JP2013042631A - Control device of permanent magnet synchronous motor - Google Patents

Control device of permanent magnet synchronous motor Download PDF

Info

Publication number
JP2013042631A
JP2013042631A JP2011179270A JP2011179270A JP2013042631A JP 2013042631 A JP2013042631 A JP 2013042631A JP 2011179270 A JP2011179270 A JP 2011179270A JP 2011179270 A JP2011179270 A JP 2011179270A JP 2013042631 A JP2013042631 A JP 2013042631A
Authority
JP
Japan
Prior art keywords
axis
current
motor
simulator
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179270A
Other languages
Japanese (ja)
Other versions
JP5768255B2 (en
Inventor
Kiyoshi Oishi
潔 大石
Masaki Sazawa
政樹 佐沢
Takayuki Kaneko
貴之 金子
Yasushi Matsumoto
康 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nagaoka University of Technology NUC
Original Assignee
Fuji Electric Co Ltd
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nagaoka University of Technology NUC filed Critical Fuji Electric Co Ltd
Priority to JP2011179270A priority Critical patent/JP5768255B2/en
Publication of JP2013042631A publication Critical patent/JP2013042631A/en
Application granted granted Critical
Publication of JP5768255B2 publication Critical patent/JP5768255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable identification of an off-set value of current detecting means to remove it, by speedily identifying motor constants while driving a motor.SOLUTION: The control device includes: a current simulator 9 for calculating d-axis and q-axis estimated currents with a motor speed, and a d-axis and q-axis voltages used as inputs; and identifying means 10 for identifying a self-inductance by controlling the motor at a constant speed so that a d-axis detected current becomes zero to adjust a self-inductance nominal value of the simulator 9 from the d-axis and q-axis estimated currents and d-axis and q-axis detected currents so that deviation of the number of flux interlinkage becomes zero, identifying an armature resistance by controlling the motor so that the d-axis detected current becomes a prescribed value to adjust the armature resistance nominal value of the simulator 9 from the d-axis and q-axis estimated currents and the d-axis and q-axis detected currents so that deviation of the number of flux interlinkage becomes zero, identifying the number of flux interlinkage from the d-axis and q-axis estimated currents and the d-axis and q-axis detected currents, and identifying an off-set value of current detecting means from the deviation between the d-axis estimated current and the d-axis detected current, and the deviation between the q-axis estimated current and the q-axis detected current.

Description

本発明は、永久磁石同期モータの制御装置に関し、特に、モータの自己インダクタンスや電機子抵抗等のモータ定数の同定技術、及び、電流検出手段のオフセット調整技術に関するものである。   The present invention relates to a control device for a permanent magnet synchronous motor, and more particularly to a technique for identifying motor constants such as motor self-inductance and armature resistance, and an offset adjustment technique for current detection means.

同期モータは、回転子の位置に応じて適切に電流を検出して制御することにより、制御性及び効率を向上させることができる。この場合、自己インダクタンスや電機子抵抗、磁束鎖交数のようなモータ定数が必要である。
一般に、同期モータのモータ定数には設計値が使用されるが、実際値と設計値との間には誤差がある。こうした誤差は、トルク制御精度や応答性に大きく影響する。このモータ定数は温度変化等によって変動するため、モータ駆動中にも逐次同定しながら制御に用いるモータ定数を調整することが望ましい。
The synchronous motor can improve controllability and efficiency by appropriately detecting and controlling the current according to the position of the rotor. In this case, motor constants such as self-inductance, armature resistance, and flux linkage are required.
Generally, a design value is used for the motor constant of the synchronous motor, but there is an error between the actual value and the design value. Such errors greatly affect torque control accuracy and responsiveness. Since the motor constant fluctuates due to a temperature change or the like, it is desirable to adjust the motor constant used for control while sequentially identifying the motor during driving.

また、モータの電流を検出する場合、電気的絶縁を必要とする電流センサが利用されており、その場合の検出素子としては、ギャップを有するコアを介して発生する磁界の強さを電圧に変換し、電流検出信号としてホール素子により取り出すものが一般的である。
しかし、ホール素子には、部品較差や個体差等に伴う固有のオフセットが存在し、このオフセットは、更に感度のバラツキや温度変化等の環境的な要因によって変化する特性を有している。
In addition, when detecting the current of the motor, a current sensor that requires electrical insulation is used, and as a detection element in that case, the strength of the magnetic field generated through the core having a gap is converted into a voltage. In general, the current detection signal is extracted by a Hall element.
However, the Hall element has an inherent offset due to component differences, individual differences, and the like, and this offset further has a characteristic that changes due to environmental factors such as sensitivity variations and temperature changes.

ここで、同期電動機のモータ定数を測定する方法としては、特許文献1に示すような方法が知られている。
この特許文献1に係る従来技術では、回転子を停止状態に設定し、q軸電流指令、d軸電流指令を第1のq軸電流指令値、第1のd軸電流指令値に設定し、所定の大きさのd軸電流ステップ指令を制御装置に与える。このステップ指令に対するd軸電流検出値の偏差に対応して生成されるd軸電圧指令値から電動機の一次抵抗による電圧降下分の電圧を減算して得られる電圧値を、予め定められた第1の積分時間にわたり積分して積分値vdsumを生成し、積分開始時点のd軸電流検出値に対する積分終了時のd軸電流検出値の変化量Δiを生成する。
同様の計算をq軸についても実行して積分値vqsumとΔiとを生成することにより、d軸インダクタンスとq軸インダクタンスとの比:K=(vqsum/vdsum)・(Δi/Δi)を算出する。そして、既知であるd軸インダクタンスLを用いて、q軸インダクタンスLをL=KLによって算出することにより、同定を終了する。
Here, as a method of measuring the motor constant of the synchronous motor, a method as shown in Patent Document 1 is known.
In the prior art according to Patent Document 1, the rotor is set to a stopped state, the q-axis current command and the d-axis current command are set to the first q-axis current command value and the first d-axis current command value, A d-axis current step command having a predetermined magnitude is given to the control device. A voltage value obtained by subtracting the voltage drop due to the primary resistance of the motor from the d-axis voltage command value generated corresponding to the deviation of the detected d-axis current value with respect to the step command is set to a predetermined first value. integral to over integration time to produce an integrated value v dsum, it generates a variation .DELTA.i d of d-axis current detection value at the time of integration end with respect to the d-axis current detection value of the integration start point.
The same calculation is performed for the q-axis to generate the integral values v qsum and Δi q , whereby the ratio of the d-axis inductance to the q-axis inductance: K = (v qsum / v dsum ) · (Δi d / Δi q ) is calculated. Then, by using the known d-axis inductance L d and calculating the q-axis inductance L q by L q = KL d , the identification is completed.

一方、永久磁石同期モータの駆動中に、モータ定数を測定しつつ電流検出器のオフセットを調節する方法として、非特許文献1に示すような方法がある。
非特許文献1に記載された従来技術では、モータの電気的特性を模擬する電流シミュレータを構成し、このシミュレータにて用いる電気パラメータ(モータ定数としての電機子抵抗、自己インダクタンス)のノミナル値R,Lと真値R,Lとの誤差率α,βをそれぞれ定義する。そして、d軸電流を0に制御した状態で、電流シミュレータのd軸推定電流i^の値が0になるようにノミナル値Lを調整し、検出器のオフセット分として現れる電流リプル分を除去したq軸推定電流i^とq軸検出電流iqsenseとの電流比から誤差率αを求め、求めた誤差率αから電機子抵抗Rを同定する。更に、求めた電機子抵抗値Rをノミナル値Rとして電流シミュレータのパラメータを調節した場合の電流比から誤差率βを求め、求めた誤差率βから自己インダクタンス値Lを同定する。
その後、上記同定値R,Lを電流シミュレータの電気パラメータとして、d軸電流,q軸電流及びモータの電気角θreに基づき電流検出器のオフセット値Δi^,Δi^を算出するものである。
On the other hand, as a method for adjusting the offset of the current detector while measuring the motor constant during driving of the permanent magnet synchronous motor, there is a method as shown in Non-Patent Document 1.
In the prior art described in Non-Patent Document 1, a current simulator that simulates the electrical characteristics of a motor is configured, and the nominal value R n of electrical parameters (armature resistance, self-inductance as a motor constant) used in the simulator. , L n and error rates α and β between true values R a and L a , respectively. Then, with the d-axis current controlled to 0, the nominal value L n is adjusted so that the value of the d-axis estimated current i d ^ of the current simulator becomes 0, and the current ripple that appears as the offset of the detector is The error rate α is obtained from the current ratio between the removed q-axis estimated current i q ^ and the q-axis detection current i qsense, and the armature resistance Ra is identified from the obtained error rate α. Further, determine the error rate β armature resistance R a determined from the current ratio in the case of adjusting the parameters of the current simulator as nominal value R n, to identify self-inductance value L a from the error rate β obtained.
Then, to calculate the identified value R a, the L a as the electrical parameters of the current simulator, d-axis current, q-axis current and the current detector based on the electrical angle theta re of the motor offset value .DELTA.i u ^, the .DELTA.i v ^ Is.

特開2001−352800号公報(段落[0044]〜[0056]、図1,図2等)Japanese Unexamined Patent Publication No. 2001-352800 (paragraphs [0044] to [0056], FIG. 1, FIG. 2, etc.)

佐沢,川后,植中,大石,「電流シミュレータを用いた永久磁石モータの電流検出誤差とパラメータ変動の推定手法」,電気学会産業応用部門論文誌D、130巻8号,1000頁〜1007頁,2010年8月Sazawa, Kawagoe, Uenaka, Oishi, "Estimation method of current detection error and parameter fluctuation of permanent magnet motor using current simulator", IEEJ Industrial Application Division Journal, Vol.130, No.8, pp.100-1007 , August 2010

特許文献1に開示されている従来技術では、既知であるd軸インダクタンスを用い、かつ、回転子を停止状態に設定したうえで交流のq軸電流指令を電流コントローラに入力しているため、モータ定数の同定を通常の駆動中に行う、いわゆるオンライン同定が困難であり、また、電流検出器のオフセットが同定値に影響したりトルクリプルを発生させる等の問題がある。
これに対し、非特許文献1に開示されている従来技術によれば、d−q軸にて電流一定の区間を設ければ、電機子抵抗R及び自己インダクタンスLの同定、並びに電流検出器のオフセット調整をオンラインにて行うことが可能であるが、モータ定数の一つである磁束鎖交数φを同定できないという問題がある。
In the prior art disclosed in Patent Document 1, since a known d-axis inductance is used and an AC q-axis current command is input to the current controller after setting the rotor to a stopped state, the motor It is difficult to perform so-called on-line identification in which constant identification is performed during normal driving, and there are problems such as an offset of the current detector affecting the identification value and generating torque ripple.
On the other hand, according to the prior art disclosed in Non-Patent Document 1, if a constant current section is provided on the dq axis, the identification of the armature resistance Ra and the self-inductance L, and the current detector However, there is a problem that the flux linkage number φ, which is one of the motor constants, cannot be identified.

そこで、本発明は、モータを駆動しつつd軸,q軸に関する各種のモータ定数を迅速に同定し、同時に電流検出手段のオフセット成分を同定してこれを調整可能とした永久磁石同期モータの制御装置を提供することを解決課題とする。   Therefore, the present invention controls a permanent magnet synchronous motor that quickly identifies various motor constants related to the d-axis and q-axis while driving the motor, and at the same time identifies the offset component of the current detection means and makes it adjustable. It is an object to provide an apparatus.

上記課題を解決するため、請求項1に係る発明は、永久磁石同期モータの電流指令と検出電流との偏差に応じた電圧指令を演算する電流制御手段と、前記電圧指令に従って生成した交流電圧を前記モータに供給する電力変換器と、前記検出電流としての相電流をd−q回転座標上のd軸電流及びq軸電流に変換する電流検出手段と、を備えた永久磁石同期モータの制御装置において、
前記モータの回転速度及びd−q回転座標上のd軸,q軸電圧を入力として前記モータの状態方程式からd軸,q軸推定電流を演算する電流シミュレータと、
前記モータのd軸検出電流が零となるように前記モータを一定速度に制御した状態で、前記d軸,q軸推定電流及びd軸,q軸検出電流を用い、前記モータと前記電流シミュレータとの磁束鎖交数の偏差が零となるように前記電流シミュレータの自己インダクタンスノミナル値を調整して前記モータの自己インダクタンスを同定する機能、前記モータのd軸検出電流を所定値に制御した状態で、前記d軸,q軸推定電流及びd軸,q軸検出電流を用い、前記モータと前記電流シミュレータとの磁束鎖交数の偏差が零となるように前記電流シミュレータの電機子抵抗ノミナル値を調整して前記モータの電機子抵抗を同定する機能、前記d軸,q軸推定電流及びd軸,q軸検出電流を用いて前記モータの磁束鎖交数を同定する機能、及び、前記d軸推定電流とd軸検出電流との偏差並びに前記q軸推定電流とq軸検出電流との偏差から、前記電流検出手段のオフセット値を同定する機能、を有する同定手段と、を備えたものである。
In order to solve the above-described problem, the invention according to claim 1 is directed to a current control unit that calculates a voltage command corresponding to a deviation between a current command of a permanent magnet synchronous motor and a detected current, and an AC voltage generated according to the voltage command. A control apparatus for a permanent magnet synchronous motor, comprising: a power converter that supplies the motor; and a current detection unit that converts the phase current as the detection current into a d-axis current and a q-axis current on dq rotation coordinates. In
A current simulator for calculating a d-axis and q-axis estimated current from the state equation of the motor by inputting the rotation speed of the motor and the d-axis and q-axis voltages on the dq rotation coordinates;
With the motor controlled at a constant speed such that the d-axis detection current of the motor becomes zero, the motor, the current simulator, The function of identifying the self-inductance of the motor by adjusting the self-inductance nominal value of the current simulator so that the deviation of the number of flux linkages of the motor becomes zero, and the d-axis detection current of the motor controlled to a predetermined value Using the d-axis and q-axis estimated currents and the d-axis and q-axis detection currents, the armature resistance nominal value of the current simulator is set so that the deviation of the number of flux linkages between the motor and the current simulator becomes zero. A function of adjusting and identifying the armature resistance of the motor, a function of identifying the number of flux linkages of the motor using the d-axis and q-axis estimated currents and the d-axis and q-axis detection currents, and the d And an identification unit having a function of identifying an offset value of the current detection unit based on a deviation between the estimated current and the d-axis detection current and a deviation between the q-axis estimation current and the q-axis detection current. .

本発明においては、d軸電流を零に制御した状態で電流シミュレータの出力であるd軸,q軸推定電流とd軸,q軸検出電流とから磁束鎖交数の誤差を求めて同期モータの自己インダクタンスを同定する。また、電流シミュレータの自己インダクダンスを同定した値にし、d軸電流を任意の値に制御した状態でd軸,q軸推定電流とd軸,q軸検出電流とから磁束鎖交数の誤差を求めて電機子抵抗を同定する。そして、電流シミュレータの自己インダクタンス及び電機子抵抗を同定した値にして、磁束鎖交数の誤差を求めることにより磁束鎖交数を同定する。これにより、同期モータを駆動しながらすべてのモータ定数を同定することができる。
更に、本発明によれば、d軸,q軸推定電流及びd軸,q軸検出電流からオフセット成分を推定し、電流検出手段のオフセット値を求めることも可能である。
すなわち、本発明によれば、同期モータの各種のモータ定数や電流検出手段のオフセット値を適切に調整することができ、同期モータのトルク脈動を抑えて高精度かつ高応答な電流制御系を実現することが可能になる。
In the present invention, the error of the flux linkage number is obtained from the d-axis and q-axis estimated currents and the d-axis and q-axis detected currents, which are the outputs of the current simulator in a state where the d-axis current is controlled to be zero. Identify self-inductance. Also, the error of the flux linkage is calculated from the d-axis, q-axis estimated current and the d-axis, q-axis detected current in the state where the self-inductance of the current simulator is set to the identified value and the d-axis current is controlled to an arbitrary value. Find the armature resistance. Then, the magnetic flux linkage number is identified by obtaining the error of the flux linkage number with the identified values of the self-inductance and the armature resistance of the current simulator. Thereby, all the motor constants can be identified while driving the synchronous motor.
Furthermore, according to the present invention, it is also possible to estimate the offset component from the d-axis and q-axis estimated currents and the d-axis and q-axis detected currents to obtain the offset value of the current detecting means.
That is, according to the present invention, various motor constants of the synchronous motor and the offset value of the current detecting means can be appropriately adjusted, and a highly accurate and highly responsive current control system is realized by suppressing the torque pulsation of the synchronous motor. It becomes possible to do.

本発明の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of this invention. 本発明の実施形態の動作を示すフローチャートである。It is a flowchart which shows operation | movement of embodiment of this invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本実施形態の構成を示すブロック図である。図1において、この実施形態に係る永久磁石同期モータ1の制御装置は、電力変換器2、電流検出手段3、2軸電流変換手段4、エンコーダ等の速度検出手段5、回転数制御手段6、d軸電流制御手段7、q軸電流制御手段8、及び、加減算手段11,12d,12q,13u,13vを備えると共に、電流シミュレータ9及び同定手段10を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the present embodiment. In FIG. 1, a control device for a permanent magnet synchronous motor 1 according to this embodiment includes a power converter 2, a current detection means 3, a biaxial current conversion means 4, a speed detection means 5 such as an encoder, a rotation speed control means 6, In addition to d-axis current control means 7, q-axis current control means 8, and addition / subtraction means 11, 12d, 12q, 13u, 13v, a current simulator 9 and identification means 10 are provided.

ここで、電力変換器2は、d軸電圧指令v ref及びq軸電圧指令v refに基づいて3相交流電圧を出力するPWMインバータ等によって構成されており、IGBT等のパワー半導体スイッチング素子を用いた3相スイッチング回路を備えている。
上記電力変換器2以外の各手段は、例えば、DSPやマイクロコンピュータの制御アプリケーションによって実現される。なお、DSPまたはマイクロコンピュータは、電流検出用のコアや、メモリ、A/D変換回路、通信ポート等の周辺装置を含んでいてもよい。勿論、電力変換器2以外の各手段の一部を、論理回路によって構成してもよい。
制御対象である永久磁石同期モータ1としては、特に、表面磁石同期モータ(SPM)を想定している。このSPMは、埋込磁石同期モータ(IPMSM)に比べて低トルクではあるが、低トルクリプルという利点を有するため、高精度かつ高性能な位置決め用途のサーボモータに広く用いられているものである。
Here, the power converter 2 includes a PWM inverter that outputs a three-phase AC voltage based on the d-axis voltage command v d ref and the q-axis voltage command v q ref , and is a power semiconductor switching element such as an IGBT. A three-phase switching circuit using is provided.
Each means other than the power converter 2 is realized by a control application of a DSP or a microcomputer, for example. The DSP or microcomputer may include a current detection core, peripheral devices such as a memory, an A / D conversion circuit, and a communication port. Of course, a part of each means other than the power converter 2 may be configured by a logic circuit.
As the permanent magnet synchronous motor 1 to be controlled, a surface magnet synchronous motor (SPM) is particularly assumed. Although this SPM has a lower torque than an embedded magnet synchronous motor (IPMSM), it has the advantage of a low torque ripple, so it is widely used in servo motors for positioning applications with high accuracy and high performance.

次に、図1に基づいて、同期モータ1の駆動時における動作の概要を説明する。
外部から与えられる目標回転速度ωrm refと速度検出手段5により検出したモータ1の回転速度ωrmとの偏差を加減算手段11により求め、この偏差に基づき、速度制御手段6がq軸電流指令i refを生成する。
電流検出手段3では、u相及びv相の電流検出器によって得られた相電流i,i及びこれらから算出したw相電流iを、2軸電流変換手段4によりd−q座標上の検出電流i sense,i senseに変換する。なお、図1では、電流検出器にオフセット値Δi,Δiが存在することを考慮し、加減算手段13u,13vにより相電流i,iにオフセット値Δi,Δiをそれぞれ加算した値を2軸電流変換手段4に入力するように表示してある。
Next, based on FIG. 1, the outline | summary of the operation | movement at the time of the drive of the synchronous motor 1 is demonstrated.
The difference between the rotational speed omega rm of the motor 1 detected by the target rotational speed omega rm ref and the speed detecting means 5 provided externally determined by subtraction unit 11, on the basis of the deviation, the speed control means 6 q-axis current command i q ref is generated.
The current detecting unit 3, u-phase and v-phase phase current i u obtained by the current detector, the i v, and w-phase current i w calculated from those, on the d-q coordinate by 2-axis current converter 4 The detection currents i d sense and i q sense are converted to In FIG 1, consider the offset value .DELTA.i u, .DELTA.i v is present in the current detector, subtraction means 13u, phase currents i u by 13v, the i v offset value .DELTA.i u, .DELTA.i v were respectively added The value is displayed so as to be input to the biaxial current converting means 4.

2軸電流変換手段4から出力される検出電流i sense,i senseと、任意に設定したd軸電流指令i ref及び速度制御手段6から出力されたq軸電流指令i refとの偏差を加減算手段12d,12qによりそれぞれ求め、これらの偏差に基づき、d軸電流制御手段7及びq軸電流制御手段8がd軸電圧指令v ref、q軸電圧指令v refをそれぞれ生成する。
d軸電圧指令v ref及びq軸電圧指令v refは電力変換器2に入力されており、この電力変換器2により生成された3相交流電圧が同期モータ1に供給される。
上述した一連の動作により、同期モータ1は、実際の回転速度ωrmが目標回転速度ωrm refに追従するように制御される。なお、2軸電流変換手段4や、電力変換器2におけるd−q軸電圧成分から3相電圧への逆変換手段(図示せず)等の構成及び動作は、周知技術であるため説明を省略する。
The detected currents i d sense and i q sense output from the biaxial current conversion unit 4, the arbitrarily set d axis current command i d ref, and the q axis current command i q ref output from the speed control unit 6 Deviations are respectively obtained by the addition / subtraction means 12d and 12q, and based on these deviations, the d-axis current control means 7 and the q-axis current control means 8 generate the d-axis voltage command v d ref and the q-axis voltage command v q ref , respectively. .
The d-axis voltage command v d ref and the q-axis voltage command v q ref are input to the power converter 2, and the three-phase AC voltage generated by the power converter 2 is supplied to the synchronous motor 1.
Through the series of operations described above, the synchronous motor 1 is controlled such that the actual rotational speed ω rm follows the target rotational speed ω rm ref . Note that the configuration and operation of the two-axis current conversion unit 4 and the reverse conversion unit (not shown) for converting the dq-axis voltage component into the three-phase voltage in the power converter 2 are well-known techniques, and thus description thereof is omitted. To do.

次に、d軸及びq軸電流を推定する電流シミュレータ9について説明する。
同期モータ1のd−q座標軸上の状態方程式に基づいて、電流シミュレータ9は数式1の演算を実行することで実現される。数式1において、i^及びi^はd軸推定電流及びq軸推定電流、v及びvはd軸電圧及びq軸電圧、Rはモータ1の電機子抵抗のノミナル値、Lは自己インダクタンスのノミナル値、φfnは磁束鎖交数のノミナル値、ωreは同期モータ1の電気角周波数である。
数式1から明らかなように、電流シミュレータ9は、v,v及びωreを入力とし、更に各ノミナル値R,L,φfnを用いてd軸推定電流i^及びq軸推定電流i^を出力する。なお、図1では、数式1のv,vとして電圧指令v ref,v refを用いており、また、数式1のωreは図1における実回転速度ωrmに相当する。
Next, the current simulator 9 that estimates the d-axis and q-axis currents will be described.
Based on the state equation on the dq coordinate axes of the synchronous motor 1, the current simulator 9 is realized by executing the calculation of Equation 1. In Equation 1, i d ^ and i q ^ are d-axis estimated current and q-axis estimated current, v d and v q are d-axis voltage and q-axis voltage, R n is a nominal value of armature resistance of the motor 1, L n is a nominal value of self-inductance, φ fn is a nominal value of the number of flux linkages, and ω re is an electrical angular frequency of the synchronous motor 1.
As is clear from Equation 1, the current simulator 9 receives v d , v q and ω re as inputs, and further uses the nominal values R n , L n and φ fn to determine the d-axis estimated current i d ^ and the q-axis. The estimated current i q ^ is output. In FIG. 1, voltage commands v d ref and v q ref are used as v d and v q in Equation 1, and ω re in Equation 1 corresponds to the actual rotational speed ω rm in FIG.

Figure 2013042631
Figure 2013042631

次いで、同定手段10について説明する。
同定手段10には、電流シミュレータ9の出力であるd軸推定電流i^、q軸推定電流i^、及び検出電流i sense,i senseが入力されており、同定手段10はこれらの入力を用いてモータ定数であるR,L,φを同定すると共に、電流検出手段3の電流検出値に含まれるオフセット値Δi,Δiを同定する。
Next, the identification unit 10 will be described.
The identification means 10 is supplied with the d-axis estimated current i d ^, the q-axis estimated current i q ^ and the detected currents i d sense and i q sense which are the outputs of the current simulator 9. identifying a motor constant R a, L a, with identifying phi f, offset value .DELTA.i u included in the current detection value of the current detection means 3, the .DELTA.i v using the input.

ここで、同定手段10における同期モータ1のパラメータ同定の理論的な理由について、まず、電流検出手段3のオフセットと電流シミュレータ9との関係について説明する。
電流検出手段3による電流検出値にオフセットが加わった場合、電流制御系がオフセットによる電流リプルを抑制するように制御するため、電圧指令v ref,v refにはオフセットの影響が含まれる。従って、電流制御系を考慮した電流シミュレータ9は、数式2のようになる。この数式2において、i^’,i^’は電流制御系を考慮したd軸,q軸推定電流、Rは電機子抵抗値、Lは自己インダクタンス値、Δi,Δiはd軸,q軸推定電流と実際のd軸,q軸検出電流i,iとの偏差(Δi=i^’−i、Δi=i^’−i)である。なお、d軸,q軸電流i,iは、前述したi sense,i senseに相当する。

Figure 2013042631
Here, regarding the theoretical reason for parameter identification of the synchronous motor 1 in the identification means 10, first, the relationship between the offset of the current detection means 3 and the current simulator 9 will be described.
When an offset is added to the current detection value by the current detection means 3, the current control system performs control so as to suppress the current ripple due to the offset, so the voltage commands v d ref and v q ref include the effect of the offset. Therefore, the current simulator 9 in consideration of the current control system is expressed by Equation 2. In Equation 2, i d ^ ′ and i q ^ ′ are d-axis and q-axis estimated currents taking into account the current control system, R a is an armature resistance value, L a is a self-inductance value, Δi d and Δi q are is the actual d-axis d-axis, the q-axis estimated current, q-axis detection current i d, the deviation between the i q (i q Δi d = i d ^ '- - i d, Δi q = i q ^') . The d-axis and q-axis currents i d and i q correspond to the above-described i d sense and i q sense .
Figure 2013042631

同期モータの電気パラメータに対する電流シミュレータ9の電機子抵抗の変動率をγ、自己インダクタンスの変動率をγ、磁束鎖交数の誤差をΔφとして数式3のようにおくと、d軸推定電流i^’及びq軸推定電流i’は数式4となる。この数式4によれば、電流検出手段3のオフセットによる影響、つまり、Δi,Δiを含む項は、d軸推定電流i^’及びq軸推定電流i’のいずれについても、第2項、第3項のみにしか現れていない。 When the fluctuation rate of the armature resistance of the current simulator 9 with respect to the electric parameters of the synchronous motor is γ a , the fluctuation rate of the self-inductance is γ L , and the error of the number of flux linkages is Δφ i d ^ ′ and the q-axis estimated current i q ′ are given by Equation 4. According to Equation 4, the influence of the offset of the current detection means 3, that is, the term including Δi d and Δi q is the same for both the d-axis estimated current i d ^ ′ and the q-axis estimated current i q ′. It appears only in the second and third terms.

Figure 2013042631
Figure 2013042631
Figure 2013042631
Figure 2013042631

通常、電流検出手段のオフセットは直流成分が支配的であり、d−q軸上のΔi及びΔiには交流成分として現れる。従って、d軸推定電流i^’及びq軸推定電流i’のいずれについても、直流成分には数式4の第1項のみが現れるため、同期モータ1の電気パラメータの同定に当たっては、直流成分を用いることにより、電流検出手段のオフセットに対して互いに不感な同定方法を実現することができる。 Usually, the offset of the current detection means is dominant DC component, the .DELTA.i d and .DELTA.i q on d-q-axis appears as an AC component. Accordingly, for both the d-axis estimated current i d ^ ′ and the q-axis estimated current i q ′, only the first term of Equation 4 appears in the DC component. By using the components, it is possible to realize an identification method that is insensitive to the offset of the current detection means.

次に、モータの電気パラメータ同定の理論的な理由について説明する。
電気パラメータのうち、磁束鎖交数φfaのみが変動(すなわち、R=R、L=L)していると、d軸推定電流i^及びq軸推定電流i^は数式5によって表すことができ、これを磁束鎖交数の誤差Δφについてd軸側のΔφをΔφ、q軸側のΔφをΔφとして解くと、数式6のように表すことができる。

Figure 2013042631
Figure 2013042631
Next, the theoretical reason for identifying the electric parameters of the motor will be described.
Of the electrical parameters, if only the flux linkage number φ fa changes (that is, R a = R n , L a = L n ), the d-axis estimated current i d ^ and the q-axis estimated current i q ^ It can be expressed by Equation 5, and this can be expressed as Equation 6 by solving Δφ on the d-axis side as Δφ d and Δφ on the q-axis side as Δφ q for the error Δφ in the flux linkage number.
Figure 2013042631
Figure 2013042631

本来、ΔφとΔφとは一致している必要があるため、数式7に表す両者の偏差Δφdiffが零となるように、R及びLを調整すればよいことになる。

Figure 2013042631
及びLの調整に関しては、数式7を同期モータの電気パラメータを用いて展開すると数式8のようになり、数式8におけるΔiを零とすると、γが1となるようにすればφdiffが零となる。
Figure 2013042631
Originally, Δφ d and Δφ q need to coincide with each other, and therefore R n and L n may be adjusted so that the deviation Δφ diff between the two expressed in Equation 7 becomes zero.
Figure 2013042631
For the adjustment of R n and L n, when developed using electrical parameters of the synchronous motor Equation 7 is as Equation 8, when the zero .DELTA.i d in Equation 8, if so gamma L becomes 1 φ diff becomes zero.
Figure 2013042631

従って、同定手段10における電気パラメータの同定に関する動作としては、iを零に制御した状態で、電流シミュレータ9内の自己インダクタンスのノミナル値Lを変動させ、数式7のΔφdiffが零になるLの値を探すことによって自己インダクタンスを同定する。そして、電流シミュレータの自己インダクタンスLを同定した値にし、iを任意の値に制御して電機子抵抗のノミナル値Rを変動させ、数式7のΔφdiffが零になるRの値を探すことで電機子抵抗を同定する。最後に、電流シミュレータの電機子抵抗R及び自己インダクタンスLを同定した値にし、数式6により磁束鎖交数の誤差分であるΔφ,Δφを求め、磁束鎖交数φfaを同定する。 Therefore, as the operation relates to the identification of electrical parameters in the identification unit 10, while controlling the i d to zero, varying the nominal value L n of the self-inductance in the current simulator 9, [Delta] [phi diff equation 7 becomes zero to identify the self-inductance by looking for the value of L n. Then, the value obtained by identifying the self-inductance L n of the current simulator controls the i d to an arbitrary value by varying the nominal value R n of the armature resistance, the value of R n which [Delta] [phi diff equation 7 becomes zero To identify the armature resistance. Finally, the armature resistance R n and the self-inductance L n of the current simulator are set to the identified values, and Δφ d and Δφ q which are errors of the flux linkage number are obtained by Equation 6, and the flux linkage number φ fa is identified. To do.

以上説明した同期モータの電気パラメータの同定に関する全体的な動作について、図2のフローチャートを用いて説明する。
まず、q軸電流iを一定に保つため、同期モータ1の回転速度を一定値に制御する(ステップS1)。次に、ステップS2では、d軸電流iを零に制御した状態で(S2a)、数式6〜8に示した如く偏差Δφdiffが零となるように、自己インダクタンスのノミナル値Lを調整する(S2b〜S2e)。そして、ステップS3では、調整した値を電流シミュレータの自己インダクタンスノミナル値とし、d軸電流iを任意の値に制御した状態で(S3a)、偏差Δφdiffが零となるように、電機子抵抗のノミナル値Rを調整する(S3b〜S3e)。ステップS4では、上記のようにして自己インダクタンス及び電機子抵抗を同定した後、数式6によりΔφを同定して磁束鎖交数φfnを調整する。
The overall operation relating to the identification of the electrical parameters of the synchronous motor described above will be described using the flowchart of FIG.
First, in order to keep the q-axis current iq constant, the rotational speed of the synchronous motor 1 is controlled to a constant value (step S1). Next, in step S2, while controlling to zero the d-axis current i d (S2a), so that the deviation [Delta] [phi diff as shown in Equation 6-8 is zero, adjust the nominal value L n of self-inductance (S2b to S2e). In step S3, the adjusted value as the self-inductance nominal value of the current simulator, the d-axis current i d while controlling to any value (S3a), so that the deviation [Delta] [phi diff becomes zero, the armature resistance adjusting the nominal value R n (S3b~S3e). In step S4, after identifying the self-inductance and the armature resistance as described above, Δφ is identified by Equation 6 to adjust the flux linkage number φ fn .

次に、同定手段10おける電流検出手段3のオフセット同定について説明する。
先に同定した同期モータ1の電気パラメータをもって電流シミュレータ9のノミナル値とし、数式9に示すような電流シミュレータの出力、すなわち、d軸推定電流i^’、q軸推定電流i’とd軸検出電流i、q軸検出電流iとの偏差Δi^,Δi^がd−q軸のオフセット成分となることから、数式10により、これらの2軸電流を3相交流に変換してオフセット値Δi^,Δi^を求める。これらのオフセット値は、図1の電流検出手段3に示したように、相電流i,iの補正に用いられることになる。
Next, offset identification of the current detection means 3 in the identification means 10 will be described.
The electrical parameter of the synchronous motor 1 identified above is used as the nominal value of the current simulator 9, and the output of the current simulator as shown in Equation 9, that is, the d-axis estimated current i d ^ ′, the q-axis estimated current i q ′ and d Since the deviations Δi d ^ and Δi q ^ from the axis detection current i d and the q axis detection current i q are offset components of the dq axis, these two axis currents are converted into a three-phase alternating current by Equation 10. Then, offset values Δi u ^ and Δi v ^ are obtained. These offset values, as shown in the current detecting means 3 in FIG. 1, will be used to correct the phase currents i u, i v.

Figure 2013042631
Figure 2013042631
Figure 2013042631
Figure 2013042631

本発明に係る永久磁石同期モータの制御装置は、同定のために特殊な操作を行わなくても、通常の運転中にd軸電流及びq軸電流を所定値に制御する期間を与えるのみで、同期モータの全ての電気パラメータを同定し、更に電流検出手段のオフセットも調整することができる。従って、本発明はサーボシステム等の産業用の永久磁石同期モータを駆動する場合に利用可能である。   The controller for a permanent magnet synchronous motor according to the present invention only provides a period for controlling the d-axis current and the q-axis current to a predetermined value during normal operation without performing a special operation for identification. All the electrical parameters of the synchronous motor can be identified and the offset of the current detection means can also be adjusted. Therefore, the present invention can be used when driving an industrial permanent magnet synchronous motor such as a servo system.

1:永久磁石同期モータ
2:電力変換器(PWMインバータ)
3:電流検出手段
4:2軸電流変換手段
5:速度検出手段(エンコーダ)
6:速度制御手段
7:d軸電流制御手段
8:q軸電流制御手段
9:電流シミュレータ
10:同定手段
11,12d,12q,13u,13v:加減算手段
1: Permanent magnet synchronous motor 2: Power converter (PWM inverter)
3: Current detection means 4: Biaxial current conversion means 5: Speed detection means (encoder)
6: Speed control means 7: d-axis current control means 8: q-axis current control means 9: current simulator 10: identification means 11, 12d, 12q, 13u, 13v: addition / subtraction means

Claims (1)

永久磁石同期モータの電流指令と検出電流との偏差に応じた電圧指令を演算する電流制御手段と、前記電圧指令に従って生成した交流電圧を前記モータに供給する電力変換器と、前記検出電流としての相電流をd−q回転座標上のd軸電流及びq軸電流に変換する電流検出手段と、を備えた永久磁石同期モータの制御装置において、
前記モータの回転速度及びd−q回転座標上のd軸,q軸電圧を入力として前記モータの状態方程式からd軸,q軸推定電流を演算する電流シミュレータと、
前記モータのd軸検出電流が零となるように前記モータを一定速度に制御した状態で、前記d軸,q軸推定電流及びd軸,q軸検出電流を用い、前記モータと前記電流シミュレータとの磁束鎖交数の偏差が零となるように前記電流シミュレータの自己インダクタンスノミナル値を調整して前記モータの自己インダクタンスを同定する機能、前記モータのd軸検出電流を所定値に制御した状態で、前記d軸,q軸推定電流及びd軸,q軸検出電流を用い、前記モータと前記電流シミュレータとの磁束鎖交数の偏差が零となるように前記電流シミュレータの電機子抵抗ノミナル値を調整して前記モータの電機子抵抗を同定する機能、前記d軸,q軸推定電流及びd軸,q軸検出電流を用いて前記モータの磁束鎖交数を同定する機能、及び、前記d軸推定電流とd軸検出電流との偏差並びに前記q軸推定電流とq軸検出電流との偏差から、前記電流検出手段のオフセット値を同定する機能、を有する同定手段と、
を備えたことを特徴とする永久磁石同期モータの制御装置。
A current control means for calculating a voltage command corresponding to a deviation between a current command of the permanent magnet synchronous motor and a detected current; a power converter for supplying an AC voltage generated according to the voltage command to the motor; and In a control device for a permanent magnet synchronous motor, comprising: current detection means for converting a phase current into a d-axis current and a q-axis current on a dq rotation coordinate;
A current simulator for calculating a d-axis and q-axis estimated current from the state equation of the motor by inputting the rotation speed of the motor and the d-axis and q-axis voltages on the dq rotation coordinates;
With the motor controlled at a constant speed such that the d-axis detection current of the motor becomes zero, the motor, the current simulator, The function of identifying the self-inductance of the motor by adjusting the self-inductance nominal value of the current simulator so that the deviation of the number of flux linkages of the motor becomes zero, and the d-axis detection current of the motor controlled to a predetermined value Using the d-axis and q-axis estimated currents and the d-axis and q-axis detection currents, the armature resistance nominal value of the current simulator is set so that the deviation of the number of flux linkages between the motor and the current simulator becomes zero. A function of adjusting and identifying the armature resistance of the motor, a function of identifying the number of flux linkages of the motor using the d-axis and q-axis estimated currents and the d-axis and q-axis detection currents, and the d From the deviation between the deviation and the q-axis estimated current and the q-axis detection current and the estimated current and the d-axis detection current, and the identification means having a function of identifying an offset value of said current detecting means,
A control apparatus for a permanent magnet synchronous motor, comprising:
JP2011179270A 2011-08-19 2011-08-19 Control device for permanent magnet synchronous motor Expired - Fee Related JP5768255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179270A JP5768255B2 (en) 2011-08-19 2011-08-19 Control device for permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179270A JP5768255B2 (en) 2011-08-19 2011-08-19 Control device for permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
JP2013042631A true JP2013042631A (en) 2013-02-28
JP5768255B2 JP5768255B2 (en) 2015-08-26

Family

ID=47890489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179270A Expired - Fee Related JP5768255B2 (en) 2011-08-19 2011-08-19 Control device for permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP5768255B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023182A (en) * 2016-08-01 2018-02-08 株式会社東芝 Numerical constant identification device and numerical constant identification method for permanent magnet synchronous motor
CN111572348A (en) * 2019-01-30 2020-08-25 北京新能源汽车股份有限公司 Permanent magnet synchronous motor fault detection method and system and automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599652B (en) * 2018-04-26 2019-11-08 浙江大学 Three-phase four based on effective switch time switchs permanent magnet synchronous motor system model predictions control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182499A (en) * 1995-12-27 1997-07-11 Hitachi Ltd Controller of synchronous motor
JP2002010697A (en) * 2000-06-15 2002-01-11 Toyo Electric Mfg Co Ltd Control unit for motor
JP2005020993A (en) * 2003-06-02 2005-01-20 Yaskawa Electric Corp Controller for induction motor
JP2010028927A (en) * 2008-07-16 2010-02-04 Oriental Motor Co Ltd Control method and controller of electric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182499A (en) * 1995-12-27 1997-07-11 Hitachi Ltd Controller of synchronous motor
JP2002010697A (en) * 2000-06-15 2002-01-11 Toyo Electric Mfg Co Ltd Control unit for motor
JP2005020993A (en) * 2003-06-02 2005-01-20 Yaskawa Electric Corp Controller for induction motor
JP2010028927A (en) * 2008-07-16 2010-02-04 Oriental Motor Co Ltd Control method and controller of electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023182A (en) * 2016-08-01 2018-02-08 株式会社東芝 Numerical constant identification device and numerical constant identification method for permanent magnet synchronous motor
CN107681938A (en) * 2016-08-01 2018-02-09 株式会社东芝 The constant of permanent-magnet synchronous electric motor identifies device and constant identifies method
CN111572348A (en) * 2019-01-30 2020-08-25 北京新能源汽车股份有限公司 Permanent magnet synchronous motor fault detection method and system and automobile
CN111572348B (en) * 2019-01-30 2021-04-23 北京新能源汽车股份有限公司 Permanent magnet synchronous motor fault detection method and system and automobile

Also Published As

Publication number Publication date
JP5768255B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP5502126B2 (en) Drive device for multi-winding rotating machine
JP2008086129A (en) Ac motor controller and constant measurement apparatus
JP2008187797A (en) Controller for alternating-current rotary machines, and measuring method for electric constant of alternating-current rotary machine using this controller
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
JP2010200430A (en) Drive controller for motors
EP1755211A1 (en) Resistance estimation of an AC electrical motor
JP7151872B2 (en) Controller for permanent magnet synchronous machine
JP2009278760A (en) Motor control device and motor control method
CN109391186B (en) Control device and control method
JP5768255B2 (en) Control device for permanent magnet synchronous motor
JP2007135345A (en) Magnet motor controller
JP5493546B2 (en) Control device for linear permanent magnet synchronous motor
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP2013094031A (en) Control device of induction motor for driving vehicle
JP4781933B2 (en) Electric motor control device
JP6102516B2 (en) Control method and control device for permanent magnet type synchronous motor
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP5332301B2 (en) Control device for permanent magnet type synchronous motor
JP6591794B2 (en) Induction machine power converter, second-order time constant measuring method and speed control method
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP2018125955A (en) Motor controller
JP4411742B2 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R150 Certificate of patent or registration of utility model

Ref document number: 5768255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees