JP2006023200A - Optical probe and spectrometric apparatus - Google Patents

Optical probe and spectrometric apparatus Download PDF

Info

Publication number
JP2006023200A
JP2006023200A JP2004202072A JP2004202072A JP2006023200A JP 2006023200 A JP2006023200 A JP 2006023200A JP 2004202072 A JP2004202072 A JP 2004202072A JP 2004202072 A JP2004202072 A JP 2004202072A JP 2006023200 A JP2006023200 A JP 2006023200A
Authority
JP
Japan
Prior art keywords
light
optical probe
optical fiber
optical
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202072A
Other languages
Japanese (ja)
Inventor
Satoru Hiraki
哲 平木
Noboru Azuma
昇 東
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2004202072A priority Critical patent/JP2006023200A/en
Publication of JP2006023200A publication Critical patent/JP2006023200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make practical the measurement of physical quantity, such as the concentration of a component or the like at the arbitrary point of a liquid. <P>SOLUTION: This optical probe is constituted of a transparent material and equipped with a first hole which permits the insertion of a first optical fiber; an internal gap equipped with two or three planes, which become the total reflection surface due to the difference of a refractive index with the transparent material and are arranged so as to totally reflecting the incident light from the first optical fiber in the first hole successively; a second hole which permits the insertion of a second optical fiber and is provided at an incident position of the light successively reflected by the planes of the internal gap, two facing boundary surfaces which are provided on the way of the light path reaching the second optical fiber from the first optical fiber through two or three planes of the internal gap and perpendicular to the light path, and a cavity part communicating with the outside. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液体の成分濃度、温度などの物理量の光学的測定に関するものである。   The present invention relates to optical measurement of physical quantities such as component concentration and temperature of a liquid.

半導体製造における洗浄工程においては、強酸、強アルカリの薬液が使用される。たとえば、シリコンウエハー表面のエッチングにおいては、アンモニアと過酸化水素の混合液が使用される。エッチング工程において、エッチング量の管理のため、エッチング液中の各成分の濃度が測定される。   In the cleaning process in semiconductor manufacturing, a chemical solution of strong acid or strong alkali is used. For example, in the etching of a silicon wafer surface, a mixed solution of ammonia and hydrogen peroxide is used. In the etching process, the concentration of each component in the etching solution is measured in order to manage the etching amount.

液体の成分濃度は近赤外線などを用いて分光測定装置により測定できる。半導体のエッチング及び洗浄液の濃度測定にも分光測定装置を用いた分析、定量が用いられている。たとえば、特開平6−265471号公報に記載された混酸の濃度測定方法及び濃度測定装置では、多変量解析により得られた検量線式を用いて、フローセル中に混酸を導入し近赤外光の吸光度を求めて酸の濃度を決定する。また、温度が吸光度の因子であることも知られており、吸光度測定から液体の温度も決定できる。   The component concentration of the liquid can be measured with a spectrophotometer using near infrared rays or the like. Analysis and quantification using a spectroscopic measurement apparatus are also used for etching semiconductors and measuring the concentration of cleaning liquid. For example, in the mixed acid concentration measuring method and concentration measuring apparatus described in JP-A-6-265471, a mixed acid is introduced into a flow cell using a calibration curve obtained by multivariate analysis, and near-infrared light is emitted. Determine the acid concentration by determining the absorbance. It is also known that temperature is a factor of absorbance, and the temperature of the liquid can be determined from absorbance measurement.

しかし、従来の光学的濃度測定では、エッチング及び洗浄の行われている槽(以下洗浄槽という)、または薬液のオーバーフロータンクや薬液の原液タンクより、測定対象となる液体を分光測定装置のフローセルへ導入する方法を採っている。この場合、フローセルに液体を導入するまでの時間的遅延があるため、フローセルへの液体導入にかかる間の洗浄槽の濃度変化をとらえられない。また、原液タンクから導入する方式に至っては、洗浄槽内の濃度を計測しているとはいいがたい。   However, in the conventional optical density measurement, the liquid to be measured is transferred from the tank in which etching and cleaning are performed (hereinafter referred to as the cleaning tank), the chemical overflow tank, or the chemical stock tank to the flow cell of the spectrometer. The method to introduce is taken. In this case, since there is a time delay until the liquid is introduced into the flow cell, it is not possible to catch the change in the concentration of the cleaning tank during the period of the liquid introduction into the flow cell. In addition, it is difficult to say that the concentration in the cleaning tank is measured in the system introduced from the stock solution tank.

エッチング液中の成分の光学的濃度測定のため、直接にエッチング槽内のエッチング液に浸漬する光学プローブも提案されている。特開2000−88749号公報に記載された光学プローブは、測定光を十分な距離だけ透過させるため、多数の反射面を設けた石英のプリズムを用いる。この光学プローブには、外部の分光測定装置からの2本の光ファイバが接続され、液体中に浸漬される。1本の光ファイバにより光学プローブ内に光を導入し、入射光は各反射面で次々と全反射され、光学プローブを通った光(透過光)は別の光ファイバを経て外部の分光測定装置に戻される。光学プローブ内の光路の一部は、エッチング液を通るので、分光測定装置は透過光を測定できる。
特開平6−265471号公報 特開平3−209149号公報 特開2000−88749号公報
In order to measure the optical concentration of the components in the etching solution, an optical probe that is directly immersed in the etching solution in the etching tank has also been proposed. The optical probe described in Japanese Patent Application Laid-Open No. 2000-88749 uses a quartz prism provided with a large number of reflecting surfaces in order to transmit measurement light by a sufficient distance. Two optical fibers from an external spectrometer are connected to this optical probe and immersed in a liquid. Light is introduced into the optical probe by one optical fiber, and incident light is totally reflected one after another on each reflecting surface, and light (transmitted light) that has passed through the optical probe passes through another optical fiber and is connected to an external spectrometer. Returned to Since a part of the optical path in the optical probe passes through the etching solution, the spectroscopic measurement device can measure the transmitted light.
JP-A-6-265471 JP-A-3-209149 JP 2000-88749 A

半導体洗浄工程での歩留まりの低下については、シリコンウエハー表面が接触する薬液の濃度、温度の変化に大きく依存し、槽内での薬液の濃度・温度分布の多くについては明らかになっていない。したがって、槽内の任意の点で濃度・温度の測定を行えることが望ましい。   The decrease in the yield in the semiconductor cleaning process largely depends on the concentration and temperature change of the chemical solution with which the silicon wafer surface comes into contact, and many of the concentration and temperature distribution of the chemical solution in the tank have not been clarified. Therefore, it is desirable that the concentration and temperature can be measured at any point in the tank.

しかし、上述の浸漬型光学プローブは、反射面が多数(6面以上)存在しているので、寸法が大きい。半導体洗浄槽は、薬液の使用効率を最大限に上げるため、余剰空間は最小に設計されている。たとえばウエハーの場合、槽の寸法はウエハーに合わされているので、センサを設置するための余裕は狭い。このため、そのような大型の光学プローブを既存の半導体洗浄槽に適用することは現実的でない。また、多数の反射面を加工しなければならないので、プローブ加工の難易度が高い。   However, since the above-mentioned immersion type optical probe has a large number (6 or more) of reflecting surfaces, the dimensions are large. The semiconductor cleaning tank is designed to minimize the surplus space in order to maximize the use efficiency of the chemical solution. For example, in the case of a wafer, since the dimensions of the tank are matched to the wafer, the margin for installing the sensor is narrow. For this reason, it is not realistic to apply such a large optical probe to an existing semiconductor cleaning tank. Moreover, since many reflective surfaces must be processed, the difficulty of probe processing is high.

この発明の目的は、測定対象となる液体の任意の点での成分濃度などの物理量の測定を実用化することである。   An object of the present invention is to put into practical use the measurement of physical quantities such as component concentrations at arbitrary points of a liquid to be measured.

本発明に係る光学プローブは、透明材料からなる光学プローブであって、第1の光ファイバを挿入可能な第1の孔と、前記の透明材料との屈折率差による全反射面となる2または3の平面を備える内部空隙であって、前記の2個または3個の平面を、第1の孔の中の第1の光ファイバからの入射光を順次全反射するように配置した内部空隙と、第2の光ファイバを挿入可能な第2の孔であって、前記の内部空隙の平面により順次反射された光が入射する位置に設けられた第2の孔と、第1の光ファイバから、内部空隙の前記の2個または3個の平面を経て、第2の光ファイバに至る光路の途中に設けられ、光路に垂直な対向する2つの境界面を備え、外部に通じる空洞部とを備える。   The optical probe according to the present invention is an optical probe made of a transparent material, and becomes a total reflection surface due to a difference in refractive index between the first hole into which the first optical fiber can be inserted and the transparent material. An internal space having three planes, wherein the two or three planes are disposed so as to sequentially totally reflect incident light from the first optical fiber in the first hole; A second hole into which the second optical fiber can be inserted, the second hole provided at a position where the light sequentially reflected by the plane of the internal gap is incident, and the first optical fiber A cavity portion that is provided in the middle of the optical path leading to the second optical fiber through the two or three planes of the internal air gap, has two opposing boundary surfaces perpendicular to the optical path, and communicates with the outside. Prepare.

前記の光学プローブにおいて、たとえば、前記の透明材料の屈折率が1.4142以上であり、前記の平面の数が2である。   In the optical probe, for example, the refractive index of the transparent material is 1.4142 or more, and the number of the planes is two.

前記の光学プローブにおいて、たとえば、前記の透明材料の屈折率が1.4142と1.155の間であり、前記の平面の数が3である。   In the optical probe, for example, the refractive index of the transparent material is between 1.4142 and 1.155, and the number of the planes is three.

前記の光学プローブにおいて、好ましくは、前記の第1の光ファイバの出射側と前記の第2の光ファイバの入射側にそれぞれ集光レンズを備える。   In the optical probe, preferably, a condensing lens is provided on each of an emission side of the first optical fiber and an incident side of the second optical fiber.

本発明に係る分光測定装置は、測定対象の液体に光を透過させ、複数波長の光(たとえば近赤外光)についてその各強度をそれぞれ検出し、その検出値に基づいて上記液体の物理量を測定する分光測定装置である。この分光測定装置は、前記の光学プローブと、近赤外光を複数波長の光に分光し、第1の光ファイバを介して光学プローブに送る光源と、前記の光学プローブから第2の光ファイバを介して光を受光し、受光した光の強度に応じた光強度信号を発生する光検出部と、酸の濃度が既知の複数の混酸のサンプルについての複数波長の光の吸光度と酸の濃度との間の定数項を含む吸光度の多次多項式を用いて多変量解析法により求めた検量線式を保持する一方、上記光検出部が出力する光強度信号から各波長の光の吸光度をそれぞれ演算し、演算した各波長の上記光の吸光度から上記検量線式に基づいて測定対象の液体の物理量(たとえば、液体中の成分濃度や温度)を演算する物理量演算手段とを備える。   The spectroscopic measurement device according to the present invention transmits light to a liquid to be measured, detects each intensity of light of a plurality of wavelengths (for example, near infrared light), and determines the physical quantity of the liquid based on the detected value. It is a spectroscopic measuring device to measure. The spectroscopic measurement device includes the optical probe, a light source that splits near-infrared light into light having a plurality of wavelengths, and sends the light to the optical probe via a first optical fiber, and a second optical fiber from the optical probe. A light detection unit that receives light through the light source and generates a light intensity signal corresponding to the intensity of the received light, and the absorbance and acid concentration of light at multiple wavelengths for a plurality of mixed acid samples with known acid concentrations While maintaining the calibration curve equation obtained by the multivariate analysis method using a multi-degree polynomial of absorbance including a constant term between the light intensity signal output from the light detection unit, the absorbance of each wavelength is And a physical quantity calculating means for calculating the physical quantity of the liquid to be measured (for example, component concentration and temperature in the liquid) based on the calibration curve formula from the calculated light absorbance of each wavelength.

小型の浸漬型光学プローブを提供できる。したがって、光学プローブが対象液中に浸漬されると、常時、光学プローブに測定対象液が導入できる。このため、測定装置内へ対象液を導入する機構(フローセルなど)が不要になる。   A small immersion optical probe can be provided. Therefore, when the optical probe is immersed in the target liquid, the measurement target liquid can be always introduced into the optical probe. This eliminates the need for a mechanism (such as a flow cell) for introducing the target liquid into the measuring apparatus.

小型の光学プローブを液体中に導入できるので、たとえばエッチング槽内の液体の任意の点の物理量(成分濃度、温度)のインライン測定が可能になる。また、多点の測定を行うことで、槽内の濃度及び温度の分布を知ることができ、槽内の濃度や温度のムラを知ることができ、洗浄工程での歩留まりが向上できる。   Since a small optical probe can be introduced into the liquid, for example, in-line measurement of a physical quantity (component concentration, temperature) at an arbitrary point of the liquid in the etching tank can be performed. Further, by performing multi-point measurement, it is possible to know the concentration and temperature distribution in the tank, to know the concentration and temperature unevenness in the tank, and to improve the yield in the cleaning process.

以下、本発明の実施の形態を添付の図面を参照して説明する。なお、図面において、同じ参照記号は同一または同等のものを示す。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference symbols denote the same or equivalent.

本発明に係る光学プローブは、透明な材料から成り、内部に全反射を起こす空隙を設けることを特徴とする。内部空隙は、実質的に屈折率が1であり、光学プローブの材料との屈折率差による全反射面となる2または3の平面を備える。すなわち、内部空隙は、光学プローブの本体と空隙との屈折率差を利用したプリズム機構である。分光測定装置と光学プローブとの間は2本の光ファイバで接続され、光学プローブは、測定対象の液体に浸漬される。測定光を1つの光ファイバにより光学プローブに導入すると、光は全反射面で順次反射されて、もう1つの光ファイバから出ていく。光路の一部に設けた空洞部には、測定対象の液体が入るので、その液体を透過した光が分光測定装置に送られる。この光学プローブを用いて、液体の任意の点の物理量(成分濃度及び温度)のインライン測定が可能になる。   The optical probe according to the present invention is made of a transparent material, and is characterized by providing a gap that causes total internal reflection. The internal gap has a refractive index of 1 substantially, and has two or three planes that serve as a total reflection surface due to a difference in refractive index from the material of the optical probe. That is, the internal gap is a prism mechanism that utilizes the difference in refractive index between the main body of the optical probe and the gap. The spectrometer and the optical probe are connected by two optical fibers, and the optical probe is immersed in the liquid to be measured. When the measurement light is introduced into the optical probe by one optical fiber, the light is sequentially reflected by the total reflection surface and exits from the other optical fiber. Since the liquid to be measured enters the cavity provided in a part of the optical path, the light transmitted through the liquid is sent to the spectrometer. Using this optical probe, in-line measurement of the physical quantity (component concentration and temperature) at an arbitrary point of the liquid becomes possible.

図1は2回反射型の光学プローブの1例の正面を示し、図2は、孔22と空隙34を通る断面を示す。この光学プローブのほぼ直方体の形状の本体10は、そのほぼ中央部に、空洞部12を備える。空洞部12は、光学プローブを液体に浸漬したときに液体で満たされる空間である。この例では、空洞部12は、図の左右方向に広がり、本体の長手方向に垂直な上下の平行面12aを備え、一方の面12aに垂直に入射した光は、そのまま他方の面12aを透過する。本体10の両側に補強用の側部14、16が配置され、本体10と一体化される。側部14,16は、本体を補強するとともに、空洞部12の側面を区画し、液体は図の正面側から空洞部12に入る。空洞部12の上側には、2本の光ファイバ(たとえばφ0.5mm)18,20を挿入するための孔22,24が、本体の長手方向に平行に設けられ、孔22,24の下には、凸レンズ26,28を保持する空間30,32が設けられる。光ファイバ18,20は、たとえば石英、サファイア、フッ素樹脂(金属元素を含まない)で構成される。空洞部12の下側には、2つの全反射用内部空間(空隙)34,36が設けられる。内部空隙34,36は、本体の長手方向と45度の角度をなす平面34a,36aを備える。内部空隙34,36は空気などの気体を含んでいるか、または、真空であり、屈折率nが実質的に1.0である。本体10は、nが1.4142(=21/2)以上の屈折率の材質(金属元素を含まない透明材料たとえば石英、サファイア、ダイアモンドなど)で構成される。nが1.4142以上の屈折率の材質で構成される場合、面34a及び36aで2回の全反射がおこる。図1の例では、内部空隙34,36は、3角形の断面を備え、3角形の最長辺に対応する面34a,36aは、本体の長手方向と45度の角度をなす。この屈折率差により、この面に45度の入射角で光が入射されると、その光は全反射される。すなわち、測定光の入射面と出射面が同一平面であり、内部空隙34,36はプリズムとして作用をする。光の反射回数が2回だけであるので、2つの光ファイバ18,20の間の光路長を短くできるという長所がある。これにより、透過光が暗くなるのを防止できる。反射面の数が少ないため、光学プローブの寸法は小さくできる(たとえば幅1cm×高さ3cm)。なお、空洞部12を本体10の往復の2つの光路のうち一方側のみに設けて、光が液体を1回だけ透過するようにしてもよい。 FIG. 1 shows a front view of an example of a two-reflection optical probe, and FIG. 2 shows a cross section through a hole 22 and a gap 34. A main body 10 having a substantially rectangular parallelepiped shape of the optical probe includes a cavity 12 at a substantially central portion thereof. The cavity 12 is a space filled with a liquid when the optical probe is immersed in the liquid. In this example, the cavity 12 is provided with upper and lower parallel surfaces 12a extending in the left-right direction in the drawing and perpendicular to the longitudinal direction of the main body, and light incident perpendicularly to one surface 12a is transmitted through the other surface 12a as it is. To do. Reinforcing side portions 14 and 16 are disposed on both sides of the main body 10 and are integrated with the main body 10. The side portions 14 and 16 reinforce the main body and define the side surface of the cavity portion 12, and the liquid enters the cavity portion 12 from the front side of the figure. On the upper side of the cavity 12, holes 22 and 24 for inserting two optical fibers (for example, φ0.5 mm) 18 and 20 are provided in parallel to the longitudinal direction of the main body, and below the holes 22 and 24. Are provided with spaces 30 and 32 for holding the convex lenses 26 and 28. The optical fibers 18 and 20 are made of, for example, quartz, sapphire, or fluororesin (not including a metal element). Two total internal reflection spaces (gaps) 34 and 36 are provided below the cavity 12. The internal gaps 34 and 36 include flat surfaces 34a and 36a that form an angle of 45 degrees with the longitudinal direction of the main body. The internal voids 34 and 36 contain a gas such as air or are in a vacuum, and the refractive index n is substantially 1.0. The main body 10 is made of a material having a refractive index of n of 1.4142 (= 2 1/2 ) or more (a transparent material that does not contain a metal element, such as quartz, sapphire, and diamond). When n is made of a material having a refractive index of 1.4142 or more, two total reflections occur on the surfaces 34a and 36a. In the example of FIG. 1, the internal cavities 34 and 36 have a triangular cross section, and the surfaces 34 a and 36 a corresponding to the longest side of the triangle form an angle of 45 degrees with the longitudinal direction of the main body. Due to this refractive index difference, when light is incident on this surface at an incident angle of 45 degrees, the light is totally reflected. That is, the incident surface and the exit surface of the measurement light are the same plane, and the internal gaps 34 and 36 act as prisms. Since the number of light reflections is only two, there is an advantage that the optical path length between the two optical fibers 18 and 20 can be shortened. Thereby, it can prevent that transmitted light becomes dark. Since the number of reflecting surfaces is small, the dimensions of the optical probe can be reduced (for example, 1 cm wide × 3 cm high). The cavity 12 may be provided on only one side of the two reciprocating optical paths of the main body 10 so that the light passes through the liquid only once.

測定においては、分光測定装置から一方の光ファイバ18を通って測定光を入射すると、光は、レンズ26で集光された後、矢印で示すように、空洞部12の面12aに垂直に入射し、空洞部12の中の液体を透過して、空洞部12の下方に進む。また、空洞部の下方から面12aに垂直に入射する光は、空洞部12の中の液体をふたたび透過し、さらにレンズ28を通って、他方の光ファイバ20に入る。したがって、光ファイバ18から入射した光は、空洞部12の液体を通り、一方の空間34で反射され、続いてもう一方の空間36で反射され、さらに、ふたたび空洞部12の液体を通って、上方に向かう。こうして、液体の透過光が分光装置に送られる。   In measurement, when the measurement light is incident from the spectroscopic measurement device through one optical fiber 18, the light is collected by the lens 26 and then incident perpendicularly to the surface 12 a of the cavity 12 as indicated by an arrow. Then, the liquid in the cavity 12 is permeated and travels below the cavity 12. Further, light that enters perpendicularly to the surface 12 a from below the cavity portion is again transmitted through the liquid in the cavity portion 12, passes through the lens 28, and enters the other optical fiber 20. Therefore, the light incident from the optical fiber 18 passes through the liquid in the cavity 12, is reflected in one space 34, is subsequently reflected in the other space 36, and again passes through the liquid in the cavity 12, Head up. In this way, the transmitted light of the liquid is sent to the spectroscopic device.

なお、空間34,36は、全反射面34a,36aを備える必要があるが、その他の形状は限定されない。好ましくは、空間34,36の3角形の最長辺34a,36aに対応しない他の2つの面を粗くしておくと、プローブの外からの光が入ってこなくなる。   The spaces 34 and 36 need to have total reflection surfaces 34a and 36a, but other shapes are not limited. Preferably, when the other two surfaces that do not correspond to the longest sides 34a and 36a of the triangles of the spaces 34 and 36 are roughened, light from the outside of the probe does not enter.

図3は、2回反射型の光学プローブの別の例を示す。この光学プローブが図1及び図2に示した光学プローブと異なるのは、空洞部12’の位置を本体10’の下側の2つの内部空隙34,36の間に位置させたことと、補強のための側部14,16を用いないことである。2つの対向する面12a’は本体の長手方向に平行である。空洞部12’の位置を本体10’の下側にしたため、図1及び図2に示した光学プローブに比べて、本体10’の縦方向の長さが短くできるが、幅方向の長さは長くなる。   FIG. 3 shows another example of a two-reflection optical probe. This optical probe is different from the optical probe shown in FIGS. 1 and 2 in that the position of the cavity 12 ′ is positioned between the two internal cavities 34, 36 on the lower side of the main body 10 ′, and the reinforcement. Do not use the side parts 14 and 16 for. Two opposing surfaces 12a 'are parallel to the longitudinal direction of the body. Since the position of the cavity 12 'is located below the main body 10', the vertical length of the main body 10 'can be shortened compared to the optical probe shown in FIGS. 1 and 2, but the length in the width direction is become longer.

また、上述の2つの例では、2本の光ファイバ18,20を平行に設置して光学プローブを小さくしている。しかし、一般的には、図4に1例を示すように、2本の光ファイバ18,20は、必ずしも平行でなくてもよい。   In the above two examples, the two optical fibers 18 and 20 are installed in parallel to make the optical probe small. However, generally, as shown in FIG. 4 as an example, the two optical fibers 18 and 20 do not necessarily have to be parallel.

図5は、3回反射型の光学プローブの1例を示す。この光学プローブが図1〜図4に示した光学プローブと異なるのは、本体10の材質と、3回反射を可能にする内部空隙35の形状である。本体10は、金属元素を含まない1.155〜1.4142以上の屈折率の材質、たとえば、透明フッ素化合物であるPTFE、PFA(旭ガラス(株)製Cytopなど)からなる。また、内部空隙35は、3つの反射面35aを備え、相互に120度の角度をなす。入射光は、各反射面35aに60度の入射角で入射し、全反射される。   FIG. 5 shows an example of a three-reflection optical probe. The optical probe differs from the optical probe shown in FIGS. 1 to 4 in the material of the main body 10 and the shape of the internal gap 35 that enables three-time reflection. The main body 10 is made of a material having a refractive index of 1.155 to 1.4142 or higher that does not include a metal element, such as PTFE and PFA which are transparent fluorine compounds (Cytop manufactured by Asahi Glass Co., Ltd.). The internal space 35 includes three reflecting surfaces 35a and forms an angle of 120 degrees with each other. Incident light enters each reflecting surface 35a at an incident angle of 60 degrees and is totally reflected.

光学プローブや光ファイバは、半導体のエッチング及び洗浄の行われている槽に浸漬する場合、強酸、強アルカリによる腐食、溶出をきわめて微量またはゼロに抑制できる透明材料(2回反射型光学プローブにおいてたとえば石英)を用いる。サファイアガラスは、2回反射型光学プローブにおいて、希フッ酸などの、石英が使えない被測定対象の液体に使用できる。また、光学プローブなどを金属元素を含まない材料で構成するのは、半導体薬液に溶け出さない材料を用いると、光学プローブが割れても悪影響を及ぼさせないためである。これに対し、たとえば金属蒸着による鏡を反射面として設けると、プローブが割れるとき金属が溶け出して、悪影響を及ぼす。   An optical probe or an optical fiber, when immersed in a bath where semiconductor etching and cleaning are performed, is a transparent material (for example, in a two-reflection optical probe, which can suppress corrosion or elution due to strong acid or strong alkali to a very small amount or zero. Quartz) is used. Sapphire glass can be used in a liquid to be measured, such as dilute hydrofluoric acid, in which quartz cannot be used in a two-reflection optical probe. The reason why the optical probe or the like is made of a material that does not contain a metal element is that if a material that does not dissolve in the semiconductor chemical solution is used, even if the optical probe breaks, no adverse effect is exerted. On the other hand, if a mirror by metal vapor deposition is provided as a reflective surface, for example, when the probe breaks, the metal melts and has an adverse effect.

上述の光学プローブは、種々の形状の素材を組み合わせて一体化することにより製造できる。たとえば、図1〜図2に示す光学プローブにおいて、3角状のプリズムを矩形開口にはめ込むことにより全反射面を構成できる。   The above-described optical probe can be manufactured by combining and integrating materials having various shapes. For example, in the optical probe shown in FIGS. 1 and 2, a total reflection surface can be configured by fitting a triangular prism into a rectangular opening.

上述のいずれかの光学プローブを用いることにより、従来のフローセルを用いる場合と同様に、分光測定装置で吸光度を求め、液体中の物理量(成分濃度、液体温度など)を測定できる。測定方法としては、たとえば、特開平6−265471号公報に記載されている方法が採用できる。この方法では、測定対象の混酸に光を透過させ、複数波長の光についてその各強度をそれぞれ検出し、その検出値に基づいて混酸中の酸の濃度を測定する。まず、光ファイバを取り付けた光学プローブを、成分濃度既知の液体対象液中に浸漬せしめ、波長域の異なる近赤外域の複数の波長の光を透過させ、透過光の強度値を測定する。この測定を複数のサンプルについて繰り返す。そして、上記複数のサンプルの強度値から吸光度を演算し、吸光度と液体中の物理量との間の検量線式を求める。次に、光ファイバ及び光学プローブを、測定対象の液体中に浸漬せしめ、上記の異なる複数の波長の光を透過させ、透過光の強度値を測定する。そして、強度値から吸光度を演算し、吸光度と上記検量線式を用い、液体中の物理量(成分濃度、液体温度)を決定する。   By using any of the optical probes described above, as in the case of using a conventional flow cell, the absorbance can be obtained with a spectroscopic measurement device, and the physical quantity (component concentration, liquid temperature, etc.) in the liquid can be measured. As a measuring method, for example, a method described in JP-A-6-265471 can be employed. In this method, light is transmitted through a mixed acid to be measured, the respective intensities of light having a plurality of wavelengths are detected, and the concentration of the acid in the mixed acid is measured based on the detected value. First, an optical probe to which an optical fiber is attached is immersed in a liquid target liquid having a known component concentration, light of a plurality of wavelengths in the near infrared region having different wavelength regions is transmitted, and the intensity value of the transmitted light is measured. This measurement is repeated for a plurality of samples. Then, the absorbance is calculated from the intensity values of the plurality of samples, and a calibration curve equation between the absorbance and the physical quantity in the liquid is obtained. Next, the optical fiber and the optical probe are immersed in the liquid to be measured, the light having a plurality of different wavelengths is transmitted, and the intensity value of the transmitted light is measured. Then, the absorbance is calculated from the intensity value, and the physical quantity (component concentration, liquid temperature) in the liquid is determined using the absorbance and the calibration curve equation.

図6は、半導体製造における洗浄のためのシステムを備える。このシステムは、半導体ウェハの洗浄を行うエッチング槽100、エッチング槽内100内のエッチング液に浸漬可能な上述の光学プローブ110および分光測定装置120〜150からなる。分光測定装置は、光学プローブ110にインラインで試料を導入することを除いて従来と同様の構成を備える。光学プローブ110は光ファイバ18,20により分光測定装置に接続される。   FIG. 6 comprises a system for cleaning in semiconductor manufacturing. This system includes an etching bath 100 for cleaning a semiconductor wafer, the above-described optical probe 110 that can be immersed in an etching solution in the etching bath 100, and spectroscopic measurement devices 120 to 150. The spectroscopic measurement apparatus has the same configuration as the conventional one except that the sample is introduced into the optical probe 110 in-line. The optical probe 110 is connected to the spectrometer by optical fibers 18 and 20.

エッチング槽100は、オーバーフロータンク104を備えている。エッチング槽100には、原液タンク102から原液が供給される。   The etching tank 100 includes an overflow tank 104. The stock solution is supplied from the stock solution tank 102 to the etching tank 100.

分光測定装置の光源120では、図7に示すように、たとえばタングステン、ハロゲンランプからなる発光素子120からの放射光を凸レンズ122で集光させる。この凸レンズ122の焦点位置に配置された絞り124を通過した光を干渉フィルタ126で分光する。回転円板128は、選択された透過波長を有する8枚の干渉フィルタ126を等角度間隔で保持し、駆動モータ127によりたとえば1000rpmで回転駆動される。干渉フィルタ126は、水の特性吸収帯が顕著にあらわれる近赤外域において、特定成分の濃度変化に対してスペクトルの変動が大きく、他成分の妨害や干渉の影響が少ない波長を有するものが選択される。具体的には、水の特性吸収帯である980nmとその近傍、1200nmとその近傍、1460nmとその近傍、1940nmとその近傍、2500nmとその近傍において、近赤外吸収スペクトルの変動は、各イオン種によって固有のスペクトルを与える。また、酢酸に関しては、1680nm,1720nm,2260nm,2480nm,2510nmに特性吸収がある。そこで、干渉フィルタ126としては、これら波長の光を含む800nmないし2600nmの範囲の波長のうちから、濃度を測定する濃度に応じて、たとえば8つの波長を選択し、これら8つの波長の光をそれぞれ透過させるフィルタを8枚使用する。   In the light source 120 of the spectroscopic measurement apparatus, as shown in FIG. 7, the emitted light from the light emitting element 120 made of, for example, tungsten or a halogen lamp is condensed by the convex lens 122. The light that has passed through the diaphragm 124 arranged at the focal position of the convex lens 122 is split by the interference filter 126. The rotating disk 128 holds eight interference filters 126 having a selected transmission wavelength at equal angular intervals, and is rotated by a driving motor 127 at, for example, 1000 rpm. As the interference filter 126, a filter having a wavelength that has a large spectrum fluctuation with respect to a concentration change of a specific component and has little influence of interference and interference of other components in the near infrared region where the characteristic absorption band of water appears conspicuously is selected. The Specifically, the fluctuation of the near-infrared absorption spectrum in each of the ionic species at 980 nm, which is the characteristic absorption band of water, in the vicinity thereof, in the vicinity of 1200 nm, in the vicinity of 1460 nm, in the vicinity of 1940 nm, and in the vicinity of 2500 nm. Gives a unique spectrum. Acetic acid has characteristic absorption at 1680 nm, 1720 nm, 2260 nm, 2480 nm, and 2510 nm. Therefore, as the interference filter 126, for example, eight wavelengths are selected from wavelengths in the range of 800 nm to 2600 nm including light of these wavelengths according to the concentration to be measured, and light of these eight wavelengths is respectively selected. Use 8 filters to transmit.

干渉フィルタ126を透過した光を、凸レンズ129で集光させ、光ファイバ18を経て、エッチング槽100内の光学プローブ110に導入する。光学プローブ110内でエッチング液を透過した光は、もう一方の光ファイバ20を経て分光部130に入る。   The light transmitted through the interference filter 126 is collected by the convex lens 129 and introduced into the optical probe 110 in the etching tank 100 through the optical fiber 18. The light transmitted through the etching solution in the optical probe 110 enters the spectroscopic unit 130 through the other optical fiber 20.

分光部130は、上述の透過光を集光させる凸レンズ(図示しない)およびこの凸レンズから入射する光を光電流に変換する受光素子(図示しない)を備える。増幅器132は、分光部130から出力される、光学プローブからの透過光の強度に対応する透過光強度信号を増幅し、A/D変換器134は、増幅器132の出力をディジタル信号に変換する。 The spectroscopic unit 130 includes a convex lens (not shown) that condenses the above-described transmitted light and a light receiving element (not shown) that converts light incident from the convex lens into a photocurrent. The amplifier 132 amplifies the transmitted light intensity signal output from the spectroscopic unit 130 and corresponding to the intensity of the transmitted light from the optical probe, and the A / D converter 134 converts the output of the amplifier 132 into a digital signal.

データ処理装置140は、A/D変換器134より入力する透過光強度信号から各波長の光の吸光度をそれぞれ演算し、次に、演算した各波長の光の吸光度および検量線式に基づいて上記各波長の吸光度から混酸中の酸の濃度を演算する。データ処理装置140は、全体を制御するマイクロプロセッサ142、マイクロプロセッサ142を動作させるためのプログラム等が格納されたROM144、上記検量線式や各種データを記憶するRAM146、データや各種の命令を入力するキーボード等の入力装置148、上記データ処理の結果を出力するプリンタ、ディスプレイ等の出力装置150等から構成される。   The data processing device 140 calculates the absorbance of light of each wavelength from the transmitted light intensity signal input from the A / D converter 134, and then calculates the absorbance based on the calculated absorbance of each wavelength of light and the calibration curve formula. The concentration of acid in the mixed acid is calculated from the absorbance at each wavelength. The data processor 140 receives a microprocessor 142 that controls the whole, a ROM 144 that stores a program for operating the microprocessor 142, a RAM 146 that stores the calibration curve and various data, and data and various commands. An input device 148 such as a keyboard, a printer that outputs the result of the data processing, an output device 150 such as a display, and the like are included.

小型の浸漬型光学プローブ110がエッチング槽100内の薬液中に浸漬されると、常時、光学プローブに測定対象液が導入できる。このため、測定装置内へ対象液を導入する機構(フローセルなど)が不要になる。また、たとえばエッチング槽100内の液体の任意の点の物理量(成分濃度、温度)のインライン測定が可能になる。また、多点の測定を行うことで、槽内の濃度及び温度の分布を知ることができ、槽内の濃度や温度のムラを知ることができ、洗浄工程での歩留まりが向上できる。(なお、図6では、光学プローブ110は液面付近に位置されているが、槽内の所望の位置に設置できる。)また、測定中に光学プローブ110が割れたとしても、薬液の組成に影響を及ぼすことはない。   When the small immersion type optical probe 110 is immersed in the chemical solution in the etching tank 100, the measurement target solution can be always introduced into the optical probe. This eliminates the need for a mechanism (such as a flow cell) for introducing the target liquid into the measuring apparatus. In addition, for example, in-line measurement of a physical quantity (component concentration, temperature) at an arbitrary point of the liquid in the etching bath 100 is possible. Further, by performing multi-point measurement, it is possible to know the concentration and temperature distribution in the tank, to know the concentration and temperature unevenness in the tank, and to improve the yield in the cleaning process. (In FIG. 6, the optical probe 110 is positioned near the liquid surface, but can be installed at a desired position in the tank.) Even if the optical probe 110 is broken during the measurement, the composition of the chemical solution is reduced. There is no effect.

図8は、マイクロプロセッサ142によるデータ処理のより具体的な内容を示す。まず、透過光強度の測定データを入力する(ステップ10)。ここで、図6の測定装置の駆動モータ127の回転により回転円板128を回転駆動して、分光部130で、回転円板128に保持されている8枚の干渉フィルタ126の透過波長の光がそれぞれ光学プローブ内の混酸を透過した透過光を受光してサンプル透過度に比例するアナログ信号を発生する。これら信号を増幅器132で増幅した後、A/D変換器134でディジタル信号に変換する。そして、このA/D変換器134からのディジタル信号(透過光強度)を入力する。   FIG. 8 shows more specific contents of data processing by the microprocessor 142. First, transmitted light intensity measurement data is input (step 10). Here, the rotating disk 128 is rotated by the rotation of the drive motor 127 of the measuring apparatus of FIG. 6, and the light having the transmission wavelength of the eight interference filters 126 held by the rotating disk 128 is separated by the spectroscopic unit 130. Receive the transmitted light that has passed through the mixed acid in the optical probe, and generate an analog signal proportional to the sample transmittance. These signals are amplified by the amplifier 132 and then converted into digital signals by the A / D converter 134. Then, the digital signal (transmitted light intensity) from the A / D converter 134 is input.

次に、透過光強度の測定データに対して、次の式(1)

Figure 2006023200
の演算を実行し、吸光度Aを求める(ステップS12)。ここで、i=1〜8、Rは測定対象サンプルのi番目の波長での透過強度値、Bは基準濃度の混酸(たとえば、フッ酸+硝酸+酢酸)または水を光学プローブ110に入れたときのi波長の透過強度値、Dは光学プローブ110を遮光したときのi番目の波長での透過強度値、である。透過強度値BおよびDは予め測定しておき、入力装置148からRAM146に格納しておく。 Next, with respect to the measurement data of the transmitted light intensity, the following equation (1)
Figure 2006023200
The absorbance A i is obtained (step S12). Here, i = 1 to 8, R i is a transmission intensity value at the i-th wavelength of the sample to be measured, B i is a mixed acid (for example, hydrofluoric acid + nitric acid + acetic acid) of reference concentration or water to the optical probe 110. The transmission intensity value at the i wavelength when the optical probe 110 is inserted, and D i is the transmission intensity value at the i th wavelength when the optical probe 110 is shielded from light. The transmission intensity values B i and D i are measured in advance and stored in the RAM 146 from the input device 148.

次に、吸光度Aに対して次の式(2)

Figure 2006023200
の変換を行なう(ステップS14)。この変換を行なうのは次の理由による。式(1)により演算される吸光度Aは、光源の明るさの変動、受光素子の感度変動、光学系のひずみ等により変化する。しかしこの変化はあまり波長依存性はなく、8波長の各吸光度データに同相、同レベルで重畳する。したがって、式(2)のように、各波長間の差を取ることにより、上記変化を相殺できる。また、サンプル自体の温度変動による吸光度Aの変動は、たとえば出願人による特開平3−209149号公報に記載の方法を採用して除去できる。 Next, with respect to the absorbance A i , the following formula (2)
Figure 2006023200
Is converted (step S14). This conversion is performed for the following reason. The absorbance A i calculated by the equation (1) varies depending on the brightness variation of the light source, the sensitivity variation of the light receiving element, the distortion of the optical system, and the like. However, this change is not very wavelength-dependent, and is superimposed in the same phase and at the same level on each absorbance data of 8 wavelengths. Therefore, the above change can be canceled by taking the difference between the wavelengths as shown in Equation (2). The change in absorbance A i due to temperature variations of the sample itself, for example removal by adaptation of the methods described in JP-A-3-209149 by the applicant.

次に、式(2)で得られたSをもとに次の式(3)

Figure 2006023200
の演算を行い、フッ酸濃度C1、硝酸濃度C2および酢酸濃度C3を演算する(ステップS16)。ここで、混酸がたとえばフッ酸+硝酸+酢酸である場合を考えていて、F(S)、G(S)、H(S)は、それぞれ、フッ酸、硝酸、酢酸の検量線式である。 Next, based on S i obtained by the equation (2), the following equation (3)
Figure 2006023200
The hydrofluoric acid concentration C 1 , nitric acid concentration C 2 and acetic acid concentration C 3 are calculated (step S16). Here, a case where the mixed acid is, for example, hydrofluoric acid + nitric acid + acetic acid is considered, and F (S i ), G (S i ), and H (S i ) are calibration curves of hydrofluoric acid, nitric acid, and acetic acid, respectively. It is a formula.

フッ酸の検量線式F(S)は、Sのそれぞれの1次項から高次項を含むとともに、SとSi+1あるいはその高次項の各乗算であるクロス項および定数項を含み、次の式(4)で表される。

Figure 2006023200
ここで、S,Si+1は式(1),式(2)により得られたデータ、α,β,γは検量線式の係数、Z0は定数項である。式(4)は、既知濃度の混酸(フッ酸+硝酸+酢酸)の標準サンプルを用いて、図6の分光測定装置により予め求めておき、データ処理装置140のRAM146に格納しておく。 Calibration curve equation of hydrofluoric acid F (S i), together with the respective first-order of S i including higher order terms, comprises S i and S i + 1 or cross section and a constant term is the multiplication of the higher order terms Is expressed by the following equation (4).
Figure 2006023200
Here, S i and S i + 1 are data obtained by the equations (1) and (2), α, β, and γ are coefficients of the calibration curve equation, and Z 0 is a constant term. Equation (4) is obtained in advance by the spectroscopic measurement device of FIG. 6 using a standard sample of mixed acid (hydrofluoric acid + nitric acid + acetic acid) of a known concentration and stored in the RAM 146 of the data processing device 140.

また、硝酸の検量線式G(S)および酢酸の検量線式H(S)は、いずれもフッ酸についての式(4)と同様の式である。これら検量線式についても、同様に、濃度測定装置により、既知濃度の混酸(フッ酸+硝酸+酢酸)の上記標準サンプルを用いて予め求めておき、データ処理装置140のRAM146に格納しておく。 The calibration curve formula G (S i ) for nitric acid and the calibration curve formula H (S i ) for acetic acid are both similar to the formula (4) for hydrofluoric acid. Similarly, these calibration curve types are obtained in advance using the standard sample of a mixed acid (hydrofluoric acid + nitric acid + acetic acid) having a known concentration by a concentration measuring device and stored in the RAM 146 of the data processing device 140. .

次に、式(4)の演算により得られたフッ酸の濃度C1,硝酸の濃度C2および酢酸の濃度Cを、出力装置150に出力する(ステップS18)。たとえば、CRT画面に表示し、印字用紙にハードコピーとして出力し、または、外部へ送信する。 Next, the hydrofluoric acid concentration C 1 , the nitric acid concentration C 2 and the acetic acid concentration C 3 obtained by the calculation of the equation (4) are output to the output device 150 (step S 18). For example, it is displayed on a CRT screen, outputted as a hard copy on printing paper, or transmitted to the outside.

また、得られたフッ酸の濃度C1、硝酸の濃度C2および酢酸の濃度C3のデータに基づいて、現時点における混酸の槽100の状態を把握し、これらデータより演算することができる、槽100の管理に必要なパラメータ値、たとえば原液追加量、原液追加の時間、廃液量、廃液時間を演算し、その結果を出力装置150に出力する(ステップS20)。 Further, based on the obtained data of hydrofluoric acid concentration C 1 , nitric acid concentration C 2, and acetic acid concentration C 3 , the present state of the mixed acid tank 100 can be grasped and calculated from these data. The parameter values necessary for the management of the tank 100, for example, the stock solution addition amount, the stock solution addition time, the waste solution amount, and the waste solution time are calculated, and the results are output to the output device 150 (step S20).

なお、以上の例では、液体中の成分濃度の測定方法について説明したが、温度も吸光度の1因子であるので、液体温度も同様に吸光度測定により求められる。すなわち、上述の測定方法は、吸光度に関連する各種物理量の測定に使用できる。   In the above example, the method for measuring the component concentration in the liquid has been described. However, since the temperature is also a factor of absorbance, the liquid temperature can be similarly determined by measuring absorbance. That is, the measurement method described above can be used for measurement of various physical quantities related to absorbance.

なお、この例では、測定対象の混酸は、フッ酸+硝酸+酢酸であったが、他の混酸、たとえば、フッ酸+硝酸、リン酸+硝酸、フッ酸+硝酸+酢酸、リン酸+硝酸+酢酸、フッ酸+塩酸、硫酸+塩酸、王水も同様にデータ処理をすればよいことはいうまでもない。   In this example, the mixed acid to be measured was hydrofluoric acid + nitric acid + acetic acid, but other mixed acids, for example, hydrofluoric acid + nitric acid, phosphoric acid + nitric acid, hydrofluoric acid + nitric acid + acetic acid, phosphoric acid + nitric acid. Needless to say, data processing may be performed in the same manner for + acetic acid, hydrofluoric acid + hydrochloric acid, sulfuric acid + hydrochloric acid, and aqua regia.

2回反射型の光学プローブの正面図Front view of a two-reflection optical probe 2回反射型の光学プローブの側面断面図Side sectional view of a two-reflection optical probe 2回反射型の光学プローブの変形例の正面図Front view of a modified example of a two-reflection optical probe 2回反射型の光学プローブの他の変形例の正面図Front view of another modified example of a two-reflection optical probe 3回反射型の光学プローブの正面図Front view of 3 times reflection type optical probe 分光測定装置の構成を示す図Diagram showing the configuration of the spectrometer 分光測定装置の光源のブロック図Block diagram of a light source for a spectroscopic measurement device 分光測定装置のデータ処理のフローチャートFlow chart of data processing of spectrometer

符号の説明Explanation of symbols

10 光学プローブの本体、 12 空洞部12、 18,20 光ファイバ、 26,28 凸レンズ、 34,36 内部空隙、 34a,36a 全反射面、 120 光源、 130 分光部、 140 データ処理部。
DESCRIPTION OF SYMBOLS 10 Main body of optical probe, 12 Cavity part 12, 18, 20 Optical fiber, 26, 28 Convex lens, 34, 36 Internal space | gap, 34a, 36a Total reflection surface, 120 Light source, 130 Spectroscopic part, 140 Data processing part.

Claims (6)

透明材料からなる光学プローブであって、
第1の光ファイバを挿入可能な第1の孔と、
前記の透明材料との屈折率差による全反射面となる2または3の平面を備える内部空隙であって、前記の2個または3個の平面を、第1の孔の中の第1の光ファイバからの入射光を順次全反射するように配置した内部空隙と、
第2の光ファイバを挿入可能な第2の孔であって、前記の内部空隙の平面により順次反射された光が入射する位置に設けられた第2の孔と、
第1の光ファイバから、内部空隙の前記の2個または3個の平面を経て、第2の光ファイバに至る光路の途中に設けられ、光路に垂直な対向する2つの境界面を備え、外部に通じる空洞部と
を備える光学プローブ。
An optical probe made of a transparent material,
A first hole into which the first optical fiber can be inserted;
An internal air gap having two or three planes to be a total reflection surface due to a difference in refractive index with the transparent material, wherein the two or three planes are used as the first light in the first hole. An internal air gap arranged so as to sequentially reflect the incident light from the fiber, and
A second hole into which a second optical fiber can be inserted, the second hole provided at a position where light sequentially reflected by the plane of the internal gap is incident;
Provided in the middle of the optical path from the first optical fiber through the two or three planes of the internal gap to the second optical fiber, and having two opposing boundary surfaces perpendicular to the optical path, An optical probe comprising: a cavity communicating with
前記の透明材料の屈折率が1.4142以上であり、前記の平面の数が2であることを特徴とする請求項1に記載された光学プローブ。   2. The optical probe according to claim 1, wherein the refractive index of the transparent material is 1.4142 or more, and the number of the planes is two. 前記の透明材料の屈折率が1.4142と1.155の間であり、前記の平面の数が3であることを特徴とする請求項1に記載された光学プローブ。   The optical probe according to claim 1, wherein the refractive index of the transparent material is between 1.4142 and 1.155, and the number of the planes is three. 前記の第1の光ファイバの出射側と前記の第2の光ファイバの入射側にそれぞれ集光レンズを備えたことを特徴とする請求項1〜3のいずれかに記載された光学プローブ。   The optical probe according to any one of claims 1 to 3, wherein a condensing lens is provided on each of an emission side of the first optical fiber and an incident side of the second optical fiber. 測定対象の液体に光を透過させ、複数波長の光についてその各強度をそれぞれ検出し、その検出値に基づいて上記液体の物理量を測定する分光測定装置であって、
請求項1〜4のいずれかに記載された光学プローブと、
近赤外光を複数波長の光に分光し、第1の光ファイバを介して光学プローブに送る光源と、
前記の光学プローブから第2の光ファイバを介して光を受光し、受光した光の強度に応じた光強度信号を発生する光検出部と、
酸の濃度が既知の複数の混酸のサンプルについての複数波長の光の吸光度と酸の濃度との間の定数項を含む吸光度の多次多項式を用いて多変量解析法により求めた検量線式を保持する一方、上記光検出部が出力する光強度信号から各波長の光の吸光度をそれぞれ演算し、演算した各波長の上記光の吸光度から上記検量線式に基づいて測定対象の液体の物理量を演算する物理量演算手段と
を備えたことを特徴とする分光測定装置。
A spectroscopic measurement device that transmits light to a liquid to be measured, detects each intensity of light of a plurality of wavelengths, and measures a physical quantity of the liquid based on the detected value,
An optical probe according to any one of claims 1 to 4,
A light source that splits near-infrared light into light of a plurality of wavelengths and sends the light to an optical probe via a first optical fiber;
A light detection unit that receives light from the optical probe via a second optical fiber and generates a light intensity signal corresponding to the intensity of the received light;
A calibration curve equation obtained by a multivariate analysis method using a multi-order polynomial of absorbance including a constant term between the absorbance of light of multiple wavelengths and the concentration of acid for a plurality of mixed acid samples with known acid concentrations On the other hand, the light absorbance of each wavelength is calculated from the light intensity signal output by the light detection unit, and the physical quantity of the liquid to be measured is calculated from the calculated light absorbance of each wavelength based on the calibration curve equation. A spectroscopic measurement apparatus comprising: a physical quantity calculating means for calculating.
前記の物理量が液体中の成分濃度と温度であることを特徴とする請求項5に記載された分光測定装置。
The spectroscopic measurement apparatus according to claim 5, wherein the physical quantity is a component concentration and temperature in a liquid.
JP2004202072A 2004-07-08 2004-07-08 Optical probe and spectrometric apparatus Pending JP2006023200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202072A JP2006023200A (en) 2004-07-08 2004-07-08 Optical probe and spectrometric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202072A JP2006023200A (en) 2004-07-08 2004-07-08 Optical probe and spectrometric apparatus

Publications (1)

Publication Number Publication Date
JP2006023200A true JP2006023200A (en) 2006-01-26

Family

ID=35796570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202072A Pending JP2006023200A (en) 2004-07-08 2004-07-08 Optical probe and spectrometric apparatus

Country Status (1)

Country Link
JP (1) JP2006023200A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276265A (en) * 2008-05-16 2009-11-26 Yokogawa Electric Corp Transmission scatter type turbidimeter
WO2010092985A1 (en) * 2009-02-12 2010-08-19 倉敷紡績株式会社 Fluid control method and fluid control device
JP2012032184A (en) * 2010-07-29 2012-02-16 Kurabo Ind Ltd Optical probe and spectrometry device using the same
CN102809548A (en) * 2012-08-22 2012-12-05 吉林大学 Liquid refraction index sensing device based on microporous step multimode polymer fiber
US8390816B2 (en) 2008-03-04 2013-03-05 Kurashiki Boseki Kabushiki Kaisha Method for attenuated total reflection far ultraviolet spectroscopy and an apparatus for measuring concentrations therewith
JP2016075477A (en) * 2014-10-02 2016-05-12 住友電気工業株式会社 Optical probe
JP2020106490A (en) * 2018-12-28 2020-07-09 横河電機株式会社 Measuring apparatus, calibration curve creation system, method for measuring spectrum, method for creating calibration curve, analyzer, liquefied gas production plant, and method for analyzing state
JP2020118698A (en) * 2020-04-23 2020-08-06 倉敷紡績株式会社 Measuring method of liquid component on substrate, and substrate processing apparatus
CN114088666A (en) * 2021-12-06 2022-02-25 上海易清智觉自动化科技有限公司 Sand washing wastewater treatment detection device and method
JP7429405B2 (en) 2019-10-18 2024-02-08 国立大学法人 岡山大学 Temperature change detection device and thermal treatment device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258148A (en) * 1985-05-13 1986-11-15 Fujiwara Seisakusho:Kk Optical device
JPS6275230A (en) * 1985-09-26 1987-04-07 チバ−ガイギ− アクチエンゲゼルシヤフト Analyzing method
JPS6438634A (en) * 1987-08-04 1989-02-08 Moritetsukusu Kk Sensor head for refractometer
JPH01501247A (en) * 1986-09-15 1989-04-27 ヒユーズ・エアクラフト・カンパニー Ion sensing system in aqueous solution
JPH06265471A (en) * 1993-03-11 1994-09-22 Kurabo Ind Ltd Mixed acid content measuring method and device thereof
JPH0743296A (en) * 1993-07-24 1995-02-14 Horiba Ltd Method for measuring concentration and temperature of gas sample simultaneously
JPH10332575A (en) * 1997-05-29 1998-12-18 Nippon Soken Inc Detecting apparatus for raindrop
JPH1137925A (en) * 1997-07-22 1999-02-12 Nippon Sheet Glass Co Ltd Droplet detector
JP2000088749A (en) * 1998-09-14 2000-03-31 Kurabo Ind Ltd Probe for optical measurement
JP2000275176A (en) * 1999-03-29 2000-10-06 Takeda Chem Ind Ltd Probe for measuring light transmissivity

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258148A (en) * 1985-05-13 1986-11-15 Fujiwara Seisakusho:Kk Optical device
JPS6275230A (en) * 1985-09-26 1987-04-07 チバ−ガイギ− アクチエンゲゼルシヤフト Analyzing method
JPH01501247A (en) * 1986-09-15 1989-04-27 ヒユーズ・エアクラフト・カンパニー Ion sensing system in aqueous solution
JPS6438634A (en) * 1987-08-04 1989-02-08 Moritetsukusu Kk Sensor head for refractometer
JPH06265471A (en) * 1993-03-11 1994-09-22 Kurabo Ind Ltd Mixed acid content measuring method and device thereof
JPH0743296A (en) * 1993-07-24 1995-02-14 Horiba Ltd Method for measuring concentration and temperature of gas sample simultaneously
JPH10332575A (en) * 1997-05-29 1998-12-18 Nippon Soken Inc Detecting apparatus for raindrop
JPH1137925A (en) * 1997-07-22 1999-02-12 Nippon Sheet Glass Co Ltd Droplet detector
JP2000088749A (en) * 1998-09-14 2000-03-31 Kurabo Ind Ltd Probe for optical measurement
JP2000275176A (en) * 1999-03-29 2000-10-06 Takeda Chem Ind Ltd Probe for measuring light transmissivity

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390816B2 (en) 2008-03-04 2013-03-05 Kurashiki Boseki Kabushiki Kaisha Method for attenuated total reflection far ultraviolet spectroscopy and an apparatus for measuring concentrations therewith
JP2009276265A (en) * 2008-05-16 2009-11-26 Yokogawa Electric Corp Transmission scatter type turbidimeter
WO2010092985A1 (en) * 2009-02-12 2010-08-19 倉敷紡績株式会社 Fluid control method and fluid control device
JP2010184203A (en) * 2009-02-12 2010-08-26 Kurabo Ind Ltd Method and device for controlling fluid
JP2012032184A (en) * 2010-07-29 2012-02-16 Kurabo Ind Ltd Optical probe and spectrometry device using the same
CN102809548A (en) * 2012-08-22 2012-12-05 吉林大学 Liquid refraction index sensing device based on microporous step multimode polymer fiber
CN102809548B (en) * 2012-08-22 2014-11-19 吉林大学 Liquid refraction index sensing device based on microporous step multimode polymer fiber
JP2016075477A (en) * 2014-10-02 2016-05-12 住友電気工業株式会社 Optical probe
JP2020106490A (en) * 2018-12-28 2020-07-09 横河電機株式会社 Measuring apparatus, calibration curve creation system, method for measuring spectrum, method for creating calibration curve, analyzer, liquefied gas production plant, and method for analyzing state
CN111504935A (en) * 2018-12-28 2020-08-07 横河电机株式会社 Measuring device and method, calibration curve creation system and method, analysis device, liquefied gas production facility, and property analysis method
US11340159B2 (en) 2018-12-28 2022-05-24 Yokogawa Electric Corporation Measurement device, calibration curve generation system, spectrum measurement method, calibration curve generation method, analysis device, liquefied gas production plant, and property analysis method
US11885741B2 (en) 2018-12-28 2024-01-30 Yokogawa Electric Corporation Analysis device, liquefied gas production plant, and property analysis method
JP7429405B2 (en) 2019-10-18 2024-02-08 国立大学法人 岡山大学 Temperature change detection device and thermal treatment device
JP2020118698A (en) * 2020-04-23 2020-08-06 倉敷紡績株式会社 Measuring method of liquid component on substrate, and substrate processing apparatus
JP7082639B2 (en) 2020-04-23 2022-06-08 倉敷紡績株式会社 Measurement method of liquid component on the substrate and substrate processing equipment
CN114088666A (en) * 2021-12-06 2022-02-25 上海易清智觉自动化科技有限公司 Sand washing wastewater treatment detection device and method

Similar Documents

Publication Publication Date Title
US11079280B2 (en) Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US7755763B2 (en) Attenuated total reflection sensor
JP4846467B2 (en) Color reaction detection device and method for producing the same
WO2012011535A1 (en) Substrate processing device
JP2006023200A (en) Optical probe and spectrometric apparatus
JP2007155494A (en) Twin flow cell and concentration measuring system using it
TWI766116B (en) Film thickness measurement device, film thickness measurement method, film thickness measurement program, and recording medium for recording film thickness measurement program
JP3578470B2 (en) Mixed acid concentration measuring device
JPH0347450B2 (en)
JPH09257705A (en) Fluid sample concentration measuring device
US8390816B2 (en) Method for attenuated total reflection far ultraviolet spectroscopy and an apparatus for measuring concentrations therewith
JP3754581B2 (en) Analysis method for multi-component organic solutions
WO2005038436A2 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
JP3215570B2 (en) Method and apparatus for measuring component concentration of organic stripping liquid
JPH0450639A (en) Optical sample analyzer
JP2004205415A (en) Photometric analysis measuring probe apparatus, solution concentration monitoring method and spectroscopic analysis apparatus
JP2009243886A (en) Optical analyzer
JP6664926B2 (en) Dryness measuring device
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
JP2020034501A (en) Spectroscopic instrument
JP2000088749A (en) Probe for optical measurement
JP2006112807A (en) Surface plasmon sensor
JP2009042065A (en) Gas sensor
JP2007155674A (en) Microcell
JP2001267300A (en) Measuring method and apparatus of etching depth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323