JP2006026883A - Surface-coated cemented carbide cutting tool exhibiting excellent wearing-resistance of hard coated layer in high speed cutting - Google Patents

Surface-coated cemented carbide cutting tool exhibiting excellent wearing-resistance of hard coated layer in high speed cutting Download PDF

Info

Publication number
JP2006026883A
JP2006026883A JP2004345474A JP2004345474A JP2006026883A JP 2006026883 A JP2006026883 A JP 2006026883A JP 2004345474 A JP2004345474 A JP 2004345474A JP 2004345474 A JP2004345474 A JP 2004345474A JP 2006026883 A JP2006026883 A JP 2006026883A
Authority
JP
Japan
Prior art keywords
layer
cutting
coated
hard
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345474A
Other languages
Japanese (ja)
Other versions
JP4697389B2 (en
Inventor
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004345474A priority Critical patent/JP4697389B2/en
Priority to EP04807992.5A priority patent/EP1757388B1/en
Priority to PCT/JP2004/019637 priority patent/WO2005123312A1/en
Publication of JP2006026883A publication Critical patent/JP2006026883A/en
Application granted granted Critical
Publication of JP4697389B2 publication Critical patent/JP4697389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cemented carbide cutting tool in which a hard coated layer exhibits excellent wearing-resistance at high speed cutting. <P>SOLUTION: In the surface coated cemented carbide cutting tool, on a surface of a super-hard substrate comprising tungsten carbide based cemented carbide or titanium carbonitride based cermet, a hard coated layer comprising (a) a Cr boride layer having an average layer thickness of 0.8-5 μm as a surface layer and (b) a composite nitride layer of Ti and Al satisfying a composition formula: (Ti<SB>1-X</SB>Al<SB>X</SB>)N (provided that X represents 0.40-0.75 at an atomic ratio) and having an average layer thickness of 0.8-5 μm as a wearing-resistance hard layer is subjected to physical vapor-deposition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、硬質被覆層が、すぐれた高温硬さおよび耐熱性を有する耐摩耗硬質層と、すぐれた高温耐酸化性を有する表面層によって構成され、したがって特に各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の切削加工を高熱発生を伴う高速切削条件で行った場合にも、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   In the present invention, the hard coating layer is composed of a wear-resistant hard layer having excellent high-temperature hardness and heat resistance, and a surface layer having excellent high-temperature oxidation resistance. A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance over a long period of time even when cutting hard hard-to-cut materials such as Al-Si alloys under high-speed cutting conditions with high heat generation ( Hereinafter, it is related to a coated carbide tool.

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.75を示す)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる耐摩耗硬質層を硬質被覆層として1〜10μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、前記(Ti,Al)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備することから、前記被覆超硬工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.40 to 0.75),
Coated carbide formed by physical vapor deposition with an average layer thickness of 1 to 10 μm using a wear-resistant hard layer composed of a composite nitride of Ti and Al [hereinafter referred to as (Ti, Al) N] layer satisfying the following conditions: Tools are known, and the (Ti, Al) N layer has high-temperature hardness and heat resistance due to Al as a constituent component, and high-temperature strength due to the same Ti. It is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of cast iron and the like.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al)N層からなる耐摩耗硬質層を硬質被覆層として蒸着することにより製造されることも知られている。
特許第2644710号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to a temperature of 500 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al alloy having a predetermined composition is set, for example, under a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied with a bias voltage of, for example, −100 V on the surface of the carbide substrate. It is also known that it is produced by vapor-depositing a wear-resistant hard layer comprising a (Ti, Al) N layer as a hard coating layer.
Japanese Patent No. 2644710

近年の切削加工装置の高性能化および自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化し、かつ被削材の種類に限定されない汎用性のある被覆超硬工具が強く望まれる傾向にあるが、上記の従来被覆超硬工具においては、これを各種の鋼や鋳鉄などの被削材を通常の切削加工条件で行うのに用いた場合には問題はないが、これを特に各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の切削加工を高速切削条件で行うのに用いた場合、切削時に発生するきわめて高い発熱によって、耐摩耗硬質層の摩耗進行が著しく促進するようになることから、比較的短時間で使用寿命に至るのが現状である。   The performance and automation of cutting machines in recent years have been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting. Accordingly, cutting speed has been increased and types of work materials have been increased. Although there is a tendency that a general-purpose coated carbide tool not limited to the above is widely desired, in the above-mentioned conventional coated carbide tool, this is performed on various cutting materials such as steel and cast iron under normal cutting conditions. There is no problem when used for the above, but when this is used to perform cutting of hard difficult-to-cut materials such as various Ti-based alloys and high Si-containing Al-Si based alloys under high-speed cutting conditions, The extremely high heat generated during cutting significantly accelerates the wear progression of the wear-resistant hard layer, so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に上記の硬質難削材の高速切削加工で耐摩耗硬質層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として所定の組成を有するTi−Al合金、他方側に前記SP装置のカソード電極(蒸発源)としてCr硼化物(以下、CrBで示す)粉末の焼結体(以下、CrB焼結体という)を対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Ti,Al)N層を0.8〜5μmの平均層厚で耐摩耗硬質層として蒸着形成し、ついで、前記蒸着装置内の雰囲気を、窒素雰囲気に代って、実質的にAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体のスパッタリングを開始し、前記(Ti,Al)N層に重ねて表面層として0.8〜5μmの平均層厚でCrB層を蒸着形成すると、この結果の被覆超硬工具は、特に著しい高熱発生を伴なう各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の高速切削で、上記(Ti,Al)N層からなる耐摩耗硬質層が、すぐれた高温耐酸化性を有する前記CrB層からなる表面層によって切削時の高温酸化雰囲気から保護され、摩耗促進の原因となる雰囲気酸化が著しく抑制されることから、長期に亘ってすぐれた耐摩耗性を発揮するようになる、という研究結果を得たのである。
In view of the above, the present inventors have developed the above-described coated carbide tool that exhibits excellent wear resistance in which the wear-resistant hard layer is excellent in high-speed cutting of the hard hard-to-cut materials described above. As a result of conducting research focusing on conventional coated carbide tools,
For example, FIG. 1A is a schematic plan view and FIG. 1B is a schematic front view showing an arc ion plating apparatus (hereinafter abbreviated as AIP apparatus) and a sputtering apparatus (hereinafter abbreviated as SP apparatus). ) Coexisting vapor deposition apparatus, that is, Ti--having a predetermined composition as a cathode electrode (evaporation source) of the AIP apparatus on one side of the rotation table with a carbide table mounting rotation table provided at the center of the apparatus. A vapor deposition apparatus in which a sintered body of Cr boride (hereinafter referred to as CrB 2 ) powder (hereinafter referred to as a CrB 2 sintered body) is disposed opposite to the Al alloy and the cathode electrode (evaporation source) of the SP apparatus on the other side. In this apparatus, a plurality of carbide substrates are mounted in a ring shape along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. While rotating the rotary table as a gas and rotating the carbide substrate itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, basically, the cathode electrode of the Ti-Al alloy ( An arc discharge is generated between the evaporation source) and the anode electrode, and a (Ti, Al) N layer is deposited on the surface of the cemented carbide substrate as an abrasion-resistant hard layer with an average layer thickness of 0.8 to 5 μm. Then, the atmosphere in the vapor deposition apparatus is substantially changed to an Ar atmosphere instead of a nitrogen atmosphere, and sputtering of a CrB 2 sintered body arranged as a cathode electrode (evaporation source) of the SP apparatus is started. When a CrB 2 layer is deposited on the (Ti, Al) N layer as a surface layer with an average layer thickness of 0.8 to 5 μm, the resulting coated carbide tool is accompanied by particularly high heat generation. Various Ti alloys and high A surface layer composed of the CrB 2 layer having excellent high-temperature oxidation resistance, in which the wear-resistant hard layer composed of the (Ti, Al) N layer in high-speed cutting of hard difficult-to-cut materials such as Si-containing Al-Si alloys. Because it is protected from the high-temperature oxidizing atmosphere during cutting and the atmospheric oxidation that causes wear promotion is remarkably suppressed, we have obtained research results that it will exhibit excellent wear resistance over a long period of time. is there.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)表面層として、0.8〜5μmの平均層厚を有するCrB層、
(b)耐摩耗硬質層として、
組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.75を示す)、
を満足し、0.8〜5μmの平均層厚を有する(Ti,Al)N層、
以上(a)および(b)からなる硬質被覆層を物理蒸着してなる、高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) As a surface layer, a CrB 2 layer having an average layer thickness of 0.8 to 5 μm,
(B) As an abrasion resistant hard layer,
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.40 to 0.75),
A (Ti, Al) N layer having an average layer thickness of 0.8 to 5 μm,
The present invention is characterized by a coated cemented carbide tool obtained by physical vapor deposition of the hard coating layer comprising the above (a) and (b) and exhibiting excellent wear resistance in high-speed cutting.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.

(a)耐摩耗硬質層の組成式のX値
耐摩耗硬質層を構成する(Ti,Al)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には、高温強度を向上させる作用があるが、Alの割合を示すX値がTiとの合量に占める割合(原子比、以下同じ)で0.40未満になると、相対的にTiの割合が多くなり過ぎて、高速切削に要求されるすぐれた高温硬さと耐熱性を確保することができなくなり、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.75を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピング(微少欠け)などが発生し易くなることから、X値を0.40〜0.75と定めた。
(A) X value of the composition formula of the wear resistant hard layer The Al component in the (Ti, Al) N layer constituting the wear resistant hard layer improves high temperature hardness and heat resistance, while the Ti component has high temperature strength. However, if the X value indicating the proportion of Al is less than 0.40 in terms of the total amount with Ti (atomic ratio, the same applies hereinafter), the proportion of Ti is relatively increased. The excellent high-temperature hardness and heat resistance required for high-speed cutting can no longer be ensured, and the progress of wear is rapidly accelerated. On the other hand, when the X value indicating the proportion of Al exceeds 0.75, Since the ratio of Ti becomes relatively small, the high-temperature strength rapidly decreases, and as a result, chipping (slight chipping) or the like tends to occur at the cutting edge portion, so that the X value is 0.40 to 0.75. It was determined.

(b)耐摩耗硬質層の平均層厚
その平均層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の硬質難削材の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
(B) Average layer thickness of wear-resistant hard layer If the average layer thickness is less than 0.8 μm, it is insufficient to exhibit its excellent wear resistance over a long period, while the average layer thickness is If it exceeds 5 μm, chipping is likely to occur at the cutting edge portion in the high-speed cutting of the hard difficult-to-cut material, so the average layer thickness is set to 0.8 to 5 μm.

(c)表面層の平均層厚
硬質被覆層は、上記の通り耐摩耗硬質層のもつすぐれた高温硬さおよび耐熱性と、表面層であるCrB層のもつすぐれた高温耐酸化性との共存によって、高い発熱を伴なう硬質難削材の高速切削ですぐれた耐摩耗性を発揮するようになるものであるが、前記CrB層の平均層厚が0.8μm未満では、上記耐摩耗硬質層を切削時における高温酸化雰囲気から使用寿命に至るまで保護するには不十分であり、一方その平均層厚が5μmを越えると切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
(C) Average layer thickness of the surface layer As described above, the hard coating layer is composed of the excellent high temperature hardness and heat resistance of the wear resistant hard layer and the excellent high temperature oxidation resistance of the CrB 2 layer as the surface layer. By coexistence, excellent wear resistance is exhibited by high-speed cutting of hard difficult-to-cut materials with high heat generation. However, when the average layer thickness of the CrB 2 layer is less than 0.8 μm, It is not enough to protect the wear hard layer from the high-temperature oxidizing atmosphere during cutting to the end of its service life. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur at the cutting edge. The layer thickness was set to 0.8-5 μm.

この発明の被覆超硬工具は、すぐれた高温硬さおよび耐熱性を有する(Ti,Al)N層の耐摩耗硬質層と、すぐれた高温耐酸化性を有し、切削時の高温酸化雰囲気から前記耐摩耗硬質層を保護するCrB層の表面層で構成された硬質被覆層によって、硬質難削材の切削加工を高い発熱を伴う高速で行っても、すぐれた耐摩耗性を発揮するものである。 The coated carbide tool of the present invention has a (Ti, Al) N layer wear-resistant hard layer having excellent high-temperature hardness and heat resistance, excellent high-temperature oxidation resistance, and from a high-temperature oxidizing atmosphere during cutting. A hard coating layer composed of two surface layers of CrB that protects the wear-resistant hard layer, which exhibits excellent wear resistance even when cutting hard hard-to-cut materials at high speed with high heat generation It is.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and ISO standard / CNMG120408. TiCN-based cemented carbide substrates B-1 to B-6 having the following chip shape were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として所定の組成を有する耐摩耗硬質層形成用Ti−Al合金、他方側のSP装置のカソード電極(蒸発源)として表面層形成用CrB焼結体を対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の耐摩耗硬質層として蒸着形成し、
(d)ついで、既に蒸着形成された上記の耐摩耗硬質層としての(Ti,Al)N層と、これから蒸着形成される表面層としてのCrB層との密着接合性を向上させる目的で、上記耐摩耗硬質層形成用Ti−Al合金のカソード電極とアノード電極との間のアーク放電を継続したまま、装置内に窒素ガスに代えてArと窒素の混合ガス(N:Ar=容積比で3:1)を導入して、装置内雰囲気を同じく3Paとし、同時に前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体に、3kWの出力でスパッタを発生させ、この状態を20分間保持して、密着接合層としてのTiとAlとCrの複合硼窒化物層(この場合後の測定でいずれも0.3μmの平均層厚を示しが、0.1〜0.5μmの平均層厚ですぐれた密着接合性が確保される)を形成し、
(e)引き続いて、前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体とアノード電極と間のスパッタを同一条件(スパッタ出力:3kW)で続行しながら、前記装置内に導入するガスをArと窒素の混合ガスからArガスに代えると共に、装置内雰囲気を0.5Paとし、同時に上記耐摩耗硬質層形成用Ti−Al合金のカソード電極とアノード電極との間のアーク放電を停止し、この条件で層厚に対応した時間スパッタリングを行い、同じく表3に示される目標層厚のCrB層を硬質被覆層の表面層として蒸着形成しすることにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Wear-resistant hard layer forming Ti having a predetermined composition as a cathode electrode (evaporation source) of an AIP device on one side, mounted along a peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table -Al alloy, CrB 2 sintered body for forming the surface layer as a cathode electrode (evaporation source) of the SP device on the other side is arranged oppositely,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. A DC bias voltage is applied and a current of 100 A is passed between the Ti-Al alloy and the anode electrode of the cathode electrode to generate an arc discharge, whereby the surface of the carbide substrate is bombarded with the Ti-Al alloy. And
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode An arc discharge is generated by passing a current of 100 A between the Ti-Al alloy and the anode electrode, and the target composition and target layer thickness (Ti, Al) shown in Table 3 are formed on the surface of the carbide substrate. ) N layer is vapor-deposited as an abrasion-resistant hard layer of the hard coating layer,
(D) Next, for the purpose of improving the adhesion bonding between the (Ti, Al) N layer as the wear-resistant hard layer already formed by vapor deposition and the CrB 2 layer as the surface layer to be vapor-deposited from now on, While continuing arc discharge between the cathode electrode and the anode electrode of the wear-resistant hard layer forming Ti—Al alloy, a mixed gas of Ar and nitrogen (N 2 : Ar = volume ratio) is used instead of nitrogen gas in the apparatus. 3: 1), and the atmosphere in the apparatus is set to 3 Pa. At the same time, the CrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP apparatus is sputtered at an output of 3 kW. Is held for 20 minutes, and a Ti, Al, and Cr composite boronitride layer as an adhesive bonding layer (in this case, the average layer thickness is 0.3 μm in all subsequent measurements, but 0.1 to 0.5 μm). Excellent adhesion with an average layer thickness of Sex is secured) is formed,
(E) Subsequently, the sputtering between the CrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP apparatus and the anode electrode is continued in the same condition (sputtering output: 3 kW) while being introduced into the apparatus. The gas to be used is changed from a mixed gas of Ar and nitrogen to Ar gas, and the atmosphere in the apparatus is set to 0.5 Pa. At the same time, arc discharge between the cathode electrode and the anode electrode of the wear-resistant hard layer forming Ti-Al alloy is performed. The coated carbide tool according to the present invention is stopped and sputtered for a time corresponding to the layer thickness under these conditions, and a CrB 2 layer having the target layer thickness shown in Table 3 is deposited as a surface layer of the hard coating layer. The present invention surface-coated cemented carbide throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 were produced.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される蒸着装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTi−Al合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, in the vapor deposition apparatus shown in FIG. The Ti-Al alloy with various component compositions was mounted as a cathode electrode (evaporation source), and the inside of the apparatus was first evacuated and kept at a vacuum of 0.1 Pa or less with a heater. After heating to 500 ° C., a DC bias voltage of −1000 V is applied to the cemented carbide substrate, and an arc discharge is generated by flowing a current of 100 A between the Ti—Al alloy of the cathode electrode and the anode electrode, Accordingly, the surface of the carbide substrate is bombarded with a Ti—Al alloy, then nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa, and the bias voltage applied to the carbide substrate is lowered to −100V. Then, arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Al alloy, and the surface of each of the cemented carbide substrates A-1 to A-10 and B-1 to B-6 is displayed on the surface. The conventional surface-coated carbide throwaway as a conventional coated carbide tool is formed by vapor-depositing a wear-resistant hard layer comprising a (Ti, Al) N layer having the target composition and thickness shown in FIG. Chips (hereinafter referred to as conventional coated chips) 1 to 16 were produced.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:質量%で、Ti−6%Al−4%V合金の丸棒、
切削速度:100m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件(切削条件Aという)でのTi系合金の乾式連続高速切削加工試験(通常の切削速度は60m/min.)、
被削材:質量%で、Al−13%Si合金の丸棒、
切削速度:300m/min.、
切り込み:2.0mm、
送り:0.15mm/rev.、
切削時間:10分、
の条件(切削条件Bという)での高Si含有Al−Si系合金の乾式連続高速切削加工試験(通常の切削速度は180m/min.)、
被削材:質量%で、Al−18%Si合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.18mm/rev.、
切削時間:10分、
の条件(切削条件Cという)での高Si含有Al−Si系合金の乾式断続高速切削加工試験(通常の切削速度は150m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: Ti-6% Al-4% V alloy round bar by mass%,
Cutting speed: 100 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
A dry continuous high-speed cutting test of a Ti-based alloy under the following conditions (referred to as cutting condition A) (normal cutting speed is 60 m / min.),
Work material: Al-13% Si alloy round bar by mass%,
Cutting speed: 300 m / min. ,
Cutting depth: 2.0 mm
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test (normal cutting speed is 180 m / min.) Of a high Si-containing Al—Si based alloy under the above conditions (referred to as cutting condition B),
Work material: Mass%, Al-18% Si alloy lengthwise equidistantly 4 vertical rods with flutes,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.18 mm / rev. ,
Cutting time: 10 minutes,
A dry interrupted high-speed cutting test (normal cutting speed is 150 m / min.) Of a high Si content Al-Si alloy under the above conditions (referred to as cutting condition C). The wear width was measured. The measurement results are shown in Table 5.

Figure 2006026883
Figure 2006026883

Figure 2006026883
Figure 2006026883

Figure 2006026883
Figure 2006026883

Figure 2006026883
Figure 2006026883

Figure 2006026883
Figure 2006026883

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層と、同じく表7に示される目標層厚のCrB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. And a wear-resistant hard layer composed of a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 7 and a surface layer consisting of a CrB 2 layer having the target layer thickness also shown in Table 7 The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 8 as the present invention coated carbide tools were produced by vapor-depositing the hard coating layer composed of

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層を硬質被覆層として蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. In the same conditions as in Example 1, the wear resistant hard layer comprising the (Ti, Al) N layer having the target composition and the target layer thickness shown in Table 7 is vapor-deposited as a hard coating layer. Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as hard tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−3%Al−2.5%V合金)の板材、
切削速度:100m/min.、
溝深さ(切り込み):2mm、
テーブル送り:800mm/分、
の条件でのTi系合金の乾式高速溝切削加工試験(通常の切削速度は50m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−6%Al−4%V合金)の板材、
切削速度:150m/min.、
溝深さ(切り込み):4mm、
テーブル送り:960mm/分、
の条件でのTi系合金の乾式高速溝切削加工試験(通常の切削速度は80m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった高Si含有Al−Si系合金(質量%で、Al−18%Si合金)の板材、
切削速度:300m/min.、
溝深さ(切り込み):12mm、
テーブル送り:950mm/分、
の条件での高Si含有Al−Si系合金の乾式高速溝切削加工試験(通常の切削速度は150m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1 to 8 and the conventional coated end mills 1 to 8, the present coated end mills 1 to 3 and the conventional coated end mills 1 to 3 are as follows:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-3% Al-2.5% V alloy) plate material,
Cutting speed: 100 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 800mm / min,
With respect to the dry high-speed grooving test of the Ti-based alloy under the conditions (normal cutting speed is 50 m / min.), The coated end mills 4 to 6 and the conventional coated end mills 4 to 6 are as follows:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-6% Al-4% V alloy) plate material,
Cutting speed: 150 m / min. ,
Groove depth (cut): 4 mm
Table feed: 960 mm / min,
With respect to the dry high-speed grooving test of a Ti-based alloy under the conditions (normal cutting speed is 80 m / min.), The present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm high Si content Al—Si alloy (mass%, Al-18% Si alloy) plate material,
Cutting speed: 300 m / min. ,
Groove depth (cut): 12 mm,
Table feed: 950 mm / min,
A dry high-speed grooving test (normal cutting speed is 150 m / min.) Of a high-Si-containing Al-Si alloy under the above conditions, and the flank of the outer peripheral edge of the cutting edge in any grooving test The cutting groove length was measured until the wear width reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 7, respectively.

Figure 2006026883
Figure 2006026883

Figure 2006026883
Figure 2006026883

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層と、同じく表8に示される目標層厚のCrB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the wear-resistant hard layer composed of the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 and CrB having the target layer thickness also shown in Table 8 By vapor-depositing a hard coating layer composed of two surface layers, the present surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 as the present invention coated carbide tools are provided. Each was manufactured.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al)N層からなる耐摩耗硬質層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. The device was charged and vapor-deposited as a hard coating layer with a wear-resistant hard layer comprising a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above. Thus, conventional surface-coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−3%Al−2.5%V合金)の板材、
切削速度:50m/min.、
送り:0.2mm/rev、
穴深さ:10mm、
の条件でのTi系合金の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−6%Al−4%V合金)の板材、
切削速度:75m/min.、
送り:0.15mm/rev、
穴深さ:15mm、
の条件でのTi系合金の湿式高速穴あけ切削加工試験(通常の切削速度は40m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった高Si含有Al−Si系合金(質量%で、Al−18%Si合金)の板材、
切削速度:120m/min.、
送り:0.4mm/rev、
穴深さ:30mm、
の条件での高Si含有Al−Si系合金の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-plane: 100 mm × 250, thickness: 50 mm Ti-based alloy (mass%, Ti-3% Al-2.5% V alloy) plate material,
Cutting speed: 50 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 10mm,
With respect to the Ti-based alloy wet high-speed drilling test (normal cutting speed is 30 m / min.), The present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-6% Al-4% V alloy) plate material,
Cutting speed: 75 m / min. ,
Feed: 0.15mm / rev,
Hole depth: 15mm,
With respect to the wet-type high-speed drilling test of a Ti-based alloy under the conditions (normal cutting speed is 40 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm high Si content Al—Si alloy (mass%, Al-18% Si alloy) plate material,
Cutting speed: 120 m / min. ,
Feed: 0.4mm / rev,
Hole depth: 30mm,
Wet high-speed drilling test (normal cutting speed is 80 m / min.) Of high Si content Al-Si alloy under the conditions of each, and each wet high-speed drilling test (using water-soluble cutting oil) However, the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Table 8, respectively.

Figure 2006026883
Figure 2006026883

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する耐摩耗硬質層の組成、並びに比較被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層の耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   The composition of the wear-resistant hard layer constituting the hard coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool obtained as a result. The composition of the hard coating layer of the hard coating layer of the conventional coated tips 1 to 16, the conventional coated end mills 1 to 8 and the conventional coated drills 1 to 8 as a comparative coated carbide tool using a transmission electron microscope When measured by an energy dispersive X-ray analysis method, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の表面層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the surface layer of the hard coating layer and the wear-resistant hard layer was measured with a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of five locations). )showed that.

表3〜8に示される結果から、硬質被覆層が、高温硬さと耐熱性を有する(Ti,Al)N層の耐摩耗硬質層と、すぐれた高温耐酸化性を有し、切削時の高温酸化雰囲気から前記耐摩耗硬質層を保護するCrB層の表面層で構成された本発明被覆超硬工具は、いずれも各種のTi系合金や高Si含有Al−Si系合金などの硬質難削材の高速切削で、高い発熱を伴うのにもかかわらず、すぐれた耐摩耗性を発揮するのに対して、(Ti,Al)N層の耐摩耗硬質層だけからなる従来被覆超硬工具においては、高熱発生を伴う高速切削加工では切刃部の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, the hard coating layer has a high-temperature hardness and heat resistance (Ti, Al) N layer wear-resistant hard layer, excellent high-temperature oxidation resistance, and high temperature during cutting. The coated carbide tool of the present invention composed of two surface layers of CrB that protects the wear-resistant hard layer from an oxidizing atmosphere is hard hard cutting such as various Ti-based alloys and high Si-containing Al-Si based alloys. In conventional coated carbide tools consisting only of (Ti, Al) N wear-resistant hard layers, while exhibiting excellent wear resistance despite high heat generation in high-speed cutting of materials It is clear that in high-speed cutting with high heat generation, the wear of the cutting edge is fast and the service life is reached in a relatively short time.

上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴なう上記の硬質難削材の高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention is not only capable of cutting under normal cutting conditions such as various types of steel and cast iron, but also has a particularly high speed of the hard hard-to-cut materials with high heat generation. Because it exhibits excellent wear resistance even in cutting processing and exhibits excellent cutting performance over a long period of time, the performance and automation of cutting equipment, labor saving and energy saving of cutting processing, and lower cost It is possible to cope with the conversion sufficiently satisfactorily.

被覆超硬工具を構成する表面被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used for forming the surface coating layer which comprises a coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に、
(a)表面層として、0.8〜5μmの平均層厚を有するCr硼化物層、
(b)耐摩耗硬質層として、
組成式:(Ti1-X AlX )N(ただし、原子比で、Xは0.40〜0.75を示す)、
を満足し、0.8〜5μmの平均層厚を有するTiとAlの複合窒化物層、
以上(a)および(b)からなる硬質被覆層を物理蒸着してなる、高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
On the surface of a cemented carbide substrate made of tungsten carbide based cemented carbide or titanium carbonitride cermet,
(A) As a surface layer, a Cr boride layer having an average layer thickness of 0.8 to 5 μm,
(B) As an abrasion resistant hard layer,
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.40 to 0.75),
And a composite nitride layer of Ti and Al having an average layer thickness of 0.8 to 5 μm,
A surface-coated cemented carbide cutting tool that exhibits high wear resistance in which the hard coating layer is excellent in high-speed cutting, which is obtained by physically vapor-depositing the hard coating layer comprising the above (a) and (b).
JP2004345474A 2004-06-18 2004-11-30 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting Expired - Fee Related JP4697389B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004345474A JP4697389B2 (en) 2004-06-18 2004-11-30 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
EP04807992.5A EP1757388B1 (en) 2004-06-18 2004-12-28 Surface-coated cutware and process for producing the same
PCT/JP2004/019637 WO2005123312A1 (en) 2004-06-18 2004-12-28 Surface-coated cutware and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004181248 2004-06-18
JP2004181248 2004-06-18
JP2004345474A JP4697389B2 (en) 2004-06-18 2004-11-30 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Publications (2)

Publication Number Publication Date
JP2006026883A true JP2006026883A (en) 2006-02-02
JP4697389B2 JP4697389B2 (en) 2011-06-08

Family

ID=35893811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345474A Expired - Fee Related JP4697389B2 (en) 2004-06-18 2004-11-30 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Country Status (1)

Country Link
JP (1) JP4697389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290065A (en) * 2006-04-24 2007-11-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
CN103212728A (en) * 2012-01-23 2013-07-24 三菱综合材料株式会社 Surface coating cutting tool provided with rigid coating layer with excellent heat resistance and wear resistance
CN112839759A (en) * 2018-10-10 2021-05-25 住友电工硬质合金株式会社 Cutting tool and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330853A (en) * 1991-03-16 1994-07-19 Leybold Ag Multilayer Ti-Al-N coating for tools
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
US6033768A (en) * 1996-03-12 2000-03-07 Hauzer Industries Bv Hard material coating with yttrium and method for its deposition
GB2378187A (en) * 2001-08-01 2003-02-05 Peter Albany Dearnley Wear Resistant Metal Boride Coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330853A (en) * 1991-03-16 1994-07-19 Leybold Ag Multilayer Ti-Al-N coating for tools
JPH06220571A (en) * 1992-08-31 1994-08-09 Sumitomo Electric Ind Ltd Sintered hard alloy and coated sintered hard alloy for cutting tool
US6033768A (en) * 1996-03-12 2000-03-07 Hauzer Industries Bv Hard material coating with yttrium and method for its deposition
GB2378187A (en) * 2001-08-01 2003-02-05 Peter Albany Dearnley Wear Resistant Metal Boride Coatings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290065A (en) * 2006-04-24 2007-11-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
CN103212728A (en) * 2012-01-23 2013-07-24 三菱综合材料株式会社 Surface coating cutting tool provided with rigid coating layer with excellent heat resistance and wear resistance
JP2013146839A (en) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer maintaining superior heat resistance and wear resistance
CN112839759A (en) * 2018-10-10 2021-05-25 住友电工硬质合金株式会社 Cutting tool and method for manufacturing same

Also Published As

Publication number Publication date
JP4697389B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP2006218592A (en) Surface coated cemented carbide cutting tool having hard covering layer exhibiting superior abrasion resistance in high speed cutting of high hardness steel
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP5499862B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP2006001001A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of highly reactive material to be cut
JP2007021639A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting work of hard-to-cut material
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut
JP2006001002A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of highly reactive material to be cut

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4697389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees