JP2006025552A - Rotating electric machine and manufacturing method of rotor of rotating electric machine - Google Patents

Rotating electric machine and manufacturing method of rotor of rotating electric machine Download PDF

Info

Publication number
JP2006025552A
JP2006025552A JP2004202223A JP2004202223A JP2006025552A JP 2006025552 A JP2006025552 A JP 2006025552A JP 2004202223 A JP2004202223 A JP 2004202223A JP 2004202223 A JP2004202223 A JP 2004202223A JP 2006025552 A JP2006025552 A JP 2006025552A
Authority
JP
Japan
Prior art keywords
magnet
rotor core
adhesive
rotor
core pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004202223A
Other languages
Japanese (ja)
Inventor
Katsumi Hayamizu
勝巳 速水
Kosuke Haraga
康介 原賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004202223A priority Critical patent/JP2006025552A/en
Publication of JP2006025552A publication Critical patent/JP2006025552A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rotating electric machine that secures an adhesion area between an adhesive and the external peripheral part of a steel plate, and is improved in the adhesion strength of a magnet by making the adhesive enter the bottom of a V-shaped groove of the external peripheral part of a rotor core. <P>SOLUTION: The rotating electric machine comprises: the rotor core 31 formed with a plurality of the V-shaped grooves β each formed by the facing of fracture faces at a magnet adhered part, by laminating a prescribed number of rotor core pieces 31x so that press-punched fracture faces 31c of the magnet adhesion part 31a and sheared faces 31d are adjacent with each other; and a rotor 30 that is composed of the adhesive 33 applied to the magnet adhesion part and/or a permanent magnet 32, and also applied in the V-shaped groove, and the permanent magnet adhered to the magnet adhesion part via the adhesive. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回転電機及び回転電機の回転子の製造方法に関するものである。   The present invention relates to a rotating electrical machine and a method for manufacturing a rotor of the rotating electrical machine.

従来の回転電機として、ロータ側にマグネットを有するインナーロータ形小形DCブラシレスモートルにおいて、ロータヨーク部を積層ロータコアで形成し、その外周部に前記ロータマグネットを装着固定して成るインナーロータを有するものがある。そして、前記ロータコアはステータコアと同時抜き、かつ複数個の積層用V字形ノッチを有し、プレス打抜型内で自動積層され、取扱い、組立てに有利な一塊の剛体としている。また、ロータコア積層時生じる凹凸面を利用し、前記ロータマグネットの接着強度、信頼性を上げている。それは、プレス打抜き積層コアの外周部に、電磁鋼板の破断によるクサビ状空隙(接着に最適な10〜20μm)が形成されて接着剤の溜りとなるからである(例えば、特許文献1参照)。   As a conventional rotating electrical machine, there is an inner rotor type small DC brushless motor having a magnet on the rotor side, and having an inner rotor formed by forming a rotor yoke portion with a laminated rotor core and mounting and fixing the rotor magnet on the outer periphery thereof. . The rotor core is punched at the same time as the stator core and has a plurality of V-shaped notches for stacking. The rotor core is automatically stacked in a press punching die, making it a solid body that is advantageous for handling and assembly. Further, the uneven surface generated when the rotor core is laminated is used to increase the adhesive strength and reliability of the rotor magnet. This is because a wedge-shaped gap (10 to 20 μm optimum for adhesion) is formed in the outer peripheral portion of the press-punched laminated core by breaking the electromagnetic steel sheet and becomes a pool of adhesive (for example, see Patent Document 1).

特開平6−261514号公報(特許請求の範囲、段落〔0007〕、図1〜5)JP-A-6-261514 (Claims, paragraph [0007], FIGS. 1 to 5)

しかしながら、上記従来の回転電機では、ステータコア及びロータコアは、渦電流損及び鉄損を小さくするために薄い電磁鋼板を使用している。また、接着剤は、塗布時及び接着時に接着部の外へ流れ出ないように、ある程度粘度の高いものを使用している。特に、接着工程を自動化する場合、接着剤が外へ流れ出ると自動化が困難になるからである。電磁鋼板が薄いためロータコア外周部のクサビ状空隙が小さく、また、接着剤の粘度が高いため、接着剤がクサビ状空隙の奥まで入り込まず、接着剤と電磁鋼板との接着面積を充分に確保できなかった。   However, in the conventional rotating electric machine described above, the stator core and the rotor core use thin electromagnetic steel sheets in order to reduce eddy current loss and iron loss. In addition, an adhesive having a certain degree of viscosity is used so that it does not flow out of the bonded portion during application and bonding. In particular, when the bonding process is automated, automation is difficult when the adhesive flows out. Since the magnetic steel sheet is thin, the wedge-shaped gap around the outer periphery of the rotor core is small, and the viscosity of the adhesive is high, so the adhesive does not penetrate deeply into the wedge-shaped gap, ensuring a sufficient bonding area between the adhesive and the electromagnetic steel sheet. could not.

本発明は、上記に鑑みてなされたものであって、鋼板を積層した回転子鉄心(ロータコア)外周のクサビ状空隙の奥まで接着剤を入り込ませることにより、接着剤と鋼板との接着面積を確保し、磁石の接着強度をさらに高めた回転電機を得ることを目的とする。   This invention is made in view of the above, Comprising: By making an adhesive enter into the back of the wedge-shaped space | gap of the outer periphery of the rotor core (rotor core) which laminated | stacked the steel plate, the adhesive area of an adhesive agent and a steel plate is made. An object of the present invention is to obtain a rotating electrical machine that is secured and further increases the adhesive strength of a magnet.

上述した課題を解決し、目的を達成するために、本発明の回転電機は、磁石接着部のプレス打抜き破断面同士及びせん断面同士を隣り合わせるように所定枚数の回転子鉄心片を積層することにより、前記磁石接着部に破断面同士の対向による複数のV字状溝が形成された回転子鉄心と、前記磁石接着部及び/又は永久磁石に塗布され、前記V字状溝内にも塗布された接着剤と、該接着剤を介して前記磁石接着部に接着された前記永久磁石と、から成る回転子を備える。   In order to solve the above-described problems and achieve the object, the rotating electrical machine of the present invention is configured by laminating a predetermined number of rotor core pieces so that the press punched fracture surfaces and shear surfaces of the magnet bonding portion are adjacent to each other. Is applied to the rotor iron core in which a plurality of V-shaped grooves are formed on the magnet adhesion portion by facing the fracture surfaces, and to the magnet adhesion portion and / or the permanent magnet, and also applied to the V-shape groove. A rotor including the adhesive and the permanent magnet bonded to the magnet bonding portion via the adhesive.

この発明によれば、磁石接着部のV字状溝(クサビ状空隙)の奥まで接着剤が入り込んでいるため、接着剤と磁石接着部との接着面積を確保することができる。   According to this invention, since the adhesive has penetrated to the back of the V-shaped groove (wedge-shaped gap) of the magnet bonding portion, it is possible to secure the bonding area between the adhesive and the magnet bonding portion.

この発明によれば、回転子鉄心と永久磁石との接着強度の高い回転電機を得ることができるという効果を奏する。   According to this invention, there exists an effect that the rotary electric machine with high adhesive strength of a rotor iron core and a permanent magnet can be obtained.

以下に、本発明にかかる回転電機及び回転電機の回転子の製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a rotating electrical machine and a method of manufacturing a rotor of the rotating electrical machine according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の回転電機の実施の形態を示す断面図であり、図2−1は、トランスファープレスによる回転子鉄心の製造工程を示す図であり、図2−2は、プレス打抜き方法の他の例を示す図であり、図3は、プレスのダイスとポンチのクリアランスを示す図であり、図4−1は、クリアランスが小さい場合の回転子鉄心片の切断面の形状を示す図であり、図4−2は、クリアランスが大きい場合の回転子鉄心片の切断面の形状を示す図であり、図5は、図1のA−A線に沿う拡大断面図で磁石接着部を示す図であり、図6は、比較例として従来の磁石接着部を示す図である。   FIG. 1 is a sectional view showing an embodiment of a rotating electrical machine of the present invention, FIG. 2-1 is a view showing a manufacturing process of a rotor core by transfer press, and FIG. 2-2 is a press punching method. FIG. 3 is a view showing the clearance between the press die and the punch, and FIG. 4A is a view showing the shape of the cut surface of the rotor core piece when the clearance is small. FIG. 4-2 is a diagram showing the shape of the cut surface of the rotor core piece when the clearance is large, and FIG. 5 is an enlarged cross-sectional view taken along the line AA in FIG. FIG. 6 is a diagram showing a conventional magnet bonding portion as a comparative example.

図1に示すように、実施の形態の回転電機モータ100は、概ね円筒状に形成され図示しないフレーム内に収容される固定子20と、シャフト34に支持され、固定子20内で回転する概ね円柱状の回転子30とから構成されている。固定子20は、電磁鋼板を積層して形成され内周部に複数(12本)のティース部21aとスロット21bが設けられた固定子鉄心21と、スロット21bに装着された固定子巻線22とから成っている。   As shown in FIG. 1, the rotating electrical machine motor 100 of the embodiment is generally formed in a cylindrical shape and is supported by a shaft 20 that is accommodated in a frame (not shown) and a shaft 34, and rotates in the stator 20. A cylindrical rotor 30 is included. The stator 20 is formed by laminating electromagnetic steel plates, and a stator core 21 provided with a plurality (12) of teeth portions 21a and slots 21b on an inner peripheral portion thereof, and a stator winding 22 attached to the slot 21b. It consists of.

回転子30は、電磁鋼板を積層して形成された回転子鉄心31と、回転子鉄心31の外周部の磁石接着部31aに接着された複数(8本)の永久磁石32とから成っている。永久磁石32は、N極とS極が交互に並ぶように配置されている。固定子巻線22に通電し、固定子20に回転磁界を形成させ、回転子30をシャフト34回りに回転させる。   The rotor 30 includes a rotor core 31 formed by laminating electromagnetic steel plates, and a plurality (eight) permanent magnets 32 bonded to the magnet bonding portion 31a on the outer peripheral portion of the rotor core 31. . The permanent magnets 32 are arranged so that N poles and S poles are alternately arranged. The stator winding 22 is energized, a rotating magnetic field is formed in the stator 20, and the rotor 30 is rotated around the shaft 34.

次に、図2〜図4−2を参照して、回転子30の製造方法について説明する。回転子鉄心31は、帯状に形成された電磁鋼板のコア材40からトランスファープレス400により円形の回転子鉄心片31xを打抜き、この回転子鉄心片31xを積層して形成する。   Next, a method for manufacturing the rotor 30 will be described with reference to FIGS. The rotor core 31 is formed by punching a circular rotor core piece 31x from a core material 40 of a magnetic steel sheet formed in a band shape by a transfer press 400, and laminating the rotor core pieces 31x.

ここで、コア材40からのプレス打抜き加工による回転子鉄心片31xの外周切断面の形状について説明する。一般的に、プレス打抜き切断加工を行うと、その切断面には、切断加工前半で形成され材料面に対し傾斜する破断面と、切断加工後半で形成され材料面に対し垂直なせん断面の2つの形態の面が形成される。この破断面とせん断面の形成比率は、図3に示すプレスの上型(ポンチ)と下型(ダイス)のクリアランスの大小により決まる。   Here, the shape of the outer peripheral cut surface of the rotor core piece 31x by press punching from the core material 40 will be described. In general, when press punching and cutting are performed, the cut surface is divided into a fracture surface formed in the first half of the cutting process and inclined with respect to the material surface, and a shear surface formed in the second half of the cutting process and perpendicular to the material surface. One form of surface is formed. The formation ratio of the fracture surface and the shear plane is determined by the size of the clearance between the upper die (punch) and the lower die (die) shown in FIG.

クリアランスが小さい場合、図4−1に示すように、切断面が刃物で切られたような状態になりせん断面(垂直部)が大きくなり切断精度が良くなるが、型のエッジに大きな応力が発生し型寿命が短くなる。クリアランスが大きい場合、エッジによる切断能力が小さくなり引き千切られるように切断され、図4−2に示すように、破断面(傾斜部)が大きくなり切断精度が悪くなる。本実施の形態のコア材40からのプレス打抜き加工では、切断精度と型寿命の両面を考慮し、せん断面と破断面がほぼ半々となるようにクリアランスを調整している。   When the clearance is small, as shown in FIG. 4A, the cutting surface is cut with a blade and the shear surface (vertical portion) is increased and the cutting accuracy is improved. However, a large stress is applied to the edge of the mold. Occurs and the mold life is shortened. When the clearance is large, the cutting ability by the edge is reduced and the cutting is performed so that it is torn off, and as shown in FIG. 4-2, the fracture surface (inclined portion) is increased and the cutting accuracy is deteriorated. In the press punching process from the core material 40 according to the present embodiment, the clearance is adjusted so that the shearing surface and the fracture surface are almost halved in consideration of both cutting accuracy and die life.

次に、図2−1を参照して、トランスファープレス400による回転子鉄心片31xの打抜き工程及び積層工程について説明する。トランスファープレス400は、回転子鉄心片31xの磁石接着部31aをコア材40の一方側から断続環状に打抜くポンチ44及びダイス45を有するステージ41と、磁石接着部31aをコア材40の他方側から断続環状に打抜くポンチ44及びダイス45を有するステージ42と、回転子鉄心片31xの残りの非磁石接着部31bになる部分をコア材40の他方側から打抜くポンチ46及び打抜かれた回転子鉄心片31xを積層する積層孔47aを設けたダイス47を有するステージ43と、を備えている。   Next, with reference to FIG. 2A, a punching process and a laminating process of the rotor core piece 31x by the transfer press 400 will be described. The transfer press 400 includes a stage 41 having a punch 44 and a die 45 for punching the magnet adhesive portion 31a of the rotor core piece 31x intermittently from one side of the core material 40, and the magnet adhesive portion 31a on the other side of the core material 40. A punch 42 for punching in an annular manner from the stage 42 and a die 42, and a punch 46 for punching the remaining non-magnet adhering portion 31b of the rotor core piece 31x from the other side of the core material 40 and the punched rotation. And a stage 43 having a die 47 provided with a laminated hole 47a for laminating the core pieces 31x.

なお、ステージ41及びステージ42では、シャフト孔34aも同時に打抜くようになっている。また、ステージ43において、回転子鉄心片31xに積層用Vノッチを形成して積層一体化した回転子鉄心31を成形してもよいし、積層一体化は他の工程で行ってもよい。   In the stage 41 and the stage 42, the shaft hole 34a is also punched at the same time. Further, on the stage 43, the rotor core 31 may be formed by forming a V-notch for lamination on the rotor core piece 31x, and the lamination integration may be performed, or the lamination integration may be performed in another process.

上記のトランスファープレス400を用いたコア材40からの回転子鉄心片31xのプレス打抜き及び積層方法を説明する。帯状のコア材40をトランスファープレス400上にセットし、第1のステップとして、ステージ41及びステージ42のポンチ44とダイス45を作動させ、一対の回転子鉄心片31xの磁石接着部31aを、ステージ41ではコア材40の一方側から、ステージ42では他方側から、断続環状に打抜く。   A method of stamping and laminating the rotor core pieces 31x from the core material 40 using the transfer press 400 will be described. The band-shaped core material 40 is set on the transfer press 400, and as a first step, the punches 44 and the dies 45 of the stage 41 and the stage 42 are operated, and the magnet bonding portion 31a of the pair of rotor core pieces 31x is moved to the stage. 41 is punched in an intermittent ring from one side of the core material 40 and from the other side of the stage 42.

第2のステップとして、コア材40を1ステージ分送り、ステージ42で他方側から断続環状に打抜かれた部分をステージ43上に位置させる。ステージ43のポンチ46とダイス47を作動させ、回転子鉄心片31xの非磁石接着部31bを打抜き、積層孔47a内へ落し込む。続いて、コア材40を1ステージ分送り、ステージ41で一方側から断続環状に打抜かれた部分をステージ43上に位置させる。同様に、ステージ43のポンチ46とダイス47を作動させ、もう一つの回転子鉄心片31xの非磁石接着面31bを打抜き、積層孔47a内へ落し込み、先に落し込まれた回転子鉄心片31x上に積層する。   As a second step, the core material 40 is fed by one stage, and the portion punched out intermittently from the other side by the stage 42 is positioned on the stage 43. The punch 46 and the die 47 of the stage 43 are actuated to punch out the non-magnet adhering portion 31b of the rotor core piece 31x and drop it into the laminated hole 47a. Subsequently, the core material 40 is fed by one stage, and the portion punched out intermittently from one side by the stage 41 is positioned on the stage 43. Similarly, the punch 46 and the die 47 of the stage 43 are actuated, the non-magnet bonding surface 31b of the other rotor core piece 31x is punched out, dropped into the laminated hole 47a, and the rotor core piece dropped first. Laminate on 31x.

以下、第3のステップとして、前記第1、第2のステップを繰返し、少なくとも磁石接着部31aが互いに逆方向にプレス打抜きされた所定枚数の回転子鉄心片31x交互に積層する。   Hereinafter, as the third step, the first and second steps are repeated, and a predetermined number of rotor core pieces 31x in which at least the magnet adhesive portions 31a are stamped in opposite directions are alternately stacked.

次に、第4のステップとして、積層された所定枚数の回転子鉄心片31xに積層用Vノッチを形成するなどして一体化し、回転子鉄心31を成形する。   Next, as a fourth step, the rotor core 31 is formed by integrating a predetermined number of laminated rotor core pieces 31x by forming a lamination V-notch or the like.

第5のステップとして、一体化した回転子鉄心31の磁石接着部31a及び/又は永久磁石32に接着剤33を塗布し、この接着剤33を介して磁石接着部31aに永久磁石32を接着する。この製造方法によれば、第1〜第4ステップをトランスファープレスのみで自動化して行うことができる。   As a fifth step, the adhesive 33 is applied to the magnet bonding portion 31 a and / or the permanent magnet 32 of the integrated rotor core 31, and the permanent magnet 32 is bonded to the magnet bonding portion 31 a via the adhesive 33. . According to this manufacturing method, the first to fourth steps can be automatically performed only by a transfer press.

なお、上記では、図2−1に示すように、第1のステップとして、ステージ41及びステージ42のポンチ44とダイス45を作動させ、一対の回転子鉄心片31xの磁石接着部31aを、断続環状に打抜く例を示したが、打抜き方法としては、図2−2に示すように、非磁石接着部31bを2ヶ所のみ残し、他の外周部を連続させて打抜いてもよい。このようにすると、ポンチやダイスの型の製作が容易で寿命も長くなる。   In the above, as shown in FIG. 2A, as a first step, the punches 44 and the dies 45 of the stage 41 and the stage 42 are operated, and the magnet adhesion portions 31a of the pair of rotor core pieces 31x are intermittently connected. Although an example of punching in an annular shape has been shown, as a punching method, as shown in FIG. 2B, only two non-magnet bonding portions 31b may be left and other outer peripheral portions may be continuously punched. In this way, it is easy to manufacture punches and dies, and the life is extended.

また、図示はしないが、所定枚数の回転子鉄心片31xの円形打抜きを、単純プレスで同一方向から行い、打抜き方向の交互積層は手作業や組立ロボットで行ってもよい。   Although not shown, circular punching of a predetermined number of rotor core pieces 31x may be performed from the same direction with a simple press, and alternate stacking in the punching direction may be performed manually or by an assembly robot.

図5は、図1のA−A線に沿う拡大断面図で本実施の形態の磁石接着部を示す図であり、図6は、比較例として従来の磁石接着部を示す図である。回転子鉄心31は、外周部の少なくとも磁石接着部31aが互いに逆方向にプレス打抜きされた回転子鉄心片31xを交互に積層しているので、せん断面31d同士と破断面31c同士がそれぞれ隣り合う形となる。   FIG. 5 is an enlarged cross-sectional view taken along the line AA in FIG. 1 and shows a magnet adhesion portion of the present embodiment, and FIG. 6 is a diagram showing a conventional magnet adhesion portion as a comparative example. Since the rotor core 31 is formed by alternately laminating the rotor core pieces 31x in which at least the magnet adhesion portions 31a of the outer peripheral portion are pressed and punched in the opposite directions, the shear surfaces 31d and the fracture surface 31c are adjacent to each other. It becomes a shape.

そして、破断面31cの傾斜面が対向し、破断面31c同士の開き角αが鈍角になり、磁石接着部31aに開き角αが鈍角の複数のV字状溝βが形成される。このため、ある程度接着剤の粘度が高くても、図6に示す従来のものより、塗布された接着剤33が溝(クサビ状空隙)の奥まで入り込めるようになり、接着剤33と破断面31cとの接着面積が十分に確保され、接着強度が向上する。従って、回転子鉄心31と永久磁石32との接着強度の高い回転電機100を得ることができる。なお、磁石接着部31aに接着剤33を塗布するときは、V字状溝β(クサビ状空隙)の奥に接着剤33を押込むようにして塗布するとよい。   And the inclined surface of the torn surface 31c opposes, the opening angle (alpha) of the torn surfaces 31c becomes an obtuse angle, and the several V-shaped groove | channel (beta) whose opening angle (alpha) is an obtuse angle is formed in the magnet adhesion part 31a. For this reason, even if the viscosity of the adhesive is high to some extent, the applied adhesive 33 can enter deeper into the groove (wedge-like gap) than the conventional one shown in FIG. Adhesive area is sufficiently secured, and the adhesive strength is improved. Therefore, the rotary electric machine 100 with high adhesive strength between the rotor core 31 and the permanent magnet 32 can be obtained. In addition, when apply | coating the adhesive agent 33 to the magnet adhesion part 31a, it is good to apply | coat so that the adhesive agent 33 may be pushed inside the V-shaped groove | channel (beta) groove | channel (wedge-like space | gap).

以上のように、本発明にかかる回転電機は、回転子外周部に永久磁石を接着するタイプの回転電機として有用である。   As described above, the rotating electrical machine according to the present invention is useful as a rotating electrical machine of a type in which a permanent magnet is bonded to the outer periphery of the rotor.

本発明の回転電気の実施の形態を示す断面図である。It is sectional drawing which shows embodiment of the rotary electricity of this invention. トランスファープレスによる回転子鉄心の製造工程を示す図である。It is a figure which shows the manufacturing process of the rotor core by a transfer press. プレス打抜き方法の他の例を示す図である。It is a figure which shows the other example of the press punching method. プレスのダイスとポンチのクリアランスを示す図である。It is a figure which shows the die | dye of a press, and the clearance of a punch. 回転子鉄心片の切断面の形状を示す図である。It is a figure which shows the shape of the cut surface of a rotor core piece. 回転子鉄心片の切断面の形状を示す図である。It is a figure which shows the shape of the cut surface of a rotor core piece. 図1のA−A線に沿う拡大断面図である。It is an expanded sectional view which follows the AA line of FIG. 比較例として従来の磁石接着部を示す図である。It is a figure which shows the conventional magnet adhesion part as a comparative example.

符号の説明Explanation of symbols

30 回転子
31 回転子鉄心
31a 磁石接着部
31x 回転子鉄心片
32 永久磁石
33 接着剤
α 破断面同士の開き角
β V字状溝
30 Rotor 31 Rotor Core 31a Magnet Adhering Portion 31x Rotor Core Piece 32 Permanent Magnet 33 Adhesive α Opening Angle between Broken Surfaces β V-shaped Groove

Claims (3)

磁石接着部のプレス打抜き破断面同士及びせん断面同士を隣り合わせるように所定枚数の回転子鉄心片を積層することにより、前記磁石接着部に破断面同士の対向による複数のV字状溝が形成された回転子鉄心と、
前記磁石接着部及び/又は永久磁石に塗布され、前記V字状溝内にも塗布された接着剤と、
該接着剤を介して前記磁石接着部に接着された前記永久磁石と、
から成る回転子を備えた回転電機。
By laminating a predetermined number of rotor core pieces so that the press punched fracture surfaces and shear surfaces of the magnet adhesion part are adjacent to each other, a plurality of V-shaped grooves are formed in the magnet adhesion part by facing the fracture surfaces. Rotor core made,
An adhesive applied to the magnet adhesive portion and / or permanent magnet, and also applied to the V-shaped groove;
The permanent magnet bonded to the magnet bonding portion via the adhesive;
An electric rotating machine comprising a rotor made of
鋼板から一対の回転子鉄心片の外周部の少なくとも磁石接着部を互いに逆方向にプレス打抜きする第1のステップと、
鋼板と共に前記一対の回転子鉄心片を送り、順次、積層孔に落し込む第2のステップと、
前記第1、第2のステップを繰返し、少なくとも磁石接着部が互いに逆方向にプレス打抜きされた所定枚数の回転子鉄心片を交互に積層する第3のステップと、
前記積層された回転子鉄心片を一体化して回転子鉄心を成形する第4のステップと、
前記磁石接着部及び/又は永久磁石に接着剤を塗布し、該接着剤を介して前記磁石接着部に永久磁石を接着する第5のステップと、
を含む回転電機の回転子の製造方法。
A first step of pressing and punching at least the magnet adhesion part of the outer peripheral part of the pair of rotor core pieces in a direction opposite to each other from the steel sheet;
A second step of feeding the pair of rotor core pieces together with the steel plate and sequentially dropping into the laminated holes;
Repeating the first and second steps, and a third step of alternately laminating a predetermined number of rotor core pieces in which at least the magnet adhesion portions are stamped in opposite directions; and
A fourth step of forming the rotor core by integrating the laminated rotor core pieces;
A fifth step of applying an adhesive to the magnet adhesion part and / or the permanent magnet, and adhering the permanent magnet to the magnet adhesion part via the adhesive;
A method for manufacturing a rotor of a rotating electrical machine including
鋼板から所定枚数の回転子鉄心片を打抜く第1のステップと、
外周部の少なくとも磁石接着部の打抜き方向が互いに逆方向となるように前記回転子鉄心片を交互に積層する第2のステップと、
前記積層された回転子鉄心片を一体化して回転子鉄心を成形する第3のステップと、
前記磁石接着部及び/又は永久磁石に接着剤を塗布し、該接着剤を介して前記磁石接着部に永久磁石を接着する第4のステップと、
を含む回転電機の回転子の製造方法。

A first step of punching a predetermined number of rotor core pieces from a steel plate;
A second step of alternately laminating the rotor core pieces so that the punching directions of at least the magnet bonding portion of the outer peripheral portion are opposite to each other;
A third step of forming the rotor core by integrating the laminated rotor core pieces;
A fourth step of applying an adhesive to the magnet adhesion part and / or the permanent magnet, and adhering the permanent magnet to the magnet adhesion part via the adhesive;
A method for manufacturing a rotor of a rotating electrical machine including

JP2004202223A 2004-07-08 2004-07-08 Rotating electric machine and manufacturing method of rotor of rotating electric machine Withdrawn JP2006025552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202223A JP2006025552A (en) 2004-07-08 2004-07-08 Rotating electric machine and manufacturing method of rotor of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202223A JP2006025552A (en) 2004-07-08 2004-07-08 Rotating electric machine and manufacturing method of rotor of rotating electric machine

Publications (1)

Publication Number Publication Date
JP2006025552A true JP2006025552A (en) 2006-01-26

Family

ID=35798394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202223A Withdrawn JP2006025552A (en) 2004-07-08 2004-07-08 Rotating electric machine and manufacturing method of rotor of rotating electric machine

Country Status (1)

Country Link
JP (1) JP2006025552A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423357B2 (en) * 2005-09-05 2008-09-09 Kokussan Denki Co., Ltd. Electric rotating machine
JP2009201207A (en) * 2008-02-20 2009-09-03 Jtekt Corp Motor rotor, manufacturing method therefor, and electric power steering device
US20100244608A1 (en) * 2007-12-06 2010-09-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and ipm motor
JP2013123316A (en) * 2011-12-12 2013-06-20 Nissan Motor Co Ltd Rotor core and method of manufacturing the same
JP2015061344A (en) * 2013-09-17 2015-03-30 東芝産業機器システム株式会社 Rotor manufacturing apparatus and method of manufacturing rotor
TWI780795B (en) * 2021-06-01 2022-10-11 日商三菱電機股份有限公司 Stator core of rotating electric machine, stator of rotating electric machine, rotating electric machine, manufacturing method of stator core of rotating electric machine, and manufacturing method of rotating electric machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423357B2 (en) * 2005-09-05 2008-09-09 Kokussan Denki Co., Ltd. Electric rotating machine
US20100244608A1 (en) * 2007-12-06 2010-09-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and ipm motor
US8497613B2 (en) * 2007-12-06 2013-07-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and IPM motor
JP2009201207A (en) * 2008-02-20 2009-09-03 Jtekt Corp Motor rotor, manufacturing method therefor, and electric power steering device
JP2013123316A (en) * 2011-12-12 2013-06-20 Nissan Motor Co Ltd Rotor core and method of manufacturing the same
JP2015061344A (en) * 2013-09-17 2015-03-30 東芝産業機器システム株式会社 Rotor manufacturing apparatus and method of manufacturing rotor
TWI780795B (en) * 2021-06-01 2022-10-11 日商三菱電機股份有限公司 Stator core of rotating electric machine, stator of rotating electric machine, rotating electric machine, manufacturing method of stator core of rotating electric machine, and manufacturing method of rotating electric machine

Similar Documents

Publication Publication Date Title
JP2004153913A (en) Rotor for permanent magnet motor
JP5012155B2 (en) Laminated core and rotating electric machine
TWI699074B (en) Radial gap type rotating electrical machine and manufacturing method thereof, manufacturing device of rotating electrical tooth plate, manufacturing method of rotating electrical tooth structure
JP2016073109A (en) Laminated core and manufacturing method thereof
JP6080654B2 (en) Rotating electrical machine rotor, rotating electrical machine, and method for manufacturing rotor laminated core
JP2005137117A (en) Rotor for rotary electric machine
JP2019063845A (en) Rotor core manufacturing method
JP5338190B2 (en) Manufacturing apparatus and manufacturing method of laminated iron core
WO2019066036A1 (en) Production method for core for rotary electric machine
EP1467469A1 (en) Production method for amorphous laminate core and amorphous laminate core
JP2006025552A (en) Rotating electric machine and manufacturing method of rotor of rotating electric machine
JP2006340491A (en) Method for manufacturing stator laminated core
JP2008011615A (en) Method of manufacturing laminated core, and that laminated core
CN110140286B (en) Method for manufacturing rotor core, rotor, and motor
JPH10201151A (en) Rotor for electric motor
JP3615014B2 (en) Magnet rotor and manufacturing method thereof
US4536952A (en) Preparation of laminated iron core of electric device
JP2017093191A (en) Laminated iron core and manufacturing method thereof
JP2011114876A (en) Stator core for rotary electric machine
JP2004289936A (en) Rotor for rotating electric machine
JP2010110123A (en) Laminate core and manufacturing method thereof
CN112042090B (en) Method for joining laminated parts
JP2014110732A (en) Method of manufacturing armature and progressive feeding mold device
JP2007215383A (en) Electric motor
JP5805330B2 (en) Rotating electric machine and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029