JP2006025485A - Brake drive force controller for vehicle - Google Patents

Brake drive force controller for vehicle Download PDF

Info

Publication number
JP2006025485A
JP2006025485A JP2004199244A JP2004199244A JP2006025485A JP 2006025485 A JP2006025485 A JP 2006025485A JP 2004199244 A JP2004199244 A JP 2004199244A JP 2004199244 A JP2004199244 A JP 2004199244A JP 2006025485 A JP2006025485 A JP 2006025485A
Authority
JP
Japan
Prior art keywords
braking
vehicle
driving force
force control
braking force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004199244A
Other languages
Japanese (ja)
Inventor
Akihiro Hanamura
昭宏 花村
Yasuhiko Kitajima
康彦 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004199244A priority Critical patent/JP2006025485A/en
Publication of JP2006025485A publication Critical patent/JP2006025485A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brake drive force controller of a vehicle capable of preventing overslip in ABS operation at braking, and of exhibiting maximum brake characteristics. <P>SOLUTION: The brake drive force controller of a vehicle comprises motors 4 and 2, connected to the right and left front wheels 3 and 1 of the vehicle, respectively, a means 9 for braking the right and left front wheels 3 and 1 mechanically, and an ABS controller 7 for controlling mechanical brake force of the right and left front wheels 3 and 1, depending on the locking tendency thereof during braking, wherein the ABS controller 7 is provided with a means for controlling brake drive force of the motors 2 and 4, such that the wheel speed follows the vehicle speed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ABS動作時に機械的制動力と回生制動力を制御する車両の制駆動力制御装置の技術分野に属する。   The present invention belongs to the technical field of a vehicle braking / driving force control device that controls a mechanical braking force and a regenerative braking force during ABS operation.

従来の電動車両では、制動中に各車輪にロック傾向が検出された場合には、機械的制動力と回生制動力を同時に低減させるABS動作期間に移行することにより、ロック傾向の抑制と制動距離の短縮化を図っている(例えば、特許文献1参照)。
特開平10−297462号公報
In a conventional electric vehicle, when a tendency to lock is detected in each wheel during braking, the lock tendency is suppressed and the braking distance is shifted by shifting to an ABS operation period in which the mechanical braking force and the regenerative braking force are simultaneously reduced. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 10-297462

しかしながら、上記従来技術にあっては、電動機の回転数が高い定電力領域になると、回転数の増加に伴い電動機のトルク最大値が減少するため、高回転域では高トルクでの回生制動や駆動が行えず、低トルクで所定の時定数により回生制動や駆動が行われる。このため、総制動力の低減に対し所定の時定数による遅れが生じ、車輪が一時的に止まりかける状態となる、いわゆるオーバースリップが発生するおそれがある。   However, in the above prior art, when the rotational speed of the motor is in a high constant power region, the maximum torque value of the motor decreases as the rotational speed increases. Therefore, regenerative braking or driving at high torque is performed in the high rotational region. However, regenerative braking and driving are performed at a low torque with a predetermined time constant. For this reason, a delay due to a predetermined time constant occurs with respect to the reduction of the total braking force, and there is a possibility that a so-called overslip in which the wheel temporarily stops is generated.

本発明は、上記問題に着目してなされたもので、その目的とするところは、制動時のABS動作において、オーバースリップを防止でき、最大限の制動特性を発揮できる車両の制駆動力制御装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problem, and an object of the present invention is to provide a braking / driving force control device for a vehicle that can prevent overslip in the ABS operation during braking and that can exhibit the maximum braking characteristics. Is to provide.

上述の目的を達成するため、本発明では、
車両の左右駆動輪にそれぞれ接続された電動機と、
前記左右駆動輪を機械的に制動する機械制動手段と、
制動中に左右駆動輪のロック傾向に応じて左右駆動輪の機械的制動力を制御する機械制動力制御手段と、
を有する車両の制駆動力制御装置において、
前記機械制動力制御手段による機械的制動力制御時、車輪速が車体速に追従するように前記電動機の制駆動力を制御する電動機制駆動力制御手段を設けたことを特徴とする。
In order to achieve the above object, the present invention provides:
An electric motor connected to each of the left and right drive wheels of the vehicle;
Mechanical braking means for mechanically braking the left and right drive wheels;
Mechanical braking force control means for controlling the mechanical braking force of the left and right drive wheels according to the locking tendency of the left and right drive wheels during braking;
In a braking / driving force control device for a vehicle having
An electric motor braking / driving force control means is provided for controlling the braking / driving force of the electric motor so that the wheel speed follows the vehicle body speed during the mechanical braking force control by the mechanical braking force control means.

本発明にあっては、左右駆動輪がロック傾向となったとき、機械的制動力を制御しつつ、車輪速を車体速に合わせるように電動機の制駆動力を制御するため、オーバースリップの回避と、制動距離の短縮化をともに図ることができる。   In the present invention, when the left and right drive wheels tend to be locked, the braking / driving force of the motor is controlled so that the wheel speed matches the vehicle body speed while controlling the mechanical braking force. In addition, the braking distance can be shortened.

以下、本発明を実施するための最良の形態を、実施例1,2に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described based on Examples 1 and 2.

まず、構成を説明する。
図1は、実施例1の車両の制駆動力制御装置を示す全体構成図である。
First, the configuration will be described.
FIG. 1 is an overall configuration diagram illustrating a braking / driving force control device for a vehicle according to a first embodiment.

車両の駆動輪かつ操向輪である左右前輪1,3には、例えば、3相交流モータ等の電動機2,4が接続されている。これら電動機2,4は、電力変換器5から供給される電力で駆動される。電力変換器5は、直流電圧変換手段11を介して直流電源10に接続されている。   For example, electric motors 2 and 4 such as a three-phase AC motor are connected to the left and right front wheels 1 and 3 which are driving wheels and steering wheels of the vehicle. These electric motors 2 and 4 are driven by the electric power supplied from the power converter 5. The power converter 5 is connected to the DC power supply 10 via the DC voltage conversion means 11.

左右前輪1,3および左右後輪12,13には、車輪速を検出する車輪速センサ6がそれぞれ取り付けられており、各車輪速センサ6の出力は、ABSコントローラ7に接続されている。このABSコントローラ7の出力は、ABSアクチュエータ8および電力変換器5に接続されている。   Wheel speed sensors 6 for detecting wheel speeds are respectively attached to the left and right front wheels 1 and 3 and the left and right rear wheels 12 and 13, and outputs of the wheel speed sensors 6 are connected to an ABS controller 7. The output of the ABS controller 7 is connected to the ABS actuator 8 and the power converter 5.

左右前輪1,3および左右後輪12,13には、ブレーキ油圧により車輪に制動力を発生させる機械制動手段9がそれぞれ設けられている。各機械制動手段9は、ブレーキペダル14の操作量に応じてマスタシリンダ15が発生するブレーキ油圧が供給されるとともに、ABSアクチュエータ8が発生するブレーキ油圧が供給される。   The left and right front wheels 1 and 3 and the left and right rear wheels 12 and 13 are respectively provided with mechanical braking means 9 for generating braking force on the wheels by brake hydraulic pressure. Each mechanical braking means 9 is supplied with the brake hydraulic pressure generated by the master cylinder 15 according to the operation amount of the brake pedal 14 and the brake hydraulic pressure generated by the ABS actuator 8.

ABSコントローラ7は、車輪速センサ6から入力される車輪の回転数に応じたパルス信号に基づいて、電動機2,4の制駆動力(回生制動力および駆動力)と、ABSアクチュエータ8による油圧制動力(機械的制動力)を協調制御する。通常の制動時には、主に電動機2,4を発電機として駆動させることにより、制動トルクを電気エネルギーとして直流電源10に回収する。   The ABS controller 7 is configured to control the braking / driving force (regenerative braking force and driving force) of the electric motors 2 and 4 and the hydraulic control by the ABS actuator 8 based on the pulse signal corresponding to the rotational speed of the wheel input from the wheel speed sensor 6. Coordinately control power (mechanical braking force). During normal braking, the motors 2 and 4 are mainly driven as generators, so that the braking torque is recovered in the DC power source 10 as electric energy.

ここで、直流電圧変換手段11から直流電源10へ電力が戻らないように阻止すると、電力変換器5の入力側電圧が高くなる。または、直流電圧変換手段11により直流電源10からの電力を昇圧して電力変換器5に供給することによっても、電力変換器5の入力側電圧を高くしても良い。そして、電力変換器5は、高電圧のPWMを生成し、電動機2,4に印加する。   Here, if power is prevented from returning from the DC voltage conversion means 11 to the DC power supply 10, the input voltage of the power converter 5 becomes high. Alternatively, the input voltage of the power converter 5 may be increased by boosting the power from the DC power supply 10 by the DC voltage conversion unit 11 and supplying the boosted power to the power converter 5. The power converter 5 generates a high-voltage PWM and applies it to the electric motors 2 and 4.

ABSコントローラ7は、車輪速センサ6の検出信号および車両の前後加速度に基づき推定車体速を算出し、この推定車体速と各車輪速センサ6の検出信号を元に実車輪速車体速との差を算出する。また、推定車体速における車輪の路面に対するグリップ力を確保することのできるスリップ率を実現可能な目標車輪速車体速差を算出する。   The ABS controller 7 calculates the estimated vehicle speed based on the detection signal of the wheel speed sensor 6 and the longitudinal acceleration of the vehicle, and based on the estimated vehicle speed and the detection signal of each wheel speed sensor 6, the difference between the actual wheel speed and the vehicle speed. Is calculated. Further, a target wheel speed body speed difference capable of realizing a slip ratio that can secure a grip force on the road surface of the wheel at the estimated body speed is calculated.

ABSコントローラ7は、算出した目標車輪速車体速差と実車輪速車体速差との差に基づいて、あらかじめ設定された制御マップから、回生制動力と油圧制動力を算出し、駆動輪1,3の総制動力を制御する。   The ABS controller 7 calculates a regenerative braking force and a hydraulic braking force from a preset control map based on the difference between the calculated target wheel speed body speed difference and the actual wheel speed body speed difference. 3 to control the total braking force.

また、ABSコントローラ7は、車輪速が目標車輪速を下回ったとき、ABS動作を開始し、制御マップに基づいて機械制動手段9の油圧制動力を制御する(機械制動力制御手段に相当)とともに、車輪速を目標車輪速に追従させるよう電動機2,4の回生制動力(負の回生制動力を含む)を制御する(電動機制駆動力制御手段に相当)。なお、上述したように、このABS動作時において、電動機2,4を力行させる場合には、電動機2,4に供給する電源電圧を高くする(高電圧供給手段に相当)。   Further, the ABS controller 7 starts the ABS operation when the wheel speed falls below the target wheel speed, and controls the hydraulic braking force of the mechanical braking means 9 based on the control map (corresponding to the mechanical braking force control means). Then, the regenerative braking force (including negative regenerative braking force) of the electric motors 2 and 4 is controlled so that the wheel speed follows the target wheel speed (corresponding to electric motor braking / driving force control means). As described above, when the electric motors 2 and 4 are powered during the ABS operation, the power supply voltage supplied to the electric motors 2 and 4 is increased (corresponding to high voltage supply means).

次に、作用を説明する。
[ABS動作時のオーバースリップ]
従来、車両の制動力制御装置として、特開平5−270387号公報、特開平10−297462号公報、特許第3438243号公報等に記載の技術が知られている。これらの従来技術は、油圧により制動力を発生する油圧制動手段と、電動機の回生エネルギーにより制動力を発生する回生制動手段とを備えている。
Next, the operation will be described.
[Over slip during ABS operation]
Conventionally, as a vehicle braking force control device, techniques described in Japanese Patent Laid-Open Nos. 5-270387, 10-297462, and 3438243 are known. These prior arts include hydraulic braking means for generating a braking force by hydraulic pressure and regenerative braking means for generating a braking force by regenerative energy of the electric motor.

上記制動力制御装置において、総制動力に対する油圧制動力と回生制動力は適切な配分となるように制御される。すなわち、回生制動力が一定に維持された状態で油圧制動が増減されることで制動力を制御したり、油圧制動力が一定に維持された状態で回生制動が増減されることで制動力を制御したり、あるいは両方を同時に増減することで制動力を制御している。   In the braking force control device, the hydraulic braking force and the regenerative braking force with respect to the total braking force are controlled so as to be appropriately distributed. That is, the braking force is controlled by increasing or decreasing the hydraulic braking while the regenerative braking force is maintained constant, or the braking force is increased or decreased when the hydraulic braking force is maintained constant. The braking force is controlled by controlling or by increasing or decreasing both at the same time.

上記制動力制御装置は、車輪速および推定車体速をもとに油圧制動力と回生制動力を制御するABSコントローラが設けられている。ABSコントローラは、車輪速センサの検出信号および車両の前後加速度に基づき推定車体速を算出し、この推定車体速と各車輪速センサの検出信号から、タイヤ毎のスリップ率を算出する。そして、このスリップ率が所定の値となるように油圧制動力と回生制動力を制御する。   The braking force control device is provided with an ABS controller that controls the hydraulic braking force and the regenerative braking force based on the wheel speed and the estimated vehicle body speed. The ABS controller calculates the estimated vehicle speed based on the detection signal of the wheel speed sensor and the longitudinal acceleration of the vehicle, and calculates the slip ratio for each tire from the estimated vehicle speed and the detection signal of each wheel speed sensor. Then, the hydraulic braking force and the regenerative braking force are controlled so that the slip ratio becomes a predetermined value.

このため、上記従来例においては、油圧制動力および回生制動力により、制動距離を短くすることができる。また、ABS動作時に操舵入力がされた場合であっても、車輪が回転することにより、車両の操舵を行うことができる。   For this reason, in the above conventional example, the braking distance can be shortened by the hydraulic braking force and the regenerative braking force. Further, even when a steering input is made during the ABS operation, the vehicle can be steered by rotating the wheels.

ここで、車両が摩擦係数の低い路面(低μ路)を走行している場合は、高μ路に比べて制動力が小さくてもスリップ率が高くなり、車輪がロックしやすくなるため、広範囲の制御が必要であり、かつ、μが大きく変化するような場合には、制動力を速やかに変化させなければならない。   Here, when the vehicle is traveling on a road surface with a low friction coefficient (low μ road), the slip ratio is high even if the braking force is small compared to the high μ road, and the wheels are easily locked. If it is necessary to control the above and μ changes greatly, the braking force must be changed quickly.

[油圧制動力のみを増減する場合]
ABS動作時、回生制動力を一定に維持した状態で油圧制動を増減させ、総制動力を制御する場合、ABSが動作して制動力を低減する指令が発生されると、油圧制動力が低減され始め、車輪と路面との間の摩擦により車輪の回転力が増加するため、ある時間経過後の車輪速は、車体速まで復帰する。
[When increasing or decreasing only the hydraulic braking force]
During ABS operation, when the braking force is increased or decreased while maintaining the regenerative braking force to control the total braking force, the hydraulic braking force is reduced when a command to reduce the braking force is generated when the ABS operates. Since the rotational force of the wheel increases due to friction between the wheel and the road surface, the wheel speed after a certain time has returned to the vehicle body speed.

つまり、車輪速は受動的に回復する構成のため、路面の摩擦係数μが小さい場合、ABS動作を開始して制動力を低減しても車輪に十分な回転力が働かず、車輪がスリップ状態から直ぐに復帰しにくく、オーバースリップという、車輪が一時的に止まりかける状態を起こしてしまう事がある。この場合、ブレーキをかけてから停止するまでの制動距離が長くなる、あるいは、操舵入力に対し操向輪の操舵量が小さくなることにより、運転者に違和感を与える。   In other words, because the wheel speed is passively recovered, if the road friction coefficient μ is small, even if the ABS operation is started and the braking force is reduced, sufficient rotational force does not work on the wheel, and the wheel is slipping. It is difficult to return immediately from the wheel, and there is a case where the wheel is temporarily stopped. In this case, the braking distance from when the brake is applied to when the brake is stopped is increased, or the steering amount of the steered wheels is decreased with respect to the steering input, thereby giving the driver a sense of incongruity.

さらに、操舵入力がされた場合、車輪の回転方向が進行方向とずれることにより車輪の横方向に働く力が大きくなるため、タイヤのスリップ率が高くなり、制動力と操舵性がさらに低下する。   Further, when a steering input is made, the force acting in the lateral direction of the wheel is increased due to the rotation direction of the wheel being deviated from the traveling direction, so that the tire slip ratio is increased, and the braking force and the steering performance are further reduced.

[回生制動力のみを増減する場合]
また、特開平5−270387号公報に記載の技術のように、ABS動作時、回生制動を増減させて総制動力を制御する場合は、回生制動力を負側に制御することにより、積極的に車輪を回転させることが可能であり、車輪速を能動的に制御することができる。
[When only increasing or decreasing the regenerative braking force]
Also, when controlling the total braking force by increasing / decreasing the regenerative braking during the ABS operation as in the technique described in Japanese Patent Laid-Open No. 5-270387, the regenerative braking force is positively controlled by controlling it to the negative side. It is possible to rotate the wheel and to actively control the wheel speed.

しかしながら、油圧制動力が一定に維持された状態で回生制動力だけを減少させるためには、油圧制動力に抗して負の回生制動(=力行)を行う必要があり、電動機に大きなトルクが必要となり、大型の電動機でなければ対応できない。つまり、小型の電動機においては、負の回生制動のトルクが小さいため、総制動力が低減されるには、所定の時定数を経なければならず、上述したオーバースリップを起こす要因となる。   However, in order to reduce only the regenerative braking force while the hydraulic braking force is kept constant, it is necessary to perform negative regenerative braking (= power running) against the hydraulic braking force, and a large torque is applied to the motor. This is necessary and can only be handled by large motors. That is, in a small electric motor, since the negative regenerative braking torque is small, a predetermined time constant must be passed in order to reduce the total braking force, which causes the above-described overslip.

[油圧制動力と回生制動力を同時に増減する場合]
特開平10−297462号公報、特許第3438243号公報に記載の技術のように、油圧制動力と回生制動力を同時に増減する場合、油圧制動力を一定にした場合に比べて総制動力を低減しやすくなる。また、一般的な電動機の場合、低回転領域では大きなトルクを発生させることができるため、短時間での負の回生制動(=力行)を行うことが可能である。
[When hydraulic brake force and regenerative braking force are increased or decreased simultaneously]
When the hydraulic braking force and the regenerative braking force are increased or decreased simultaneously as in the techniques described in Japanese Patent Application Laid-Open No. 10-297462 and Japanese Patent No. 3438243, the total braking force is reduced compared to the case where the hydraulic braking force is made constant. It becomes easy to do. Further, in the case of a general electric motor, a large torque can be generated in a low rotation range, so that negative regenerative braking (= power running) can be performed in a short time.

しかしながら、図2に示すように、電動機の回転数が高い定電力領域になると、回転数の上昇とともにトルクが減少するため、高回転域では高トルクによる回生制動や駆動ができず、低トルクで所定の時定数をもって回生制動や駆動を行うことになる。このため、電動機が高回転時にABS動作で総制動力を低減するためには、時定数による遅れがあり、オーバースリップを起こす要因となる。   However, as shown in FIG. 2, in the constant power region where the rotational speed of the motor is high, the torque decreases as the rotational speed increases. Therefore, regenerative braking and driving with high torque cannot be performed in the high rotational region, and the torque is low. Regenerative braking and driving are performed with a predetermined time constant. For this reason, in order to reduce the total braking force by the ABS operation when the electric motor rotates at a high speed, there is a delay due to a time constant, which causes overslip.

図3は、機械的制動力と回生制動力を同時に増減させる従来装置における、ABS動作時の作用を示すタイムチャートであり、制動時の車輪速と車体速と油圧制動力と回生制動力と総制動力との対応を表したものである。なお、電動機は、回転数の高い定電力領域で駆動されていることとする。   FIG. 3 is a time chart showing the action at the time of ABS operation in the conventional device that simultaneously increases or decreases the mechanical braking force and the regenerative braking force. The wheel speed, the vehicle body speed, the hydraulic braking force, the regenerative braking force, and the total during braking are shown. It shows the correspondence with braking force. It is assumed that the electric motor is driven in a constant power region with a high rotational speed.

時点t1で車輪速が目標車輪速を下回ると、ABS動作が開始され、制動力減少の期間に移行している。このとき、機械的(油圧)制動力と回生制動力を同時に減少させることにより、総制動力を減少させているが、定電力領域では電動機のトルク最大値が小さいため、総制動力が低減されるためには所定の時定数による遅れがあり、オーバースリップが発生してしまう。 When the wheel speed at the time t 1 is less than the target wheel speed, the ABS operation start, has been shifted to the period of the braking force reduction. At this time, the total braking force is reduced by simultaneously reducing the mechanical (hydraulic) braking force and the regenerative braking force. However, since the maximum torque value of the motor is small in the constant power region, the total braking force is reduced. For this purpose, there is a delay due to a predetermined time constant, and an overslip occurs.

[制駆動力制御作用]
これに対し、実施例1では、ABS動作中に機械制動手段9の油圧制動力を低減する期間において、車体速に車輪速が追従するように電動機2,4の制駆動力を制御することにより、ABS動作による車輪速の低下を抑制でき、オーバースリップを防止することができる。
[Braking / driving force control action]
On the other hand, in the first embodiment, the braking / driving force of the motors 2 and 4 is controlled so that the wheel speed follows the vehicle body speed during the period in which the hydraulic braking force of the mechanical braking means 9 is reduced during the ABS operation. The wheel speed can be prevented from decreasing due to the ABS operation, and overslip can be prevented.

また、実施例1では、ABS動作中に、電動機2,4に供給する電源電圧を高くするため、電動機の大型化を伴うことなく、モータの定トルク領域と定電力領域の全域にわたって、回生と制動とを素早く切り替えることができ、応答遅れに起因するオーバースリップを回避できる。   Further, in the first embodiment, during the ABS operation, in order to increase the power supply voltage supplied to the motors 2 and 4, regeneration is performed over the entire constant torque region and constant power region of the motor without increasing the size of the motor. It is possible to quickly switch between braking and avoid overslip caused by response delay.

すなわち、電力変換器5の入力電圧が高電圧の状態になると、電動機2,4の回転数−トルク曲線は、図4に示されるごとく定電力領域の最大値が増加するため、電動機2,4は、従来の制限を超えた大きなトルク・電力の回生や力行を行うことができる。このため、回生制動の状態から力行に移動し、短時間に大きなトルクを発生することが可能となる。よって、回生制動の状態から速やかに所望の大きさの力行を行うことができる。   That is, when the input voltage of the power converter 5 is in a high voltage state, the rotation speed-torque curve of the motors 2 and 4 increases the maximum value in the constant power region as shown in FIG. Can perform regeneration and power running of large torque / power exceeding conventional limits. For this reason, it moves to the power running from the state of regenerative braking, and it becomes possible to generate a big torque in a short time. Therefore, a desired magnitude of powering can be performed quickly from the regenerative braking state.

図5は、実施例1の制駆動力制御作用を示すタイムチャートであり、図5において、制動操作を行うと、ABSコントローラ7では、制動状態となった時点t0で各制動力を供給し、これに伴い車輪速が減少し、車輪の加減速度が所定の車輪加減速度を下回ると保持期間へ移行する。 FIG. 5 is a time chart showing the braking / driving force control operation of the first embodiment. When a braking operation is performed in FIG. 5, the ABS controller 7 supplies each braking force at time t 0 when the braking state is reached. As a result, the wheel speed decreases, and when the wheel acceleration / deceleration falls below a predetermined wheel acceleration / deceleration, the holding period starts.

続いて、車輪速が目標車輪速を下回る時点t1では、制動力減少の期間に移行する。この制動力減少期間では、油圧制動は単調に減少させるが、回生制動は制御マップから負側への駆動を行い、制動力減少期間の終了時である時点t2には、再び回生制動に戻って保持期間へ移行する。 Subsequently, at a time point t 1 when the wheel speed is lower than the target wheel speed, the process shifts to a braking force reduction period. In this braking force decrease period, but reduces the hydraulic braking monotonically, regenerative braking is performed drive from the control map to the negative side, the time t 2 which is at the end of the braking force reduction period, returns to the regenerative braking again To the retention period.

そして、車輪加減速度が所定値を上回る時点t3になると、緩制動期間に移行し、回生制動力は保持または緩やかに増加され、続いて、車輪加減速度が所定値を下回る時点t4以降は、一定の回生制動力を保持する保持期間に移行する。これを繰り返し、各タイヤのスリップ率が基準のスリップ率となるように制御する。 When the wheel acceleration is the time t 3 when exceeding a predetermined value, the process proceeds to light braking period, the regenerative braking force is increased retained or slowly, followed by time t 4 after the wheel deceleration is below a predetermined value Then, it shifts to a holding period for holding a constant regenerative braking force. This is repeated and control is performed so that the slip ratio of each tire becomes the reference slip ratio.

つまり、実施例1の回生制動力の制御によれば、単調に回生制動力を減少させるだけでなく、スリップを止めるような駆動力を発生させている。なお、ここで力行とは必ずしも車軸に駆動トルクが伝わることではなく、速やかに制動力(回生力)を低減させるために電動機2,4に電気的な力行電力を与えることである。   That is, according to the control of the regenerative braking force of the first embodiment, not only the regenerative braking force is monotonously decreased but also a driving force that stops the slip is generated. Here, the power running does not necessarily mean that the driving torque is transmitted to the axle, but means that electric power running power is applied to the motors 2 and 4 in order to quickly reduce the braking force (regenerative force).

また、図3の時点t11〜時点t12に示したように、制動力が小さくなっているにもかかわらず、スリップが発生する場合には、図5の時点t11〜時点t12に示すように、電動機2,4に力行電力を与えることで、車軸に対する駆動力として現れ、オーバースリップを防止できる。 Further, as shown in time point t 11 ~ time t 12 of FIG. 3, even though the braking force is reduced, when a slip occurs, shown at time t 11 ~ time t 12 of FIG. 5 Thus, by giving power running electric power to the electric motors 2 and 4, it appears as a driving force with respect to an axle, and an overslip can be prevented.

また、実施例1では、電動機2,4の回生制動力を可変して車輪速を車体速に追従させることにより、応答性の高い制御を実現している。ちなみに、機械的制動力(ブレーキ液圧)を可変して車輪速を車体速に追従させる制御を実施した場合、電動機2,4の電流値を変化させるのに対し、応答遅れが大きいため、所望の追従性が得られず、制動距離が長くなってしまう。これは、通常のABS作動時において、機械的制動力の初回低減量を、応答性を考慮したフィードフォワード制御により設定していることからも明らかである。   Further, in the first embodiment, highly responsive control is realized by varying the regenerative braking force of the electric motors 2 and 4 to cause the wheel speed to follow the vehicle body speed. By the way, when control is performed to vary the mechanical braking force (brake hydraulic pressure) and the wheel speed to follow the vehicle body speed, the current value of the motors 2 and 4 is changed, but the response delay is large. The following performance cannot be obtained and the braking distance becomes long. This is also clear from the fact that the initial reduction amount of the mechanical braking force is set by feedforward control considering responsiveness during normal ABS operation.

次に、効果を説明する。
実施例1の車両の制駆動力制御装置にあっては、以下に列挙する効果が得られる。
Next, the effect will be described.
In the braking / driving force control device for a vehicle according to the first embodiment, the following effects can be obtained.

(1) 電動機制駆動力制御手段は、ABS動作で機械的制動力を低減する期間に車輪速を車体速に合わせるように電動機2,4の制駆動力を制御するため、オーバースリップを回避し、制動距離を短くするとともに、操舵性を向上することができる。また、機械的制動力を低減している期間に電動機を力行することにより、短い時間で効果的に車輪速を車体速に合わせることができる。   (1) The motor braking / driving force control means controls the braking / driving force of the motors 2 and 4 to adjust the wheel speed to the vehicle body speed during the period in which the mechanical braking force is reduced by the ABS operation, so that overslip is avoided. The braking distance can be shortened and the steering performance can be improved. Further, by powering the electric motor during the period when the mechanical braking force is reduced, the wheel speed can be effectively adjusted to the vehicle body speed in a short time.

(2) 電動機制駆動力制御手段による電動機2,4の駆動時、電動機2,4に供給する電源電圧を高くする高電圧供給手段を設けたことにより、定電力領域で制限値を超えた大トルク・大電力を発生でき、全領域に渡って小型の電動機で瞬時に回生と駆動を切り替えることができるため、電動機2,4の応答遅れに起因するオーバースリップを防止できる。   (2) When the motors 2 and 4 are driven by the motor braking / driving force control means, a high voltage supply means for increasing the power supply voltage supplied to the motors 2 and 4 is provided, so that the limit value is exceeded in the constant power region. Torque and large electric power can be generated, and regeneration and driving can be switched instantaneously with a small electric motor over the entire region, so that overslip caused by a response delay of the electric motors 2 and 4 can be prevented.

実施例2は、ABS動作時に操舵入力が印加された場合、旋回外側の駆動輪と接続された電動機を駆動する例である。   Example 2 is an example of driving an electric motor connected to driving wheels on the outer side of a turn when a steering input is applied during an ABS operation.

図6は、実施例2の車両の制駆動力制御装置を示す全体構成図であり、図1に対し、ステアリング操舵角を検出する操舵角センサ16と車両の実ヨーレートを検出するヨーレートセンサ(ヨーレート検出手段)17を設けた点で実施例1と異なる。   FIG. 6 is an overall configuration diagram illustrating a vehicle braking / driving force control apparatus according to the second embodiment. Compared to FIG. 1, a steering angle sensor 16 that detects a steering angle and a yaw rate sensor (yaw rate) that detects an actual yaw rate of the vehicle. This is different from the first embodiment in that a detection means) 17 is provided.

実施例2のABSコントローラ7では、車輪速が目標車輪速を下回ったとき、実施例1と同様に、ABS動作を開始し、目標車輪速車体速差と実車輪速車体速差との差に基づいて、制御マップから旋回内側の電動機に加える回生制動力を算出する。   In the ABS controller 7 of the second embodiment, when the wheel speed falls below the target wheel speed, the ABS operation is started as in the first embodiment, and the difference between the target wheel speed vehicle speed difference and the actual wheel speed vehicle speed difference is determined. Based on the control map, the regenerative braking force applied to the electric motor inside the turn is calculated.

さらに、実施例2では、ABS動作時に操舵入力が印加された場合には、ヨーレートセンサ17で検出された車両の実ヨーレートと、操舵角センサ16で検出されたステアリング操舵角と車体速とから求まる(目標ヨーレート算出手段に相当)目標ヨーレートとの差を無くすように、旋回外側の電動機に加える駆動力を算出する。   Further, in the second embodiment, when a steering input is applied during the ABS operation, the actual yaw rate of the vehicle detected by the yaw rate sensor 17, the steering steering angle detected by the steering angle sensor 16, and the vehicle body speed are obtained. (Equivalent to target yaw rate calculation means) The driving force applied to the motor outside the turn is calculated so as to eliminate the difference from the target yaw rate.

次に、作用を説明する。
[制駆動力制御作用]
実施例2では、ABS動作時、旋回外側の電動機を目標ヨーレートと実ヨーレートとの偏差に応じて駆動するため、旋回外輪の車輪速が旋回内輪の車輪速よりも速くなる。よって、タイヤのスリップを防止しつつ、目標ヨーレートに応じた旋回性能を確保できる。
Next, the operation will be described.
[Braking / driving force control action]
In the second embodiment, during the ABS operation, the motor on the outer side of the turn is driven according to the deviation between the target yaw rate and the actual yaw rate, so that the wheel speed of the outer turning wheel becomes faster than the wheel speed of the inner turning wheel. Therefore, the turning performance according to the target yaw rate can be ensured while preventing the tire from slipping.

ちなみに、車両の操舵を補償する実施例2と類似する制御としては、旋回中に旋回外側の駆動輪を駆動し、旋回内側の駆動輪を制御することにより、車両の安定性を増す車両安定性制御が知られている。ところが、この車両安定性制御は、低μ路のカーブに進入したときなどに発生する車両の横滑りを抑制する制御であり、制御中の、特にABS動作時における操舵を補償することはできない。   Incidentally, as a control similar to the second embodiment for compensating for the steering of the vehicle, the vehicle stability that increases the stability of the vehicle by driving the driving wheels on the outer side during turning and controlling the driving wheels on the inner side during turning. Control is known. However, this vehicle stability control is a control that suppresses the side slip of the vehicle that occurs when entering a low μ road curve, and cannot compensate for steering during control, particularly during ABS operation.

[制駆動力制御作用]
図7は、実施例2の制駆動力制御作用を示すタイムチャートであり、制動操作とともに操舵操作が行われると、制動状態となった時点t0で各制動力が供給され、これに伴い車輪速が減少する。
[Braking / driving force control action]
FIG. 7 is a time chart showing the braking / driving force control action of the second embodiment. When the steering operation is performed together with the braking operation, each braking force is supplied at the time point t 0 when the braking state is reached, and the wheel is accordingly moved. Speed decreases.

時点t1で車輪速が目標車輪速を下回ると、制動力減少の期間に移行する。この制動力減少期間では機械的制動力は単調に減少されるが、回生制動は制御マップから算出される制動力制御が実施される。 When the wheel speed falls below the target wheel speed at the time t 1, to shift to the period of the braking force reduction. In this braking force decrease period, the mechanical braking force is monotonously reduced, but the regenerative braking is performed with the braking force control calculated from the control map.

続いて、実施例1と同様に、目標車輪速車体速差と実車輪速車体速差との差に基づいて、制御マップから旋回内輪に加える回生制動力が算出される。また、操舵入力が印加されると、ABSコントローラ7にはヨーレートセンサ17からのヨーレート信号が入力され、ステアリング操舵角から算出される目標ヨーレートとの差が算出される。そして、この差に基づき制御マップから旋回外輪に加える駆動力が算出される。   Subsequently, as in the first embodiment, the regenerative braking force applied to the turning inner wheel is calculated from the control map based on the difference between the target wheel speed vehicle speed difference and the actual wheel speed vehicle speed difference. When a steering input is applied, the yaw rate signal from the yaw rate sensor 17 is input to the ABS controller 7, and the difference from the target yaw rate calculated from the steering angle is calculated. Based on this difference, the driving force applied to the turning outer wheel is calculated from the control map.

上記算出された制駆動力を左右それぞれの駆動輪1,3に印加し、制動力減少期間の終了時である時点t2には、再び回生制動に戻り、保持期間へ移行する。以降は、実施例1と同様であるため、説明を省略する。 Applying a longitudinal force that is the calculation of the left and right to the drive wheels 1,3, the time t 2 which is at the end of the braking force reduction period, returns to the regenerative braking again, the process proceeds to the holding period. Since the subsequent steps are the same as those in the first embodiment, description thereof is omitted.

なお、実施例2にあっては、旋回外側の電動機の回生制動力は、図7に示すように、操舵操作を補助する目的で駆動力が与えられるため、旋回外輪は力行電力が駆動力として現れている。   In the second embodiment, as shown in FIG. 7, the regenerative braking force of the motor outside the turning is given a driving force for assisting the steering operation. Therefore, the turning outer wheel uses the power running power as the driving force. Appears.

次に、効果を説明する。
実施例2の車両の制駆動力制御装置にあっては、実施例1の効果(1),(2)に加え、以下に列挙する効果が得られる。
Next, the effect will be described.
In the vehicle braking / driving force control apparatus according to the second embodiment, the following effects can be obtained in addition to the effects (1) and (2) of the first embodiment.

(3) 電動機制駆動力制御手段は、ABSが動作し、かつ、操舵入力が印加された場合、ABS動作により制動力を低減する期間に旋回外側の電動機を駆動させるため、旋回外側の車輪速を旋回内側の車輪速より速くすることができるため、ロック傾向を抑制しつつ、高い旋回応答性を確保できる。   (3) When the ABS operates and a steering input is applied, the motor braking / driving force control means drives the motor on the outer side during the period in which the braking force is reduced by the ABS operation. Can be made faster than the wheel speed on the inner side of the turn, so that a high turn responsiveness can be secured while suppressing the locking tendency.

(4) 電動機制駆動力制御手段は、目標ヨーレートと実ヨーレートとの偏差を無くすように旋回外側の電動機を駆動させるため、目標ヨーレートに応じた最適な車両挙動が得られる。   (4) Since the electric motor braking / driving force control means drives the electric motor outside the turn so as to eliminate the deviation between the target yaw rate and the actual yaw rate, an optimal vehicle behavior corresponding to the target yaw rate can be obtained.

(他の実施例)
以上、本発明の車両の制駆動力制御装置を実施例1,2に基づき説明してきたが、具体的な構成については、各実施例に限られるものではなく、例えば、実施例1,2では、前輪が駆動輪と操向輪とを兼ねた例を示したが、本願の主旨に沿うものであれば、全ての車輪が駆動輪であっても良いし、駆動輪が非操向輪であっても良い。
(Other examples)
As mentioned above, although the braking / driving force control device for a vehicle according to the present invention has been described based on the first and second embodiments, the specific configuration is not limited to each embodiment. In the above example, the front wheel serves as both a drive wheel and a steered wheel. However, as long as it conforms to the gist of the present application, all the wheels may be drive wheels, or the drive wheels may be non-steer wheels. There may be.

実施例2では、車両の実ヨーレートを検出するヨーレート検出手段としてヨーレートセンサを設けた例を示したが、左右電動機の駆動力差(トルク差)とスリップ率等から車両重心位置のヨーレートを推定しても良い。また、操舵角センサを設けず、左右電動機の回転数差とスリップ率からステアリング操舵角を推定する構成としても良い。   In the second embodiment, an example is shown in which a yaw rate sensor is provided as a yaw rate detection means for detecting the actual yaw rate of the vehicle. However, the yaw rate at the center of gravity of the vehicle is estimated from the driving force difference (torque difference) between the left and right motors and the slip ratio. May be. Moreover, it is good also as a structure which estimates a steering steering angle from the rotation speed difference and slip ratio of a left-right motor, without providing a steering angle sensor.

実施例1の車両の制駆動力制御装置を示す全体構成図である。1 is an overall configuration diagram illustrating a vehicle braking / driving force control device according to a first embodiment; 従来例の問題を示す説明図である。It is explanatory drawing which shows the problem of a prior art example. 従来装置の作用を示すタイムチャートである。It is a time chart which shows the effect | action of a conventional apparatus. 実施例1の定電力領域における電動機トルク増大作用を示す説明図である。It is explanatory drawing which shows the motor torque increase effect | action in the constant electric power area | region of Example 1. FIG. 実施例1の制駆動力制御作用を示すタイムチャートである。3 is a time chart showing the braking / driving force control operation of the first embodiment. 実施例1の車両の制駆動力制御装置を示す全体構成図である。1 is an overall configuration diagram illustrating a vehicle braking / driving force control device according to a first embodiment; 実施例2の制駆動力制御作用を示すタイムチャートである。6 is a time chart showing the braking / driving force control operation of the second embodiment.

符号の説明Explanation of symbols

1 左前輪
2 電動機
3 右前輪
4 電動機
5 電力変換器
6 車輪速センサ
7 ABSコントローラ
8 ABSアクチュエータ
9 機械制動手段
10 直流電源
11 直流電圧変換手段
12 左後輪
13 右後輪
14 ブレーキペダル
15 マスタシリンダ
DESCRIPTION OF SYMBOLS 1 Left front wheel 2 Electric motor 3 Right front wheel 4 Electric motor 5 Power converter 6 Wheel speed sensor 7 ABS controller 8 ABS actuator 9 Mechanical braking means 10 DC power supply 11 DC voltage conversion means 12 Left rear wheel 13 Right rear wheel 14 Brake pedal 15 Master cylinder

Claims (4)

車両の左右駆動輪にそれぞれ接続された電動機と、
前記左右駆動輪を機械的に制動する機械制動手段と、
制動中に左右駆動輪のロック傾向に応じて左右駆動輪の機械的制動力を制御する機械制動力制御手段と、
を有する車両の制駆動力制御装置において、
前記機械制動力制御手段による機械的制動力制御時、車輪速が車体速に追従するように前記電動機の制駆動力を制御する電動機制駆動力制御手段を設けたことを特徴とする車両の制駆動力制御装置。
An electric motor connected to each of the left and right drive wheels of the vehicle;
Mechanical braking means for mechanically braking the left and right drive wheels;
Mechanical braking force control means for controlling the mechanical braking force of the left and right drive wheels according to the locking tendency of the left and right drive wheels during braking;
In a braking / driving force control device for a vehicle having
The vehicle braking / driving force control means is provided for controlling the braking / driving force of the electric motor so that the wheel speed follows the vehicle body speed during the mechanical braking force control by the mechanical braking force control means. Driving force control device.
請求項1に記載の車両の制駆動力制御装置において、
前記電動機制駆動力制御手段は、旋回外側の駆動輪と接続された電動機を駆動することを特徴とする車両の制駆動力制御装置。
The vehicle braking / driving force control device according to claim 1,
The vehicle braking / driving force control means drives a motor connected to driving wheels on the outer side of the turn, and the braking / driving force control device for a vehicle.
請求項2に記載の車両の制駆動力制御装置において、
ステアリング操舵角から車両の目標ヨーレートを算出する目標ヨーレート算出手段と、
車両の実ヨーレートを検出するヨーレート検出手段と、
を設け、
前記電動機制駆動力制御手段は、前記目標ヨーレートと実ヨーレートとの偏差に基づいて、旋回外側の駆動輪と接続された電動機を駆動することを特徴とする車両の制駆動力制御装置。
The vehicle braking / driving force control device according to claim 2,
Target yaw rate calculating means for calculating the target yaw rate of the vehicle from the steering angle,
Yaw rate detection means for detecting the actual yaw rate of the vehicle;
Provided,
The vehicle braking / driving force control device drives a motor connected to driving wheels on the outer side of the turn based on a deviation between the target yaw rate and the actual yaw rate.
請求項1ないし請求項3のいずれか1項に記載の車両の制駆動力制御装置において、
前記電動機制駆動力制御手段による電動機の駆動時、電動機に供給する電源電圧を高める高電圧供給手段を設けたことを特徴とする車両の制駆動力制御装置。
The braking / driving force control device for a vehicle according to any one of claims 1 to 3,
A vehicle braking / driving force control device comprising high voltage supply means for increasing a power supply voltage supplied to the motor when the motor is driven by the motor braking / driving force control means.
JP2004199244A 2004-07-06 2004-07-06 Brake drive force controller for vehicle Withdrawn JP2006025485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199244A JP2006025485A (en) 2004-07-06 2004-07-06 Brake drive force controller for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199244A JP2006025485A (en) 2004-07-06 2004-07-06 Brake drive force controller for vehicle

Publications (1)

Publication Number Publication Date
JP2006025485A true JP2006025485A (en) 2006-01-26

Family

ID=35798337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199244A Withdrawn JP2006025485A (en) 2004-07-06 2004-07-06 Brake drive force controller for vehicle

Country Status (1)

Country Link
JP (1) JP2006025485A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048528A (en) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd Vehicular drive unit
JP2008141933A (en) * 2006-12-05 2008-06-19 Toyota Motor Corp Braking/driving force controller
JP2010148184A (en) * 2008-12-17 2010-07-01 Nissan Motor Co Ltd Drive wheel lock prevention device of electric vehicle
RU2448006C2 (en) * 2007-12-14 2012-04-20 Тойота Дзидося Кабусики Кайся Device and method of controlling transport facility
WO2013030923A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Braking force control apparatus for vehicle
JP2013237323A (en) * 2012-05-14 2013-11-28 Honda Motor Co Ltd Inverted pendulum type vehicle
KR20140075745A (en) * 2011-09-20 2014-06-19 지멘스 악티엔게젤샤프트 Vehicle with an anti-lock braking system and method for braking a vehicle
WO2014157683A1 (en) * 2013-03-28 2014-10-02 本田技研工業株式会社 Vehicular brake system
JP2015140080A (en) * 2014-01-28 2015-08-03 株式会社アドヴィックス Brake control device of vehicle
US9156358B2 (en) * 2013-10-15 2015-10-13 Ford Global Technologies, Llc Regenerative braking in the presence of an antilock braking system control event
CN109955721A (en) * 2017-12-25 2019-07-02 陕西汽车集团有限责任公司 A kind of electric vehicle brake control strategy based on ABS
JP2021035128A (en) * 2019-08-21 2021-03-01 株式会社デンソーテン Motor control deice and motor control method
US20230347748A1 (en) * 2020-10-28 2023-11-02 Nissan Motor Co., Ltd. Electric Vehicle Control Method and Electric Vehicle Control System

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048528A (en) * 2006-08-14 2008-02-28 Nissan Motor Co Ltd Vehicular drive unit
JP2008141933A (en) * 2006-12-05 2008-06-19 Toyota Motor Corp Braking/driving force controller
JP4737057B2 (en) * 2006-12-05 2011-07-27 トヨタ自動車株式会社 Braking / driving force control device
RU2448006C2 (en) * 2007-12-14 2012-04-20 Тойота Дзидося Кабусики Кайся Device and method of controlling transport facility
JP2010148184A (en) * 2008-12-17 2010-07-01 Nissan Motor Co Ltd Drive wheel lock prevention device of electric vehicle
JPWO2013030923A1 (en) * 2011-08-29 2015-03-23 トヨタ自動車株式会社 Vehicle braking force control device
WO2013030923A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Braking force control apparatus for vehicle
KR20140075745A (en) * 2011-09-20 2014-06-19 지멘스 악티엔게젤샤프트 Vehicle with an anti-lock braking system and method for braking a vehicle
KR101975623B1 (en) * 2011-09-20 2019-05-07 루카스 오토모티브 게엠베하 Vehicle with an anti-lock braking system and method for braking a vehicle
JP2014534793A (en) * 2011-09-20 2014-12-18 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Vehicle with anti-lock brake system and vehicle deceleration method
US10144398B2 (en) 2011-09-20 2018-12-04 Lucas Automotive Gmbh Vehicle with an anti-lock brake system and a method for braking a vehicle
JP2013237323A (en) * 2012-05-14 2013-11-28 Honda Motor Co Ltd Inverted pendulum type vehicle
JP6040306B2 (en) * 2013-03-28 2016-12-07 本田技研工業株式会社 Brake system for vehicles
AU2014244937B2 (en) * 2013-03-28 2016-09-29 Honda Motor Co., Ltd. Vehicular brake system
WO2014157683A1 (en) * 2013-03-28 2014-10-02 本田技研工業株式会社 Vehicular brake system
US10358037B2 (en) 2013-03-28 2019-07-23 Honda Motor Co., Ltd. Vehicular brake system
US9156358B2 (en) * 2013-10-15 2015-10-13 Ford Global Technologies, Llc Regenerative braking in the presence of an antilock braking system control event
JP2015140080A (en) * 2014-01-28 2015-08-03 株式会社アドヴィックス Brake control device of vehicle
CN109955721A (en) * 2017-12-25 2019-07-02 陕西汽车集团有限责任公司 A kind of electric vehicle brake control strategy based on ABS
JP2021035128A (en) * 2019-08-21 2021-03-01 株式会社デンソーテン Motor control deice and motor control method
JP7313973B2 (en) 2019-08-21 2023-07-25 株式会社デンソーテン MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD
US20230347748A1 (en) * 2020-10-28 2023-11-02 Nissan Motor Co., Ltd. Electric Vehicle Control Method and Electric Vehicle Control System
US11932138B2 (en) * 2020-10-28 2024-03-19 Nissan Motor Co., Ltd. Electric vehicle control method and electric vehicle control system

Similar Documents

Publication Publication Date Title
JP6261154B2 (en) Vehicle control method using in-wheel motor
US10787167B2 (en) Drive force control system
US11214308B2 (en) Drive force control system
US8423202B2 (en) Vehicle behavior control apparatus and vehicle behavior control method
JP2006025485A (en) Brake drive force controller for vehicle
US10933878B2 (en) Drive force control system
WO2015151193A1 (en) Vehicle traction control device
JP2006231947A (en) Control method of reaction device
JP2006327335A (en) Torque distribution controller for vehicle
JP3972535B2 (en) Automotive braking force control device
JP2002220065A (en) Method for controlling motor-driven power steering device for automobile
JP3451869B2 (en) Drive control device for electric vehicles
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
JP4935022B2 (en) Vehicle left and right torque distribution control device
JP4305409B2 (en) Vehicle drive control device
JP4852931B2 (en) Vehicle left and right torque distribution control device
JP2011088492A (en) Traction control device for hybrid vehicle
JP4239861B2 (en) Vehicle behavior control device
JP6504066B2 (en) Vehicle braking control device
JP4385992B2 (en) Control device for hybrid four-wheel drive vehicle
JP2005343256A (en) Vehicle behavior controlling device
JP2004312961A (en) Travel controller for vehicle
JP4747720B2 (en) Vehicle steering system
JP4281580B2 (en) Regenerative braking control device
JP2010115098A (en) Vehicle control device and vehicle control method for electric vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20051118

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20070528

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090820