JP2006023097A - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP2006023097A
JP2006023097A JP2004199099A JP2004199099A JP2006023097A JP 2006023097 A JP2006023097 A JP 2006023097A JP 2004199099 A JP2004199099 A JP 2004199099A JP 2004199099 A JP2004199099 A JP 2004199099A JP 2006023097 A JP2006023097 A JP 2006023097A
Authority
JP
Japan
Prior art keywords
gas
semiconductor
gas detection
carbon monoxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004199099A
Other languages
Japanese (ja)
Inventor
Noriyoshi Nagase
徳美 長瀬
Tadashi Watanabe
匡 渡邊
Noriyuki Hirayama
則行 平山
Hisao Onishi
久男 大西
Takeshi Hashimoto
橋本  猛
Yasuharu Dangi
康晴 談議
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004199099A priority Critical patent/JP2006023097A/en
Publication of JP2006023097A publication Critical patent/JP2006023097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Alarm Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the sensing stability of carbon monoxide especially at the time of low temperature in a gas sensor using a semiconductor gas sensing element. <P>SOLUTION: The gas sensing element is repeatedly driven heretofore at a constant cycle determined by a high-temperature drive period Ta and a low-temperature drive period Tb as shown by Fig. (a) and, for example, methane is sensed in timing of t1 and carbon monoxide is sensed in timing of t2 but, since the time to sense gas to be sensed becomes generally long, for example, when the ambient temperature lowers, in a case that carbon monoxide of predetermined concentration or above is sensed, the low-temperature drive period is instantaneously made long (Tb'>Tb) like Tb' of Fig. (b) and a drive cycle is made long from T to T1 to perform the stable sensing of carbon monoxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、被検知ガス成分に感応して電気抵抗が変化する半導体式ガス検知素子を用いたガス検知装置、特にガス検知素子の加熱温度を制御する手段を備え、周期的にガス検知素子の温度を変化させることによって、複数のガスを検知できるようにしたガス検知装置に関する。   The present invention includes a gas detection device using a semiconductor type gas detection element whose electric resistance changes in response to a gas component to be detected, particularly a means for controlling the heating temperature of the gas detection element. The present invention relates to a gas detector capable of detecting a plurality of gases by changing a temperature.

都市ガスやプロパンガス機器の不完全燃焼に伴う不完全燃焼ガス成分を検知して、ガス漏れ状態や不完全燃焼状態を警報するガス警報器は良く知られている。かかるガス警報器では、1つのガス検知素子を用いて、ガス漏れ状態を示す被検知ガス成分としてメタン等の可燃性ガス成分を、不完全燃焼状態を示す被検知ガス成分としてCOを、その動作温度を各々の被検知ガス成分の高感度温度域に制御して、各別に検出する工夫がなされている。   Gas alarms that detect incomplete combustion gas components associated with incomplete combustion of city gas and propane gas equipment and warn of gas leakage and incomplete combustion are well known. In such a gas alarm device, a single gas detection element is used to operate a combustible gas component such as methane as a detected gas component indicating a gas leakage state, CO as a detected gas component indicating an incomplete combustion state, and the operation thereof. A device has been devised in which the temperature is controlled to the high sensitivity temperature range of each detected gas component and detected separately.

図4に例えば特許文献1に示されるガス警報器の例を示す。
同図において、1は定電圧回路、2は半導体式ガス検知素子等のガスセンサ、3はマイクロコンピュータ(マイコンともいう)、4は表示ランプ、5は警報出力部、6はスピーカ/ブザー、Tr1はトランジスタ、R3はセンサ断線検知抵抗、R4はセンサ出力抵抗で、マイコン3からトランジスタTr1を介してガスセンサ2を低温,高温で周期的に駆動し、高温のときメタン等の可燃性ガス成分、低温のときCOを検知するものである。
FIG. 4 shows an example of a gas alarm device disclosed in Patent Document 1, for example.
In the figure, 1 is a constant voltage circuit, 2 is a gas sensor such as a semiconductor type gas detection element, 3 is a microcomputer (also called a microcomputer), 4 is a display lamp, 5 is an alarm output unit, 6 is a speaker / buzzer, and Tr1 is Transistor, R3 is a sensor disconnection detection resistor, R4 is a sensor output resistor, and the gas sensor 2 is periodically driven from the microcomputer 3 via the transistor Tr1 at low and high temperatures. When the temperature is high, combustible gas components such as methane, Sometimes CO is detected.

図5に、上記ガス警報器で一般的に用いられる、ガスセンサ特に半導体式ガス検知素子の温度特性を示す。図5より明らかなように、半導体式ガス検知素子は被検知ガス成分のメタンやCOの濃度によってその電気抵抗(センサ抵抗)が変化するとともに、その値は半導体式ガス検知素子の動作温度に依存して大きく変化する。メタンの場合、清浄空気中(メタン濃度0)とメタン濃度1000ppmとの場合を比較すると、高温時(例えば420℃)でセンサ抵抗に大きな差が生じ、高感度でメタン検知可能であることが分かる。また、COの場合に、清浄空気中(CO濃度0)とCO濃度100ppmとの場合を比較すると、低温時(例えば80℃)でセンサ抵抗に大きな差が生じ、高感度でCO検知可能であることが分かる。   FIG. 5 shows temperature characteristics of a gas sensor, particularly a semiconductor type gas detection element, which is generally used in the gas alarm device. As is apparent from FIG. 5, the semiconductor gas sensing element changes its electric resistance (sensor resistance) depending on the concentration of the detected gas component methane or CO, and its value depends on the operating temperature of the semiconductor gas sensing element. And change greatly. In the case of methane, when comparing the case of clean air (methane concentration 0) and methane concentration 1000 ppm, it can be seen that there is a large difference in sensor resistance at high temperatures (eg, 420 ° C.), and that methane can be detected with high sensitivity. . Further, in the case of CO, when comparing the case of clean air (CO concentration of 0) and CO concentration of 100 ppm, a large difference occurs in sensor resistance at low temperatures (for example, 80 ° C.), and CO detection is possible with high sensitivity. I understand that.

従って、ガス警報器は通常、ガス検知素子の動作温度を適正温度に制御するためのヒータを有し、例えば図4のマイコン3を用いて、高温状態(420℃、5秒間)と低温状態(80℃、10秒間)を周期的に変位するヒータ駆動を行なうことにより、メタンとCOを周期的に検知するようにしている。
特開2000−221151号公報
Therefore, the gas alarm usually has a heater for controlling the operating temperature of the gas detection element to an appropriate temperature. For example, using the microcomputer 3 in FIG. 4, a high temperature state (420 ° C., 5 seconds) and a low temperature state ( By performing heater driving that periodically displaces at 80 ° C. for 10 seconds, methane and CO are periodically detected.
JP 2000-221151 A

ところで、ガス漏れ警報器などのガス検知装置において、ヒータやセンサに電圧を印加する周期であって、高温にて駆動される期間と低温にて駆動される期間との和からなる前記半導体式ガス検知素子の駆動周期は、ガス漏れや不完全燃焼を検知する目的から鑑みて、短いことが有利なのは自明である。上記のようなガス警報器では、ガス検知素子により被検知ガスを検知する周期は、上記の駆動周期に同期させるため、メタン,COともに15秒周期となる。   By the way, in a gas detection device such as a gas leak alarm, the semiconductor type gas is a cycle in which a voltage is applied to a heater or a sensor, and is a sum of a period driven at a high temperature and a period driven at a low temperature. Obviously, it is advantageous that the driving cycle of the detection element is short in view of the purpose of detecting gas leakage and incomplete combustion. In the gas alarm device as described above, the cycle for detecting the gas to be detected by the gas detection element is synchronized with the drive cycle described above, so that both methane and CO have a cycle of 15 seconds.

一方、確実にガスを検知する目的からは、ガス検知素子の出力を取り込みガスの濃度を判断する周期であるガス検知周期は、ガス検知素子が安定にガスの検知が可能となる時間から決定する必要があるが、半導体式ガス検知素子のガス検知は、素子表面への被検知ガスの吸着反応現象を利用しているため、低温状態では吸着反応速度が遅くなり、安定にガスを検知可能な時間が高温状態に比べて長くなる傾向がある。   On the other hand, for the purpose of reliably detecting gas, the gas detection period, which is a period for taking in the output of the gas detection element and judging the concentration of the gas, is determined from the time when the gas detection element can stably detect the gas. Although it is necessary, the gas detection of the semiconductor gas detection element utilizes the adsorption reaction phenomenon of the gas to be detected on the element surface, so the adsorption reaction rate becomes slow at low temperatures, and the gas can be detected stably. Time tends to be longer compared to high temperature conditions.

また、ガス検知素子の温度を、ヒータに投入する電力で制御する場合、周囲温度を補償するような制御を行なっていないことが多く、そのため、周囲温度の変化が素子温度の変化を招き、周囲温度が低温になる場合はガスの吸着反応速度が遅くなり、安定にガスの検知が可能となる時間が長くなる傾向がある。その結果、駆動周期が一定な従来のガス検知装置では、周囲温度が低温の場合にCOを安定に検知できていない可能性が高く、低温状態でのガス検知の再現性が悪くなると言う問題がある。   In addition, when the temperature of the gas detection element is controlled by the electric power supplied to the heater, control that compensates for the ambient temperature is often not performed. Therefore, a change in the ambient temperature causes a change in the element temperature. When the temperature is low, the gas adsorption reaction rate is slow, and the time during which gas can be stably detected tends to be long. As a result, in the conventional gas detection device having a constant driving cycle, there is a high possibility that CO cannot be detected stably when the ambient temperature is low, and the reproducibility of gas detection in a low temperature state is deteriorated. is there.

また、半導体式ガス検知素子に、被検知ガスへの増感作用や応答性を高めるために貴金属などの触媒を添加することが広く行なわれ、COガスを検知するガス検知素子にも増感作用や応答性を高めるために貴金属触媒の添加が行なわれている。この触媒の問題点として、ガス検知素子の運転状態は通常の電子機器とは異なり、非常に高温であることに起因する経時安定性の問題がある。一般的に触媒活性が減少する方向へ変化するため、ガス検知装置においても、被検知ガスの吸着反応速度が遅くなるなどの問題が生じる。   In addition, a catalyst such as a noble metal is widely added to a semiconductor gas detection element in order to enhance the sensitization action and response to the gas to be detected, and the gas detection element for detecting CO gas also has a sensitization action. In order to improve responsiveness, a noble metal catalyst is added. As a problem of this catalyst, the operating state of the gas detection element is different from that of a normal electronic device, and there is a problem of stability with time due to a very high temperature. In general, since the catalytic activity changes in a decreasing direction, problems such as a slow rate of adsorption of the gas to be detected also occur in the gas detector.

つまり、駆動周期が一定な従来のガス検知装置では、経時によってCOを安定に検知できていない可能性が高くなり、経時変化状態でのガス検知の再現性が悪くなると言う問題がある。
したがって、この発明の課題は、駆動周期を適正に保ちつつ、COの検知安定性を向上させることにある。
In other words, the conventional gas detection device having a constant driving cycle has a problem that the possibility of not being able to detect CO stably with time increases, and the reproducibility of gas detection in a state of change with time deteriorates.
Therefore, an object of the present invention is to improve the CO detection stability while keeping the driving cycle appropriate.

請求項1の発明では、半導体式ガス検知素子と、この半導体式ガス検知素子を高温と低温の2種類の温度間で周期的に変化させて駆動する駆動手段とを備え、高温にて可燃性ガス成分を、低温にて一酸化炭素をそれぞれ検知するガス検知装置において、
低温駆動時に一酸化炭素を所定濃度以上検出したときは、即時に前記半導体式ガス検知素子の出力と対応させて、前記半導体式ガス検知素子の駆動周期を、一酸化炭素が所定濃度に達しないときの半導体式ガス検知素子の駆動周期よりも長くすることを特徴とする。
The invention of claim 1 includes a semiconductor gas detection element and driving means for periodically driving the semiconductor gas detection element between two types of high temperature and low temperature, and is combustible at high temperature. In gas detectors that detect carbon monoxide at low temperatures,
When carbon monoxide is detected at a predetermined concentration or more during low-temperature driving, the driving cycle of the semiconductor type gas sensing element is immediately matched with the output of the semiconductor type gas sensing element, and the carbon monoxide does not reach the predetermined concentration. It is characterized in that it is longer than the driving cycle of the semiconductor gas detection element at that time.

請求項2の発明では、半導体式ガス検知素子と、この半導体式ガス検知素子を高温と低温の2種類の温度間で周期的に変化させて駆動する駆動手段とを備え、高温にて可燃性ガスを、低温にて一酸化炭素をそれぞれ検知するガス検知装置において、
低温駆動時に一酸化炭素を所定濃度以上検出したときは、即時に前記半導体式ガス検知素子の出力と対応させて、前記半導体式ガス検知素子を低温にて駆動する期間を、一酸化炭素が所定濃度に達しないときに半導体式ガス検知素子を低温にて駆動する期間よりも長くすることを特徴とする。
The invention of claim 2 includes a semiconductor gas detection element and driving means for driving the semiconductor gas detection element by periodically changing between two types of temperatures, high temperature and low temperature, and is combustible at high temperature. In gas detectors that detect carbon monoxide at low temperatures,
When carbon monoxide is detected at a predetermined concentration or more during low-temperature driving, the carbon monoxide is predetermined for a period during which the semiconductor-type gas sensing element is driven at a low temperature, immediately corresponding to the output of the semiconductor-type gas sensing element. When the concentration does not reach, the semiconductor gas detection element is made longer than a period of driving at a low temperature.

上記請求項1または2の発明においては、前記低温駆動時に一酸化炭素を所定濃度以上検出したときは、即時に前記半導体式ガス検知素子の出力と対応させて、前記半導体式ガス検知素子の駆動周期を、10秒以上かつ30秒以下の範囲で変化させることができる(請求項3の発明)。   In the first or second aspect of the invention, when carbon monoxide is detected at a predetermined concentration or more during the low temperature driving, the driving of the semiconductor gas sensing element is immediately associated with the output of the semiconductor gas sensing element. The period can be changed in the range of 10 seconds or more and 30 seconds or less (Invention of Claim 3).

この発明によれば、駆動周期を適正に保ちつつ、COの検知安定性を高めることができ、ガス漏れ事故やCO中毒事故を高精度に未然に防止することが可能となる。   According to the present invention, it is possible to improve CO detection stability while maintaining an appropriate driving cycle, and to prevent a gas leak accident and a CO poisoning accident with high accuracy.

図1はこの発明の実施の形態を説明するための説明図で、図1(a)はCOガスを検出していない場合、図1(b)はCOガスを検出している場合の、ガス検知素子のヒータ駆動のタイミングチャートをそれぞれ示す。なお、ガス検知素子(ガスセンサ)としては良く知られたもの、例えば特開平07−198644号公報に記載のものを用いることができる。また、この発明は、先の特許文献1等を用いることで、容易に実施可能である。
図1において、Taはヒータを高温に保つ時間を示し、Tbは同じく低温に保つ時間を示す。駆動周期Tは前記Ta+Tbとの和、すなわちT=Ta+Tbである。また、t1はTa期間中のメタン検知タイミング、t2はTb期間中のCO検知タイミングをそれぞれ示す。
なお、前記t1,t2の各検知タイミングは、一般的には、前記Ta,Tb期間の終端近傍で、例えば、Ta,Tb各期間終了の0.5秒前などに設定される。このように駆動周期Tと、実際にガス検知素子の出力を取り込むガス検知周期は、ほぼ等しくなる。
FIG. 1 is an explanatory diagram for explaining an embodiment of the present invention. FIG. 1 (a) shows a gas when CO gas is not detected, and FIG. 1 (b) shows a gas when CO gas is detected. The timing chart of the heater drive of a detection element is shown, respectively. As the gas detection element (gas sensor), a well-known one, for example, one described in Japanese Patent Application Laid-Open No. 07-198644 can be used. In addition, the present invention can be easily implemented by using the above-mentioned Patent Document 1.
In FIG. 1, Ta indicates a time for keeping the heater at a high temperature, and Tb indicates a time for keeping the heater at a low temperature. The driving cycle T is the sum of the Ta + Tb, that is, T = Ta + Tb. Further, t1 represents the methane detection timing during the Ta period, and t2 represents the CO detection timing during the Tb period.
Note that the detection timings of t1 and t2 are generally set near the end of the Ta and Tb periods, for example, 0.5 seconds before the end of the Ta and Tb periods. Thus, the driving cycle T and the gas detection cycle that actually takes in the output of the gas detection element are substantially equal.

ここで、従来のガス検知装置では、ガスの駆動周期Tは常に一定である。これに対し、この発明では時刻t2においてガス検知素子の出力を検出し、それがガスの存在を判断する出力値に達している場合、例えばCOの警報を発するCO濃度、すなわち約100ppmの出力(O100)の半分(50ppm)の濃度相当の出力(O50)を検出したとき、即時に駆動時間をTbからTb’(Tb’>Tb)になるように、ヒータの駆動周期を図1aから図1bのように変化させる。TbをTb’にして駆動周期TをT1に変えるのではなく、Taの時間も含めて駆動周期T1に変えるようにしても良い。このとき、変化させる駆動周期をガス検知素子の出力に応じて変えることができる。   Here, in the conventional gas detection device, the gas driving cycle T is always constant. On the other hand, in the present invention, when the output of the gas detection element is detected at time t2 and reaches the output value for judging the presence of gas, for example, the CO concentration for issuing a CO alarm, that is, the output of about 100 ppm ( When an output (O50) corresponding to a concentration (50 ppm) of half (50 ppm) of O100) is detected, the heater driving cycle is changed from Tb to Tb ′ (Tb ′> Tb) immediately so that the heater driving cycle is shown in FIGS. Change as follows. Instead of changing Tb to Tb ′ and changing the driving cycle T to T1, the driving cycle T1 may be changed to include the time Ta. At this time, the drive period to be changed can be changed according to the output of the gas detection element.

そして、次の検知タイミングt2’における出力が、COの警報を発するCO濃度であるO100を超えている場合に、警報を発するようにする。このCO警報を発している期間中は、低温駆動時間はTb’に保ち、雰囲気中のCO濃度が減少し、タイミングt2’での出力がO100を下回ったときに、駆動周期を図1bから図1aのようにする。この例では、たとえば上記Taは5秒、Tbは10秒、Tb’は20秒とするが、これらの値に限らないことは勿論である。   Then, when the output at the next detection timing t2 'exceeds O100, which is the CO concentration at which a CO alarm is issued, an alarm is issued. During the period when the CO alarm is issued, the low temperature driving time is kept at Tb ′, the CO concentration in the atmosphere decreases, and when the output at timing t2 ′ falls below O100, the driving cycle is shown in FIG. As in 1a. In this example, for example, Ta is 5 seconds, Tb is 10 seconds, and Tb 'is 20 seconds, but it is needless to say that these values are not restrictive.

図2は、従来のガス検知装置10台と(図2(a)参照)この発明のガス検知装置10台(図2(b)参照)の場合の、CO出力の周囲温度依存性を説明する説明図である。ここでは、室温(20℃)、CO濃度100ppmで警報を発するガス検知装置を、周囲温度を0℃から50℃まで変化させた場合の、警報を発したCOガス濃度を示している。なお、ガス検知素子の出力の温度依存性については、従来のガス検知装置とこの発明のガス検知装置ともに、周囲温度を検出することで補償を行なっている。   FIG. 2 explains the ambient temperature dependence of the CO output in the case of 10 conventional gas detection devices (see FIG. 2 (a)) and 10 gas detection devices of the present invention (see FIG. 2 (b)). It is explanatory drawing. Here, the CO gas concentration which issued the alarm when the ambient temperature is changed from 0 ° C. to 50 ° C. in the gas detector that issues the alarm at room temperature (20 ° C.) and CO concentration of 100 ppm is shown. Note that the temperature dependence of the output of the gas detection element is compensated by detecting the ambient temperature in both the conventional gas detection device and the gas detection device of the present invention.

図2に示されるように、従来のガス検知装置では周囲温度が低温になるほど、警報を発する濃度の再現性が悪いことが分かるが、この発明のガス検知装置の再現性は良好であることが分かる(図2では10台の各々を明瞭には区別できないが、大体のところが分かれば充分である)。
図3は図2と同じくCO出力の周囲温度依存性を説明する説明図で、ここでは図3(a)として例えば5年間経過した従来のガス検知装置10台を用いた点が異なる外は、図2の場合と同様である。
As shown in FIG. 2, it can be seen that in the conventional gas detection device, the lower the ambient temperature, the worse the reproducibility of the concentration at which an alarm is issued, but the reproducibility of the gas detection device of the present invention is good. You can see (in Fig. 2 you can't clearly distinguish each of the 10 cars, but it's enough if you know roughly).
FIG. 3 is an explanatory diagram for explaining the ambient temperature dependence of the CO output as in FIG. 2. Here, except that, for example, 10 conventional gas detectors that have passed for 5 years are used as FIG. This is the same as in the case of FIG.

すなわち、図3に示すように、従来のガス検知装置では周囲温度が低温になるほど、警報を発する濃度の再現性が悪く、図2と比較して再現性が悪くなり始める温度が上昇していることが分かる。これは、ガス検知素子の触媒機能が経時劣化することを示していると言える。一方、この発明のガス検知装置の再現性は図3(b)のように、全温度領域において良好と言える。   That is, as shown in FIG. 3, in the conventional gas detection device, the lower the ambient temperature, the worse the reproducibility of the concentration that gives an alarm, and the higher the temperature at which the reproducibility starts to deteriorate compared to FIG. I understand that. This can be said to indicate that the catalytic function of the gas detection element deteriorates with time. On the other hand, the reproducibility of the gas detector of the present invention can be said to be good in the entire temperature range as shown in FIG.

以上では、従来のガス検知装置と比較するために、図1のTa,Tbは従来のガス検知装置と同じ時間になるように設定したが、Tbの時間はCOの有無が判定できれば良く、従来の場合のTbより短い、例えばTaと同程度(すなわち、高温状態における駆動周期5秒と同程度)まで短くすることができる。この場合でも、Tb’は良好な再現性を得るためにできるだけ長くすることが好ましいが、ガス漏れ警報器に適用する場合は、確実に1分以内にガス漏れ(メタン)を警報する必要性から、1分間に2回以上の測定周期になることが好都合で、従って、駆動周期Tとしては10秒以上かつ30秒以下とすることが望ましい。   In the above, for comparison with the conventional gas detection device, Ta and Tb in FIG. 1 are set to have the same time as that of the conventional gas detection device. In this case, it can be shortened to Tb shorter than, for example, about Ta (that is, about the same as the driving cycle of 5 seconds in a high temperature state). Even in this case, it is preferable to make Tb ′ as long as possible in order to obtain good reproducibility. However, when applied to a gas leak alarm, it is necessary to reliably alarm gas leak (methane) within one minute. It is convenient to have two or more measurement cycles per minute. Therefore, it is desirable that the driving cycle T be 10 seconds or more and 30 seconds or less.

この発明の実施の形態を説明する説明図Explanatory drawing explaining embodiment of this invention 周囲温度依存性を説明するグラフGraph explaining ambient temperature dependence 経時品の周囲温度依存性を説明するグラフA graph explaining the ambient temperature dependence of a time-lapse product ガス警報器の従来例を示す構成図Configuration diagram showing a conventional example of a gas alarm ガス検知素子の温度特性例図Example of temperature characteristics of gas detection element

符号の説明Explanation of symbols

T,T1…駆動周期、Ta…高温保持期間、Tb,Tb’…低温保持期間、t1,t2…検知タイミング。

T, T1 ... drive cycle, Ta ... high temperature holding period, Tb, Tb '... low temperature holding period, t1, t2 ... detection timing.

Claims (3)

半導体式ガス検知素子と、この半導体式ガス検知素子を高温と低温の2種類の温度間で周期的に変化させて駆動する駆動手段とを備え、高温にて可燃性ガス成分を、低温にて一酸化炭素をそれぞれ検知するガス検知装置において、
低温駆動時に一酸化炭素を所定濃度以上検出したときは、即時に前記半導体式ガス検知素子の出力と対応させて、前記半導体式ガス検知素子を高温にて駆動される期間と低温にて駆動される期間との和からなる前記半導体式ガス検知素子の駆動周期を、一酸化炭素が所定濃度に達しないときの半導体式ガス検知素子の駆動周期よりも長くすることを特徴とするガス検知装置。
A semiconductor type gas detection element and a driving means for driving the semiconductor type gas detection element by periodically changing between two kinds of temperatures, high temperature and low temperature, and combustible gas components at low temperature In gas detectors that detect carbon monoxide,
When carbon monoxide is detected at a predetermined concentration or more during low temperature driving, the semiconductor gas sensing element is driven at a high temperature and at a low temperature immediately corresponding to the output of the semiconductor gas sensing element. A gas detection device characterized in that a driving cycle of the semiconductor type gas detection element, which is a sum of a period of time and a period of time, is longer than a driving cycle of the semiconductor type gas detection element when carbon monoxide does not reach a predetermined concentration.
半導体式ガス検知素子と、この半導体式ガス検知素子を高温と低温の2種類の温度間で周期的に変化させて駆動する駆動手段とを備え、高温にて可燃性ガス成分を、低温にて一酸化炭素をそれぞれ検知するガス検知装置において、
低温駆動時に一酸化炭素を所定濃度以上検出したときは、即時に前記半導体式ガス検知素子の出力と対応させて、前記半導体式ガス検知素子を低温にて駆動する期間を、一酸化炭素が所定濃度に達しないときに半導体式ガス検知素子を低温にて駆動する期間よりも長くすることを特徴とするガス検知装置。
A semiconductor type gas detection element and a driving means for driving the semiconductor type gas detection element by periodically changing between two kinds of temperatures, high temperature and low temperature, and combustible gas components at low temperature In gas detectors that detect carbon monoxide,
When carbon monoxide is detected at a predetermined concentration or more during low-temperature driving, the carbon monoxide is predetermined for a period during which the semiconductor-type gas sensing element is driven at a low temperature, immediately corresponding to the output of the semiconductor-type gas sensing element. A gas detection device characterized in that the semiconductor gas detection element is made longer than a period during which it is driven at a low temperature when the concentration is not reached.
前記低温駆動時に一酸化炭素を所定濃度以上検出したときは、即時に前記半導体式ガス検知素子の出力と対応させて、前記半導体式ガス検知素子の駆動周期を、10秒以上かつ30秒以下の範囲で変化させることを特徴とする請求項1または2に記載のガス検知装置。

When carbon monoxide is detected at a predetermined concentration or more during the low temperature driving, the driving cycle of the semiconductor gas sensing element is set to 10 seconds or more and 30 seconds or less immediately corresponding to the output of the semiconductor gas sensing element. The gas detection device according to claim 1, wherein the gas detection device is changed within a range.

JP2004199099A 2004-07-06 2004-07-06 Gas sensor Pending JP2006023097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199099A JP2006023097A (en) 2004-07-06 2004-07-06 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199099A JP2006023097A (en) 2004-07-06 2004-07-06 Gas sensor

Publications (1)

Publication Number Publication Date
JP2006023097A true JP2006023097A (en) 2006-01-26

Family

ID=35796479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199099A Pending JP2006023097A (en) 2004-07-06 2004-07-06 Gas sensor

Country Status (1)

Country Link
JP (1) JP2006023097A (en)

Similar Documents

Publication Publication Date Title
Sears et al. Algorithms to improve the selectivity of thermally-cycled tin oxide gas sensors
JPH0519100B2 (en)
JP4871776B2 (en) Gas detection device and gas detection method
JP4805759B2 (en) Gas detector
JP4528638B2 (en) Gas detector
JP2000275202A (en) Gas detecting device
JP4759475B2 (en) Gas detection device and self-diagnosis method of gas detection device
JP2006023097A (en) Gas sensor
JP2011149754A (en) Gas alarm and gas detection method
JP4497676B2 (en) Gas detection device and operation method thereof
US20080156076A1 (en) Low Power Combustible Gas Sensor
JP5274909B2 (en) Gas sensor and gas concentration detection device
JP6300203B2 (en) Gas detector
US9581564B2 (en) Electrochemical sensing using voltage-current time differential
JP2007205744A (en) Disconnection trouble detector of catalytic combustion type gas sensor
JP3929846B2 (en) Intermittent drive type combustible gas detector
JP4452784B2 (en) Gas detector
JP4151596B2 (en) Gas detector
US11060991B2 (en) Gas alarm device and gas detection method
JP6108516B2 (en) Gas detector
JP3761066B2 (en) Test method for gas leak alarm
JP2001175970A (en) Device and method for detecting gas
JP2005032009A (en) Alarm unit inspection circuit
JP2017142274A (en) Contact combustion type gas sensor
JPS62238452A (en) Gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

RD03 Notification of appointment of power of attorney

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081118

A521 Written amendment

Effective date: 20081215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Effective date: 20091130

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD03 Notification of appointment of power of attorney

Effective date: 20091130

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201