JP2006025548A - Control device for generator, and method for setting control operation constant of the control device - Google Patents

Control device for generator, and method for setting control operation constant of the control device Download PDF

Info

Publication number
JP2006025548A
JP2006025548A JP2004202034A JP2004202034A JP2006025548A JP 2006025548 A JP2006025548 A JP 2006025548A JP 2004202034 A JP2004202034 A JP 2004202034A JP 2004202034 A JP2004202034 A JP 2004202034A JP 2006025548 A JP2006025548 A JP 2006025548A
Authority
JP
Japan
Prior art keywords
value
motor
current
constant
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202034A
Other languages
Japanese (ja)
Inventor
Kozo Ide
耕三 井手
Shinya Morimoto
進也 森本
Ki Suru Suun
スーン・キ,スル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004202034A priority Critical patent/JP2006025548A/en
Publication of JP2006025548A publication Critical patent/JP2006025548A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device that can accurately measure the Rs and Ls of a motor, irrespective of a capacity of the motor. <P>SOLUTION: The control device that controls the motor in terms of a variable voltage and a variable frequency, by using an inverter 1 of the motor 2 comprises a means 10 that measures a constant of the motor, controls an output frequency f1 of output torque iq to zero, accumulatively adds the motor winding resistance value Rs to the product of the current value id and the voltage value Vd, obtains the added value by dividing it with an accumulated and added value of the square value of the current id, accumulatively adds the inductance value Ls to a product of an accumulated and added value of the voltage value Vd and the current id; and measures the accumulated and added value, by dividing a square value of the current id with the accumulated and added value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は交流電動機の制御装置において、その制御演算定数をインピーダンスの小さい大容量の電動機でも高精度に電動機定数を測定、制御演算定数を設定できる交流電動機制御装置の制御演算定数設定方法に関するものである。   The present invention relates to a control calculation constant setting method for an AC motor control apparatus that can measure the control constant with high accuracy even in a large-capacity motor with a small impedance and set the control calculation constant in the control apparatus for the AC motor. is there.

従来技術として、電動機に直流の電流を流し、電圧検出値あるいは電圧指令値と電流値の関係から電動機巻線抵抗を測定し、また電圧(あるいは電流)をステップ状に印加し、そのときの電流(あるいは電圧)の変化から電気的時定数を測定し、その測定値と先に測定した抵抗からインダクタンスを測定する方法がある。(特許文献1参照)。
図4は特許文献1に開示の「可変速装置」の構成図であり、先ず、(1)、直流電流試験として、電動機101を停止状態で、電力変換器102の出力電流の位相をある相に固定し、直流電流指令部107によって直流電流IをI1、I1/2、−I1、−I1/2の4種類に設定切替えを行う。これら電流指令による電力変換器102の出力電圧のU、V、W相電圧を電圧計測部108で計測し、この計測値から電圧検出部109によって回転座標の電圧V1d、V1qを求める。なお、この場合、代わりに電流制御系103の出力電圧指令を用いても良い。
このような電流指令と出力電圧をグラフにすると図5のようになる。ここで、測定点の傾きが等価回路の一次抵抗R1成分になり、一次抵抗演算手段110により求められる。
As a conventional technique, a DC current is passed through the motor, the motor winding resistance is measured from the relationship between the voltage detection value or voltage command value and the current value, and the voltage (or current) is applied stepwise, and the current at that time There is a method in which an electrical time constant is measured from a change in voltage (or voltage), and an inductance is measured from the measured value and the previously measured resistance. (See Patent Document 1).
FIG. 4 is a configuration diagram of the “variable speed device” disclosed in Patent Document 1. First, as a direct current test, (1) the phase of the output current of the power converter 102 is set to a certain phase with the motor 101 stopped. The DC current command unit 107 switches the setting of the DC current I to four types of I1, I1 / 2, -I1, and -I1 / 2. The voltage measurement unit 108 measures the U, V, and W phase voltages of the output voltage of the power converter 102 based on these current commands, and the voltage detection unit 109 obtains the rotation coordinate voltages V1d and V1q from the measured values. In this case, the output voltage command of the current control system 103 may be used instead.
FIG. 5 shows a graph of such current command and output voltage. Here, the slope of the measurement point becomes the primary resistance R1 component of the equivalent circuit, and is obtained by the primary resistance calculation means 110.

次に、(2)、無負荷運転/ゼロ電流試験として、速度制御系104により電動機101を無負荷運転し、この状態で先のトルク軸電圧V1qを得て、この電圧からトルク分電流I1qと電動機の一次抵抗R1による電圧降下分を減算して速度起電力E1qを求め、E1qが設計値と一致する様に励磁電流指令手段106の出力を調整し、無負荷運転時の励磁電流I1dを収束させる。これらの励磁電流を指令値とした無負荷一定速度の運転状態で、電動機への供給電流をステップ状にゼロに変化させた時の電動機101の電圧変化より励磁インダクタンスM´と、等価漏れインダクタンスLσと、二次時定数τ2を求めることができる。図6は無負荷運転中にステップ状にゼロ電流に変化させた時の出力電圧、電流のd軸、q軸成分の計測波形である。電流はd軸、q軸共にゼロになり、q軸電圧は電流指令変化時にLσ相当の電圧降下が生じ、その後に二次時定数τ2相当の指数関数的な減衰が発生する。
これらの関係は、
E1d0=V1d−R1・I1d、E1q0=V1q(Lσ)d=(E1q−E2q)/(I1d・ω1)、
(M´)d=E2q/(I1d・ω1)、と表すことができることから求められる。
なお、ゼロ電流制御については、電力変換器(インバータ)102と電動機101を結合したまま、電動機101の誘起電圧と同一の電圧出力をインバータ102より出力して電位差をゼロとすることでゼロ電流とすることができる。
Next, (2) as a no-load operation / zero current test, the speed control system 104 performs no-load operation of the motor 101, and in this state, the previous torque shaft voltage V1q is obtained, and from this voltage, the torque component current I1q and The voltage drop due to the primary resistance R1 of the motor is subtracted to determine the speed electromotive force E1q, the output of the excitation current command means 106 is adjusted so that E1q matches the design value, and the excitation current I1d during no-load operation is converged Let In an operation state at a constant no-load speed with these excitation currents as command values, the excitation inductance M ′ and the equivalent leakage inductance Lσ are determined from the voltage change of the motor 101 when the supply current to the motor is changed to zero stepwise. Then, the secondary time constant τ2 can be obtained. FIG. 6 shows measurement waveforms of the output voltage and the d-axis and q-axis components of the current when stepped to zero current during no-load operation. The current becomes zero for both the d-axis and the q-axis, and the q-axis voltage undergoes a voltage drop corresponding to Lσ when the current command changes, and then exponential decay corresponding to the secondary time constant τ 2 occurs.
These relationships are
E1d0 = V1d−R1 · I1d, E1q0 = V1q (Lσ) d = (E1q−E2q) / (I1d · ω1),
(M ′) d = E2q / (I1d · ω1).
For zero current control, with the electric power converter (inverter) 102 and the motor 101 connected, a voltage output identical to the induced voltage of the motor 101 is output from the inverter 102 and the potential difference is set to zero. can do.

特開平07−75399号公報(図2、図3、図6)Japanese Patent Laid-Open No. 07-75399 (FIGS. 2, 3, and 6)

しかしながら、従来の特許文献1の場合は、電動機定数を測定する際には電流値を電動機定格以下に電流制御器などで制限している。電圧値の大きさは電動機インピーダンスに依存することになるので、大容量の電動機はインピーダンスが小さいため、電圧検出値あるいは電圧指令値は非常に小さな値となる。
したがって、実電圧値と検出誤差値の比、すなわちS/N比低下により正確な定数測定が難しくなり、定数を設定した制御装置の制御性能を劣化させるという問題があった。本発明はこのような問題を解決するためになされたものであり、電動機の容量に関係せず精度よく電動機巻線抵抗値とインダクタンスの測定ができる制御装置と方法を提供することにある。
However, in the case of the conventional patent document 1, when measuring the motor constant, the current value is limited to a value below the motor rating by a current controller or the like. Since the magnitude of the voltage value depends on the motor impedance, since the large-capacity motor has a small impedance, the voltage detection value or the voltage command value is a very small value.
Therefore, the ratio between the actual voltage value and the detection error value, that is, the S / N ratio, is difficult to accurately measure constants, and there is a problem that the control performance of the control device in which the constants are set is deteriorated. The present invention has been made to solve such problems, and it is an object of the present invention to provide a control device and method capable of accurately measuring a motor winding resistance value and an inductance irrespective of the capacity of the motor.

上記問題点を解決するため、請求項1に記載の発明は、交流電動機をインバータにて可変電圧可変周波数制御する制御装置において、電動機の電動機定数を測定する手段を備え、前記電動機定数測定手段は前記電動機の出力周波数あるいは出力トルクをゼロに制御する手段を備え、電動機巻線抵抗値を電流値と電圧値の積を累積加算し、前記累積加算値を電流の二乗値を累積加算した値で除算して測定する手段と、インダクタンスを電圧値の累積加算値と電流値の積を累積加算し、前記累積加算値を電流の二乗値を累積加算した値で除算して測定する手段を備えたことを特徴としている。
また、請求項2に記載の発明は、前記制御装置は前記交流電動機に供給される電流を検出する電流検出回路と、前記交流電動機に供給される電流を励磁電流検出値とトルク電流検出値に変換して出力する座標変換回路と、前記励磁電流指令値と前記励磁電流検出値とが一致するように励磁電流方向電圧を制御する励磁電流制御回路、と前記トルク電流指令値と前記トルク電流検出値とが一致するようにトルク電流方向電圧を制御するトルク電流制御回路と、与えられた出力周波数指令を積分することにより得られる位相角を演算する位相角演算回路と前記励磁電流制御回路と前記トルク電流制御回路から出力される電圧指令から出力電圧の大きさ及び位相を演算する出力電圧演算回路を備え、前記出力周波数指令値あるいは前記トルク電流指令値をゼロに設定し,前記出力周波数あるいは前記トルク電流をゼロに制御した状態で、前記電動機定数を測定することを特徴としている。
また、請求項3に記載の発明は、制御演算定数設定方法において,前記測定方法のうち電動機巻線抵抗値は前記励磁電流指令値を固定値あるいは変化の緩やかな値に設定し,前記励磁電流制御回路により前記励磁電流指令値と前記励磁電流検出値とが一致するよう制御した状態で、前記電動機定数を測定することを特徴としている。
また、請求項4に記載の発明は、制御演算定数設定方法において,前記測定方法のうちインダクタンス値は前記励磁電流指令値を周期的に変化し,その周期積分がゼロとなる値に設定し,請求項2記載の励磁電流制御回路により前記励磁電流指令値と前記励磁電流検出値とが一致するよう制御した状態で、前記電動機定数を測定することを特徴としている。
また、請求項5に記載の発明は、請求項1記載の制御演算定数設定設定方法において、前記電動機定数測定手段は、前記トルク電流検出値がゼロでない場合に自動的に前記出力周波数ゼロに制御する手段を備えたことを特徴としている。
また、請求項6に記載の発明は、請求項1乃至請求項5記載の制御演算定数設定方法を備え,前記測定方法により測定された制御定数あるいは前記制御定数を用いて演算された定数を制御装置に設定することを特徴としている。
また、請求項7に記載の発明は、請求項6記載の交流電動機の制御装置において、電動機巻線抵抗値およびインダクタンス値を測定する際に、出力周波数指令値およびトルク電流指令をゼロに設定し、励磁電流指令値を固定値あるいは変化の緩やかな値に設定して、所定のサンプリング周期毎に検出した電流値idと電圧値Vdの積を累積加算し、前記累積加算値を電流idの二乗値を累積加算した値で除算して電動機巻線抵抗値の測定を行い、インダクタンス測定モードに切換えて前記励磁電流指令値を周期的に変化し、その周期積分がゼロになる値に設定し、電圧値Vdの累積加算値と電流値idの積を累積加算し、前記累積加算値を電流idの二乗値を累積加算した値で除算してインダクタンス値の測定を行う電動機定数演算器を有することを特徴としている。
In order to solve the above-mentioned problems, the invention described in claim 1 is a control device that controls an AC motor with variable voltage and variable frequency by using an inverter, and includes means for measuring a motor constant of the motor, and the motor constant measuring means includes: Means for controlling the output frequency or output torque of the motor to zero, the motor winding resistance value is cumulatively added to the product of the current value and the voltage value, and the cumulative added value is a value obtained by cumulatively adding the square value of the current. Means for dividing and measuring, and means for measuring the inductance by cumulatively adding the product of the cumulative value of the voltage value and the current value, and dividing the cumulative value by the value obtained by cumulatively adding the square value of the current. It is characterized by that.
According to a second aspect of the present invention, the control device detects a current supplied to the AC motor, and converts the current supplied to the AC motor into an excitation current detection value and a torque current detection value. A coordinate conversion circuit that converts and outputs, an excitation current control circuit that controls the excitation current direction voltage so that the excitation current command value and the excitation current detection value match, and the torque current command value and the torque current detection A torque current control circuit for controlling the torque current direction voltage so that the values match, a phase angle calculation circuit for calculating a phase angle obtained by integrating a given output frequency command, the excitation current control circuit, An output voltage calculation circuit for calculating the magnitude and phase of the output voltage from the voltage command output from the torque current control circuit, the output frequency command value or the torque current indicator Set the value to zero, in a state in which the output frequency or the torque current is controlled to zero, is characterized by measuring the motor parameters.
According to a third aspect of the present invention, in the control arithmetic constant setting method, in the measurement method, the motor winding resistance value sets the excitation current command value to a fixed value or a slowly changing value, and the excitation current The motor constant is measured in a state in which the excitation current command value and the excitation current detection value are controlled to coincide with each other by a control circuit.
According to a fourth aspect of the present invention, in the control operation constant setting method, the inductance value of the measurement method is set to a value at which the excitation current command value changes periodically and the cycle integral becomes zero, The motor constant is measured in a state in which the excitation current command value and the excitation current detection value are controlled to coincide with each other by the excitation current control circuit according to claim 2.
According to a fifth aspect of the present invention, in the control arithmetic constant setting and setting method according to the first aspect, the motor constant measuring means automatically controls the output frequency to zero when the torque current detection value is not zero. It is characterized by having means to do.
The invention according to claim 6 comprises the control calculation constant setting method according to claims 1 to 5, and controls the control constant measured by the measurement method or the constant calculated using the control constant. It is characterized by being set in the device.
According to a seventh aspect of the present invention, in the control apparatus for an AC motor according to the sixth aspect, when measuring the motor winding resistance value and the inductance value, the output frequency command value and the torque current command are set to zero. Then, the excitation current command value is set to a fixed value or a slowly changing value, the product of the current value id and the voltage value Vd detected every predetermined sampling period is cumulatively added, and the cumulative addition value is squared of the current id. Measure the motor winding resistance value by dividing the value by the cumulative addition value, switch to the inductance measurement mode, change the excitation current command value periodically, and set the cycle integral to a value that becomes zero, An electric motor constant calculator for measuring the inductance value by cumulatively adding the product of the cumulative addition value of the voltage value Vd and the current value id and dividing the cumulative addition value by the value obtained by cumulatively adding the square value of the current id. It is characterized in that.

本発明によれば、電動機の抵抗値を電流値と電圧値の積を累積加算し、その値を電流の二乗値の累積加算値で除算して測定し、インダクタンスは電圧値の累積加算値と電流値の積を累積加算し、その値を電流の二乗値の累積加算値で除算して測定することにより、電動機の容量に関係なく精度良く電動機巻線抵抗値とインダクタンスの測定が可能になるという効果がある。   According to the present invention, the resistance value of the motor is measured by cumulatively adding the product of the current value and the voltage value, and dividing the value by the cumulative addition value of the square of the current, and the inductance is the cumulative addition value of the voltage value. Accumulated addition of the product of the current values, and dividing the value by the cumulative addition value of the square of the current value enables measurement of the motor winding resistance value and inductance with high accuracy regardless of the capacity of the motor. There is an effect.

以下、本発明の実施の形態について、図面を参照して説明する。
図1は本発明における交流電動機の制御装置の実施形態の一例を示すブロック図である。
図1において、電動機の制御装置は、インバータ1、交流電動機2、電流検出器3、電流座標変換回路4、トルク電流制御回路5、励磁電流制御回路6、位相演算回路7、出力電圧演算回路8、スイッチングパターン発生回路9、電動機定数演算器10、出力周波数補正器11を備えている。インバータ1は、パワー素子により三相交流入力を直流に変換した直流電圧をPWM制御方式により任意の周波数と電圧の交流に変換し、交流電動機2に供給する。電流検出器3は、前記交流電動機2に供給される電流を検出する。
電流座標変換回路4は、電流検出器3で検出された電流をトルク電流検出値iqfbと励磁電流検出値idfbに分離する。
トルク電流制御回路5は、与えられたトルク電流指令値iqrefとトルク電流検出値iqfbとが一致するように第1のq軸電圧指令値Vqrefを演算する。励磁電流制御回路6は、与えられた励磁電流指令値idrefと前記励磁電流検出値idfbとが一致するようにd軸電圧指令値Vdrefを演算する。位相演算回路7は、与えられた周波数f1を積分することにより、位相θを演算する。
出力電圧演算回路8は、前記q軸電圧指令値Vqrefと前記d軸電圧指令値Vdrefとから、出力電圧指令値V1とその電圧位相θvを出力する。スイッチングパターン発生回路9は、出力電圧指令値V1及び前記電圧位相θvと位相θを加算した電力変換器出力位相θdegから、インバータ1のスイッチングパターンを決定する。

V1={(Vdref)+(Vqref)1/2 ・・・・・(a)
θv=tan−1(Vqref/Vdref) ・・・・・(b)

電動機定数演算器10は、d軸電圧指令値Vdrefと、励磁電流検出値idfbとトルク電流検出値iqfbを入力とし請求項1の発明により電動機巻線抵抗値Rsとインダクタンス値Lsを演算する。出力周波数補正器11はトルク電流検出値iqfbがゼロでない場合に出力周波数指令値f1をゼロにするように第1の出力周波数指令値f1から同値であるfcompを差し引くものである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an example of an embodiment of a control device for an AC motor according to the present invention.
In FIG. 1, the motor control device includes an inverter 1, an AC motor 2, a current detector 3, a current coordinate conversion circuit 4, a torque current control circuit 5, an excitation current control circuit 6, a phase calculation circuit 7, and an output voltage calculation circuit 8. A switching pattern generation circuit 9, an electric motor constant calculator 10, and an output frequency corrector 11. The inverter 1 converts a DC voltage obtained by converting a three-phase AC input into a DC by a power element into an AC having an arbitrary frequency and voltage by a PWM control method and supplies the AC voltage to the AC motor 2. The current detector 3 detects a current supplied to the AC motor 2.
The current coordinate conversion circuit 4 separates the current detected by the current detector 3 into a torque current detection value iqfb and an excitation current detection value idfb.
The torque current control circuit 5 calculates the first q-axis voltage command value Vqref so that the given torque current command value iqref and the torque current detection value iqfb match. The excitation current control circuit 6 calculates the d-axis voltage command value Vdref so that the given excitation current command value idref and the excitation current detection value idfb match. The phase calculation circuit 7 calculates the phase θ by integrating the given frequency f1.
The output voltage calculation circuit 8 outputs an output voltage command value V1 and its voltage phase θv from the q-axis voltage command value Vqref and the d-axis voltage command value Vdref. The switching pattern generation circuit 9 determines the switching pattern of the inverter 1 from the output voltage command value V1 and the power converter output phase θdeg obtained by adding the voltage phase θv and the phase θ.

V1 = {(Vdref) 2 + (Vqref) 2 } 1/2 (a)
θv = tan −1 (Vqref / Vdref) (b)

The motor constant calculator 10 receives the d-axis voltage command value Vdref, the excitation current detection value idfb, and the torque current detection value iqfb as inputs, and calculates the motor winding resistance value Rs and the inductance value Ls according to the invention of claim 1. The output frequency corrector 11 subtracts the same value fcomp from the first output frequency command value f1 so that the output frequency command value f1 is zero when the detected torque current value iqfb is not zero.

次に、電動機定数演算器10の処理について誘導電動機の場合を例にあげて説明する。
まず回転磁界に同期して回転するd−q制御座標系において、誘導電動機の電流電圧方程式は次式で与えられる。

Figure 2006025548
ここで、id:励磁電流(一次電流のd軸成分)、iq:トルク電流(一次電流のq軸成分)、imr:二次界磁電流、Vd:一次電圧のd軸成分、Vq:一次電圧のq軸成分、Rs:一次抵抗、Ls:一次自己インダクタンス、σLs:漏れインダクタンス、ω1:回転角速度である。ω1=0、あるいはiq=0に制御し、その定常状態においてimr=idとなる。 Next, the process of the motor constant calculator 10 will be described by taking the case of an induction motor as an example.
First, in the dq control coordinate system that rotates in synchronization with the rotating magnetic field, the current-voltage equation of the induction motor is given by the following equation.
Figure 2006025548
Where id: excitation current (d-axis component of primary current), iq: torque current (q-axis component of primary current), imr: secondary field current, Vd: d-axis component of primary voltage, Vq: primary voltage Q-axis component, Rs: primary resistance, Ls: primary self-inductance, σLs: leakage inductance, ω1: rotational angular velocity. It is controlled to ω1 = 0 or iq = 0, and imr = id in the steady state.

したがって、数1の第1式は次式のようになる。

Figure 2006025548
両辺にidを両辺に掛け,両辺を積分すると
Figure 2006025548
ここで、c:積分定数
数式3をRsについて解くと
Figure 2006025548

数式4において、idを固定値あるいは増加の少ない状態にあるとすると右辺第2項第3項は漸近的に減少し、それら最終値はゼロとなる。 Therefore, the first expression of Equation 1 is as follows.
Figure 2006025548
Multiply id on both sides and integrate both sides
Figure 2006025548
Where c: integral constant Equation 3 is solved for Rs
Figure 2006025548

In Equation 4, if id is a fixed value or is in a state of little increase, the second term and the third term on the right side decrease asymptotically, and their final values become zero.

したがって、一次抵抗は以下の形態で実装演算することができる。

Figure 2006025548
ここで、Δtはサンプリング時間である。
一次抵抗を電流値と電圧値の積を累積加算し、前記累積加算値を電流の二乗値を累積加算した値で除算して演算することによって、大容量の電動機で電圧値が小さくなっても十分な演算精度が得られる。 Accordingly, the primary resistance can be mounted and calculated in the following form.
Figure 2006025548
Here, Δt is a sampling time.
Even if the voltage value decreases with a large-capacity motor, the primary resistance is calculated by accumulating the product of the current value and the voltage value and dividing the accumulated value by the value obtained by accumulating the square value of the current. Sufficient calculation accuracy can be obtained.

次にインダクタンスの演算方法について述べる。
数2の式の両辺を積分すると、

Figure 2006025548
ここで、c1:積分定数である。さらに両辺にidを乗算すると
Figure 2006025548
Figure 2006025548
ここで、c2:積分定数である。 Next, an inductance calculation method will be described.
Integrating both sides of Equation 2 gives
Figure 2006025548
Here, c1: an integration constant. If we multiply id on both sides
Figure 2006025548
Figure 2006025548
Here, c2 is an integral constant.

数8の式をLsについて解くと

Figure 2006025548
数9の式において、Siがゼロになるように、すなわちidの積分値が周期的にゼロになるように例えば正弦波、矩形波などの指令値を設定し、idを制御すると右辺第2項、3項はゼロとなり、右辺第4項は漸近的に減少し、その最終値はゼロとなる。したがって、インダクタンスは以下の形態で実装演算することができる。
Figure 2006025548
Solving Equation 8 for Ls
Figure 2006025548
In equation (9), a command value such as a sine wave or a rectangular wave is set so that Si is zero, that is, the integrated value of id is periodically zero, and when id is controlled, the second term on the right side The third term becomes zero, the fourth term on the right side decreases asymptotically, and its final value becomes zero. Accordingly, the inductance can be calculated in the following manner.
Figure 2006025548

以上のRs、Lsの測定処理について図2、図3のフローチャートを参照して時系列に整理して説明すれば、
先ず、制御装置をRs測定モードに切替え、電動機定数演算器10による測定を開始する(S101)、Rsの測定条件として、励磁電流指令id*を固定値(例えば、直流値)、又は変化の緩やかな値に設定する(S102)。
一方、ω1=0、iq=0に設定する。つまりd軸測定にセットする(S103)。先述のように数2の式より、数5の式を演算導出する(S104)。数5の式に基づいて、サンプリング周期Δt毎にVd、idを検出する(S105)。Δt毎に所定回数Vd、idの検出を行い、累積加算して、idの二乗値を累積加算した値で除算して、抵抗値Rsを算出する(S106)。
求めた演算値を制御装置に設定する(S107)。
The Rs and Ls measurement processes described above will be described in a time series with reference to the flowcharts of FIGS.
First, the control device is switched to the Rs measurement mode, and measurement by the motor constant calculator 10 is started (S101). As a measurement condition of Rs, the excitation current command id * is a fixed value (for example, a direct current value) or a gradual change. (S102).
On the other hand, ω1 = 0 and iq = 0 are set. That is, it sets to d-axis measurement (S103). As described above, Equation 5 is derived from Equation 2 (S104). Based on the formula (5), Vd and id are detected for each sampling period Δt (S105). A predetermined number of times Vd and id are detected for each Δt, cumulatively added, and the square value of id is divided by the cumulatively added value to calculate the resistance value Rs (S106).
The obtained calculated value is set in the control device (S107).

続いて、Ls測定モードに切替え(S108)、Ls測定条件として、id*を周期的に変化させ、その周期積分がゼロとなる、正弦波、矩形波等を指令値に設定する(S109)。
数2の式より数10の式を導出する(S110)。数10の式に基づいて、サンプリング周期Δt毎にVdを検出する(S111)。複数回Δt毎に所定回数Vd検出を行って累積加算し、それとidとの積を、idの二乗値を累積加算した値で除算し、インダクタンスLsを算出する(S112)。求めたインダクタンスLsを制御装置に設定する(S113)。
Subsequently, the mode is switched to the Ls measurement mode (S108), and as an Ls measurement condition, id * is periodically changed, and a sine wave, a rectangular wave, or the like whose period integration is zero is set as a command value (S109).
Formula 10 is derived from Formula 2 (S110). Based on the equation (10), Vd is detected for each sampling period Δt (S111). A predetermined number of times of Vd detection is performed for each Δt multiple times and cumulative addition is performed, and the product of this and id is divided by a value obtained by cumulatively adding the square value of id to calculate inductance Ls (S112). The obtained inductance Ls is set in the control device (S113).

以上、電動機定数演算器10の基本原理について誘導電動機の場合を例にあげて説明した。つぎに永久磁石同期電動機の場合について説明する。
数1の式と同様にd−q制御座標系における同期電動機の電流電圧方程式は次式で与えられる。

Figure 2006025548
ここで、φmag:永久磁石による磁束である。
ω1=0、あるいはiq=0に制御している状態では、数11の第1式は次式のようになる。
Figure 2006025548
したがって、数2の式と数12の式は同じであることがわかる。すなわち、数5の式と数10の式は同期電動機にも適用することができる。 The basic principle of the motor constant calculator 10 has been described above by taking the case of an induction motor as an example. Next, the case of a permanent magnet synchronous motor will be described.
Similar to Equation 1, the current voltage equation of the synchronous motor in the dq control coordinate system is given by the following equation.
Figure 2006025548
Here, φmag is a magnetic flux generated by a permanent magnet.
In the state in which ω1 = 0 or iq = 0 is controlled, the first expression of Equation 11 is as follows.
Figure 2006025548
Therefore, it can be seen that the formulas 2 and 12 are the same. That is, the formulas 5 and 10 can be applied to the synchronous motor.

本発明における交流電動機の制御装置の実施形態の構成を表すブロック図である。It is a block diagram showing the structure of embodiment of the control apparatus of the alternating current motor in this invention. 本発明の図1に示す電動機定数演算器による抵抗値測定のフローチャートである。It is a flowchart of resistance value measurement by the motor constant calculator shown in FIG. 本発明の図1に示す電動機定数演算器によるインダクタンス測定のフローチャートである。It is a flowchart of the inductance measurement by the electric motor constant calculator shown in FIG. 従来例の可変速装置のブロック図である。It is a block diagram of the variable speed apparatus of a prior art example. 図4(従来例)に示す可変速装置の定数測定時の電流・電圧の特性を示す図である。It is a figure which shows the characteristic of the electric current and voltage at the time of the constant measurement of the variable speed apparatus shown in FIG. 4 (conventional example). 図4(従来例)に示す可変速装置の定数測定時におけるゼロ電流時の特性を示す図である。It is a figure which shows the characteristic at the time of the zero electric current at the time of the constant measurement of the variable speed apparatus shown in FIG. 4 (conventional example).

符号の説明Explanation of symbols

1 インバータ
2 交流電動機
3 電流検出器
4 電流座標変換回路
5 トルク電流制御回路
6 励磁電流制御回路
7 位相演算回路
8 出力電圧演算回路
9 スイッチングパターン発生回路
10 電動機定数演算器
11 出力周波数補正器
DESCRIPTION OF SYMBOLS 1 Inverter 2 AC motor 3 Current detector 4 Current coordinate conversion circuit 5 Torque current control circuit 6 Excitation current control circuit 7 Phase calculation circuit 8 Output voltage calculation circuit 9 Switching pattern generation circuit 10 Motor constant calculation unit 11 Output frequency corrector

Claims (7)

交流電動機をインバータにて可変電圧可変周波数制御する制御装置の制御演算定数設定方法において、前記制御装置は前記電動機の電動機定数を測定する手段を備え、前記電動機定数測定手段は前記電動機の出力周波数あるいは出力トルクをゼロに制御する手段を備え、電動機巻線抵抗値を電流値と電圧値の積を累積加算し、前記累積加算値を電流の二乗値を累積加算した値で除算して測定する手段と、インダクタンス値を電圧値の累積加算値と電流値の積を累積加算し、前記累積加算値を電流の二乗値を累積加算した値で除算して測定する手段を備えたことを特徴とする交流電動機制御装置の制御演算定数設定方法。   In the control arithmetic constant setting method of the control device for controlling the variable voltage and variable frequency with an inverter for the AC motor, the control device includes means for measuring the motor constant of the motor, and the motor constant measurement means is configured to output the motor output frequency or Means for controlling the output torque to zero, and measuring the motor winding resistance value by cumulatively adding the product of the current value and the voltage value, and dividing the cumulative added value by the value obtained by cumulatively adding the square value of the current And means for measuring the inductance value by cumulatively adding the product of the cumulative value of the voltage value and the current value and dividing the cumulative value by the value obtained by cumulatively adding the square value of the current. Control operation constant setting method for AC motor control device. 前記制御装置は前記交流電動機に供給される電流を検出する電流検出回路と、前記交流電動機に供給される電流を励磁電流検出値とトルク電流検出値に変換して出力する座標変換回路と、前記励磁電流指令値と前記励磁電流検出値とが一致するように励磁電流方向電圧を制御する励磁電流制御回路、と前記トルク電流指令値と前記トルク電流検出値とが一致するようにトルク電流方向電圧を制御するトルク電流制御回路と、与えられた出力周波数指令を積分することにより得られる位相角を演算する位相角演算回路と前記励磁電流制御回路と前記トルク電流制御回路から出力される電圧指令から出力電圧の大きさ及び位相を演算する出力電圧演算回路を備え、前記出力周波数指令値あるいは前記トルク電流指令値をゼロに設定し,前記出力周波数あるいは前記トルク電流をゼロに制御した状態で、前記電動機定数を測定することを特徴とする交流電動機制御装置の制御演算定数設定方法。   The control device includes a current detection circuit that detects a current supplied to the AC motor, a coordinate conversion circuit that converts the current supplied to the AC motor into an excitation current detection value and a torque current detection value, and outputs the converted current. An excitation current control circuit that controls the excitation current direction voltage so that the excitation current command value matches the excitation current detection value, and the torque current direction voltage so that the torque current command value matches the torque current detection value A torque current control circuit for controlling the output, a phase angle calculation circuit for calculating a phase angle obtained by integrating a given output frequency command, the excitation current control circuit, and a voltage command output from the torque current control circuit. An output voltage calculation circuit for calculating the magnitude and phase of the output voltage, wherein the output frequency command value or the torque current command value is set to zero, and the output frequency The number or while controlling said torque current to zero, the control calculation constant setting method of an AC motor control apparatus characterized by measuring the motor parameters. 前記制御演算定数設定方法において、前記測定方法のうち電動機巻線抵抗値は前記励磁電流指令値を固定値あるいは変化の緩やかな値に設定し,前記励磁電流制御回路により前記励磁電流指令値と前記励磁電流検出値とが一致するよう制御した状態で、前記電動機定数を測定することを特徴とする請求項1記載の交流電動機制御装置の制御演算定数設定方法。   In the control calculation constant setting method, in the measurement method, the motor winding resistance value sets the excitation current command value to a fixed value or a slowly changing value, and the excitation current control circuit and the excitation current command value The method for setting a control operation constant for an AC motor control device according to claim 1, wherein the motor constant is measured in a state in which the excitation current detection value is controlled to coincide with the excitation current detection value. 前記測定方法のうちインダクタンス値は前記励磁電流指令値を周期的に変化し,その周期積分がゼロとなる値に設定し,前記励磁電流制御回路により前記励磁電流指令値と前記励磁電流検出値とが一致するよう制御した状態で、前記電動機定数を測定することを特徴とする請求項2記載の交流電動機制御装置の制御演算定数設定方法。   In the measurement method, the inductance value is set such that the excitation current command value changes periodically and the cycle integral becomes zero, and the excitation current control circuit sets the excitation current command value and the excitation current detection value. 3. The method for setting a control operation constant for an AC motor control device according to claim 2, wherein the motor constant is measured in a state in which control is performed so as to match. 前記電動機定数測定手段は前記トルク電流検出値がゼロでない場合に自動的に前記出力周波数ゼロに制御する手段を備えたことを特徴とする請求項1記載の交流電動機制御装置の制御演算定数設定方法。   2. The method of setting a control operation constant for an AC motor control device according to claim 1, wherein said motor constant measuring means includes means for automatically controlling said output frequency to zero when said torque current detection value is not zero. . 請求項1乃至請求項5記載の制御演算定数設定方法を備え,前記測定方法により測定された制御定数あるいは前記制御定数を用いて演算された定数を制御装置に設定することを特徴とする交流電動機の制御装置。   6. An AC electric motor comprising the control arithmetic constant setting method according to claim 1, wherein a control constant measured by the measuring method or a constant calculated using the control constant is set in a control device. Control device. 電動機巻線抵抗値およびインダクタンス値を測定する際に、出力周波数指令値およびトルク電流指令をゼロに設定し、励磁電流指令値を固定値あるいは変化の緩やかな値に設定して、所定のサンプリング周期毎に検出した電流値idと電圧値Vdの積を累積加算し、前記累積加算値を電流idの二乗値を累積加算した値で除算して電動機巻線抵抗値の測定を行い、インダクタンス測定モードに切換えて前記励磁電流指令値を周期的に変化し、その周期積分がゼロになる値に設定し、電圧値Vdの累積加算値と電流値idの積を累積加算し、前記累積加算値を電流idの二乗値を累積加算した値で除算してインダクタンス値の測定を行う電動機定数演算器を有することを特徴とする請求項6記載の交流電動機の制御装置。   When measuring the motor winding resistance value and inductance value, set the output frequency command value and torque current command to zero, set the excitation current command value to a fixed value or a slowly changing value, and set a predetermined sampling period. The product of the detected current value id and the voltage value Vd is cumulatively added, and the cumulative added value is divided by the value obtained by cumulatively adding the square value of the current id to measure the motor winding resistance value. The excitation current command value is periodically changed to a value at which the cycle integral becomes zero, the product of the cumulative addition value of the voltage value Vd and the current value id is cumulatively added, and the cumulative addition value is 7. The control apparatus for an AC motor according to claim 6, further comprising an electric motor constant calculator that measures an inductance value by dividing a square value of the current id by a cumulative addition value.
JP2004202034A 2004-07-08 2004-07-08 Control device for generator, and method for setting control operation constant of the control device Pending JP2006025548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202034A JP2006025548A (en) 2004-07-08 2004-07-08 Control device for generator, and method for setting control operation constant of the control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202034A JP2006025548A (en) 2004-07-08 2004-07-08 Control device for generator, and method for setting control operation constant of the control device

Publications (1)

Publication Number Publication Date
JP2006025548A true JP2006025548A (en) 2006-01-26

Family

ID=35798390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202034A Pending JP2006025548A (en) 2004-07-08 2004-07-08 Control device for generator, and method for setting control operation constant of the control device

Country Status (1)

Country Link
JP (1) JP2006025548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084739A1 (en) * 2019-11-01 2021-05-06 三菱電機株式会社 Motor inductance measurement device, motor drive system, and motor inductance measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352800A (en) * 2000-06-08 2001-12-21 Yaskawa Electric Corp Constant identification method of synchronous motor and control unit with constant identification function therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352800A (en) * 2000-06-08 2001-12-21 Yaskawa Electric Corp Constant identification method of synchronous motor and control unit with constant identification function therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084739A1 (en) * 2019-11-01 2021-05-06 三菱電機株式会社 Motor inductance measurement device, motor drive system, and motor inductance measurement method
US20220286070A1 (en) * 2019-11-01 2022-09-08 Mitsubishi Electric Corporation Motor inductance measurement device, motor drive system, and motor inductance measurement method
US11757390B2 (en) 2019-11-01 2023-09-12 Mitsubishi Electric Corporation Motor inductance measurement device, motor drive system, and motor inductance measurement method

Similar Documents

Publication Publication Date Title
JP4578700B2 (en) Brushless DC motor control device
TWI462434B (en) Apparatus for controlling rotary machinery and method for measuring the inductance of rotary machinery
US20140167674A1 (en) System for determining a magnetizing curve and rotor resistance of an induction machine and method of making same
KR100867039B1 (en) Ac rotary machine constant measuring apparatus
JP6194718B2 (en) Constant measuring apparatus and constant measuring method for induction motor
JP4116595B2 (en) Motor control device
JP6179389B2 (en) Electric motor control device
Depenbrock et al. Model-based speed identification for induction machines in the whole operating range
JP5050387B2 (en) Motor control device
Fot et al. Rotor time constant identification on sensorless induction motor drives by low frequency signal injection
JP5146925B2 (en) Induction motor control device and motor constant measurement calculation method thereof
JPH06273496A (en) Method and apparatus for measuring constant of motor
CN107615641B (en) Power conversion device, secondary time constant measurement method, and speed control method for induction motor
JP5333411B2 (en) Vector control device for induction motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP2006025548A (en) Control device for generator, and method for setting control operation constant of the control device
JP5510577B2 (en) Vector control device for induction motor
JP2013042631A (en) Control device of permanent magnet synchronous motor
JP6508021B2 (en) Motor temperature estimation device
JPH0833194A (en) Method for controlling ac electric motor and abnormality detection method
KR20100001889A (en) Inverter control device and multi level inverter control device
Sheng et al. An accurate rotor time constant estimation method for self-commissioning of multi-scale induction motor drives
Jing et al. DSP based implementation of adaptive speed controller for three-phase induction motor
JPH0866099A (en) Induction-motor control apparatus
JP3849857B2 (en) AC motor resistance measurement method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124