JP2006024607A - Solid electrolytic capacitor and its manufacturing method - Google Patents

Solid electrolytic capacitor and its manufacturing method Download PDF

Info

Publication number
JP2006024607A
JP2006024607A JP2004198980A JP2004198980A JP2006024607A JP 2006024607 A JP2006024607 A JP 2006024607A JP 2004198980 A JP2004198980 A JP 2004198980A JP 2004198980 A JP2004198980 A JP 2004198980A JP 2006024607 A JP2006024607 A JP 2006024607A
Authority
JP
Japan
Prior art keywords
lead wire
shape
solid electrolytic
electrolytic capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198980A
Other languages
Japanese (ja)
Inventor
Hironori Iwata
浩紀 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Toyama Ltd
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Toyama Ltd, NEC Tokin Corp filed Critical NEC Tokin Toyama Ltd
Priority to JP2004198980A priority Critical patent/JP2006024607A/en
Publication of JP2006024607A publication Critical patent/JP2006024607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which can reduce ESR (Equivalent Series Resistance) and improve heat resistance, and to provide its manufacturing method. <P>SOLUTION: The capacitor is manufactured through a step wherein a U-shaped molding die, a side die having a lead wire hole, and a press upper punch and a press lower punch are used to form a part of a lead wire made of a valve-action metal into a shape like wave, a coil spring, a hook, or a slantly bent object, to bury it in the valve-action metallic powder, to erect it, and to form it by pressing; and a step wherein a porous anode body is manufactured by sintering. Thus, the surface area of the buried part of the lead wire is made large and an anchor effect is generated, resulting in improved drawing strength. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弁作用金属の焼結体を用いた固体電解コンデンサに関し、特に、はんだ耐熱特性の改善およびESR(等価直列抵抗)の低減を可能とした固体電解コンデンサとその製造方法に関する。   The present invention relates to a solid electrolytic capacitor using a sintered body of valve action metal, and more particularly to a solid electrolytic capacitor capable of improving solder heat resistance and reducing ESR (equivalent series resistance) and a method for manufacturing the same.

従来、チップ型固体電解コンデンサの陽極素子を製造するには、まず、Ta(タンタル)、Nb(ニオブ)等の弁作用金属粉末を所定の形状に加圧成形する際に同金属からなるワイヤー状、箔状などのリード線を埋設・植立し、その後、焼結して多孔質の陽極体を得る。この陽極体の多孔質部分に酸化皮膜を形成した後、酸化皮膜の外周部に陰極層を形成し、コンデンサ素子を作製する。このとき、例えば、漏れ電流の低減と小型化を可能にする技術として、陽極リード線のタンタル焼結体から突出する部分の基端部分に陽極化成膜を形成する技術が特許文献1に開示されている。   Conventionally, in order to manufacture an anode element of a chip-type solid electrolytic capacitor, first, when a valve action metal powder such as Ta (tantalum) or Nb (niobium) is pressure-formed into a predetermined shape, a wire shape made of the same metal is used. A lead wire such as a foil is embedded and planted, and then sintered to obtain a porous anode body. After an oxide film is formed on the porous portion of the anode body, a cathode layer is formed on the outer periphery of the oxide film to produce a capacitor element. At this time, for example, Patent Document 1 discloses a technique of forming an anodized film on a base end portion of a portion protruding from a tantalum sintered body of an anode lead wire as a technology capable of reducing leakage current and downsizing. Has been.

また、従来のチップ型固体電解コンデンサの陽極体成形工程において、弁作用金属の加圧成形方向は、陽極リード線に対して平行な場合と陽極リード線に対して垂直な場合があるが、近年の低ESR化の用途に、いずれの場合も陽極リード線の陽極体の内部に占める表面積に比例して低ESR化を図ることが可能になっている。そのため、リード線のリード線方向に埋設する長さを大きくするように調整し、低ESR化を図っているが、その長さ調整だけでは限界がある。   Further, in the conventional anode body molding process of a chip-type solid electrolytic capacitor, the pressure molding direction of the valve metal may be parallel to the anode lead wire or perpendicular to the anode lead wire. In any case, it is possible to reduce the ESR in proportion to the surface area of the anode lead wire in the anode body. For this reason, the length of the lead wire embedded in the lead wire direction is adjusted to be large and the ESR is reduced, but there is a limit only by adjusting the length.

特開2000−195757号公報JP 2000-195757 A

近年、電子機器のモバイル化および高機能化に伴い、小型大容量で高周波数帯域において低インピーダンスのコンデンサが必要とされている。小型大容量化には弁作用金属粉末の微細化(粉末のhigh−CV化)があるが、陽極体の焼結温度は下がる傾向にあり、これにより陽極体とリード線の密着性が低下するのでESRが上昇し、ひいてはチップ固体電解コンデンサのはんだ耐熱特性(はんだ工程での耐熱性)の劣化による漏れ電流特性の劣化を引き起こす可能性が高くなる。   2. Description of the Related Art In recent years, with the increasing mobility and functionality of electronic devices, a capacitor having a small size, a large capacity, and a low impedance in a high frequency band is required. There is a miniaturization of the valve action metal powder (powder high-CV) to increase the size and capacity, but there is a tendency for the sintering temperature of the anode body to decrease, thereby reducing the adhesion between the anode body and the lead wire. As a result, the ESR increases, and as a result, there is a high possibility that the leakage current characteristics will be deteriorated due to the deterioration of the solder heat resistance characteristics (heat resistance in the soldering process) of the chip solid electrolytic capacitor.

そこで、本発明は、ESRの低減およびはんだ耐熱特性の向上を可能とする固体電解コンデンサおよびその製造方法を提供することを課題とする。   Accordingly, it is an object of the present invention to provide a solid electrolytic capacitor that can reduce ESR and improve solder heat resistance, and a method for manufacturing the same.

上記課題を解決するために、弁作用金属の多孔質焼結体とリード線の密着性および接触面積に着目し、その製造方法を確立することによって、本発明はなされた。   In order to solve the above problems, the present invention has been made by paying attention to the adhesion and contact area between a porous sintered body of a valve action metal and a lead wire and establishing a manufacturing method thereof.

すなわち、第1の発明の固体電解コンデンサは、弁作用金属の粉末に、前記弁作用金属と同種の金属からなるリード線の一端を表出し他部を埋設して加圧成形し、焼結して多孔質の陽極体を形成し、前記陽極体に酸化皮膜を形成し陰極層を設けてなるコンデンサ素子を用いた固体電解コンデンサにおいて、前記リード線の前記陽極体に埋設された部分はコイルばね状、波状、鉤状または斜めに折り曲げた形状であることを特徴とする。   That is, the solid electrolytic capacitor according to the first aspect of the present invention is a powder of valve action metal, one end of a lead wire made of the same kind of metal as the valve action metal is exposed and the other part is embedded, and then pressure-molded and sintered. In a solid electrolytic capacitor using a capacitor element in which a porous anode body is formed, an oxide film is formed on the anode body, and a cathode layer is provided, a portion of the lead wire embedded in the anode body is a coil spring. It is characterized by being a shape, a wave shape, a hook shape, or a shape bent diagonally.

第2の発明の固体電解コンデンサの製造方法は、コの字形の成形用金型、リード線穴を有するサイド金型、プレス上パンチおよびプレス下パンチを用いて、弁作用金属のリード線の一部を波状、コイルばね状、鉤状または斜めに折り曲げた形状に成形し弁作用金属粉末に埋設して植立し加圧成形する工程と、焼結を行い多孔質の陽極体を作製する工程と、前記陽極体に酸化皮膜を形成する工程と、陰極層を形成しコンデンサ素子を作製する工程と、前記コンデンサ素子に陽極端子および陰極端子を接続する工程と、絶縁性樹脂で外装する工程とを含むことを特徴とする。   According to a second aspect of the present invention, there is provided a method for producing a solid electrolytic capacitor comprising: a U-shaped molding die; a side die having a lead wire hole; an upper punch and a lower punch; Forming a corrugated portion into a wave shape, coil spring shape, saddle shape or obliquely bent shape, embedding it in a valve metal powder, planting and pressure forming, and sintering to produce a porous anode body A step of forming an oxide film on the anode body, a step of forming a cathode layer to form a capacitor element, a step of connecting an anode terminal and a cathode terminal to the capacitor element, and a step of sheathing with an insulating resin It is characterized by including.

以上に説明したように、本発明においては、リード線の陽極体への埋設部分の形状がコイルばね状、波状、鉤状あるいは斜めに折り曲げた形状なので、アンカーとして作用し、リード線植立方向へのリード引き抜き強度が向上することで、はんだ工程での内部への物理的なストレスが減少し、はんだ耐熱性が改善され漏れ電流不良を低減することができる。   As described above, in the present invention, since the shape of the embedded portion of the lead wire in the anode body is a coil spring shape, a wavy shape, a saddle shape, or an obliquely bent shape, it acts as an anchor, and the lead wire installation direction By improving the lead pull-out strength, the internal physical stress in the soldering process is reduced, the solder heat resistance is improved, and the leakage current failure can be reduced.

また、本発明によれば、リード線と粉末との接触面積が増大し、接触抵抗が減少するため、ESRを低減した固体電解コンデンサの提供が可能である。   In addition, according to the present invention, the contact area between the lead wire and the powder is increased and the contact resistance is decreased, so that a solid electrolytic capacitor with reduced ESR can be provided.

チップ型固体電解コンデンサにおいて、陽極素子を製造するには、まず、Ta(タンタル)、Nb(ニオブ)等の弁作用金属粉末を、バインダーなどと共に、角や丸などの所定の形状の金型に入れる。その際に同金属からなるリード線を波状、コイルばね状、鉤状あるいは斜めに折り曲げた形状にプレスし、引き出し加工また折り返し等の加工を行い、埋設・植立する。その後、加圧成形を実施し、焼結を実施し陽極体を形成する。その加圧成形までの実際を図4から図7に基づいて説明する。   In order to manufacture an anode element in a chip-type solid electrolytic capacitor, first, valve action metal powder such as Ta (tantalum), Nb (niobium) or the like, together with a binder or the like, is formed into a mold having a predetermined shape such as a corner or a circle. Put in. At that time, the lead wire made of the same metal is pressed into a wave shape, a coil spring shape, a hook shape, or a diagonally bent shape, and is subjected to a drawing process, a folding process, or the like to be embedded and planted. Thereafter, pressure forming is performed and sintering is performed to form an anode body. The actual process up to the pressure molding will be described with reference to FIGS.

図4に斜視図で示すように、コの字形の成形用金型1と、リード線穴3を持ったサイド金型と、プレス下パンチ6により囲まれた空間に、その体積がプレス後に約半分になることを想定した量の粉末2を投入する。   As shown in a perspective view in FIG. 4, a volume surrounded by a U-shaped molding die 1, a side die having a lead wire hole 3, and a punch 6 under the press is approximately the volume after pressing. An amount of powder 2 that is supposed to be halved is charged.

次に、図5に斜視図で示すように、サイド金型5のリード線穴3を通して、加工前のリード線4を引き出し、前記空間に収まる寸法でリード線4を加工する。その場合、リード線4を波状、コイルばね状、鉤状、斜め折り曲げ形状に加工する。   Next, as shown in a perspective view in FIG. 5, the lead wire 4 before processing is pulled out through the lead wire hole 3 of the side mold 5, and the lead wire 4 is processed to a size that fits in the space. In that case, the lead wire 4 is processed into a wave shape, a coil spring shape, a hook shape, and an obliquely bent shape.

さらに、図6に斜視図で示すように、サイド金型5を、リード線4が粉末2に埋まる程度に下降させる。その後、図7に斜視図で示すように、規定量の粉末をリード線4の上方から供給し埋没させる。粉末を供給後、成形用金型1の上下にあるプレス上パンチ7とプレス下パンチ6にて加圧し成形する。その後、焼結を実施する。   Further, as shown in a perspective view in FIG. 6, the side mold 5 is lowered to such an extent that the lead wire 4 is buried in the powder 2. Thereafter, as shown in a perspective view in FIG. 7, a prescribed amount of powder is supplied from above the lead wire 4 and buried. After supplying the powder, pressing is performed by an upper press punch 7 and a lower press punch 6 above and below the molding die 1 and molding is performed. Thereafter, sintering is performed.

次いで、公知の技術により、その焼結体の多孔質表面に酸化皮膜を形成し、陰極層を設けて、コンデンサ素子を得る。さらに、そのコンデンサ素子に陽極端子と陰極端子を接続し、外装樹脂でモールドし、ダイシングを行い本発明の固体電解コンデンサを得る。   Next, an oxide film is formed on the porous surface of the sintered body by a known technique, and a cathode layer is provided to obtain a capacitor element. Further, an anode terminal and a cathode terminal are connected to the capacitor element, molded with an exterior resin, and diced to obtain the solid electrolytic capacitor of the present invention.

次に、実施例を挙げて、リード線の形状を詳しく説明する。   Next, the shape of the lead wire will be described in detail with examples.

図8は、波状のリード線による実施例1のコンデンサ素子を示す斜視図であり、4はリード線、8は陽極体としての多孔質焼結体である。その陽極体はTa(タンタル)、Nb(ニオブ)等の弁作用金属粉末を上記の実施の形態で説明した方法により、予め陽極引き出し用のリード線を波状に加工したものを埋め込み、加圧成形、焼結を実施したものである。波加工の方向性はなく、また、焼結体の幅から曲げ部が突出しないように幅を取り、曲げ回数は1回以上とする。   FIG. 8 is a perspective view showing the capacitor element of Example 1 with wavy lead wires, 4 is a lead wire, and 8 is a porous sintered body as an anode body. The anode body is formed by embedding a valve lead metal powder such as Ta (tantalum), Nb (niobium), etc., which has been previously processed into a corrugated lead wire for anode extraction, by pressure molding. Sintering was performed. There is no directionality of wave processing, and the width is taken so that the bent portion does not protrude from the width of the sintered body, and the number of times of bending is one or more.

図9は、コイルばね状のリード線による実施例2のコンデンサ素子を示す斜視図であり、実施例1と同様に陽極引き出し用のリード線をコイルばね状に加工後埋め込み、加圧成形、焼結を実施したものである。コイルばね状の径は焼結体の横幅から突出しないように幅を取り、また、コイルばねの巻線の縦方向の隙間は0mm(無し)から焼結体からはみ出さない長さまで選択可能である。   FIG. 9 is a perspective view showing the capacitor element of Example 2 using a coil spring-shaped lead wire. Like the case of Example 1, the lead wire for pulling out the anode is processed into a coil spring shape, embedded, pressed, and sintered. The result is a result. The coil spring diameter has a width so that it does not protrude from the lateral width of the sintered body, and the vertical gap of the coil spring winding can be selected from 0 mm (none) to a length that does not protrude from the sintered body. is there.

図10は、鉤状のリード線による実施例3のコンデンサ素子を示す斜視図であり、陽極引き出し用のリード線を鉤針状に加工後、埋め込み、加圧成形、焼結を実施したものである。この鉤針形状は焼結体の外部から内部に一旦挿入され焼結体内部で折り返した形状である。埋め込み深さと折り返しの寸法は焼結体外部から突出しない幅とする。また、折り返しの方向は主要部の埋め込みの方向と平行ではなくても可能である。   FIG. 10 is a perspective view showing the capacitor element of Example 3 using a hook-shaped lead wire, in which the lead wire for pulling out the anode is processed into a needle shape and then embedded, pressure-molded, and sintered. . This needle shape is a shape that is once inserted from the outside to the inside of the sintered body and folded back inside the sintered body. The embedding depth and the dimension of the folding are widths that do not protrude from the outside of the sintered body. Further, the folding direction is not necessarily parallel to the embedding direction of the main part.

図11は、折り曲げた形状のリード線による実施例4のコンデンサ素子を示す斜視図であり、実施例1と同様に陽極引き出し用のリード線を外部のリード線の方向に対して斜めに曲げ加工後、埋め込み、加圧成形、焼結を実施したものである。この場合、埋設された斜めの部分は直線でも湾曲していても可能であり、曲がり幅は焼結体の幅から突出しないものとし、曲がり方向は焼結体の外周部方向であれば、特に指定しない。なお実施例1〜4において、ワイヤーの太さは問わない。   FIG. 11 is a perspective view showing the capacitor element of Example 4 with bent lead wires, and bending the lead wire for anode lead out obliquely with respect to the direction of the external lead wire as in Example 1. Thereafter, embedding, pressure molding, and sintering were performed. In this case, the embedded oblique portion can be straight or curved, the bending width shall not protrude from the width of the sintered body, and if the bending direction is the outer peripheral portion direction of the sintered body, in particular Not specified. In Examples 1 to 4, the thickness of the wire is not limited.

実施例1〜4において得られたコンデンサ素子の特性について、リード線の埋設部分の表面積に着目して整理して説明する。すなわち、引き抜き強度、はんだ耐熱性に関わる漏れ電流不良、およびリード線の埋設部の表面積とESRの積について、リード線の埋設部の表面積にどのように依存しているかという観点から説明する。   The characteristics of the capacitor elements obtained in Examples 1 to 4 will be described by focusing on the surface area of the embedded portion of the lead wire. That is, a description will be given from the viewpoint of how the product of the lead wire embedded portion and the surface area of the embedded portion of the lead wire and the ESR depend on the pulling strength, the leakage current related to the solder heat resistance, and the product of the ESR.

図1は、リード線の埋設部表面積と引き抜き強度の関係を示す。この図1からは、リード線の埋設部表面積の増大とともに引き抜き強度が増大することが分かる。   FIG. 1 shows the relationship between the buried portion surface area of the lead wire and the pull-out strength. From FIG. 1, it can be seen that the pullout strength increases as the surface area of the buried portion of the lead wire increases.

図2は、リード線の埋設部表面積と漏れ電流不良の関係を示す。この図2のように、リード線の埋設部表面積の増大とともに、漏れ電流不良は減少する。すなわち、はんだ耐熱性が向上する。   FIG. 2 shows the relationship between the surface area of the buried portion of the lead wire and the leakage current failure. As shown in FIG. 2, the leakage current failure decreases as the surface area of the buried portion of the lead wire increases. That is, the solder heat resistance is improved.

図3は、リード線の埋設部表面積と、リード線の埋設部表面積およびESRの積との関係を示す。この図3のように、リード線の埋設部表面積とESRの積についても、リード線の埋設部表面積の増大とともに減少する。   FIG. 3 shows the relationship between the buried portion surface area of the lead wire and the product of the buried portion surface area and ESR of the lead wire. As shown in FIG. 3, the product of the buried wire surface area of the lead wire and the ESR also decreases as the lead wire buried portion surface area increases.

以上に説明したように、リード線の陽極体への埋設部の形状がコイル状、波状、鉤状あるいは折り曲げた形状なので、アンカーとして作用し、図1のように、リード線植立方向へのリード引き抜き強度が向上することで、はんだ工程での内部への物理的なストレスが減少し、はんだ耐熱性が改善され、図2のように、漏れ電流不良が減少する。   As described above, since the shape of the embedded portion of the lead wire in the anode body is a coil shape, a wave shape, a saddle shape, or a bent shape, it acts as an anchor, and as shown in FIG. By improving the lead pull-out strength, the internal physical stress in the soldering process is reduced, the solder heat resistance is improved, and the leakage current failure is reduced as shown in FIG.

また、リード線と弁作用金属粉末との接触面積が増大し、接触抵抗が減少するため、図3のように、ESRが低減可能な固体電解コンデンサとなる。   Further, since the contact area between the lead wire and the valve action metal powder increases and the contact resistance decreases, a solid electrolytic capacitor capable of reducing ESR as shown in FIG. 3 is obtained.

以上、本発明の実施の形態および実施例を説明したが、本発明は、図1から図11に示した形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれる。すなわち、当業者であれば、なしえるであろう各種変形、修正を含むことはもちろんである。   As mentioned above, although embodiment and the Example of this invention were described, this invention is not restricted to the form shown in FIGS. 1-11, There exists a design change of the range which does not deviate from the summary of this invention. Are also included in the present invention. That is, it goes without saying that various modifications and corrections that can be made by those skilled in the art are included.

リード線の埋設部表面積と引き抜き強度の関係を示す図。The figure which shows the relationship between the embedded part surface area of a lead wire, and drawing strength. リード線の埋設部表面積と漏れ電流不良の関係を示す図。The figure which shows the relationship between the embedded part surface area of a lead wire, and a leakage current defect. リード線の埋設部表面積と、リード線の埋設部表面積およびESRの積との関係を示す図。The figure which shows the relationship between the buried part surface area of a lead wire, and the product of the buried part surface area and ESR of a lead wire. コの字形の成形用金型、サイド金型、プレス下パンチによってできた空間に粉末を供給した様子を示す斜視図。The perspective view which shows a mode that powder was supplied to the space formed by the U-shaped shaping | molding metal mold | die, the side metal mold | die, and the punch under a press. サイド金型からリード線を供給した後、リード線を加工した様子を示す斜視図。The perspective view which shows a mode that the lead wire was processed after supplying a lead wire from the side metal mold | die. サイド金型を下降させ、リード線を粉末に埋設させた様子を示す斜視図。The perspective view which shows a mode that the side metal mold | die was lowered | hung and the lead wire was embed | buried under powder. 粉末をさらに供給して、上下パンチにてプレスする様子を示す図。The figure which shows a mode that powder is further supplied and it presses with an up-and-down punch. 実施例1のコンデンサ素子を示す斜視図。FIG. 3 is a perspective view showing a capacitor element according to the first embodiment. 実施例2のコンデンサ素子を示す斜視図。FIG. 6 is a perspective view showing a capacitor element of Example 2. 実施例3のコンデンサ素子を示す斜視図。FIG. 6 is a perspective view showing a capacitor element of Example 3. 実施例4のコンデンサ素子を示す斜視図。FIG. 6 is a perspective view showing a capacitor element of Example 4.

符号の説明Explanation of symbols

1 成形用金型
2 粉末
3 リード線穴
4 リード線
5 サイド金型
6 プレス下パンチ
7 プレス上パンチ
8 多孔質焼結体
DESCRIPTION OF SYMBOLS 1 Molding die 2 Powder 3 Lead wire hole 4 Lead wire 5 Side die 6 Lower punch 7 Press upper punch 8 Porous sintered body

Claims (2)

弁作用金属の粉末に、前記弁作用金属と同種の金属からなるリード線の一端を表出し他部を埋設して加圧成形し、焼結して多孔質の陽極体を形成し、前記陽極体に酸化皮膜を形成し陰極層を設けてなるコンデンサ素子を用いた固体電解コンデンサにおいて、前記リード線の前記陽極体に埋設された部分はコイルばね状、波状、鉤状または斜めに折り曲げた形状であることを特徴とする固体電解コンデンサ。   One end of a lead wire made of the same kind of metal as the valve action metal is exposed in the powder of the valve action metal, the other part is embedded and pressure-molded, sintered to form a porous anode body, and the anode In a solid electrolytic capacitor using a capacitor element in which an oxide film is formed on a body and a cathode layer is provided, a portion of the lead wire embedded in the anode body is a coil spring shape, a wavy shape, a saddle shape, or an obliquely bent shape A solid electrolytic capacitor characterized in that コの字形の成形用金型、リード線穴を有するサイド金型、プレス上パンチおよびプレス下パンチを用いて、弁作用金属のリード線の一部を波状、コイルばね状、鉤状または斜めに折り曲げた形状に成形し弁作用金属粉末に埋設して植立し加圧成形する工程と、焼結を行い多孔質の陽極体を作製する工程と、前記陽極体に酸化皮膜を形成する工程と、陰極層を形成しコンデンサ素子を作製する工程と、前記コンデンサ素子に陽極端子および陰極端子を接続する工程と、絶縁性樹脂で外装する工程とを含むことを特徴とする固体電解コンデンサの製造方法。   Using a U-shaped molding die, a side die with lead wire holes, a punch on the press and a punch on the press, part of the lead wire of the valve metal is wave-like, coil spring-like, saddle-like or slanted A step of forming into a bent shape, embedding in valve action metal powder, planting and pressure forming, a step of sintering to produce a porous anode body, and a step of forming an oxide film on the anode body; A method for producing a solid electrolytic capacitor comprising: a step of forming a cathode layer to produce a capacitor element; a step of connecting an anode terminal and a cathode terminal to the capacitor element; and a step of sheathing with an insulating resin. .
JP2004198980A 2004-07-06 2004-07-06 Solid electrolytic capacitor and its manufacturing method Pending JP2006024607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198980A JP2006024607A (en) 2004-07-06 2004-07-06 Solid electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198980A JP2006024607A (en) 2004-07-06 2004-07-06 Solid electrolytic capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006024607A true JP2006024607A (en) 2006-01-26

Family

ID=35797694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198980A Pending JP2006024607A (en) 2004-07-06 2004-07-06 Solid electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006024607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076737A (en) * 2007-09-21 2009-04-09 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
US20120176729A1 (en) * 2011-01-12 2012-07-12 Avx Corporation Leadwire Configuration for a Planar Anode of a Wet Electrolytic Capacitor
CN104200993A (en) * 2014-08-29 2014-12-10 安徽普和电子有限公司 Capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076737A (en) * 2007-09-21 2009-04-09 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method thereof
US20120176729A1 (en) * 2011-01-12 2012-07-12 Avx Corporation Leadwire Configuration for a Planar Anode of a Wet Electrolytic Capacitor
FR2970368A1 (en) * 2011-01-12 2012-07-13 Avx Corp CONDUCTIVE WIRE CONFIGURATION FOR A PLANAR ANODE OF A WET ELECTROLYTIC CAPACITOR
CN102592829A (en) * 2011-01-12 2012-07-18 Avx公司 Leadwire configuration for a planar anode of a wet electrolytic capacitor
US8477479B2 (en) * 2011-01-12 2013-07-02 Avx Corporation Leadwire configuration for a planar anode of a wet electrolytic capacitor
CN104200993A (en) * 2014-08-29 2014-12-10 安徽普和电子有限公司 Capacitor

Similar Documents

Publication Publication Date Title
TWI564918B (en) Surface-mount inductor and production method thereof
JP5770351B1 (en) Solid electrolytic capacitor
JP2011049225A (en) Solid electrolytic capacitor
JP2006024607A (en) Solid electrolytic capacitor and its manufacturing method
JP2001143966A (en) Chip type solid electrolytic capacitor and its manufacturing method
JP2001307957A (en) Surface mounting type solid electrolytic capacitor and manufacturing method
JP4761463B2 (en) Capacitor anode body manufacturing method and apparatus
JP5049106B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4864767B2 (en) Electronic components
JP4258720B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004247410A (en) Solid electrolytic chip capacitor and its manufacturing method
JP5926485B2 (en) Method for manufacturing solid electrolytic capacitor element
JP2011054811A (en) Coil component and manufacturing method thereof
JP2005203608A (en) Solid electrolytic capacitor
JP4619754B2 (en) Tab terminal for electrolytic capacitor
JP2019096847A (en) Capacitor
JP6086113B2 (en) Surface mount inductor and manufacturing method thereof
JP2013026293A (en) Capacitor and method of manufacturing the same
JP6179102B2 (en) Capacitor and manufacturing method thereof
JP5019629B2 (en) Capacitor element manufacturing method and manufacturing apparatus thereof
JP2010080600A (en) Chip-shaped solid electrolytic capacitor
JP2005039043A (en) Chip electrolytic capacitor
JP2008034429A (en) Solid electrolytic capacitor
KR101132059B1 (en) Solid electrolytic condenser
JP2008211107A (en) Surface-mounting thin capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100303