JP2006029341A - Control device for 4-stroke engine - Google Patents

Control device for 4-stroke engine Download PDF

Info

Publication number
JP2006029341A
JP2006029341A JP2005256717A JP2005256717A JP2006029341A JP 2006029341 A JP2006029341 A JP 2006029341A JP 2005256717 A JP2005256717 A JP 2005256717A JP 2005256717 A JP2005256717 A JP 2005256717A JP 2006029341 A JP2006029341 A JP 2006029341A
Authority
JP
Japan
Prior art keywords
load
valve
intake
engine
stroke engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005256717A
Other languages
Japanese (ja)
Other versions
JP4120670B2 (en
Inventor
Toshio Tanahashi
敏雄 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005256717A priority Critical patent/JP4120670B2/en
Publication of JP2006029341A publication Critical patent/JP2006029341A/en
Application granted granted Critical
Publication of JP4120670B2 publication Critical patent/JP4120670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cause self-ignition in a 4-stroke engine. <P>SOLUTION: In a predetermined load range from low load to medium load in an engine, an exhaust valve is closed before an intake top dead center TDC, and as demand load L is reduced, valve closing timing EC for the exhaust valve is advanced. An intake valve is opened after the intake top dead center TDC, and as the demand load L is reduced, valve opening timing IO of the intake valve is delayed. The intake valve is closed after an intake bottom dead center BDC, and as the demand load L is increased, valve closing timing IC for the intake valve is gradually delayed, and then it is gradually advanced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は4ストロークエンジンの制御装置に関する。   The present invention relates to a control device for a four-stroke engine.

4ストロークエンジンにおいては通常機関吸気通路内に配置されたスロットル弁により機関出力が制御される。しかしながらこのようにして機関出力を制御するとスロットル弁開度が小さいときに大きなポンピング損失が発生する。そこでこのようなポンピング損失が発生するのを阻止するためにスロットル弁を取除き、吸気弁の閉弁時期を変えることによって機関出力を制御するようにした内燃機関が公知である(特許文献1を参照)。   In a 4-stroke engine, the engine output is normally controlled by a throttle valve disposed in the engine intake passage. However, when the engine output is controlled in this way, a large pumping loss occurs when the throttle valve opening is small. Therefore, an internal combustion engine in which the engine output is controlled by removing the throttle valve in order to prevent the occurrence of such a pumping loss and changing the closing timing of the intake valve is known (Patent Document 1). reference).

一方、2ストロークエンジンにおいて燃焼室内に多量の既燃ガスを残留させると燃焼室内に供給された新気中の燃料が高温の既燃ガスによって熱分解され、その結果ラジカルが生成される。このようにラジカルが生成されると燃料は点火栓によらずに自己着火する。この自己着火は燃焼室内全体において同時に多点的に生ずるためにこのような自己着火を生ずると燃焼室内全体の混合気が良好に燃焼せしめられることになる。その結果、熱効率が向上し、斯くして燃料消費率が向上する。また、この自己着火は燃焼室内全体において同時に多点的に生ずるために燃焼室内における燃焼温が局所的に高くなることがなく、斯くしてNOxの発生を抑制することができる。   On the other hand, when a large amount of burned gas remains in the combustion chamber in a two-stroke engine, fresh fuel supplied into the combustion chamber is thermally decomposed by the high-temperature burned gas, and as a result, radicals are generated. When radicals are generated in this way, the fuel self-ignites regardless of the spark plug. Since this self-ignition occurs simultaneously at multiple points in the entire combustion chamber, if such self-ignition occurs, the air-fuel mixture in the entire combustion chamber can be burned well. As a result, the thermal efficiency is improved, and thus the fuel consumption rate is improved. In addition, since this self-ignition occurs at multiple points in the entire combustion chamber at the same time, the combustion temperature in the combustion chamber does not increase locally, and therefore generation of NOx can be suppressed.

そこでクランク室圧縮式の2ストロークエンジンにおいて排気ポートの開口面積を機関回転数とスロットル開度に応じて制御することにより自己着火を生じさせるようにしたものが公知である(特許文献2を参照)。
特開昭55−128610号公報 特開平7−71279号公報
In view of this, a crank chamber compression type two-stroke engine is known in which self-ignition is caused by controlling the opening area of the exhaust port in accordance with the engine speed and the throttle opening (see Patent Document 2). .
JP-A-55-128610 JP 7-71279 A

ところで2ストロークエンジンは本来的に多量の既燃ガスが残留する燃焼方法を採用しているので自己着火を比較的容易に生じさせることができる。しかしながら4ストロークエンジンは本来的に既燃ガスをできる限り残留させない燃焼方法を採用しているので4ストロークエンジンにおいて自己着火を生じさせるのは2ストロークエンジンほど容易ではない。   By the way, since the two-stroke engine employs a combustion method in which a large amount of burned gas remains essentially, self-ignition can be caused relatively easily. However, since a 4-stroke engine inherently employs a combustion method that leaves as much burned gas as possible, it is not as easy to cause self-ignition in a 4-stroke engine as in a 2-stroke engine.

また、自己着火を生じさせれば上述したように燃料消費率を向上させることができるがこのときポンピング損失が発生すると自己着火による燃料消費率向上のメリットも半減してしまう。従ってポンピング損失が生ずることなく自己着火を生じさせることが重要となってくる。
ところで上述したように吸気弁の閉弁時期を変えることにより機関出力を制御すればポンピング損失の発生を阻止することができる。しかしながらこのように吸気弁の閉弁時期を制御しただけでは自己着火を生じさせるのは困難である。
Further, if self-ignition is caused, the fuel consumption rate can be improved as described above. However, if a pumping loss occurs at this time, the merit of improving the fuel consumption rate by self-ignition is also halved. Therefore, it is important to cause self-ignition without causing a pumping loss.
By the way, if the engine output is controlled by changing the closing timing of the intake valve as described above, the generation of pumping loss can be prevented. However, it is difficult to cause self-ignition only by controlling the closing timing of the intake valve in this way.

本発明の目的は、4ストロークエンジンにおいてポンピング損失の発生を阻止しつつ自己着火を生じさせうる制御装置を提供することにある。   An object of the present invention is to provide a control device capable of causing self-ignition while preventing generation of pumping loss in a four-stroke engine.

上記目的を達成するために本発明によれば、点火栓を備えた4ストロークエンジンにおいて、機関負荷が低負荷から中負荷に亘る予め定められた負荷範囲内にあるときには、燃焼室内に供給された吸入空気温が自己着火しうる温度まで上昇するように吸気弁の開閉弁時期および排気弁の開閉弁時期を制御して点火栓によらない自己着火を生じさせ、機関負荷が上記負荷範囲外であるときには点火栓により着火するようにしている。   In order to achieve the above object, according to the present invention, in a four-stroke engine equipped with a spark plug, when the engine load is within a predetermined load range from low load to medium load, it is supplied into the combustion chamber. The intake valve on / off valve timing and the exhaust valve on / off valve timing are controlled so that the intake air temperature rises to a temperature at which self-ignition can occur. In some cases, it is ignited by a spark plug.

4ストロークエンジンにおいて機関負荷が低負荷から中負荷に亘る予め定められた負荷範囲にあるときには自己着火を生じさせることができる。機関負荷がこの負荷範囲外のときには点火栓による通常の燃焼が行われる。   In a four-stroke engine, when the engine load is in a predetermined load range from low load to medium load, self-ignition can be caused. When the engine load is outside this load range, normal combustion is performed by the spark plug.

図1を参照すると、1は4ストロークエンジン本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は点火栓、7は吸気弁、8は吸気弁駆動用アクチュエータ、9は吸気ポート、10は排気弁、11は排気弁駆動用アクチュエータ、12は排気ポートを夫々示す。吸気ポート9は対応する吸気枝管13を介してサージタンク14に連結され、各吸気枝管13には夫々燃料噴射弁15が取付けられる。サージタンク14は吸気ダクト16を介してエアクリーナ17に連結され、吸気ダクト16内には電気モータ18により駆動されるスロットル弁19が配置される。一方、排気ポート12は排気マニホルド20に連結され、排気マニホルド20内には空燃比センサ21が配置される。   Referring to FIG. 1, 1 is a 4-stroke engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is a spark plug, 7 is an intake valve, 8 is an intake valve drive actuator, Reference numeral 9 denotes an intake port, 10 denotes an exhaust valve, 11 denotes an exhaust valve driving actuator, and 12 denotes an exhaust port. The intake port 9 is connected to a surge tank 14 via a corresponding intake branch pipe 13, and a fuel injection valve 15 is attached to each intake branch pipe 13. The surge tank 14 is connected to an air cleaner 17 via an intake duct 16, and a throttle valve 19 driven by an electric motor 18 is disposed in the intake duct 16. On the other hand, the exhaust port 12 is connected to an exhaust manifold 20, and an air-fuel ratio sensor 21 is disposed in the exhaust manifold 20.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。空燃比センサ21の出力信号は対応するAD変換器37を介して入力ポート35に入力される。アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、アクチュエータ8,11、燃料噴射弁15および電気モータ18に接続される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36. It comprises. The output signal of the air-fuel ratio sensor 21 is input to the input port 35 via the corresponding AD converter 37. A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. . Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the spark plug 6, the actuators 8 and 11, the fuel injection valve 15, and the electric motor 18 through a corresponding drive circuit 38.

図2に吸気弁駆動用アクチュエータ8の拡大図を示す。図2を参照すると、50は吸気弁7の頂部に取付けられた円板状鉄片、51,52は鉄片50の両側に配置されたソレノイド、53,54は鉄片50の両側に配置された圧縮ばねを夫々示す。ソレノイド51が付勢されると鉄片50が上昇し、吸気弁7が閉弁する。これに対してソレノイド52が付勢されると鉄片50が下降し、吸気弁7が開弁する。従って各ソレノイド51,52の付勢タイミングを制御することによって吸気弁7を任意の時期に開弁し、閉弁することができる。排気弁駆動用アクチュエータ11も図2に示す吸気弁駆動用アクチュエータ8と同じ構造を有しており、従って排気弁10も任意の時期に開弁し、閉弁することができる。   FIG. 2 shows an enlarged view of the intake valve driving actuator 8. Referring to FIG. 2, 50 is a disc-shaped iron piece attached to the top of the intake valve 7, 51 and 52 are solenoids arranged on both sides of the iron piece 50, and 53 and 54 are compression springs arranged on both sides of the iron piece 50. Respectively. When the solenoid 51 is energized, the iron piece 50 is raised and the intake valve 7 is closed. On the other hand, when the solenoid 52 is energized, the iron piece 50 is lowered and the intake valve 7 is opened. Therefore, by controlling the urging timing of the solenoids 51 and 52, the intake valve 7 can be opened and closed at an arbitrary timing. The exhaust valve drive actuator 11 also has the same structure as the intake valve drive actuator 8 shown in FIG. 2, and therefore the exhaust valve 10 can be opened and closed at any time.

図3は吸気弁7の開弁時期IO、吸気弁7の閉弁時期IC、排気弁10の開弁時期EO、排気弁10の閉弁時期ECおよびスロットル弁19の開度θを示している。なお、図3において横軸はアクセルペダル40の踏込み量L、即ち要求負荷を表わしている。本発明による実施例では機関低負荷から中負荷に至る予め定められた負荷範囲において自己着火を生じさせることを意図しており、この負荷範囲が図3において自己着火領域として示されている。   FIG. 3 shows the opening timing IO of the intake valve 7, the closing timing IC of the intake valve 7, the opening timing EO of the exhaust valve 10, the closing timing EC of the exhaust valve 10, and the opening θ of the throttle valve 19. . In FIG. 3, the horizontal axis represents the amount of depression L of the accelerator pedal 40, that is, the required load. The embodiment according to the present invention is intended to cause self-ignition in a predetermined load range from low engine load to medium load, and this load range is shown as a self-ignition region in FIG.

図3に示されるように排気弁10の開弁時期EOは要求負荷Lにかかわらずに圧縮下死点BDCの少し手前のクランク角に固定されている。一方、自己着火領域内においては排気弁10の閉弁時期ECは吸気上死点TDCよりも少し手前に設定されており、しかも排気弁10の閉弁時期ECは要求負荷Lが低くなるほど早められる。排気弁10の閉弁時期ECが早められると燃焼室5内に残留する既燃ガスが増大し、燃焼室5内に残留する既燃ガスが増大すると吸気行程時に燃焼室5内に供給される吸入空気量が減少する。即ち、要求負荷Lが低くなるほど吸入空気量が減少することになる。   As shown in FIG. 3, the valve opening timing EO of the exhaust valve 10 is fixed to a crank angle slightly before the compression bottom dead center BDC regardless of the required load L. On the other hand, in the self-ignition region, the closing timing EC of the exhaust valve 10 is set slightly before the intake top dead center TDC, and the closing timing EC of the exhaust valve 10 is advanced as the required load L becomes lower. . When the closing timing EC of the exhaust valve 10 is advanced, the burnt gas remaining in the combustion chamber 5 increases, and when the burnt gas remaining in the combustion chamber 5 increases, it is supplied into the combustion chamber 5 during the intake stroke. Intake air volume decreases. That is, the intake air amount decreases as the required load L decreases.

一方、図3に示されるように自己着火領域のほぼ全領域に亘ってスロットル弁19は全開状態に保持されており、従って要求負荷Lに対する吸入空気量の制御は排気弁10の閉弁時期を変化させることによって、即ち残留既燃ガス量を変化させることによって行われる。従ってポンピング損失を発生することなく要求負荷Lに応じて機関出力を制御できることになる。   On the other hand, as shown in FIG. 3, the throttle valve 19 is maintained in the fully open state over almost the entire self-ignition region. Therefore, the control of the intake air amount with respect to the required load L is performed by setting the closing timing of the exhaust valve 10. This is done by changing, that is, by changing the amount of residual burnt gas. Therefore, the engine output can be controlled according to the required load L without causing a pumping loss.

図3に示されるように自己着火領域内においては吸気弁7の開弁時期IOは吸気上死点TDCを若干越えたときに設定されており、しかも吸気弁7の開弁時期IOは要求負荷Lが低くなるほど遅くなる。吸気弁7の開弁時期IOが遅くなると吸入空気量が減少する。従って吸気弁7の開弁時期IOの制御も要求負荷Lに応じて機関出力を制御する役目を果している。   As shown in FIG. 3, in the self-ignition region, the valve opening timing IO of the intake valve 7 is set when the intake top dead center TDC is slightly exceeded, and the valve opening timing IO of the intake valve 7 is the required load. The lower the L, the slower. When the opening timing IO of the intake valve 7 is delayed, the intake air amount decreases. Therefore, the control of the valve opening timing IO of the intake valve 7 also serves to control the engine output in accordance with the required load L.

一方、自己着火は燃焼室5内に供給された吸入空気温がほぼ1000°Kに達すると生じることが判明している。吸入空気は既燃ガスにより加熱されて温度上昇するので燃焼室5内に供給された吸入空気の温度がほぼ1000°Kまで上昇せしめられるか否かは燃焼室5内に残留している既燃ガスの熱エネルギに依存している。図3に示されるように要求負荷Lが低くなると排気弁10の閉弁時期ECが早められるので残留既燃ガス量が増大し、この点からみると既燃ガスの熱エネルギは要求負荷Lが低くなるほど増大することになる。一方、要求負荷Lが低くなるほど燃焼温が低くなるのでこの点からみると既燃ガスの熱エネルギは要求負荷Lが低くなるほど減少する。総合的にみると既燃ガスの熱エネルギは要求負荷Lが低くなるほど減少することになる。   On the other hand, it has been found that self-ignition occurs when the intake air temperature supplied into the combustion chamber 5 reaches approximately 1000 ° K. Since the intake air is heated by the burned gas and the temperature rises, whether or not the temperature of the intake air supplied into the combustion chamber 5 can be raised to about 1000 ° K remains in the combustion chamber 5. It depends on the heat energy of the gas. As shown in FIG. 3, when the required load L decreases, the valve closing timing EC of the exhaust valve 10 is advanced, so the amount of residual burned gas increases. From this point of view, the thermal energy of the burned gas is determined by the required load L. The lower it is, the higher it will be. On the other hand, the lower the required load L, the lower the combustion temperature. From this point of view, the thermal energy of the burned gas decreases as the required load L decreases. Overall, the thermal energy of the burned gas decreases as the required load L decreases.

一方、要求負荷Lが高くなると残留既燃ガス量が減少するが燃焼温が高くなるために既燃ガス温が高くなる。この場合、総合的にみると既燃ガスの熱エネルギは要求負荷Lが高くなるほど減少する。即ち、要求負荷Lが低くもなく高くもないときには残留既燃ガス量が比較的多く、残留既燃ガス温も比較的高いのでこのときに既燃ガスの熱エネルギが最も高くなる。即ち、残留既燃ガスの熱エネルギは要求負荷Lに対して図4に示されるように変化する。   On the other hand, when the required load L increases, the amount of residual burned gas decreases, but the burnt gas temperature increases because the combustion temperature increases. In this case, when viewed comprehensively, the thermal energy of the burned gas decreases as the required load L increases. That is, when the required load L is neither low nor high, the amount of residual burned gas is relatively large, and the residual burned gas temperature is also relatively high. At this time, the thermal energy of the burned gas becomes the highest. That is, the thermal energy of the residual burned gas changes as shown in FIG.

残留既燃ガスの熱エネルギが高いときには圧縮比が低くても吸入空気温はほぼ1000°Kに達し、残留既燃ガスの熱エネルギが低いときには圧縮比を高くして吸入空気を昇温させないと吸入空気温はほぼ1000°Kに達しない。一方、吸気弁7の閉弁時期ICは吸気下死点BDC後において遅くすれば遅くするほど圧縮比は低くなる。従って残留既燃ガスの熱エネルギが最も高いときに圧縮比が最も小さくなるように吸気弁7の閉弁時期ICは図3に示される如く要求負荷Lの増大に伴い次第に遅くされた後に次第に早められる。自己着火領域における吸気弁7の開弁時期IOおよび閉弁時期IC、並びに排気弁10の閉弁時期ECを図3に示すように制御することによって図3に示す自己着火領域内において自己着火を生じさせることができる。   When the residual burned gas has a high thermal energy, the intake air temperature will reach about 1000 ° K even if the compression ratio is low, and when the residual burned gas has a low thermal energy, the compression ratio must be increased to raise the intake air temperature. The intake air temperature does not reach nearly 1000 ° K. On the other hand, if the valve closing timing IC of the intake valve 7 is delayed after the intake bottom dead center BDC, the compression ratio becomes lower as it is delayed. Accordingly, the closing timing IC of the intake valve 7 is gradually delayed with an increase in the required load L as shown in FIG. 3 so that the compression ratio becomes the smallest when the residual burned gas has the highest thermal energy. It is done. By controlling the opening timing IO and the closing timing IC of the intake valve 7 and the closing timing EC of the exhaust valve 10 in the self-ignition region as shown in FIG. 3, self-ignition is performed in the self-ignition region shown in FIG. Can be generated.

図3に示されるように要求負荷Lが自己着火領域よりも低いときには自己着火は生じず、このときには点火栓6による通常の燃焼が行われる。このときには要求負荷Lに応じてスロットル弁19の開度を制御することにより機関出力が制御される。また、要求負荷Lが自己着火領域よりも高いときにも自己着火は生じず、このときにも点火栓6による通常の燃焼が行われる。ただし、このときには吸気弁7の開弁期間および排気弁10の開弁期間を要求負荷に応じて変えることにより機関出力が制御される。   As shown in FIG. 3, when the required load L is lower than the self-ignition region, self-ignition does not occur, and at this time, normal combustion by the spark plug 6 is performed. At this time, the engine output is controlled by controlling the opening degree of the throttle valve 19 in accordance with the required load L. Further, when the required load L is higher than the self-ignition region, self-ignition does not occur, and normal combustion by the spark plug 6 is also performed at this time. However, at this time, the engine output is controlled by changing the valve opening period of the intake valve 7 and the valve opening period of the exhaust valve 10 according to the required load.

本発明による実施例では自己着火を広範囲の運転状態に亘って生じさせるために空燃比が理論空燃比に制御される。空燃比を理論空燃比とするのに必要な基本噴射時間TPは機関回転数Nおよび要求負荷Lの関数として図5に示すマップの形で予めROM32内に記憶されており、この基本噴射時間TPを空燃比センサ21の出力信号に基づき補正することによって空燃比が理論空燃比に維持される。   In an embodiment according to the present invention, the air-fuel ratio is controlled to the stoichiometric air-fuel ratio in order to cause self-ignition over a wide range of operating conditions. The basic injection time TP necessary for setting the air-fuel ratio to the stoichiometric air-fuel ratio is stored in advance in the ROM 32 as a function of the engine speed N and the required load L in the form of a map shown in FIG. Is corrected based on the output signal of the air-fuel ratio sensor 21, so that the air-fuel ratio is maintained at the stoichiometric air-fuel ratio.

図6に機関の運転制御ルーチンを示す。図6を参照するとまず初めにステップ60において図3に示される要求負荷Lに応じた吸気弁7の開弁時期IOと閉弁時期ICが算出され、次いでステップ61において図3に示される要求負荷Lに応じた排気弁10の開弁時期EOと閉弁時期ECが算出される。次いでステップ62では図3に示される要求負荷Lに応じたスロットル弁19の開度θが算出される。次いでステップ63では図5に示されるマップから基本噴射時間TPが算出され、次いでステップ64では空燃比センサ21の出力信号に基づき空燃比が理論空燃比となるよう基本噴射時間TPを補正することによって噴射時間TAUが算出される。   FIG. 6 shows an engine operation control routine. Referring to FIG. 6, first, at step 60, the valve opening timing IO and the valve closing timing IC of the intake valve 7 corresponding to the required load L shown in FIG. 3 are calculated, and then at step 61, the required load shown in FIG. The valve opening timing EO and the valve closing timing EC of the exhaust valve 10 corresponding to L are calculated. Next, at step 62, the opening degree θ of the throttle valve 19 corresponding to the required load L shown in FIG. 3 is calculated. Next, at step 63, the basic injection time TP is calculated from the map shown in FIG. 5, and then at step 64, the basic injection time TP is corrected based on the output signal of the air-fuel ratio sensor 21 so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. An injection time TAU is calculated.

4ストロークエンジンの全体図である。1 is an overall view of a 4-stroke engine. 吸気弁駆動用アクチュエータの拡大側面断面図である。It is an expanded side sectional view of the actuator for intake valve driving. 吸気弁および排気弁の開閉弁時期等を示す図である。It is a figure which shows the on-off valve timing etc. of an intake valve and an exhaust valve. 残留既燃ガスの熱エネルギを示す図である。It is a figure which shows the thermal energy of residual burned gas. 基本噴射時間のマップを示す図である。It is a figure which shows the map of basic injection time. 機関の運転制御を行うためのフローチャートである。It is a flowchart for performing operation control of an engine.

符号の説明Explanation of symbols

7 吸気弁
10 排気弁
15 燃料噴射弁
7 Intake valve 10 Exhaust valve 15 Fuel injection valve

Claims (8)

点火栓を備えた4ストロークエンジンにおいて、機関負荷が低負荷から中負荷に亘る予め定められた負荷範囲内にあるときには、燃焼室内に供給された吸入空気温が自己着火しうる温度まで上昇するように吸気弁の開閉弁時期および排気弁の開閉弁時期を制御して点火栓によらない自己着火を生じさせ、機関負荷が上記負荷範囲外であるときには点火栓により着火するようにした4ストロークエンジンの制御装置。   In a four-stroke engine equipped with a spark plug, when the engine load is within a predetermined load range from low load to medium load, the intake air temperature supplied into the combustion chamber rises to a temperature at which self-ignition is possible. A four-stroke engine that controls the intake valve on / off valve timing and exhaust valve on / off valve timing to cause self-ignition that does not depend on the spark plug, and that is ignited by the spark plug when the engine load is outside the load range. Control device. 上記自己着火しうる温度がほぼ1000°Kである請求項1に記載の4ストロークエンジンの制御装置。   The control apparatus for a four-stroke engine according to claim 1, wherein the temperature at which the self-ignition is possible is approximately 1000 ° K. 機関負荷が上記負荷範囲内にあるときには、排気弁を吸気上死点前に閉弁させると共に要求負荷が低くなるにつれて排気弁の閉弁時期を早めるようにした請求項1に記載の4ストロークエンジンの制御装置。   The four-stroke engine according to claim 1, wherein when the engine load is within the load range, the exhaust valve is closed before the intake top dead center, and the closing timing of the exhaust valve is advanced as the required load decreases. Control device. 機関負荷が上記負荷範囲内にあるときには、吸気弁を吸気上死点後に開弁させると共に要求負荷が低くなるにつれて吸気弁の開弁時期を遅らすようにした請求項1に記載の4ストロークエンジンの制御装置。   2. The four-stroke engine according to claim 1, wherein when the engine load is within the load range, the intake valve is opened after intake top dead center, and the opening timing of the intake valve is delayed as the required load decreases. Control device. 機関負荷が上記負荷範囲内にあるときには、吸気弁を吸気下死点後に閉弁させると共に吸気弁の閉弁時期を要求負荷の増大に伴い徐々に遅らせた後徐々に早めるようにした請求項1に記載の4ストロークエンジンの制御装置。   2. The engine according to claim 1, wherein when the engine load is within the load range, the intake valve is closed after the intake bottom dead center, and the closing timing of the intake valve is gradually delayed as the required load increases and then gradually advanced. 4. A control device for a 4-stroke engine. 機関吸気通路内にスロットル弁を配置し、該スロットル弁は上記負荷範囲のほぼ全領域において全開状態に保持される請求項1に記載の4ストロークエンジンの制御装置。   2. The control apparatus for a four-stroke engine according to claim 1, wherein a throttle valve is disposed in the engine intake passage, and the throttle valve is held in a fully open state in substantially the entire load range. 機関負荷が上記負荷範囲内にあるときには排気弁の閉弁時期および吸気弁の開弁時期のいずれか一方又は双方を要求負荷に応じて変化させることにより機関出力が制御され、機関負荷が上記負荷範囲よりも低いときには上記スロットル弁の開度を制御することにより機関出力が制御される請求項6に記載の4ストロークエンジンの制御装置。   When the engine load is within the above load range, the engine output is controlled by changing either or both of the exhaust valve closing timing and the intake valve opening timing according to the required load, and the engine load is 7. The control device for a four-stroke engine according to claim 6, wherein when the pressure is lower than the range, the engine output is controlled by controlling the opening of the throttle valve. 機関負荷が上記負荷範囲内にあるときには空燃比が理論空燃比とされる請求項1に記載の4ストロークエンジンの制御装置。   The control apparatus for a four-stroke engine according to claim 1, wherein the air-fuel ratio is made the stoichiometric air-fuel ratio when the engine load is within the load range.
JP2005256717A 2005-09-05 2005-09-05 Control device for 4-stroke engine Expired - Fee Related JP4120670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256717A JP4120670B2 (en) 2005-09-05 2005-09-05 Control device for 4-stroke engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256717A JP4120670B2 (en) 2005-09-05 2005-09-05 Control device for 4-stroke engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9073572A Division JPH10266878A (en) 1997-03-26 1997-03-26 Control device of four-stroke engine

Publications (2)

Publication Number Publication Date
JP2006029341A true JP2006029341A (en) 2006-02-02
JP4120670B2 JP4120670B2 (en) 2008-07-16

Family

ID=35895954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256717A Expired - Fee Related JP4120670B2 (en) 2005-09-05 2005-09-05 Control device for 4-stroke engine

Country Status (1)

Country Link
JP (1) JP4120670B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045443A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Variable compression ratio internal combustion engine
JP2010203271A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Combustion control device of internal combustion engine
JP2013167258A (en) * 2013-06-05 2013-08-29 Nissan Motor Co Ltd Combustion control device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045443A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Variable compression ratio internal combustion engine
JP4631830B2 (en) * 2006-08-11 2011-02-16 トヨタ自動車株式会社 Variable compression ratio internal combustion engine
JP2010203271A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Combustion control device of internal combustion engine
JP2013167258A (en) * 2013-06-05 2013-08-29 Nissan Motor Co Ltd Combustion control device of internal combustion engine

Also Published As

Publication number Publication date
JP4120670B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP3931549B2 (en) Valve timing control device for internal combustion engine
US8783227B2 (en) Engine control method and apparatus
US8459021B2 (en) Method and apparatus for controlling supercharged engine
JP5310733B2 (en) Control device for internal combustion engine
JP4124224B2 (en) Control device for four-cycle premixed compression self-ignition internal combustion engine
JP2006322335A (en) Control system of internal combustion engine
JP2010281235A (en) Engine control method and control device
JPH10266878A (en) Control device of four-stroke engine
US7063068B2 (en) Variable valve timing controller for an engine
JP2007205181A (en) Four cycle internal combustion engine
JP2008291686A (en) Control device of internal combustion engine
JP4120670B2 (en) Control device for 4-stroke engine
JP4180995B2 (en) Control device for compression ignition internal combustion engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JPH10311231A (en) Output controller for internal combustion engine
JP4517516B2 (en) 4-cycle engine for automobiles
US7000586B2 (en) Control device for compression ignition operation of internal combustion engine
JP2008223615A (en) Internal combustion engine
JP2008051017A (en) Premixed compression self-igniting internal combustion engine
JP2018096311A (en) Control device of internal combustion engine
JP5925099B2 (en) Control device for internal combustion engine
JP4743189B2 (en) Control device for internal combustion engine
JP4534968B2 (en) Control device for internal combustion engine
JP4093003B2 (en) Switching control of combustion method in variable combustion method engine
JP4801744B2 (en) Method and apparatus for operating an internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees