有するようになされており、
 光透過窓を透過して発受光部から発せられたNOガス吸光用照射光およびOガス吸光用照射光を反射部で反射させた後に光透過窓を通過するようにして検出空間内を往復させ、前記部分反射部を透過したNOガス吸光用照射光およびOガス吸光用照射光を発受光部の前記透過光受光部が検出するようなガス分析計にするとよい。
Also preferably,
A light emitting / receiving unit that integrally accommodates the NO 2 gas absorbing light emitting unit, the O 3 gas absorbing light emitting unit, and the transmitted light receiving unit adjacent to each other;
The gas flow cell has a light transmission window on one side and a reflection part on the other side,
The NO 2 gas absorption irradiation light and the O 3 gas absorption irradiation light emitted from the light emitting / receiving section through the light transmission window are reflected by the reflection section and then pass through the light transmission window to pass through the light transmission window. The gas analyzer may be configured such that the transmitted light receiving unit of the light emitting / receiving unit detects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas transmitted through the partial reflection unit.
 また、好ましくは、
 前記信号処理・駆動制御部は、前記NOガス吸光用発光部および前記Oガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流とするようなガス分析計にするとよい。
Also preferably,
The signal processing / drive control unit is a pulse that alternately performs output and stop of the NO 2 gas absorption light-emitting unit and the O 3 gas absorption light-emitting unit, and has a duty ratio that makes the output shorter than the stop. It is better to use a gas analyzer that uses the drive current.
 本発明によれば、簡易な構成でサンプルガスに含まれる少なくとも一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の2成分のガス濃度を計測可能とするガス分析計を提供することができる。
 加えて、二酸化硫黄ガス(SOガス)、一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の3成分のガス濃度を計測可能とするガス分析計を提供することができる。
According to the present invention, there is provided a gas analyzer capable of measuring the gas concentrations of at least two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) contained in a sample gas with a simple configuration. be able to.
In addition, it is possible to provide a gas analyzer that can measure the three component gas concentrations of sulfur dioxide gas (SO 2 gas), nitrogen monoxide gas (NO gas), and nitrogen dioxide gas (NO 2 gas).
本発明を実施するための形態に係るガス分析計の全体構成図である。It is a whole block diagram of the gas analyzer which concerns on the form for implementing this invention. NOガス、NOガス、SOガス、Oガスの可視領域および紫外領域における吸光係数を示す波長-吸光係数特性図である。FIG. 3 is a wavelength-absorption coefficient characteristic diagram showing absorption coefficients of NO gas, NO 2 gas, SO 2 gas, and O 3 gas in the visible region and ultraviolet region. 本発明を実施するための他の形態に係るガス分析計の全体構成図である。It is a whole block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 発光ダイオードのデューティー比-許容電流特性を示す特性図である。FIG. 6 is a characteristic diagram showing a duty ratio-allowable current characteristic of a light emitting diode. パルス信号によって生成された発光ダイオードの駆動信号の時間変化の説明図である。It is explanatory drawing of the time change of the drive signal of the light emitting diode produced | generated by the pulse signal. 小デューティー比パルス信号によって生成された発光ダイオードの駆動信号の時間変化の説明図である。It is explanatory drawing of the time change of the drive signal of the light emitting diode produced | generated by the small duty ratio pulse signal. 従来技術の吸光分析計の構成図である。It is a block diagram of the absorption spectrometer of a prior art. NOガス、NOガス、SOガスの可視領域および紫外領域における吸光係数を示す波長-吸光係数特性図である。FIG. 4 is a wavelength-absorption coefficient characteristic diagram showing absorption coefficients of NO gas, NO 2 gas, and SO 2 gas in the visible region and the ultraviolet region.
 続いて、本発明を実施するための第1の形態に係るガス分析計について、図を参照しつつ以下に説明する。図1は、本形態のガス分析計の全体構成図である。なお、本形態ではサンプルガスに一酸化窒素ガス(以下単にNOガスという)および二酸化窒素ガス(以下、単にNOガスという)の2成分は含まれるが二酸化硫黄ガス(以下単にSOガスという)は含まれないものとする。ガス分析計は、これらNOガスおよびNOガスについて分析する。図1において、太い実線の矢印はガスの流通経路を、点線の矢印は光の経路を、細い実線の矢印は電気信号の経路を、それぞれ示す。 Then, the gas analyzer which concerns on the 1st form for implementing this invention is demonstrated below, referring a figure. FIG. 1 is an overall configuration diagram of a gas analyzer according to this embodiment. In this embodiment, the sample gas contains two components of nitrogen monoxide gas (hereinafter simply referred to as NO gas) and nitrogen dioxide gas (hereinafter simply referred to as NO 2 gas), but sulfur dioxide gas (hereinafter simply referred to as SO 2 gas). Shall not be included. The gas analyzer analyzes these NO gas and NO 2 gas. In FIG. 1, a thick solid arrow indicates a gas flow path, a dotted arrow indicates a light path, and a thin solid arrow indicates an electrical signal path.
 まず、本形態のガス分析計100が備える構成要素とそれらの機能について説明する。ガス分析計100は、図1で示すように、NOガス吸光用発光部11、Oガス吸光用発光部12、部分反射部13、ガス流通セル21、透過光受光部31、基準光受光部32、ガス調整部41、ガス吸引部51、信号処理・駆動制御部61を備える。 First, the components provided in the gas analyzer 100 of this embodiment and their functions will be described. As shown in FIG. 1, the gas analyzer 100 includes an NO 2 gas absorbing light emitting unit 11, an O 3 gas absorbing light emitting unit 12, a partial reflecting unit 13, a gas flow cell 21, a transmitted light receiving unit 31, and a reference light receiving unit. Unit 32, gas adjustment unit 41, gas suction unit 51, and signal processing / drive control unit 61.
 NOガス吸光用発光部11は、NOガスが吸光する波長であって、かつOガスが吸光しない波長のNOガス吸光用照射光を発光する発光部である。例えば、紫外光から可視光にまたがる領域の波長350nm~500nmに中心発光波長を有する照射光の発光ダイオード(LED)を選ぶことができる。図2に示されるように、この波長領域においてはNOガスのみが吸光する。 The NO 2 gas absorption light emitting unit 11 is a light emitting unit that emits NO 2 gas absorption irradiation light having a wavelength at which NO 2 gas absorbs and a wavelength at which O 3 gas does not absorb. For example, it is possible to select a light emitting diode (LED) of irradiation light having a central emission wavelength in a wavelength range of 350 nm to 500 nm in a region extending from ultraviolet light to visible light. As shown in FIG. 2, only NO 2 gas absorbs light in this wavelength region.
 Oガス吸光用発光部12は、Oガスが吸光する波長のOガス吸光用照射光を発光する発光部である。例えば、紫外光領域の波長240nm~330nmに中心発光波長を有する照射光の発光ダイオード(LED)を選ぶことができる。なお、図2に示されるように、この波長領域においてはOガスが吸光するのみならずNOガスも吸光する。なお、SOガスは存在しないので考慮しない。 O 3 light-emitting unit 12 for gas absorption is a light-emitting unit that O 3 gas emits O 3 gas absorption for the irradiation light of a wavelength absorption. For example, a light emitting diode (LED) for irradiation light having a central emission wavelength in the wavelength range of 240 nm to 330 nm in the ultraviolet region can be selected. As shown in FIG. 2, not only O 3 gas but also NO 2 gas absorbs in this wavelength region. It is not taken into account because no SO 2 gas is present.
 部分反射部13はハーフミラーであり、所定透過率でNOガス吸光用照射光やOガス吸光用照射光(以下単に照射光というときはNOガス吸光用照射光とOガス吸光用照射光と両方を含めるものとする。なお、NOガス吸光用照射光とOガス吸光用照射光は同時に出力されることはなく、例えば時間別にそれぞれが単独で出力される)を透過させ、また、所定反射率で照射光を反射させる。 The partial reflection unit 13 is a half mirror, and has a predetermined transmittance for irradiation light for absorbing NO 2 gas and irradiation light for absorbing O 3 gas (hereinafter simply referred to as irradiation light for absorbing light for absorbing NO 2 gas and for absorbing O 3 gas). Both the irradiation light and the irradiation light for NO 2 gas absorption and the irradiation light for O 3 gas absorption are not output at the same time, for example, each is output separately by time). Further, the irradiation light is reflected at a predetermined reflectance.
 NOガス吸光用発光部11およびOガス吸光用発光部12から照射された照射光は、部分反射部13に入射する。部分反射部13において、照射光の一部は反射し、照射光の残りは透過する。部分反射部13で反射した照射光は基準光受光部32へ入射される。また、部分反射部13を透過した照射光はガス流通セル21へ入射される。 Irradiation light emitted from the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 is incident on the partial reflection unit 13. In the partial reflection unit 13, a part of the irradiation light is reflected and the rest of the irradiation light is transmitted. The irradiation light reflected by the partial reflection unit 13 enters the reference light receiving unit 32. Further, the irradiation light transmitted through the partial reflection portion 13 is incident on the gas flow cell 21.
 ガス流通セル21は、さらに管22、光透過窓23,24、検出空間25、ガス流入口26、ガス流出口27を備える。 The gas distribution cell 21 further includes a tube 22, light transmission windows 23 and 24, a detection space 25, a gas inlet 26, and a gas outlet 27.
 管22は、筒体である。管22の内面は、例えば研磨されたステンレスの内面とすることができる。これにより測定対象ガスの吸着を防ぎつつ、照射光の反射率を良好に保つことができる。管22内では、照射光は、管22の内面により反射しつつ伝播する。 The tube 22 is a cylinder. The inner surface of the tube 22 can be, for example, a polished stainless steel inner surface. Thereby, the reflectance of irradiation light can be kept favorable, preventing adsorption of measurement object gas. In the tube 22, the irradiation light propagates while being reflected by the inner surface of the tube 22.
 光透過窓23、光透過窓24は、NOガス吸光用発光部11およびOガス吸光用発光部12から照射される照射光の発光波長領域において光透過性を示す材料で作られている。例えば、合成石英、フッ化カルシウムを材料とすることができる。 The light transmission window 23 and the light transmission window 24 are made of a material exhibiting light transmittance in the emission wavelength region of the irradiation light emitted from the NO 2 gas absorption light emitting portion 11 and the O 3 gas absorption light emission portion 12. . For example, synthetic quartz or calcium fluoride can be used as the material.
 検出空間25は、管22、光透過窓23、および、光透過窓24により区画された閉空間である。
 ガス流入口26、ガス流出口27はこの検出空間25と連通する。測定対象ガスは、ガス流入口26から検出空間25へ流入し、ガス流出口27から流出する。
 このようなガス流通セル21内では、流通する測定対象ガスに照射光が照射されて吸光が起こる。
The detection space 25 is a closed space defined by the tube 22, the light transmission window 23, and the light transmission window 24.
The gas inlet 26 and the gas outlet 27 communicate with the detection space 25. The measurement target gas flows into the detection space 25 from the gas inlet 26 and flows out of the gas outlet 27.
In such a gas flow cell 21, irradiation light is irradiated to the flowing measurement target gas, and light absorption occurs.
 透過光受光部31は、ガス流通セル21を透過した照射光を受光して光強度に応じた検出信号を出力する。透過光受光部31には、NOガス吸光用発光部11およびOガス吸光用発光部12から照射される照射光の発光波長に対して感度を有するような、フォトダイオードや光電子増倍管などを選ぶことができる。例えば、シリコンフォトダイオードを選ぶことができる。 The transmitted light receiving unit 31 receives the irradiation light transmitted through the gas flow cell 21 and outputs a detection signal corresponding to the light intensity. The transmitted light receiving unit 31 includes a photodiode or a photomultiplier tube having sensitivity to the emission wavelength of irradiation light emitted from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12. You can choose. For example, a silicon photodiode can be selected.
 このような透過光受光部31は、測定対象ガスによる吸光を検出する機能を有する。すなわち、測定対象ガスによる吸光が無い場合と比較して、吸光がある場合は透過光受光部31で受光される照射光の光強度が減少するために、その光強度の減少量とガス濃度との相関を利用してガス濃度を測定する。 Such a transmitted light receiving unit 31 has a function of detecting light absorption by the measurement target gas. That is, compared with the case where there is no light absorption due to the measurement target gas, the light intensity of the irradiation light received by the transmitted light receiving unit 31 decreases when there is light absorption. The gas concentration is measured using the correlation.
 このように部分反射部13を透過した照射光がガス流通セル21の一端を構成する光透過性の光透過窓23を透過し、管22の内部の検出空間25を伝播し、もう一端を構成する光透過性の光透過窓24を透過し、透過光受光部31に入射する。 Thus, the irradiation light transmitted through the partial reflection portion 13 passes through the light-transmitting light transmission window 23 constituting one end of the gas flow cell 21, propagates through the detection space 25 inside the tube 22, and constitutes the other end. The light is transmitted through the light transmissive window 24 and enters the transmitted light receiving unit 31.
 基準光受光部32は、部分反射部13で反射した照射光を受光するために設けられている。基準光受光部32には、NOガス吸光用発光部11およびOガス吸光用発光部12から照射される照射光の発光波長に対して感度を有する、フォトダイオードや光電子増倍管などを選ぶことができる。例えば、シリコンフォトダイオードを選ぶことができる。 The reference light receiving unit 32 is provided to receive the irradiation light reflected by the partial reflection unit 13. The reference light receiving unit 32 includes a photodiode, a photomultiplier tube, or the like that is sensitive to the emission wavelength of the irradiation light emitted from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12. You can choose. For example, a silicon photodiode can be selected.
 基準光受光部32は、NOガス吸光用発光部11およびOガス吸光用発光部12から照射される照射光の変動を検出する機能を有する。照射光の変動がある場合には基準光受光部32で受光される照射光の光強度が変動する。この光強度の変動量を利用してガス濃度の補正が行われる。 The reference light receiving unit 32 has a function of detecting fluctuations in irradiation light emitted from the NO 2 gas absorbing light emitting unit 11 and the O 3 gas absorbing light emitting unit 12. When the irradiation light varies, the light intensity of the irradiation light received by the reference light receiving unit 32 varies. The gas concentration is corrected using the fluctuation amount of the light intensity.
 ガス調整部41は、さらにオゾン発生部42、ガス混合部43を備えている。 The gas adjustment unit 41 further includes an ozone generation unit 42 and a gas mixing unit 43.
 オゾン発生部42は、オゾンガスを発生する機能を有する。オゾン発生部42に酸素を含む大気、計装空気、または、酸素ガス(Oガス)などの原料ガスGが流入する。オゾン発生部42は、信号処理・駆動制御部61により動作制御がなされている。オゾン発生部42の動作時では、オゾン発生部42は、無声放電などの電気的な手段により、原料ガスGのOガスを用いてOガスを生成し、Oガスを充分に含む原料ガスGを流出させる。不動作時では、オゾン発生部42は、Oガスを生成せずに原料ガスGをそのまま通過させる。このように信号処理・駆動制御部61が、オゾン発生部42の動作・不動作の動作制御を行う。 The ozone generator 42 has a function of generating ozone gas. Atmosphere containing oxygen to the ozone generator 42, instrument air, or the raw material gas G O such as oxygen gas (O 2 gas) flows. The operation of the ozone generator 42 is controlled by a signal processing / drive controller 61. In operation of the ozone generator 42, ozone generator 42, by electrical means, such as silent discharge, using an O 2 gas of the raw material gas G O generates O 3 gas, sufficiently containing the O 3 gas The source gas GO is caused to flow out. In an off-state, the ozone generator 42 is directly passing the raw material gas G O without generating the O 3 gas. In this way, the signal processing / drive control unit 61 controls the operation / non-operation of the ozone generation unit 42.
 ガス混合部43は、サンプルガスGとオゾン発生部42からの原料ガスG(動作時ではOガスを大量に含む原料ガスGであり、また、不動作時ではOガスを含まない原料ガスGである)を混合するために設けられている。 Gas mixing unit 43, at the time the raw material gas G O (operation from the sample gas G S and ozone generator 42 is a raw material gas G O containing O 3 gas in large quantities, also in an off-state free of O 3 gas is provided to mix the free feed gas is G O).
 オゾン発生部42の動作時には、後述するがガス混合部43においてOガスの一部とサンプルガスGの一部とで化学反応が発生して反応ガスが生成され、この反応ガス、余剰のOガス、余剰の原料ガスGおよび余剰のサンプルガスGを測定対象ガスとして流出させる。 During operation of the ozone generator 42, a part with a chemical reaction occurs reactive gas partial and sample gas G S of the O 3 gas in the gas mixing portion 43 will be described later is produced, the reaction gas, the excess O 3 gas, thereby discharging the material gas G O and excess sample gas G S surplus as a measurement target gas.
 また、オゾン発生部42の不動作時には、オゾン発生部42からの原料ガスGとサンプルガスGとをそのまま混合して流出させる。 Also, when not in operation of the ozone generator 42 is allowed to flow out by mixing it with a raw material gas G O and the sample gas G S from the ozone generator 42.
 また、後述するが、ガス混合部43は、ゼロガスGZEROやスパンガスGSPANが流入したとき、そのまま測定対象ガスとして流出させる。このガス混合部43から流出した測定対象ガスは、ガス流入口26からガス流通セル21内の検出空間25を流通し、ガス流出口27から流出する。 As will be described later, when the zero gas G ZERO or the span gas G SPAN flows in, the gas mixing unit 43 causes the gas mixing unit 43 to directly flow out as a measurement target gas. The measurement target gas flowing out from the gas mixing unit 43 flows through the detection space 25 in the gas flow cell 21 from the gas inlet 26 and flows out from the gas outlet 27.
 ガス吸引部51は、ガスを吸引する機能を有している。ガス流通セル21の検出空間25内を排気することで検出空間25内へガス混合部43からの測定対象ガスを引き入れる。なお、このガス吸引部51は、ガス混合部43とガス流入口26との間に設けることもできる。 The gas suction unit 51 has a function of sucking gas. The measurement target gas from the gas mixing unit 43 is drawn into the detection space 25 by exhausting the detection space 25 of the gas flow cell 21. The gas suction part 51 can also be provided between the gas mixing part 43 and the gas inlet 26.
 信号処理・駆動制御部61は、NOガス吸光用発光部11およびOガス吸光用発光部12を発光させるために必要な駆動電流を供給する機能を有する。また、信号処理・駆動制御部61は、透過光受光部31および基準光受光部32からの受光信号に基づいてガス濃度を算出するための受光信号処理機能を有する。また、信号処理・駆動制御部61は、オゾン発生部42の動作・不動作を切り替える制御機能を有する。
 ガス分析計100の構成はこのようなものである。
The signal processing / drive control unit 61 has a function of supplying a driving current necessary for causing the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 to emit light. Further, the signal processing / drive control unit 61 has a received light signal processing function for calculating the gas concentration based on the received light signals from the transmitted light receiving unit 31 and the reference light receiving unit 32. Further, the signal processing / drive control unit 61 has a control function for switching operation / non-operation of the ozone generation unit 42.
The configuration of the gas analyzer 100 is as described above.
 続いて、ガス分析計100による分析について説明する。まず、吸光による測定の原理について説明する。測定の原理は、下記のランベルト-ベールの法則に基づく吸光法である。 Subsequently, analysis by the gas analyzer 100 will be described. First, the principle of measurement by absorption will be described. The principle of measurement is an absorption method based on the following Lambert-Beer law.
 [数1]
   P=P・exp(-ε・c・L)
[Equation 1]
P 1 = P 0 · exp (−ε · c · L)
 ここで、Pは検出空間25内を流通する測定対象ガスを透過した透過光の出力強度、Pは測定対象ガスを透過する前の基準光の出力強度、εはモル吸光係数、cはガス濃度、Lは光路長を表す。モル吸光係数εはガスの種類と光源の波長とを決めると一意に決まり、また、光路長Lは一定であるため、出力強度PとPの比はガス濃度cの指数関数となる。出力強度PとPとを測定し、上記の数1によりガス濃度を検出するというものである。 Here, P 1 is the output intensity of the transmitted light that has passed through the measurement target gas flowing in the detection space 25, P 0 is the output intensity of the reference light before passing through the measurement target gas, ε is the molar extinction coefficient, and c is The gas concentration, L, represents the optical path length. The molar extinction coefficient ε is uniquely determined by determining the type of gas and the wavelength of the light source, and since the optical path length L is constant, the ratio between the output intensities P 1 and P 0 is an exponential function of the gas concentration c. The output intensities P 1 and P 0 are measured, and the gas concentration is detected by the above equation ( 1).
 ガス分析計100においてNOガス吸光用照射光かOガス吸光用照射光かいずれか一方である照射光が照射される。このときの照射光の一部は、部分反射部13によって既知の一定の反射率で反射し、基準光受光部32に入射する。この基準光受光部32の信号から基準光による出力強度Pを求めることができる。また、照射光の一部は、部分反射部13を既知の一定の透過率で透過し、光透過窓23を経て検出空間25を伝播し、吸光を受けた後に光透過窓24を経て透過光受光部31に入射する。この透過光受光部31の信号から透過光による出力強度Pを求めることができる。したがって、出力強度PとPの比からガス濃度cを求めることができる。この原理は、NOガス吸光用照射光による分析とOガス吸光用照射光による分析との両方に適用できる。検出原理はこのようなものとなる。 The gas analyzer 100 emits irradiation light that is either NO 2 gas absorption irradiation light or O 3 gas absorption irradiation light. A part of the irradiation light at this time is reflected by the partial reflection unit 13 with a known constant reflectance and is incident on the reference light receiving unit 32. The output intensity P 0 by the reference light can be obtained from the signal of the reference light receiving unit 32. Further, a part of the irradiation light is transmitted through the partial reflection unit 13 with a known constant transmittance, propagates through the detection space 25 through the light transmission window 23, and is transmitted through the light transmission window 24 after being absorbed. The light enters the light receiving unit 31. The output intensity P 1 by the transmitted light can be obtained from the signal of the transmitted light receiving unit 31. Therefore, the gas concentration c can be obtained from the ratio between the output intensities P 1 and P 0 . This principle can be applied to both the analysis using the irradiation light for absorbing NO 2 gas and the analysis using the irradiation light for absorbing O 3 gas. The detection principle is like this.
 なお、透過光受光部31および基準光受光部32は、NOガス濃度およびOガス濃度の測定時に共通に利用される。したがって、NOガス吸光用発光部11およびOガス吸光用発光部12が同時に発光すると、受光信号が両者の和になってしまい分離できなくなる。 The transmitted light receiving unit 31 and the reference light receiving unit 32 are commonly used when measuring the NO 2 gas concentration and the O 3 gas concentration. Therefore, if the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 emit light at the same time, the light reception signal becomes the sum of the two and cannot be separated.
 そこで、信号処理・駆動制御部61は、NOガス吸光用発光部11およびOガス吸光用発光部12を同時には発光させないで、交互に発光させるように制御する。また、受光信号の測定および処理も上記の発光期間に同期するように行うことで、信号を分離している。吸光による測定はこのようなものである。 Therefore, the signal processing / drive control unit 61 controls the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 to alternately emit light without simultaneously emitting light. Further, the measurement and processing of the received light signal are also performed in synchronization with the light emission period, thereby separating the signals. Measurement by absorption is like this.
 このような測定は、オゾン発生部42を動作状態としてガス調整部41を酸化出力としたときと、オゾン発生部42を不動作状態としてガス調整部41を通常出力としたときと、でそれぞれ行われる。したがって、このようなガス分析計100は、
(a)酸化出力時のNOガス吸光用照射光による分析、
(b)酸化出力時のOガス吸光用照射光による分析、
(c)通常出力時のNOガス吸光用照射光による分析、
(d)通常出力時のOガス吸光用照射光による分析、
という4種類の分析が可能である。
Such measurement is performed when the ozone generation unit 42 is in an operating state and the gas adjustment unit 41 is in an oxidized output, and when the ozone generation unit 42 is in a non-operational state and the gas adjustment unit 41 is in a normal output. Is called. Therefore, such a gas analyzer 100 is
(A) Analysis with irradiation light for absorbing NO 2 gas at the time of oxidation output,
(B) Analysis by irradiation light for absorbing O 3 gas at the time of oxidation output,
(C) Analysis with irradiation light for absorbing NO 2 gas at normal output,
(D) Normal analysis by the O 3 gas absorption for the irradiation light at the time of output,
Four types of analysis are possible.
 次に、このガス分析計100によってサンプルガスG中に含まれるNOガス、NOガスの2成分のガス濃度を測定する方法について説明する。NOガス、NOガスの2成分のガス濃度を計測する場合は、上記の(a)、(b)、(c)の分析を行い、これらで得た測定値を用いてガス濃度を算出する。 Next, NO gas contained by the gas analyzer 100 in the sample gas G S, the method for measuring the gas concentration of the two components of the NO 2 gas will be described. When measuring the gas concentrations of the two components of NO gas and NO 2 gas, the analysis of the above (a), (b), and (c) is performed, and the gas concentration is calculated using the measured values obtained by these analyzes. .
 まず、(a)酸化出力時のNOガス吸光用照射光による分析を行うものとして説明する。オゾン発生部42を動作状態としてガス調整部41を酸化出力させた上での測定である。この際に、酸化出力時のNOガス濃度cを求める。 First, description will be made on the assumption that (a) analysis is performed using irradiation light for absorbing NO 2 gas at the time of oxidation output. This is a measurement after the ozone generating section 42 is in an operating state and the gas adjusting section 41 is oxidized and output. At this time, the NO 2 gas concentration cm at the oxidation output is obtained.
 オゾン発生部42は動作状態である。このとき、オゾン発生部42は、大気、計装エア、または酸素ガスなどの原料ガスGに含まれているOガスからオゾンガス(以下、単にOガスという)を生成する。Oガスの発生量は、適宜定めることができるが、少なくともNOガスの測定濃度レンジにおける最大量よりも過剰に供給する。オゾン発生部42からガス混合部43へ、Oガスを充分に含む原料ガスGを供給する。 The ozone generator 42 is in an operating state. At this time, the ozone generating unit 42 generates ozone gas (hereinafter simply referred to as O 3 gas) from O 2 gas contained in the source gas G 0 such as the atmosphere, instrument air, or oxygen gas. Although the generation amount of O 3 gas can be determined as appropriate, it is supplied in excess of at least the maximum amount in the measured concentration range of NO gas. From the ozone generator 42 to the gas mixing unit 43 supplies the raw material gas G O containing O 3 gas sufficiently.
 ガス混合部43においてOガスを充分に含む原料ガスGとサンプルガスGとが混合される。ここで、サンプルガスG中の全てのNOガスと、一部のOガスと、が以下のような化学反応を起こす。 And the raw material gas G O and the sample gas G S containing O 3 gas sufficiently is mixed in the gas mixing portion 43. Here, causing all of the NO gas in the sample gas G S, and a part of the O 3 gas, but the chemical reactions described below.
 [化1]
   NO+O → NO+O   ・・・化学反応式(1)
[Chemical 1]
NO + O 3 → NO 2 + O 2 ... Chemical reaction formula (1)
 オゾン発生部42から供給するOガス量が、サンプルガスG中のNOガス量に対して過剰であることから、サンプルガスG中のNOガスは、化学反応式(1)にしたがって、全てNOガスに変換される。 O 3 gas amount supplied from the ozone generator 42 is, because it is excessive relative to NO gas amount in the sample gas G S, NO gas in the sample gas G S is according to the chemical reaction formula (1), All are converted to NO 2 gas.
 さらに、この化学反応式(1)で使用されなかった余剰のOガスは、サンプルガスG中に元より含まれていたNOガスの一部、および、化学反応式(1)にしたがって生成したNOガスの一部、と以下のような化学反応を起こす。 Moreover, excess O 3 gas not used in the chemical reaction formula (1), the sample gas G S portion of the NO 2 gas contained than the original in, and, according to the chemical reaction formula (1) The following chemical reaction occurs with a part of the generated NO 2 gas.
 [化2]
   2NO+O → N+O   ・・・化学反応式(2)
[Chemical formula 2]
2NO 2 + O 3 → N 2 O 5 + O 2 ... Chemical reaction formula (2)
 このように、ガス混合部43において、サンプルガスG中のNOガスは全てNOガスに変換される。さらに、サンプルガスG中のNOガスの一部、および、化学反応式(1)によって生成したNOガスの一部はNガスに変換される。したがって、NOガスのガス量は、サンプルガスG中のNOより生成したNOガスのガス量と、サンプルガスG中のNOガスのガス量との和から、さらにNガスのガス量の2倍を減じたものとなっている。これは化学反応式(2)により、反応後のNガス量がNOガスのガス量の半分になるためである。さらに余剰のOガスが一部残留している。 Thus, in the gas mixing unit 43, and converted all NO gas in the sample gas G S is the NO 2 gas. In addition, some of the NO 2 gas in the sample gas G S, and, in some NO 2 gas produced by a chemical reaction formula (1) is converted to N 2 O 5 gas. Therefore, the amount of gas NO 2 gas, and NO 2 gas in the gas amount produced from NO in the sample gas G S, the sum of the amount of gas NO 2 gas in the sample gas G S, further N 2 O 5 The amount of gas is reduced by twice the amount of gas. This is because the amount of N 2 O 5 gas after the reaction is half of the amount of NO 2 gas according to the chemical reaction formula (2). Furthermore, a part of the surplus O 3 gas remains.
 このようにガス調整部41は、サンプルガスGに含まれるNOガスをOガスにより酸化して全てNOガスに反応させた測定対象ガスとして出力する酸化出力を行う。これらのようなNOガス、Nガス、余剰のOガス、余剰の原料ガスGおよび余剰のサンプルガスGを含む測定対象ガスがガス流通セル21へ導入される。 The gas conditioning unit 41 as performs oxidation output for outputting a NO gas contained in the sample gas G S as a measurement object gas reacted to all oxidized NO 2 gas by the O 3 gas. Such as these NO 2 gas, N 2 O 5 gas, excess O 3 gas, the measurement object gas containing the raw material gas G O and excess sample gas G S excess is introduced into the gas flow cell 21.
 続いて、酸化出力時におけるガス分析計100のNOガス濃度cの算出について説明する。NOガス濃度測定時ではNOガス吸光用発光部11のみ発光する。NOガス吸光用発光部11からのNOガス吸光用照射光は、部分反射部13によって既知の一定の反射率によって反射され、基準光受光部32に入射する。したがって基準光受光部32の信号から出力強度Pを求めることができる Next, calculation of the NO 2 gas concentration cm of the gas analyzer 100 at the time of oxidation output will be described. At the time of measuring the NO 2 gas concentration, only the NO 2 gas absorption light emitting unit 11 emits light. NO 2 irradiation light gas absorption from NO 2 gas absorption for the light emitting unit 11 is reflected by the known constant reflectivity by the partial reflection unit 13 and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the signal of the reference light receiving unit 32.
 また、部分反射部13を透過して光透過窓23を経てガス流通セル21内の検出空間25に入射したNOガス吸光用照射光は、検出空間25を伝播しながら、NOガスによって吸光される。このような吸光されたNOガス吸光用照射光が、光透過窓24を透過し、透過光受光部31に入射する。したがって、透過光受光部31の信号から出力強度Pを求めることができる。 Further, NO 2 irradiation light gas absorption incident on the detection space 25 of the passes through the partial reflection unit 13 light transmissive window 23 via a gas flow cell 21, while propagating the detection space 25, absorption by NO 2 gas Is done. Such absorbed light for absorbing NO 2 gas passes through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the signal of the transmitted light receiving unit 31.
 なお、このように受光素子として透過光受光部31および基準光受光部32を用いることにより、単に濃度を測定できるだけでなく、NOガス吸光用発光部11の出力がさまざまな要因で変動しても、2個の受光信号の比を算出することにより濃度測定の誤差を低減できるという効果がある。 By using the transmitted light receiving unit 31 and the reference light receiving unit 32 as the light receiving elements in this way, not only can the concentration be measured, but also the output of the NO 2 gas absorbing light emitting unit 11 varies due to various factors. Also, there is an effect that an error in density measurement can be reduced by calculating the ratio of the two received light signals.
 透過光受光部31、基準光受光部32からの出力信号は、信号処理・駆動制御部61に伝送される。信号処理・駆動制御部61は、上記の数式1に基づいて、ガス流通セル21の検出空間25内におけるNOガス濃度を算出する。なお、Oガスを生成するための原料ガスGがガス混合部43において混合されているため、NOガス濃度は原料ガスGとサンプルガスGの流量混合比に応じて希釈されている。そこで、ガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているNOガス濃度cを算出する。 Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61. The signal processing / drive control unit 61 calculates the NO 2 gas concentration in the detection space 25 of the gas flow cell 21 based on the above mathematical formula 1. Since the raw material gas G O for producing O 3 gas is mixed in the gas mixing unit 43, NO 2 gas concentration is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S Yes. Therefore, by multiplying the flow mixing ratio of a gas mixing section 43, calculates the NO 2 gas concentration c m contained in the sample gas G S.
 次に、ガス分析計100による反応後に残留するOガス濃度cの算出について説明する。これは(b)酸化出力時のOガス吸光用照射光による分析である。酸化出力時では、上記のようなNOガス、Nガス、余剰のOガス、余剰の原料ガスGおよび余剰のサンプルガスGを含む測定対象ガスがガス流通セル21へ導入される。 Next, calculation of the O 3 gas concentration c 3 remaining after the reaction by the gas analyzer 100 will be described. This is (b) analysis with irradiation light for absorbing O 3 gas at the time of oxidation output. In the oxidation output, introduced NO 2 gas as described above, N 2 O 5 gas, excess O 3 gas, the measurement object gas containing the raw material gas G O and excess sample gas G S surplus to gas flow cell 21 Is done.
 Oガス濃度測定時ではOガス吸光用発光部12のみ発光する。Oガス吸光用発光部12からのOガス吸光用照射光は、部分反射部13によって既知の一定の反射率によって反射され、基準光受光部32に入射する。したがって基準光受光部32の信号から出力強度Pを求めることができる。 At the time of measuring the O 3 gas concentration, only the O 3 gas absorption light emitting unit 12 emits light. Irradiation light for absorbing O 3 gas from the light emitting unit 12 for absorbing O 3 gas is reflected by the partial reflection unit 13 with a known constant reflectance and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the signal from the reference light receiving unit 32.
 また、部分反射部13を透過して光透過窓23を経てガス流通セル21内の検出空間25に入射したOガス吸光用照射光は、検出空間25を伝播しながら、OガスおよびNOガスによって吸光される。このような吸光されたOガス吸光用照射光が、光透過窓24を透過し、透過光受光部31に入射する。したがって、透過光受光部31の信号から出力強度Pを求めることができる。ただし、この出力強度PはNOガスによる吸光も含んでいる。 In addition, the irradiation light for absorbing O 3 gas that has passed through the partial reflection portion 13 and entered the detection space 25 in the gas flow cell 21 through the light transmission window 23 propagates through the detection space 25, while O 3 gas and NO. Absorbed by two gases. Such absorbed light for absorbing O 3 gas is transmitted through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, it is possible to determine the output intensity P 1 from the signal of the transmitted light receiving unit 31. However, the output intensity P 1 includes light absorption by NO 2 gas.
 なお、このように受光素子として透過光受光部31および基準光受光部32を用いることにより、単に濃度を測定できるだけでなく、Oガス吸光用発光部12の出力がさまざまな要因で変動しても、2個の受光信号の比を算出することにより濃度測定の誤差を低減できるという効果がある。 In addition, by using the transmitted light receiving unit 31 and the reference light receiving unit 32 as the light receiving elements in this way, not only can the concentration be measured, but the output of the light emitting unit 12 for absorbing O 3 gas varies due to various factors. Also, there is an effect that an error in density measurement can be reduced by calculating the ratio of the two received light signals.
 透過光受光部31、基準光受光部32からの出力信号は、信号処理・駆動制御部61に伝送される。信号処理・駆動制御部61では出力強度P、Pを算出し、数式1に基づいて、Oガス濃度+NOガス濃度を算出し、さらにガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているOガス濃度c+NOガス濃度cを算出する。 Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61. The signal processing / drive control unit 61 calculates the output intensities P 0 and P 1 , calculates the O 3 gas concentration + NO 2 gas concentration based on Equation 1, and multiplies the flow rate mixing ratio in the gas mixing unit 43. by, O 3 calculates the gas concentration c 3 + NO 2 gas concentration c m contained in the sample gas G S.
 続いて、オゾン発生部42を不動作状態としてガス調整部41を通常出力させた上での測定である。この際に、サンプルガスGに含まれるNOガス濃度cを求める。これは上記の(c)通常出力時のNOガス吸光用照射光による分析である。 Subsequently, the measurement is performed after the ozone generating unit 42 is in an inoperative state and the gas adjusting unit 41 is normally output. In this case, determining the NO 2 gas concentration c 2 in the sample gas G S. This is (c) the analysis by the irradiation light for absorbing NO 2 gas at the normal output.
 オゾン発生部42は不動作状態である。このとき、前述のように原料ガスGがオゾン発生部42をそのまま通過し、ガス混合部43においてサンプルガスGと混合される。Oガスが存在しないため化学反応が起きることはなく、無反応の原料ガスGとサンプルガスGとがそのままガス混合部43から流出する。ガス調整部41は無反応のサンプルガスGと原料ガスGとを測定対象ガスとして出力するという通常出力を行う。 The ozone generator 42 is in an inoperative state. At this time, the raw material gas G O is passes through the ozone generator 42 as described above, is mixed with the sample gas G S in the gas mixing portion 43. O 3 never since the gas is not present chemical reaction occurs, and the raw material gas G O and the sample gas G S-free reaction as it flows out from the gas mixing unit 43. Gas conditioning unit 41 performs a normal output that outputs the sample gas G S and the raw material gas G O unresponsive as a measurement target gas.
 このようにOガスが存在しないために、ガス混合部43で化学反応式(1)および化学反応式(2)で示される化学反応式は起きない。 Since there is no O 3 gas in this way, the chemical reaction formulas represented by the chemical reaction formula (1) and the chemical reaction formula (2) do not occur in the gas mixing unit 43.
 この結果、ガス流通セル21に流通するサンプルガスGに含まれるガスの状態は、サンプルガスGに含まれていたNOガス、NOガスが全てそのままの状態となっている。また、原料ガスがガス混合部43において混合されているため、NOガス、NOガスの各濃度は原料ガスGとサンプルガスGの流量混合比に応じて希釈されている。このような原料ガスGとサンプルガスGとがガス流通セル21へ導入される。 As a result, the state of gas in the sample gas G S that circulates in the gas flow cell 21, NO gas contained in the sample gas G S, NO 2 gas has become all intact. Further, since the raw material gas is mixed in the gas mixing unit 43, NO gas, the concentration of NO 2 gas is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S. And such feed gas G O and the sample gas G S is introduced into the gas flow cell 21.
 そしてガス濃度の検出自体は先に説明したオゾン発生部42の動作時(酸化出力時)と同様にして求められる。このようにしてNOガス濃度cが算出される。 The detection of the gas concentration itself is obtained in the same manner as the operation of the ozone generator 42 described above (during oxidation output). In this way, the NO 2 gas concentration c 2 is calculated.
 次に、オゾン発生部42の動作時で酸化出力時のガス濃度と、不動作時で通常出力時のガス濃度と、の組み合わせにより、サンプルガスG中のNOガス濃度cを算出する。
 先に説明したように、
(a)酸化出力時のNOガス吸光用照射光による分析で算出されたNOガス濃度c
(b)酸化出力時のOガス吸光用照射光による分析で算出されたOガス濃度c+NOガス濃度c
(c)通常出力時のNOガス吸光用照射光による分析で算出されたNOガス濃度c
が測定されている。ここで、NOガス濃度cが判別しているため、Oガス濃度cも判別している。
Then, it calculates the gas concentration upon oxidation output operation of the ozone generator 42, and the gas concentration at the time of normal output in an off-state, the combination of a NO gas concentration c 1 in the sample gas G S.
As explained earlier,
(A) NO 2 gas concentration cm calculated by analysis with irradiation light for absorbing NO 2 gas during oxidation output,
(B) O 3 gas concentration c 3 + NO 2 gas concentration cm calculated by analysis with irradiation light for O 3 gas absorption at oxidation output
(C) NO 2 gas concentration c 2 calculated by analysis with irradiation light for absorbing NO 2 gas at normal output,
Has been measured. Here, since the NO 2 gas concentration cm is determined, the O 3 gas concentration c 3 is also determined.
 ここで、酸化出力状態のNOガス濃度cは、測定対象ガスのうちで、サンプルガスGに含まれていた元のNOガス濃度c及び元のNOガス濃度cの和から、Nガス濃度の2倍を減じた濃度である。Nの生成には、2個のNOが必要なためである。換言すれば、Nガス濃度は元のNOガス濃度c及び元のNOガス濃度cの和から、NOガス濃度cを減じた濃度の1/2である。なお、オゾン発生部42により供給されるOガス濃度は、オゾン発生部42が内蔵するオゾン計等により予め知ることができ、その値をcとする。 Here, the NO 2 gas concentration c m oxidation output state, of the measurement target gas, from the sum of the sample gas G of the original that was included in the S NO gas concentration c 1 and the original NO 2 gas concentration c 2 , The concentration obtained by subtracting twice the N 2 O 5 gas concentration. This is because the production of N 2 O 5 requires two NO 2 . In other words, the N 2 O 5 gas concentration is ½ of the concentration obtained by subtracting the NO 2 gas concentration cm from the sum of the original NO gas concentration c 1 and the original NO 2 gas concentration c 2 . Note that the O 3 gas concentration supplied by the ozone generator 42 can be known in advance by an ozone meter or the like built in the ozone generator 42, and the value is c 0 .
  ここで、c、c、c、c、cの関係は、次式のようになる。 Here, the relationship between c 0 , c 1 , c 2 , c 3 , and cm is as follows.
 [数2]
   反応で消費されたOガス濃度
   =供給されるOガス濃度-測定されたOガス濃度
   =c-c
[Equation 2]
O 3 gas concentration which has been consumed in the reaction = O 3 gas concentration is supplied - measured O 3 gas concentration = c 0 -c 3
 ここで反応により消費されるOガスは、NOガスからNOガスへの反応に用いられ、さらにNOガスからNガスへの反応に用いられる。従って、次式のようになる。 Here, the O 3 gas consumed by the reaction is used for a reaction from NO gas to NO 2 gas, and further used for a reaction from NO 2 gas to N 2 O 5 gas. Therefore, the following equation is obtained.
 [数3]
   反応で消費されたOガス濃度
     =測定対象ガス中のNOガス濃度+測定対象ガス中のNガス濃度
     =c+(c+c-c)/2
[Equation 3]
Concentration of O 3 gas consumed in the reaction
      = NO gas concentration in measurement target gas + N 2 O 5 gas concentration in measurement target gas
      = C 1 + (c 1 + c 2 −c m ) / 2
 この二式は等しいため以下の式のようになる。 Since these two formulas are equal, the following formula is obtained.
 [数4]
   c-c3 =c+(c+c-c)/2
[Equation 4]
c 0 −c 3 = c 1 + (c 1 + c 2 −c m ) / 2
  したがって、NOガス濃度cは次式のようになる。 Therefore, the NO gas concentration c 1 is expressed by the following equation.
 [数5]
  c={2(c-c)-(c-c)}/3
[Equation 5]
c 1 = {2 (c 0 -c 3 )-(c 2 -c m )} / 3
 上記(a)によりcが、上記(b)によりcが、上記(c)によりcが、それぞれ測定により算出される。また、cは予め知り得ている。
 これにより、NOガス濃度cを算出することができる。
(A) above by c m is the c 3 is a (b), the c 2 is the (c), is calculated by the respective measurements. In addition, c 0 is getting to know in advance.
Thus, we are possible to calculate the NO gas concentration c 1.
 このようにして、NOガス濃度c、NOガス濃度cを測定することができる。
 これらの測定方法を組み合わせることにより、NOガス、NOのガス濃度を測定することができる。
In this way, the NO gas concentration c 1 and the NO 2 gas concentration c 2 can be measured.
By combining these measurement methods, the gas concentrations of NO gas and NO 2 can be measured.
 また、ガス濃度の校正のために、ゼロガスGZEROまたはスパンガスGSPANを用いることができる。ゼロガスGZEROは、NOガス吸光用発光部11およびOガス吸光用発光部12が吸光を示さないガス、例えば窒素ガス(Nガス)である。スパンガスGSPANは、所望の測定レンジの最大濃度値で校正されたガスで、例えばNOガス、NOガスが用いられる。 Also, zero gas G ZERO or span gas G SPAN can be used for gas concentration calibration. The zero gas G ZERO is a gas in which the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 do not absorb light, for example, nitrogen gas (N 2 gas). Span gas G SPAN is a gas that has been calibrated at a maximum concentration value of the desired measurement range, such as NO gas, NO 2 gas is used.
 サンプルガスGの供給を止め、その後にゼロガスGZEROの供給を行ってゼロガスGZERO流通時の受光信号を測定して校正し、または、スパンガスGSPANの供給を行ってスパンガスGSPAN流通時の吸光された受光信号を測定して校正を行うことができる。この校正は随時実施できるが、構成部品の経年変化によってガス濃度指示値が変動することが想定される場合に行われ、正確な値を指示させる。
 ガス分析計100はこのようなものである。
Stopping the supply of the sample gas G S, followed by performing the supply of the zero gas G ZERO calibrated by measuring the light signal at the zero gas G ZERO distribution, or at the time span G SPAN flow by performing the supply of the span gas G SPAN Calibration can be performed by measuring the absorbed light-receiving signal. Although this calibration can be performed at any time, it is performed when it is assumed that the gas concentration indicating value fluctuates due to aging of the component parts, and an accurate value is indicated.
The gas analyzer 100 is like this.
 続いて他の第2形態について説明する。本形態ではガス分析計としての構成は図1を用いて説明した先の第1形態と同じであるが分析対象が相違している。先の第1形態ではNOガス濃度c、NOガス濃度cを算出したが、以上の測定と同時にSOガス濃度cの測定を併せて行う。本形態では、サンプルガスがNOガス、NOガス、SOガスを含み、これらのNOガス濃度c、NOガス濃度c、SOガス濃度cを測定するものである。 Next, another second embodiment will be described. In this embodiment, the configuration as a gas analyzer is the same as that of the first embodiment described with reference to FIG. 1, but the analysis object is different. In the first embodiment, the NO gas concentration c 1 and the NO 2 gas concentration c 2 are calculated, but the SO 2 gas concentration c S is measured simultaneously with the above measurement. In this embodiment, the sample gas contains NO gas, NO 2 gas, and SO 2 gas, and these NO gas concentration c 1 , NO 2 gas concentration c 2 , and SO 2 gas concentration c S are measured.
 SOガスの紫外線吸収スペクトルは、図2に示すように270nm~310nm付近であり、Oガスの紫外線吸収スペクトルと重なっている。Oガス吸光用発光部12の中心波長を280nm付近とすることにより、SOガスの吸収信号を得ることが可能となる。 UV absorption spectrum of the SO 2 gas is near 270 nm ~ 310 nm, as shown in FIG. 2, overlaps the ultraviolet absorption spectrum of the O 3 gas. By setting the central wavelength of the O 3 gas light-absorbing light emitting portion 12 to be around 280 nm, an SO 2 gas absorption signal can be obtained.
 このような測定は、オゾン発生部42を動作状態としてガス調整部41を酸化出力としたときと、オゾン発生部42を不動作状態としてガス調整部41を通常出力としたときと、でそれぞれ行われる。したがって、このようなガス分析計100は、
(a)酸化出力時のNOガス吸光用照射光による分析、
(b)酸化出力時のOガス吸光用照射光による分析、
(c)通常出力時のNOガス吸光用照射光による分析、
(d)通常出力時のOガス吸光用照射光による分析、
という4種類の分析が可能であり、(a)、(b)、(c)、(d)の全ての分析を行い、これらで得た測定値を用いてガス濃度を算出する。
Such measurement is performed when the ozone generation unit 42 is in an operating state and the gas adjustment unit 41 is in an oxidized output, and when the ozone generation unit 42 is in a non-operational state and the gas adjustment unit 41 is in a normal output. Is called. Therefore, such a gas analyzer 100 is
(A) Analysis with irradiation light for absorbing NO 2 gas at the time of oxidation output,
(B) analysis by the O 3 gas absorption for the irradiation light at the time of oxidation output,
(C) Analysis with irradiation light for absorbing NO 2 gas at normal output,
(D) Analysis with irradiation light for absorbing O 3 gas at normal output,
The following four types of analysis are possible: (a), (b), (c), and (d) are all analyzed, and the gas concentration is calculated using the measured values obtained by these.
 次に、このガス分析計100によってサンプルガスG中に含まれるNOガス、NOガスおよびSOガスの3成分のガス濃度を測定する方法について説明する。 Next, a method for measuring the gas concentration of the three components of NO gas, NO 2 gas and SO 2 gas contained by the gas analyzer 100 in the sample gas G S.
 まず、(a)酸化出力時のNOガス吸光用照射光による分析を行うものとして説明する。オゾン発生部42を動作状態としてガス調整部41を酸化出力させた上での測定である。この際に、酸化出力時のNOガス濃度cを求める。 First, description will be made on the assumption that (a) analysis is performed using irradiation light for absorbing NO 2 gas at the time of oxidation output. This is a measurement after the ozone generating section 42 is in an operating state and the gas adjusting section 41 is oxidized and output. At this time, the NO 2 gas concentration cm at the oxidation output is obtained.
 オゾン発生部42は動作状態である。このときは上記のようにガス調整部41は、サンプルガスGに含まれるNOガスをOガスにより酸化して全てNOガスに反応させた測定対象ガスとして出力する酸化出力を行う。なお、SOガスとOガスとは化学反応を起こさない。これらのようなSOガス、NOガス、Nガス、余剰のOガス、余剰の原料ガスGおよび余剰のサンプルガスGを含む測定対象ガスがガス流通セル21へ導入される。 The ozone generator 42 is in an operating state. Gas conditioning unit 41 as described above this time, an oxidation output for outputting a NO gas contained in the sample gas G S as a measurement object gas reacted to all oxidized NO 2 gas by the O 3 gas. The SO 2 gas and the O 3 gas do not cause a chemical reaction. Such as these SO 2 gas, NO 2 gas, is introduced into the N 2 O 5 gas, excess O 3 gas, the excess of the raw material gas G O and excess sample gas G S measurement target gas is gas flow cell 21 comprising The
 続いて、酸化出力時におけるガス分析計100のNOガス濃度cの算出について説明する。NOガス濃度測定時ではNOガス吸光用発光部11のみ発光する。NOガス吸光用発光部11からのNOガス吸光用照射光は、部分反射部13によって既知の一定の反射率によって反射され、基準光受光部32に入射する。したがって基準光受光部32の信号から出力強度Pを求めることができる。 Next, calculation of the NO 2 gas concentration cm of the gas analyzer 100 at the time of oxidation output will be described. Than when NO 2 gas concentration measurement emits light only NO 2 gas absorption for the light emitting unit 11. NO 2 irradiation light gas absorption from NO 2 gas absorption for the light emitting unit 11 is reflected by the known constant reflectivity by the partial reflection unit 13 and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the signal from the reference light receiving unit 32.
 また、部分反射部13を透過して光透過窓23を経てガス流通セル21内の検出空間25に入射したNOガス吸光用照射光は、検出空間25を伝播しながら、NOガスによって吸光される。このような吸光されたNOガス吸光用照射光が、光透過窓24を透過し、透過光受光部31に入射する。したがって、透過光受光部31の信号から出力強度Pを求めることができる。 Further, NO 2 irradiation light gas absorption incident on the detection space 25 of the passes through the partial reflection unit 13 light transmissive window 23 via a gas flow cell 21, while propagating the detection space 25, absorption by NO 2 gas Is done. Such absorbed light for absorbing NO 2 gas passes through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the signal of the transmitted light receiving unit 31.
 透過光受光部31、基準光受光部32からの出力信号は、信号処理・駆動制御部61に伝送される。信号処理・駆動制御部61は、上記の数式1に基づいて、ガス流通セル21の検出空間25内におけるNOガス濃度を算出する。なお、Oガスを生成するための原料ガスGがガス混合部43において混合されているため、NOガス濃度は原料ガスGとサンプルガスGの流量混合比に応じて希釈されている。そこで、ガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているNOガス濃度cを算出する。 Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61. The signal processing / drive control unit 61 calculates the NO 2 gas concentration in the detection space 25 of the gas flow cell 21 based on the above mathematical formula 1. Since the raw material gas G O for producing O 3 gas is mixed in the gas mixing unit 43, NO 2 gas concentration is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S Yes. Therefore, by multiplying the flow mixing ratio of a gas mixing section 43, calculates the NO 2 gas concentration c m contained in the sample gas G S.
 次に、ガス分析計100による反応後に残留するOガス濃度cおよびSOガス濃度cの算出について説明する。これは(b)酸化出力時のOガス吸光用照射光による分析である。酸化出力時では、上記のようなSOガス、NOガス、Nガス、余剰のOガス、余剰の原料ガスGおよび余剰のサンプルガスGを含む測定対象ガスがガス流通セル21へ導入される。なお、SOガスは酸化出力時でも無反応でそのままである。 Next, calculation of the O 3 gas concentration c 3 and the SO 2 gas concentration c S remaining after the reaction by the gas analyzer 100 will be described. This is (b) analysis with irradiation light for absorbing O 3 gas at the time of oxidation output. In the oxidation output, SO 2 gas, as described above, NO 2 gas, N 2 O 5 gas, excess O 3 gas, the measurement object gas containing the raw material gas G O and excess sample gas G S of excess gas flow It is introduced into the cell 21. Note that the SO 2 gas remains unreacted even at the time of oxidation output.
 Oガス濃度測定時ではOガス吸光用発光部12のみ発光する。Oガス吸光用発光部12からのOガス吸光用照射光は、部分反射部13によって既知の一定の反射率によって反射され、基準光受光部32に入射する。したがって基準光受光部32の信号から出力強度Pを求めることができる。 At the time of measuring the O 3 gas concentration, only the O 3 gas absorption light emitting unit 12 emits light. Irradiation light for absorbing O 3 gas from the light emitting unit 12 for absorbing O 3 gas is reflected by the partial reflection unit 13 with a known constant reflectance and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the signal from the reference light receiving unit 32.
 また、部分反射部13を透過して光透過窓23を経てガス流通セル21内の検出空間25に入射したOガス吸光用照射光は、検出空間25を伝播しながら、SOガス、OガスおよびNOガスによって吸光される。このような吸光されたOガス吸光用照射光が、光透過窓24を透過し、透過光受光部31に入射する。したがって、透過光受光部31の信号から出力強度Pを求めることができる。当然に出力強度PはSOガス、OガスおよびNOガスによる吸光を含んでいる。 Further, O 3 irradiation light gas absorption incident on the detection space 25 in the gas flow cell 21 passes through the partial reflection unit 13 through the light transmission window 23, while propagating the detection space 25, SO 2 gas, O Absorbed by 3 gas and NO 2 gas. Such absorbed light for absorbing O 3 gas is transmitted through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the signal of the transmitted light receiving unit 31. Naturally, the output intensity P 1 includes light absorption by SO 2 gas, O 3 gas and NO 2 gas.
 透過光受光部31、基準光受光部32からの出力信号は、信号処理・駆動制御部61に伝送される。信号処理・駆動制御部61では出力強度P、Pを算出し、数式1に基づいて、Oガス濃度+SOガス濃度+NOガス濃度を算出し、さらにガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているOガス濃度c+SOガス濃度c+NOガス濃度cを算出する。 Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61. The signal processing / drive control unit 61 calculates the output intensities P 0 and P 1 , calculates the O 3 gas concentration + SO 2 gas concentration + NO 2 gas concentration based on Equation 1, and further mixes the flow rate in the gas mixing unit 43. by multiplying the ratio to calculate the sample gas G O 3 gas concentration is being included in the S c 3 + SO 2 gas concentration c S + NO 2 gas concentration c m.
 続いて、オゾン発生部42を不動作状態としてガス調整部41を通常出力させた上での測定である。この際に、サンプルガスGに含まれるNOガス濃度cを求める。これは上記の(c)通常出力時のNOガス吸光用照射光による分析である。 Subsequently, the measurement is performed after the ozone generating unit 42 is in an inoperative state and the gas adjusting unit 41 is normally output. In this case, determining the NO 2 gas concentration c 2 in the sample gas G S. This is (c) the analysis by the irradiation light for absorbing NO 2 gas at the normal output.
 オゾン発生部42は不動作状態である。このときガス流通セル21に流通するサンプルガスGに含まれるガスの状態は、サンプルガスGに含まれていたNOガス、NOガス、SOガスが全てそのままの状態となっている。また、原料ガスGがガス混合部43において混合されているため、NOガス、NOガス、SOガスの各濃度は原料ガスGとサンプルガスGの流量混合比に応じて希釈されている。このような原料ガスGとサンプルガスGとがガス流通セル21へ導入される。 The ozone generator 42 is in an inoperative state. This state gas contained in the sample gas G S that circulates in the gas flow cell 21, NO gas contained in the sample gas G S, NO 2 gas, SO 2 gas has become all intact state. Further, since the raw material gas G O are mixed in the gas mixing portion 43, the concentration of NO gas, NO 2 gas, SO 2 gas is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S ing. And such feed gas G O and the sample gas G S is introduced into the gas flow cell 21.
 そして、ガス濃度の検出自体は先に説明したオゾン発生部42の動作時(酸化出力時)と同様にして求められるものであり、NOガス濃度が算出される。さらにガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているNOガス濃度cを算出する。 The gas concentration detection itself is obtained in the same manner as the operation of the ozone generator 42 described above (at the time of oxidation output), and the NO 2 gas concentration is calculated. Further, by multiplying the flow mixing ratio of a gas mixing section 43, it calculates the NO 2 gas concentration c 2 contained in the sample gas G S.
 続いて、オゾン発生部42を不動作状態としてガス調整部41を通常出力させた上での測定である。この際に、サンプルガスGに含まれるSOガス濃度c+NOガス濃度cを求める。これは上記の(d)通常出力時のOガス吸光用照射光による分析である。 Subsequently, the measurement is performed after the ozone generating unit 42 is in an inoperative state and the gas adjusting unit 41 is normally output. At this time, obtaining the SO 2 gas concentration c S + NO 2 gas concentration c 2 in the sample gas G S. This is the analysis by the above (d) irradiation light for absorbing O 3 gas at normal output.
 オゾン発生部42は不動作状態である。このときガス流通セル21に流通するサンプルガスGに含まれるガスの状態は、サンプルガスGに含まれていたNOガス、NOガス、SOガスが全てそのままの状態となっている。また、原料ガスGがガス混合部43において混合されているため、NOガス、NOガス、SOガスの各濃度は原料ガスGとサンプルガスGの流量混合比に応じて希釈されている。このような原料ガスGとサンプルガスGとがガス流通セル21へ導入される。 The ozone generator 42 is in an inoperative state. This state gas contained in the sample gas G S that circulates in the gas flow cell 21, NO gas contained in the sample gas G S, NO 2 gas, SO 2 gas has become all intact state. Further, since the raw material gas G O are mixed in the gas mixing portion 43, the concentration of NO gas, NO 2 gas, SO 2 gas is diluted in accordance with the flow mixing ratio of the raw material gas G O and the sample gas G S ing. And such feed gas G O and the sample gas G S is introduced into the gas flow cell 21.
 そして、ガス濃度の検出自体は先の説明と同様にして求められるものであり、SOガス濃度+NOガス濃度が算出される。さらにガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているSOガス濃度c+NOガス濃度cを算出する。 The gas concentration detection itself is obtained in the same manner as described above, and the SO 2 gas concentration + NO 2 gas concentration is calculated. Further, by multiplying the flow mixing ratio of a gas mixing section 43, and calculates the SO 2 gas concentration c S + NO 2 gas concentration c 2 contained in the sample gas G S.
 次に、オゾン発生部42の動作時で酸化出力時のガス濃度と、不動作時で通常出力時のガス濃度と、の組み合わせにより、サンプルガスG中のNOガス濃度cを算出する。
 先に説明したように、
(a)酸化出力時のNOガス吸光用照射光による分析で算出されたNOガス濃度c
(b)酸化出力時のOガス吸光用照射光による分析で算出されたOガス濃度c+NOガス濃度c+SOガス濃度c
(c)通常出力時のNOガス吸光用照射光による分析で算出されたNOガス濃度c
(d)通常出力時のNOガス吸光用照射光による分析で算出されたNOガス濃度c+SOガス濃度c
 が測定されている。
Then, it calculates the gas concentration upon oxidation output operation of the ozone generator 42, and the gas concentration at the time of normal output in an off-state, the combination of a NO gas concentration c 1 in the sample gas G S.
As explained earlier,
(A) NO 2 gas concentration cm calculated by analysis with irradiation light for absorbing NO 2 gas during oxidation output,
(B) O 3 gas concentration c 3 + NO 2 gas concentration c m + SO 2 gas concentration c S calculated by analysis with O 3 gas absorption irradiation light during oxidation output
(C) NO 2 gas concentration c 2 calculated by analysis with irradiation light for absorbing NO 2 gas at normal output,
(D) NO 2 gas concentration c 2 + SO 2 gas concentration c S calculated by analysis with irradiation light for absorbing NO 2 gas at normal output,
Has been measured.
 ここで、通常出力時のNOガス濃度cが判別しているため、SOガス濃度cが判別している。また、酸化出力時のNOガス濃度cが判別しているため、Oガス濃度cが判別している。また、NOガス濃度cも上記した[数5]で表される。 Here, since the NO 2 gas concentration c 2 at the normal output is determined, the SO 2 gas concentration c S is determined. Further, since the NO 2 gas concentration cm at the time of oxidation output is determined, the O 3 gas concentration c 3 is determined. Further, the NO gas concentration c 1 is also expressed by the above [Equation 5].
 このようにして、NOガス濃度c、NOガス濃度c、SOガス濃度cを測定することができる。
 これらの測定方法を組み合わせることにより、NOガス、NOガス、SOガスのガス濃度を測定することができる。
In this way, the NO gas concentration c 1 , the NO 2 gas concentration c 2 , and the SO 2 gas concentration c S can be measured.
By combining these measurement methods, the gas concentrations of NO gas, NO 2 gas, and SO 2 gas can be measured.
 また、ガス濃度の校正のために、ゼロガスGZEROまたはスパンガスGSPANを用いることができる。ゼロガスGZEROは、NOガス吸光用発光部11およびOガス吸光用発光部12が吸光を示さないガス、例えば窒素ガスである。スパンガスGSPANは、所望の測定レンジの最大濃度値で校正されたガスで、例えばNO、NO、SOガスが用いられる。 Also, zero gas G ZERO or span gas G SPAN can be used for gas concentration calibration. Zero gas G ZERO is a gas, for example, nitrogen gas, in which the NO 2 gas absorption light-emitting unit 11 and the O 3 gas absorption light-emitting unit 12 do not absorb light. The span gas G SPAN is a gas calibrated with the maximum concentration value of a desired measurement range, and for example, NO, NO 2 , SO 2 gas is used.
 サンプルガスGの供給を止め、その後にゼロガスGZEROの供給を行ってゼロガスGZERO流通時の受光信号を測定して校正し、または、スパンガスGSPANの供給を行ってスパンガスGSPAN流通時の吸光された受光信号を測定して校正を行うことができる。この校正は随時実施できるが、構成部品の経年変化によってガス濃度指示値が変動することが想定される場合に行われ、正確な値を指示させる。
 ガス分析計100はこのようなものである。
Stopping the supply of the sample gas G S, followed by performing the supply of the zero gas G ZERO calibrated by measuring the light signal at the zero gas G ZERO distribution, or at the time span G SPAN flow by performing the supply of the span gas G SPAN Calibration can be performed by measuring the absorbed light-receiving signal. Although this calibration can be performed at any time, it is performed when it is assumed that the gas concentration indicating value fluctuates due to aging of the component parts, and an accurate value is indicated.
The gas analyzer 100 is like this.
 従って、装置構成を変更することなく、SO濃度測定機能を付加することが可能である。ガス分析計100はこのようにして分析を行う。
 本発明によれば、簡易な構成で、NOガス、NOガス、SOガスのガス濃度を精度よく測定することができる。
Therefore, it is possible to add the SO 2 concentration measurement function without changing the device configuration. The gas analyzer 100 performs the analysis in this way.
According to the present invention, the gas concentrations of NO gas, NO 2 gas, and SO 2 gas can be accurately measured with a simple configuration.
 続いて第3の形態について図3を参照しつつ説明する。ガス分析計200は、図3で示すように、NOガス吸光用発光部11、Oガス吸光用発光部12、部分反射部13、ガス流通セル21、透過光受光部31、基準光受光部32、ガス調整部41、ガス吸引部51、信号処理・駆動制御部61、補正部71を備える。 Next, a third embodiment will be described with reference to FIG. As shown in FIG. 3, the gas analyzer 200 includes a light emitting unit 11 for absorbing NO 2 gas, a light emitting unit 12 for absorbing O 3 gas, a partial reflecting unit 13, a gas flow cell 21, a transmitted light receiving unit 31, and a reference light receiving unit. Unit 32, gas adjustment unit 41, gas suction unit 51, signal processing / drive control unit 61, and correction unit 71.
 図1を用いて説明した上記の第1、第2の形態と比較すると、特に補正部71が追加された点が相違する。ここでは補正部71およびその動作について重点的に説明するとともに他の構成については同じ番号を付すとともに重複する説明を省略する。 Compared with the first and second embodiments described above with reference to FIG. 1, the difference is that a correction unit 71 is added. Here, the correction unit 71 and its operation will be described with emphasis, and the other components will be assigned the same numbers and redundant description will be omitted.
 補正部71は、基準光受光部32、信号処理・駆動制御部61、NOガス吸光用発光部11およびOガス吸光用発光部12と接続され、特に基準光受光部32からの信号に基づいてNOガス吸光用発光部11およびOガス吸光用発光部12を駆動させる電流を補正する機能を有する。 The correction unit 71 is connected to the reference light receiving unit 32, the signal processing / drive control unit 61, the NO 2 gas absorption light emitting unit 11, and the O 3 gas absorption light emitting unit 12. Based on this, it has a function of correcting the current for driving the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12.
 基準光受光部32がNOガス吸光用発光部11からのNOガス吸光用照射光による基準光を受光してその強度信号を出力する。補正部71は、強度信号に基づき、出力強度が一定になるように発光ダイオード駆動電流である駆動信号を補正した上で出力する。
 同様に、基準光受光部32がOガス吸光用発光部12からのOガス吸光用照射光による基準光を受光してその強度信号を出力する。補正部71は、強度信号に基づき、出力強度が一定になるように発光ダイオード駆動電流である駆動信号を補正した上で出力する。
Reference-light receiving part 32 by receiving the reference light by NO 2 gas absorption for the irradiation light from the NO 2 gas absorption for the light emitting unit 11 and outputs the intensity signal. Based on the intensity signal, the correction unit 71 corrects and outputs the drive signal, which is a light emitting diode drive current, so that the output intensity is constant.
Similarly, the reference light receiving unit 32 by receiving the reference light by the O 3 gas absorption for the irradiation light from the O 3 gas absorption for the light emitting unit 12 and outputs the intensity signal. Based on the intensity signal, the correction unit 71 corrects and outputs the drive signal, which is a light emitting diode drive current, so that the output intensity is constant.
 このような補正部71を追加した構成とすることで、NOガス吸光用発光部11およびOガス吸光用発光部12から出力される照射光の変動が少なくなっており、検出精度を向上させることができる。 By adopting a configuration in which such a correction unit 71 is added, fluctuations in irradiation light output from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 are reduced, and detection accuracy is improved. Can be made.
 続いて、上記の第1、第2、第3形態をそれぞれ改良する第4形態について図を参照しつつ説明する。図4では、先に説明した第1、第2、第3形態のガス分析計の構成に加え、さらに、NOガス吸光用発光部11の光軸上にレンズ14を備え、また、Oガス吸光用発光部12の光軸上にレンズ15を備えたものである。 Next, a fourth embodiment that improves the first, second, and third embodiments will be described with reference to the drawings. In FIG. 4, in addition to the configuration of the gas analyzer of the first, second, and third embodiments described above, a lens 14 is further provided on the optical axis of the NO 2 gas absorption light emitting unit 11, and O 3 A lens 15 is provided on the optical axis of the gas absorption light emitting unit 12.
 一般に、発光ダイオードからの発光は指向性が弱く拡散する。そのため、光透過窓23を通じてガス流通セル21の検出空間25内に入射する光の割合が低下するという問題がある。そこで、NOガス吸光用発光部11およびOガス吸光用発光部12から拡散しつつ照射される照射光の指向性を、レンズ14、レンズ15により鋭く高めている。これにより、光透過窓23を通じてガス流通セル21の検出空間25内に入射する光の割合を増やしている。その結果、信号強度を増加させ、ひいてはガス濃度測定の精度や安定性を改善する効果がある。 In general, light emitted from a light emitting diode is diffused with low directivity. Therefore, there is a problem that the ratio of the light that enters the detection space 25 of the gas flow cell 21 through the light transmission window 23 decreases. Therefore, the directivity of the irradiation light irradiated while diffusing from the NO 2 gas absorbing light emitting portion 11 and the O 3 gas absorbing light emitting portion 12 is sharply enhanced by the lens 14 and the lens 15. Thereby, the ratio of the light which enters into the detection space 25 of the gas distribution cell 21 through the light transmission window 23 is increased. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.
 なお、NOガス吸光用発光部11とレンズ14とがモジュール化により一体に構成され、また、Oガス吸光用発光部12とレンズ15とがモジュール化により一体に構成されていてもよい。 Note that the NO 2 gas light-absorbing light-emitting unit 11 and the lens 14 may be integrally configured by modularization, and the O 3 gas light-absorbing light-emitting unit 12 and the lens 15 may be integrally configured by modularization.
 続いて、上記の第1、第2、第3形態を改良する第5形態について図を参照しつつ説明する。図5に示すように、NOガス吸光用発光部11およびOガス吸光用発光部12に代えて発光部16が配置されている。この発光部16は、NOガス吸光用発光部11およびOガス吸光用発光部12を近接させて一体化した発光ダイオードアレイである。さらに、この発光部16のNOガス吸光用発光部11およびOガス吸光用発光部12の光軸上にレンズ17を配置している。 Next, a fifth embodiment that improves the first, second, and third embodiments will be described with reference to the drawings. As shown in FIG. 5, the light emitting portion 16 is arranged in place of NO 2 gas absorption for the light emitting portion 11 and the O 3 light-emitting unit 12 for gas absorption. The light emitting unit 16 is a light emitting diode array in which the NO 2 gas absorbing light emitting unit 11 and the O 3 gas absorbing light emitting unit 12 are integrated in close proximity. Further, a lens 17 is disposed on the optical axis of the light emitting unit 11 for absorbing NO 2 gas and the light emitting unit 12 for absorbing O 3 gas.
 これにより、NOガス吸光用発光部11およびOガス吸光用発光部12の光軸が近接するため、指向性を高めるためのレンズ17が1個で良い。また、光軸が近接しているため基準光受光部32への入射効率も向上する。その結果、信号強度を増加させ、ひいてはガス濃度測定の精度や安定性を改善する効果がある。 As a result, the optical axes of the NO 2 gas absorbing light emitting portion 11 and the O 3 gas absorbing light emitting portion 12 are close to each other, so that only one lens 17 for enhancing directivity is required. Further, since the optical axes are close to each other, the incident efficiency to the reference light receiving unit 32 is also improved. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.
 続いて、上記の第1、第2、第3、第4、第5形態をそれぞれ改良する第6形態について図を参照しつつ説明する。図6では、先に説明した第1、第2、第3、第4、第5形態のガス分析計の構成に加え、さらに、光透過窓24と透過光受光部31の間にレンズ18を配置したものである。レンズ18により、光透過窓24を透過してきたNOガス吸光用照射光およびOガス吸光用照射光を集光し、効率よく透過光受光部31に入射させる。その結果、信号強度を増加させ、ひいてはガス濃度測定の精度や安定性を改善する効果がある。 Next, a sixth embodiment that improves the first, second, third, fourth, and fifth embodiments will be described with reference to the drawings. In FIG. 6, in addition to the configuration of the first, second, third, fourth, and fifth gas analyzers described above, the lens 18 is further disposed between the light transmitting window 24 and the transmitted light receiving unit 31. It is arranged. The lens 18 collects the NO 2 gas absorption irradiation light and the O 3 gas absorption irradiation light transmitted through the light transmission window 24, and efficiently enters the transmitted light receiving unit 31. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.
 なお、光透過窓24とレンズ18とがモジュール化により一体に構成されていてもよい。さらには、光透過窓24自体を、光透過性があり、集光効果がある凸面形状のレンズ18とし、このレンズ18を管22に固着してガス流通セル21を構成してもよい。 In addition, the light transmission window 24 and the lens 18 may be integrally configured by modularization. Furthermore, the light transmission window 24 itself may be a convex lens 18 that is light transmissive and has a light collecting effect, and the gas flow cell 21 may be configured by fixing the lens 18 to the tube 22.
 続いて、上記の第1、第2、第3形態を改良する第6形態について図7を参照しつつ説明する。これは、ガス流通セル21の光透過窓24を反射部28に置き換え、また、透過光受光部31を部分反射部13で復路光が反射する位置に配置したものである。 Subsequently, a sixth embodiment that improves the first, second, and third embodiments will be described with reference to FIG. In this case, the light transmission window 24 of the gas flow cell 21 is replaced with a reflection part 28, and the transmitted light receiving part 31 is arranged at a position where the return light is reflected by the partial reflection part 13.
 この構成においては、NOガス吸光用発光部11およびOガス吸光用発光部12から照射される照射光である往路光が光透過窓23を透過し、管22の検出空間25内を伝播し、反射部28において反射され、復路光となる。反射された復路光は管22の検出空間25内を反対向きに伝播し、光透過窓23から出射し、部分反射部13で反射して、透過光受光部31に入射する。 In this configuration, forward light that is irradiation light emitted from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 passes through the light transmission window 23 and propagates in the detection space 25 of the tube 22. Then, the light is reflected by the reflecting portion 28 and becomes return path light. The reflected return light propagates in the detection space 25 of the tube 22 in the opposite direction, exits from the light transmission window 23, is reflected by the partial reflection unit 13, and enters the transmitted light receiving unit 31.
 この構成によれば、図1、図3の第1、第2、第3形態と比較して、ガスによる吸光のある光路長が2倍に伸びるため、吸光信号の向上、ガス濃度測定の精度や安定性を改善する効果が期待できる。 According to this configuration, compared with the first, second, and third embodiments of FIGS. 1 and 3, the optical path length with light absorption by gas is doubled, so that the light absorption signal is improved and the gas concentration measurement accuracy is improved. And can improve the stability.
 続いて、上記の第1、第2、第3形態を改良する第7形態について図8を参照しつつ説明する。これは、NOガス吸光用発光部11、Oガス吸光用発光部12および透過光受光部31を近接させつつモジュール化により一体化した発受光部19を備えたものである。さらに、ガス流通セル21の光透過窓24を反射部28に置き換え、また、透過光受光部31を部分反射部13で復路光が透過する位置に配置したものである。 Then, the 7th form which improves said 1st, 2nd, 3rd form is demonstrated, referring FIG. This is provided with a light emitting / receiving part 19 integrated by modularization while bringing the NO 2 gas absorbing light emitting part 11, the O 3 gas absorbing light emitting part 12 and the transmitted light receiving part 31 close to each other. Further, the light transmission window 24 of the gas flow cell 21 is replaced with the reflection portion 28, and the transmitted light receiving portion 31 is disposed at a position where the return light is transmitted by the partial reflection portion 13.
 これによれば、レンズ17はNOガス吸光用発光部11およびOガス吸光用発光部12からの照射光の指向性を高める機能と、透過光受光部31に入射する照射光を集光する機能を兼ね備えることとなる。また、ガスによる吸光のある光路長が2倍に伸びるため、吸光信号の向上、ガス濃度測定の精度や安定性を改善する効果が期待できる。 According to this, the lens 17 condenses the irradiation light incident on the transmitted light receiving unit 31 and the function of increasing the directivity of the irradiation light from the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12. It will have the function to do. Further, since the optical path length with light absorption by gas is doubled, it is possible to expect the effect of improving the light absorption signal and improving the accuracy and stability of gas concentration measurement.
 続いて、上記の第1、第2、第3、第4、第5、第6、第7形態を改良する第8形態について図を参照しつつ説明する。図9は発光ダイオードのデューティー比-許容電流特性図である。本形態は先に説明した第1、第2、第3、第4、第5、第6、第7形態のガス分析計の測定精度をさらに向上させるものである。 Subsequently, an eighth embodiment that improves the first, second, third, fourth, fifth, sixth, and seventh embodiments will be described with reference to the drawings. FIG. 9 is a duty ratio-allowable current characteristic diagram of the light emitting diode. This embodiment further improves the measurement accuracy of the gas analyzers of the first, second, third, fourth, fifth, sixth, and seventh embodiments described above.
 まず原理について説明する。図9に示すように、発光ダイオードの許容電流は、一般にデューティー比を小さくして出力期間が短いほど、電流値を大きく確保できるという特徴がある。そこで、NOガス吸光用発光部11およびOガス吸光用発光部12の駆動電流を、図10に示すように大きいデューティー比から、図11に示すように小さいデューティー比(出力期間が停止期間よりも短い)とする。この際、図11に示すように出力時間は短くなるが駆動電流値を大きくすることができる。したがって、照射光の出力強度を高めて信号レベルを高く確保でき、相対的にノイズに対する信号レベルが高くなり、安定的なガス濃度値を算出することができる。 First, the principle will be described. As shown in FIG. 9, the allowable current of the light emitting diode is characterized in that, generally, the smaller the duty ratio and the shorter the output period, the larger the current value can be secured. Therefore, the drive current of the NO 2 gas absorption light emitting unit 11 and the O 3 gas absorption light emitting unit 12 is changed from a large duty ratio as shown in FIG. 10 to a small duty ratio as shown in FIG. Shorter). At this time, the output time is shortened as shown in FIG. 11, but the drive current value can be increased. Therefore, the output intensity of the irradiation light can be increased to ensure a high signal level, the signal level against noise is relatively high, and a stable gas concentration value can be calculated.
 さらに、発光ダイオードであるNOガス吸光用発光部11およびOガス吸光用発光部12の発光時間を短くすることができるため、熱等による劣化を抑制し、連続発光と比較して寿命を長く保つことが可能となる。 Furthermore, since the light emission time of the light emitting diode 11 for absorbing NO 2 gas and the light emitting portion 12 for absorbing O 3 gas can be shortened, deterioration due to heat or the like is suppressed, and the lifetime is longer than that of continuous light emission. It becomes possible to keep for a long time.
 このような本発明のガス分析計は、一酸化窒素ガス(NOガス)および二酸化窒素ガス(NO)の2成分、または、一酸化窒素ガス(NOガス)、二酸化窒素ガス(NO)および二酸化硫黄ガス(SO)の3成分を測定する分析に良好であり、例えば、ボイラ、ゴミ焼却等の燃焼排ガス測定用として最適である。その他、鉄鋼用ガス分析[高炉、転炉、熱処理炉、焼結(ペレット設備)、コークス炉]、青果貯蔵及び熟成、生化学(微生物)[発酵]、大気汚染[焼却炉、排煙脱硫・脱硝]、自動車・船等の内燃機関の排ガス(除テスタ)、防災[爆発性ガス検知、有毒ガス検知、新建築材燃焼ガス分析]、植物育成用、化学用分析[石油精製プラント、石油化学プラント、ガス発生プラント]、環境用[着地濃度、トンネル内濃度、駐車場、ビル管理]、理化学各種実験用などの分析計としても有用である。 Such a gas analyzer of the present invention comprises two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 ), or nitrogen monoxide gas (NO gas), nitrogen dioxide gas (NO 2 ) and It is good for analysis for measuring three components of sulfur dioxide gas (SO 2 ), and is optimal for measurement of combustion exhaust gas such as boiler and garbage incineration. In addition, gas analysis for steel [blast furnace, converter, heat treatment furnace, sintering (pellet equipment), coke oven], fruit and vegetable storage and ripening, biochemistry (microorganism) [fermentation], air pollution [incinerator, flue gas desulfurization / Denitration], exhaust gas (removal tester) of internal combustion engines such as automobiles and ships, disaster prevention [explosive gas detection, toxic gas detection, new building material combustion gas analysis], plant growth, chemical analysis [oil refinery plant, petrochemical Plants, gas generation plants], environmental [landing concentration, concentration in tunnels, parking lots, building management], and analytical instruments for various physics and chemistry experiments.
100、200:ガス分析計
11:NOガス吸光用発光部
12:Oガス吸光用発光部
13:部分反射部
14:レンズ
15:レンズ
16:発光部
17:レンズ
18:レンズ
19:受発光部
21:ガス流通セル
22:管
23、24:光透過窓
25:検出空間
26:ガス流入口
27:ガス流出口
28:反射部
31:透過光受光部
32:基準光受光部
41:ガス調整部
42:オゾン発生部
43:ガス混合部
51:ガス吸引部
61:信号処理・駆動制御部
71:補正部
100, 200: Gas analyzer 11: NO 2 gas absorption light emitting unit 12: O 3 gas absorption light emitting unit 13: Partial reflection unit 14: Lens 15: Lens 16: Light emission unit 17: Lens 18: Lens 19: Light reception / emission Unit 21: Gas flow cell 22: Pipe 23, 24: Light transmission window 25: Detection space 26: Gas inlet 27: Gas outlet 28: Reflector 31: Transmitted light receiver 32: Reference light receiver 41: Gas adjustment Unit 42: ozone generation unit 43: gas mixing unit 51: gas suction unit 61: signal processing / drive control unit 71: correction unit

Claims (9)

  1.  サンプルガスに含まれる一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の2成分のガス濃度を測定するガス分析計であって、
     サンプルガスに含まれる一酸化窒素ガス(NOガス)をオゾンの酸化により全て二酸化窒素ガス(NOガス)に反応させ、さらに二酸化窒素ガス(NOガス)の一部をオゾンの酸化により五酸化二窒素ガス(Nガス)に反応させた測定対象ガスとして出力する酸化出力と、サンプルガスを無反応のまま測定対象ガスとして出力する通常出力と、を行うガス調整部と、
     二酸化窒素ガス(NOガス)が吸光する紫外領域から可視領域までの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
     オゾンガス(Oガス)および二酸化窒素ガス(NOガス)が吸光する紫外領域の波長のOガス吸光用照射光を照射するOガス吸光用発光部と、
     NOガス吸光用照射光およびOガス吸光用照射光の一部を反射し、残りを透過する部分反射部と、
     ガス調整部からの測定対象ガスが流通する検出空間と、部分反射部を透過したNOガス吸光用照射光およびOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
     光透過窓を透過しガス流通セル内を伝播したNOガス吸光用照射光およびOガス吸光用照射光を受光する透過光受光部と、
     部分反射部で反射したNOガス吸光用照射光およびOガス吸光用照射光を受光する基準光受光部と、
     ガス調整部、NOガス吸光用発光部、Oガス吸光用発光部、透過光受光部および基準光受光部と接続される信号処理・駆動制御部と、
     を備え、
     この信号処理・駆動制御部は、
     ガス調整部を酸化出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
     ガス調整部を酸化出力状態に制御してOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、オゾンガス(Oガス)のガス濃度cを算出し、
     ガス調整部を通常出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
     供給されるオゾンガス(Oガス)のガス濃度cから、測定されたオゾンガス(Oガス)のガス濃度cを、減じて算出された反応消費時のガス濃度が、測定対象ガス中の一酸化窒素ガス(NOガス)のガス濃度cに五酸化二窒素ガス(Nガス)のガス濃度(c+c-c)/2を加えたガス濃度に等しいことに基づいて、算出されたc、c、c、c、から一酸化窒素ガス(NOガス)のガス濃度cを算出することを特徴とするガス分析計。
    A gas analyzer that measures the gas concentrations of two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) contained in a sample gas,
    All nitric oxide gas contained in the sample gas (NO gas) by oxidation of ozone reacted in a nitrogen dioxide gas (NO 2 gas), further pentoxide a portion of the nitrogen dioxide gas (NO 2 gas) by oxidation of ozone A gas adjustment unit that performs an oxidation output that is output as a measurement target gas reacted with dinitrogen gas (N 2 O 5 gas), and a normal output that is output as a measurement target gas without any reaction;
    A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength from an ultraviolet region to a visible region in which nitrogen dioxide gas (NO 2 gas) absorbs;
    A light emitting part for absorbing O 3 gas that irradiates irradiation light for absorbing O 3 gas having a wavelength in the ultraviolet region where ozone gas (O 3 gas) and nitrogen dioxide gas (NO 2 gas) absorb;
    A partially reflecting portion that reflects part of the irradiation light for NO 2 gas absorption and part of the irradiation light for O 3 gas absorption and transmits the rest;
    A gas having a detection space in which a measurement target gas from the gas adjustment unit flows, and a light transmission window through which the irradiation light for NO 2 gas absorption and the irradiation light for O 3 gas absorption transmitted through the partial reflection unit enter the detection space A distribution cell;
    A transmitted light receiving unit for receiving the light transmission window transmitting irradiated light and a NO 2 gas absorption propagated in the gas flow cell O 3 irradiation light gas absorption,
    A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas reflected by the partial reflection unit;
    A signal processing / drive control unit connected to the gas adjusting unit, the NO 2 gas absorbing light emitting unit, the O 3 gas absorbing light emitting unit, the transmitted light receiving unit, and the reference light receiving unit;
    With
    This signal processing / drive control unit
    The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled by using the signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the oxidation output state and the irradiation light for NO 2 gas absorption is emitted. c m is calculated,
    The gas conditioning unit by using a signal from the transmitted light receiving unit and the reference light receiving unit when the emitting O 3 irradiation light gas absorption by controlling the oxidation output state, gas concentration c 3 of ozone (O 3 gas) To calculate
    The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the irradiation light for NO 2 gas absorption is emitted. c 2 is calculated,
    From the gas concentration c 0 of the ozone gas (O 3 gas) supplied, the gas concentration c 3 of the measured ozone (O 3 gas), the gas concentration in the reaction consumption calculated by subtracting the, in the gas as the object of measurement Based on the gas concentration c 1 of nitrogen monoxide gas (NO gas) plus the gas concentration (c 1 + c 2 −c m ) / 2 of nitrous oxide (N 2 O 5 gas) / 2. Te, c 0 calculated, c m, c 3, c 2, gas analyzer and calculates the gas concentration c 1 of nitric oxide gas (NO gas) from.
  2.  サンプルガスに含まれる一酸化窒素ガス(NOガス)、二酸化窒素ガス(NO)および二酸化硫黄ガス(SOガス)の3成分のガス濃度を測定するガス分析計であって、
     サンプルガスに含まれる一酸化窒素ガス(NOガス)をオゾンの酸化により全て二酸化窒素ガス(NOガス)に反応させ、さらに二酸化窒素ガス(NOガス)の一部をオゾンの酸化により五酸化二窒素ガス(Nガス)に反応させた測定対象ガスとして出力する酸化出力と、サンプルガスを無反応のまま測定対象ガスとして出力する通常出力と、を行うガス調整部と、
     二酸化窒素ガス(NOガス)が吸光する紫外領域から可視領域までの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
     オゾンガス(Oガス)、二酸化硫黄ガス(SOガス)および二酸化窒素ガス(NOガス)が吸光する紫外領域の波長のOガス吸光用照射光を照射するOガス吸光用発光部と、
     NOガス吸光用照射光およびOガス吸光用照射光の一部を反射し、残りを透過する部分反射部と、
     ガス調整部からの測定対象ガスが流通する検出空間と、部分反射部を透過したNOガス吸光用照射光およびOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
     光透過窓を透過しガス流通セル内を伝播したNOガス吸光用照射光およびOガス吸光用照射光を受光する透過光受光部と、
     部分反射部で反射したNOガス吸光用照射光およびOガス吸光用照射光を受光する基準光受光部と、
     ガス調整部、NOガス吸光用発光部、Oガス吸光用発光部、透過光受光部および基準光受光部と接続される信号処理・駆動制御部と、
     を備え、
     この信号処理・駆動制御部は、
     ガス調整部を酸化出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
     ガス調整部を酸化出力状態に制御してOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、オゾンガス(Oガス)のガス濃度cおよび二酸化硫黄ガス(SOガス)のガス濃度cを算出し、
     ガス調整部を通常出力状態に制御してNOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化窒素ガス(NOガス)のガス濃度cを算出し、
     ガス調整部を通常出力状態に制御してOガス吸光用照射光を発光したときの透過光受光部および基準光受光部からの信号を用いて、二酸化硫黄ガス(SOガス)のガス濃度cを算出し、
     供給されるオゾンガス(Oガス)のガス濃度cから、測定されたオゾンガス(Oガス)のガス濃度cを、減じて算出された反応消費時のガス濃度が、測定対象ガス中の一酸化窒素ガス(NOガス)のガス濃度cに五酸化二窒素ガス(Nガス)のガス濃度(c+c-c)/2を加えたガス濃度に等しいことに基づいて、算出されたc、c、c、c、から一酸化窒素ガス(NOガス)のガス濃度cを算出することを特徴とするガス分析計。
    A gas analyzer that measures the concentration of three components of nitrogen monoxide gas (NO gas), nitrogen dioxide gas (NO 2 ), and sulfur dioxide gas (SO 2 gas) contained in a sample gas,
    All nitric oxide gas contained in the sample gas (NO gas) by oxidation of ozone reacted in a nitrogen dioxide gas (NO 2 gas), further pentoxide a portion of the nitrogen dioxide gas (NO 2 gas) by oxidation of ozone A gas adjustment unit that performs an oxidation output that is output as a measurement target gas reacted with dinitrogen gas (N 2 O 5 gas), and a normal output that is output as a measurement target gas without any reaction;
    A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength from an ultraviolet region to a visible region in which nitrogen dioxide gas (NO 2 gas) absorbs;
    A light emitting part for absorbing O 3 gas that irradiates light for absorbing O 3 gas having a wavelength in the ultraviolet region where ozone gas (O 3 gas), sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas (NO 2 gas) absorb; ,
    A partially reflecting portion that reflects part of the irradiation light for NO 2 gas absorption and part of the irradiation light for O 3 gas absorption and transmits the rest;
    A gas having a detection space in which a measurement target gas from the gas adjustment unit flows, and a light transmission window through which the irradiation light for NO 2 gas absorption and the irradiation light for O 3 gas absorption transmitted through the partial reflection unit enter the detection space A distribution cell;
    A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas transmitted through the light transmission window and propagated in the gas flow cell;
    A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas reflected by the partial reflection unit;
    A signal processing / drive control unit connected to the gas adjusting unit, the NO 2 gas absorbing light emitting unit, the O 3 gas absorbing light emitting unit, the transmitted light receiving unit, and the reference light receiving unit;
    With
    This signal processing / drive control unit
    The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled by using the signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the oxidation output state and the irradiation light for NO 2 gas absorption is emitted. c m is calculated,
    The gas conditioning unit by using a signal from the transmitted light receiving unit and the reference light receiving unit when the emitting O 3 irradiation light gas absorption by controlling the oxidation output state, gas concentration c 3 of ozone (O 3 gas) And the gas concentration c s of sulfur dioxide gas (SO 2 gas),
    The gas concentration of the nitrogen dioxide gas (NO 2 gas) is controlled using signals from the transmitted light receiving unit and the reference light receiving unit when the gas adjusting unit is controlled to the normal output state and the irradiation light for NO 2 gas absorption is emitted. c 2 is calculated,
    Using signals from the transmitted light receiving unit and the reference light receiving unit when the emitting O 3 irradiation light gas absorption by controlling the gas adjusting unit to the normal output state, the gas concentration of sulfur dioxide gas (SO 2 gas) c s is calculated,
    From the gas concentration c 0 of the ozone gas (O 3 gas) supplied, the gas concentration c 3 of the measured ozone (O 3 gas), the gas concentration in the reaction consumption calculated by subtracting the, in the gas as the object of measurement Based on the gas concentration c 1 of nitrogen monoxide gas (NO gas) plus the gas concentration (c 1 + c 2 −c m ) / 2 of nitrous oxide (N 2 O 5 gas) / 2. And calculating a gas concentration c 1 of nitric oxide gas (NO gas) from the calculated c 0 , c m , c 3 , c 2 .
  3.  請求項1または請求項2に記載のガス分析計において、
     前記基準光受光部、前記NOガス吸光用発光部および前記Oガス吸光用発光部と接続される補正部を有し、
     前記基準光受光部は、部分反射部により一部反射したNOガス吸光用照射光およびOガス吸光用照射光を受光して検出信号を補正部へ出力し、
     補正部は、この検出信号に基づいて変動を抑止するような駆動電流を前記NOガス吸光用発光部および前記Oガス吸光用発光部へ出力することを特徴とするガス分析計。
    The gas analyzer according to claim 1 or 2,
    A correction unit connected to the reference light receiving unit, the NO 2 gas absorbing light emitting unit, and the O 3 gas absorbing light emitting unit;
    The reference light receiving unit receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas partially reflected by the partial reflection unit, and outputs a detection signal to the correction unit,
    The correction unit outputs a driving current that suppresses fluctuations based on the detection signal to the NO 2 gas absorption light emission unit and the O 3 gas absorption light emission unit.
  4.  請求項1または請求項2に記載のガス分析計において、
     前記NOガス吸光用発光部からのNOガス吸光用照射光を集光して前記ガス流通セルへ入射させるレンズおよび前記Oガス吸光用発光部からのOガス吸光用照射光を集光して前記ガス流通セルへ入射させるレンズを備えることを特徴とするガス分析計。
    The gas analyzer according to claim 1 or 2,
    Collecting the O 3 irradiation light gas absorption from the NO 2 lens and the O 3 gas absorption for the light emitting portion condenses the NO 2 gas absorption for the irradiation light from the gas absorption for the light emitting portion is incident on the gas flow cell A gas analyzer comprising a lens that emits light and enters the gas flow cell.
  5.  請求項1または請求項2に記載のガス分析計において、
     前記NOガス吸光用発光部および前記Oガス吸光用発光部を隣接させて一体収容した発光部と、
     前記NOガス吸光用発光部からのNOガス吸光用照射光および前記Oガス吸光用発光部からのOガス吸光用照射光を集光して前記ガス流通セルへ入射させるレンズと、
     を備えることを特徴とするガス分析計。
    The gas analyzer according to claim 1 or 2,
    A light emitting unit that integrally accommodates the NO 2 gas absorbing light emitting unit and the O 3 gas absorbing light emitting unit adjacent to each other;
    A lens for incident condenses O 3 irradiation light gas absorption from the NO 2 NO 2 gas absorption irradiation light and the O 3 gas absorption for the light emitting portion of the gas absorption for the light emitting portion to the gas flow cell,
    A gas analyzer comprising:
  6.  請求項1または請求項2に記載のガス分析計において、
     前記ガス流通セルを透過した後のNOガス吸光用照射光および前記ガス流通セルを透過した後のOガス吸光用照射光を集光するレンズを備えることを特徴とするガス分析計。
    The gas analyzer according to claim 1 or 2,
    A gas analyzer comprising a lens for collecting the irradiation light for absorbing NO 2 gas after passing through the gas flow cell and the irradiation light for absorbing O 3 gas after passing through the gas flow cell.
  7.  請求項1または請求項2に記載のガス分析計において、
     前記ガス流通セルは一方に光透過窓を、また、他方に反射部を備え、光透過窓を透過してNOガス吸光用照射光およびOガス吸光用照射光を反射部で反射させた後に光透過窓を通過するようにして検出空間内を往復させ、前記部分反射部で反射させたNOガス吸光用照射光およびOガス吸光用照射光を前記透過光受光部が検出することを特徴とするガス分析計。
    The gas analyzer according to claim 1 or 2,
    The gas flow cell has a light transmission window on one side and a reflection part on the other side, and transmits the light transmission window and reflects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas at the reflection part. The transmitted light receiving part detects the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing O 3 gas reflected by the partial reflection part by reciprocating in the detection space so as to pass through the light transmission window later. Gas analyzer characterized by.
  8.  請求項1または請求項2に記載のガス分析計において、
     前記NOガス吸光用発光部、前記Oガス吸光用発光部および前記透過光受光部を隣接させて一体収容した発受光部を更に備え、
     前記ガス流通セルは一方に光透過窓を、また、他方に反射部を有するようになされており、
     光透過窓を透過して発受光部から発せられたNOガス吸光用照射光およびOガス吸光用照射光を反射部で反射させた後に光透過窓を通過するようにして検出空間内を往復させ、前記部分反射部を透過したNOガス吸光用照射光およびOガス吸光用照射光を発受光部の前記透過光受光部が検出することを特徴とするガス分析計。
    The gas analyzer according to claim 1 or 2,
    A light emitting / receiving unit that integrally accommodates the NO 2 gas absorbing light emitting unit, the O 3 gas absorbing light emitting unit, and the transmitted light receiving unit adjacent to each other;
    The gas flow cell has a light transmission window on one side and a reflection part on the other side,
    The NO 2 gas absorption irradiation light and the O 3 gas absorption irradiation light emitted from the light emitting / receiving section through the light transmission window are reflected by the reflection section and then pass through the light transmission window to pass through the light transmission window. A gas analyzer, wherein the transmitted light receiving unit of the light emitting / receiving unit detects the irradiation light for NO 2 gas absorption and the irradiation light for O 3 gas absorption which are reciprocated and transmitted through the partial reflection unit.
  9.  請求項1または請求項2に記載のガス分析計において、
     前記信号処理・駆動制御部は、前記NOガス吸光用発光部および前記Oガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流とすることを特徴とするガス分析計。
    The gas analyzer according to claim 1 or 2,
    The signal processing / drive control unit is a pulse that alternately performs output and stop of the NO 2 gas absorption light-emitting unit and the O 3 gas absorption light-emitting unit, and has a duty ratio that makes the output shorter than the stop. A gas analyzer characterized by a driving current.
PCT/JP2014/063926 2014-05-27 2014-05-27 Gas analyzer WO2015181879A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/063926 WO2015181879A1 (en) 2014-05-27 2014-05-27 Gas analyzer
CN201480050835.6A CN105556284B (en) 2014-05-27 2014-05-27 Gas analyzer
JP2016523000A JP6024856B2 (en) 2014-05-27 2014-05-27 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063926 WO2015181879A1 (en) 2014-05-27 2014-05-27 Gas analyzer

Publications (1)

Publication Number Publication Date
WO2015181879A1 true WO2015181879A1 (en) 2015-12-03

Family

ID=54698264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063926 WO2015181879A1 (en) 2014-05-27 2014-05-27 Gas analyzer

Country Status (3)

Country Link
JP (1) JP6024856B2 (en)
CN (1) CN105556284B (en)
WO (1) WO2015181879A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290163A (en) * 2016-07-21 2017-01-04 中国科学院化学研究所 Dinitrogen pentoxide and concentration of nitric acid on-line monitoring system and monitoring method in a kind of air
WO2019025186A1 (en) * 2017-07-31 2019-02-07 Siemens Aktiengesellschaft Gas analyzer for measuring nitrogen oxides and sulfur dioxide in exhaust gases
EP3553499A1 (en) * 2018-04-13 2019-10-16 Siemens Aktiengesellschaft Gas analysis system and method for measuring nitrogen oxides in a waste gas
US10871443B2 (en) * 2017-08-10 2020-12-22 Siemens Aktiengesellschaft Gas analyzer for measuring nitrogen oxides and least one further component of an exhaust gas
CN114002177A (en) * 2021-12-06 2022-02-01 国网江苏省电力有限公司检修分公司 SF6 decomposition product detection system based on ultraviolet spectroscopy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017001743U1 (en) * 2017-03-31 2017-05-08 Siemens Aktiengesellschaft Gas analyzer
CN109975231A (en) * 2017-12-27 2019-07-05 茶山Sm株式会社 Based on the ultraviolet automobile exhaust gas checking apparatus of on-dispersive
CN113155561A (en) * 2021-03-31 2021-07-23 杭州谱育科技发展有限公司 Device and method for providing dinitrogen pentoxide standard gas
KR102344737B1 (en) * 2021-04-05 2021-12-29 선두전자(주) Apparatus for gas sensing with self-calibration function and method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393081A (en) * 1977-01-21 1978-08-15 Itt Luminous intensity analyzer
JPH01305353A (en) * 1988-06-03 1989-12-08 Babcock Hitachi Kk Nox analyzing apparatus
JP2005062013A (en) * 2003-08-13 2005-03-10 Horiba Ltd Analysis method and analysis device for sulfur component by ultraviolet fluorescence method
JP2005534029A (en) * 2002-07-26 2005-11-10 2B・テクノロジーズ・インコーポレーテッド Gas detection method and apparatus by measuring ozone removal
JP2008292220A (en) * 2007-05-23 2008-12-04 Tokyo Metropolitan Univ Method and apparatus for measuring concentration of atmospheric nitrogen oxide by using laser-induced fluorescence method
JP2011149965A (en) * 2011-05-13 2011-08-04 Horiba Ltd Absorption analyzer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD294095A5 (en) * 1988-09-20 1991-09-19 Adw,Inst. F. Kosmosforschung,De PROCESS FOR THE HIGHLY SENSITIVE DETECTION OF OZONE, NITROGEN MONOXIDE AND NITROGEN DIOXIDE IN GAS MIXTURES
CN1869653A (en) * 2005-05-26 2006-11-29 哈尔滨华瑞光电技术有限公司 On-line sulfur dioxide gas concentration monitoring instrument
CN101256140A (en) * 2008-03-17 2008-09-03 哈尔滨工业大学 Portable apparatus and measuring method for monitoring gas concentration of sulphur dioxide and nitrous oxide meanwhile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393081A (en) * 1977-01-21 1978-08-15 Itt Luminous intensity analyzer
JPH01305353A (en) * 1988-06-03 1989-12-08 Babcock Hitachi Kk Nox analyzing apparatus
JP2005534029A (en) * 2002-07-26 2005-11-10 2B・テクノロジーズ・インコーポレーテッド Gas detection method and apparatus by measuring ozone removal
JP2005062013A (en) * 2003-08-13 2005-03-10 Horiba Ltd Analysis method and analysis device for sulfur component by ultraviolet fluorescence method
JP2008292220A (en) * 2007-05-23 2008-12-04 Tokyo Metropolitan Univ Method and apparatus for measuring concentration of atmospheric nitrogen oxide by using laser-induced fluorescence method
JP2011149965A (en) * 2011-05-13 2011-08-04 Horiba Ltd Absorption analyzer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290163A (en) * 2016-07-21 2017-01-04 中国科学院化学研究所 Dinitrogen pentoxide and concentration of nitric acid on-line monitoring system and monitoring method in a kind of air
WO2019025186A1 (en) * 2017-07-31 2019-02-07 Siemens Aktiengesellschaft Gas analyzer for measuring nitrogen oxides and sulfur dioxide in exhaust gases
US11237141B2 (en) 2017-07-31 2022-02-01 Siemens Aktiengesellschaft Gas analyzer for measuring nitrogen oxides and sulfur dioxide in exhaust gases
US10871443B2 (en) * 2017-08-10 2020-12-22 Siemens Aktiengesellschaft Gas analyzer for measuring nitrogen oxides and least one further component of an exhaust gas
EP3553499A1 (en) * 2018-04-13 2019-10-16 Siemens Aktiengesellschaft Gas analysis system and method for measuring nitrogen oxides in a waste gas
US11226322B2 (en) 2018-04-13 2022-01-18 Siemens Aktiengesellschaft Optical gas analyzer and method for measuring nitrogen oxides in an exhaust gas
CN114002177A (en) * 2021-12-06 2022-02-01 国网江苏省电力有限公司检修分公司 SF6 decomposition product detection system based on ultraviolet spectroscopy

Also Published As

Publication number Publication date
CN105556284B (en) 2018-01-02
JPWO2015181879A1 (en) 2017-04-20
CN105556284A (en) 2016-05-04
JP6024856B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6024856B2 (en) Gas analyzer
JP6083466B2 (en) Gas analyzer
US9310295B2 (en) Laser-type gas analyzer
US10871443B2 (en) Gas analyzer for measuring nitrogen oxides and least one further component of an exhaust gas
US11237141B2 (en) Gas analyzer for measuring nitrogen oxides and sulfur dioxide in exhaust gases
JP2009216385A (en) Gas analyzer and wavelength sweeping control method of laser in gas analyzer
US8654334B1 (en) Incoherent cavity ringdown spectroscopy gas analyzer coupled with periodic chemical scrubbing
WO2015181956A1 (en) Multicomponent laser gas analyzer
WO2011161839A1 (en) Ammonia compound concentration measuring device and ammonia compound concentration measuring method
US11226322B2 (en) Optical gas analyzer and method for measuring nitrogen oxides in an exhaust gas
JP6651126B2 (en) Gas analyzer
CN111912803B (en) Ultraviolet spectrum detection method and device for monitoring trace nitrogen oxides in blast furnace flue gas
JP4211670B2 (en) Gas analyzer and gas analysis method
EP1507140B1 (en) Analysis method and apparatus for measuring concentrations of sulfur components using ultraviolet fluorescence
KR20150115036A (en) NO/NO2 multi-gases analyzer using non-dispersive ultraviolet method and NO/NO2 multi-gases analyzing method
JP4472156B2 (en) Gas component measuring apparatus and method
JP5422493B2 (en) Gas calorific value measuring device and gas calorific value measuring method
JP2006029968A (en) Instrument and method for measuring concentration
JP2013127385A (en) Laser gas analyzer
WO2023218983A1 (en) Infrared gas analyzer, and infrared gas analysis method
JP2006112900A (en) Infrared gas analyzing method and infrared gas analyzer
JP2004093419A (en) Method for determining and measuring no concentration
UA80639C2 (en) Infrared gas analyzer
Birks et al. NO 2 Monitor Based on Direct Absorbance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050835.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893007

Country of ref document: EP

Kind code of ref document: A1