JP2017142274A - Contact combustion type gas sensor - Google Patents

Contact combustion type gas sensor Download PDF

Info

Publication number
JP2017142274A
JP2017142274A JP2017106880A JP2017106880A JP2017142274A JP 2017142274 A JP2017142274 A JP 2017142274A JP 2017106880 A JP2017106880 A JP 2017106880A JP 2017106880 A JP2017106880 A JP 2017106880A JP 2017142274 A JP2017142274 A JP 2017142274A
Authority
JP
Japan
Prior art keywords
gas
detected
concentration
type
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017106880A
Other languages
Japanese (ja)
Other versions
JP6427226B2 (en
Inventor
雅徳 三好
Masanori Miyoshi
雅徳 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2017106880A priority Critical patent/JP6427226B2/en
Publication of JP2017142274A publication Critical patent/JP2017142274A/en
Application granted granted Critical
Publication of JP6427226B2 publication Critical patent/JP6427226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact combustion type gas sensor capable of quickly identifying a kind of gas with a simple configuration.SOLUTION: A contact combustion type gas sensor X having a detection element 10 sensitive to detected gas and a compensation element 20 includes: gas kind identification means 30 for identifying a kind of detected gas by a resistance value varying when the compensation element 20 comes in contact with the detected gas; and concentration computing means 40 for calculating concentration of the detected gas by multiplying output of the detection element 10 by a factor according to the gas kind determined by the gas kind identification means 30.SELECTED DRAWING: Figure 1

Description

本発明は、被検知ガスと感応する検出素子および補償素子を有する接触燃焼式ガスセンサに関する。   The present invention relates to a catalytic combustion type gas sensor having a detection element and a compensation element that are sensitive to a gas to be detected.

接触燃焼式ガスセンサは、ヒータと温度計を兼ねる白金線コイルに貴金属触媒を担持させたアルミナを球状に焼結させた構造のセンサで、可燃性ガスの接触燃焼に伴う素子の温度変化を検知して被検知ガスの濃度を検出するガスセンサである。一般的には、同じく触媒のないアルミナのみを焼結させた補償素子と共にブリッジ接続することで、爆発限界(LEL)までの可燃性ガスの濃度を、環境温度、湿度の影響が少なく安定して検出することができる。   The catalytic combustion type gas sensor is a sensor with a structure in which alumina with a noble metal catalyst supported on a platinum wire coil that doubles as a heater and thermometer is sintered in a spherical shape. It detects the temperature change of the element due to contact combustion of combustible gas. The gas sensor detects the concentration of the gas to be detected. In general, a bridge connection with a compensation element made by sintering only alumina without a catalyst is also used to stabilize the concentration of combustible gas up to the explosion limit (LEL) with less influence of environmental temperature and humidity. Can be detected.

従来、被検知ガスのガス種を識別するに際し、特性の異なる複数のセンサ出力の比率を算出する場合があった。例えば、メタンに反応しないが他の炭化水素系のガスに反応する接触燃焼式ガスセンサと、メタンを含む炭化水素系のガスに反応する接触燃焼式ガスセンサとの2つの出力比率により、自然発生メタン、都市ガス、LPG、プロパンガスの何れかを識別する識別機能付きガス検知器が実用化されている。   Conventionally, when identifying the gas type of the gas to be detected, a ratio of a plurality of sensor outputs having different characteristics may be calculated. For example, by using two output ratios of a catalytic combustion type gas sensor that does not react with methane but reacts with other hydrocarbon gases and a catalytic combustion type gas sensor that reacts with hydrocarbon gases including methane, naturally generated methane, A gas detector with an identification function for identifying one of city gas, LPG, and propane gas has been put into practical use.

また、カラムにてガスの成分を分離し、カラムの通過時間の差により各成分の濃度を検出してガスの種類を識別する装置も知られている。   An apparatus is also known in which gas components are separated by a column, and the concentration of each component is detected based on the difference in passage time of the column to identify the type of gas.

尚、本発明における従来技術となる上述した接触燃焼式ガスセンサは、一般的な技術であるため、特許文献等の従来技術文献は示さない。   In addition, since the above-mentioned contact combustion type gas sensor used as the prior art in the present invention is a general technique, prior art documents such as patent documents are not shown.

特性の異なる複数のセンサ出力の比率を算出して被検知ガスのガス種を識別する場合、特性の異なる複数の接触燃焼式ガスセンサが必要となるため、大掛かりな構成となっていた。
また、カラムを使用してガス種を識別する場合、時間差によって検出するため、ガス種の識別結果が得られるまである程度の時間を要し、迅速にガス種を識別できなかった。
When calculating the ratio of the output of a plurality of sensors having different characteristics to identify the gas type of the gas to be detected, a plurality of catalytic combustion gas sensors having different characteristics are required.
Further, when a gas type is identified using a column, since it is detected by a time difference, a certain amount of time is required until a gas type identification result is obtained, and the gas type cannot be quickly identified.

従って、本発明の目的は、簡便な構成で迅速にガス種を識別できる接触燃焼式ガスセンサを提供することにある。   Accordingly, an object of the present invention is to provide a catalytic combustion type gas sensor capable of quickly identifying a gas type with a simple configuration.

上記目的を達成するための本発明に係る接触燃焼式ガスセンサは、被検知ガスと感応する検出素子および補償素子を有する接触燃焼式ガスセンサであって、その第一特徴構成は、前記補償素子が被検知ガスと接触することで変化する抵抗値によって被検知ガスの種類を識別するガス種識別手段と、前記検出素子の出力に対して、前記ガス種識別手段によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出する濃度演算手段と、を備えた点にある。   In order to achieve the above object, a catalytic combustion type gas sensor according to the present invention is a catalytic combustion type gas sensor having a detection element and a compensation element that are sensitive to a gas to be detected. Gas type identifying means for identifying the type of the gas to be detected based on a resistance value that changes by contact with the detection gas, and a coefficient corresponding to the gas type determined by the gas type identification means for the output of the detection element And a concentration calculation means for calculating the concentration of the gas to be detected by multiplying by.

補償素子は、被検知ガスの濃度に応じて熱が収奪されることによりその抵抗値が変化する特性を有する。当該補償素子の抵抗値変化を取り出すことで、気体固有の熱伝導率の違いによる微小発熱素子の温度変化を検出する気体熱伝導式センサと等価の挙動を示す出力が得られる。これは、被検知ガスの種類によって異なった出力となる。ガス種識別手段は
、このように変化する抵抗値を検知して、気体固有の抵抗値の変化と比較することでガス種の識別が可能となる。
The compensation element has a characteristic that its resistance value changes due to heat being deprived according to the concentration of the gas to be detected. By taking out the resistance value change of the compensation element, an output showing a behavior equivalent to that of a gas heat conduction sensor that detects a temperature change of the minute heating element due to a difference in heat conductivity inherent to the gas can be obtained. This is an output that varies depending on the type of gas to be detected. The gas type identification means can identify the gas type by detecting the resistance value changing in this way and comparing it with a change in the resistance value unique to the gas.

また、検出素子は、通電により発熱することで触媒が加熱されて被検知ガスと反応し、その反応熱に応じて(被検知ガスの濃度に応じて)抵抗値が変化する。濃度演算手段は、このように変化する抵抗値を検知して得られた出力値に、ガス種識別手段によって決定されたガス種に応じた係数を乗じることで、被検知ガスの濃度を算出することができる。   Further, the detection element generates heat by energization, whereby the catalyst is heated and reacts with the gas to be detected, and the resistance value changes according to the reaction heat (depending on the concentration of the gas to be detected). The concentration calculation means calculates the concentration of the gas to be detected by multiplying the output value obtained by detecting the resistance value thus changing by a coefficient corresponding to the gas type determined by the gas type identification means. be able to.

このように本構成によれば、1つの接触燃焼式ガスセンサのみで同時に特性の異なる2つ(補償素子および検出素子)の出力値が得られるため、複数の接触燃焼式ガスセンサを用いる必要はなく、簡便な構成で迅速にガス種を識別することができる。   As described above, according to this configuration, since two output values (compensation element and detection element) having different characteristics can be obtained simultaneously with only one catalytic combustion type gas sensor, it is not necessary to use a plurality of catalytic combustion type gas sensors. Gas species can be quickly identified with a simple configuration.

本発明の接触燃焼式ガスセンサの概要を示す図である。It is a figure which shows the outline | summary of the contact combustion type gas sensor of this invention. ブリッジ回路を示す図である。It is a figure which shows a bridge circuit. 濃度検知用出力Vd1のグラフである。It is a graph of output Vd1 for density detection. ガス種識別用出力Vd2のグラフである。It is a graph of gas type identification output Vd2. 濃度検知用出力Vd1を規格化したグラフである。It is the graph which normalized output Vd1 for density detection. ガス種識別用出力Vd2を規格化したグラフである。It is the graph which normalized the output Vd2 for gas kind identification. 規格化されたVd1とVd2の比率を示したグラフである。It is the graph which showed the ratio of normalized Vd1 and Vd2.

以下、本発明の実施形態を図面に基づいて説明する。
図1に示したように、本発明の接触燃焼式ガスセンサXは、検出素子10および補償素子20を有する。
当該接触燃焼式ガスセンサXは、補償素子20が被検知ガスと接触することで変化する抵抗値によって被検知ガスの種類を識別するガス種識別手段30と、検出素子10の出力に対して、ガス種識別手段30によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出する濃度演算手段40と、を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the catalytic combustion type gas sensor X of the present invention includes a detection element 10 and a compensation element 20.
The contact combustion type gas sensor X includes a gas type identifying means 30 for identifying the type of the gas to be detected based on a resistance value that changes when the compensation element 20 comes into contact with the gas to be detected, and a gas corresponding to the output of the detection element 10. Concentration calculating means 40 for calculating the concentration of the gas to be detected by multiplying the coefficient according to the gas type determined by the species identifying means 30.

検出素子10は、電気抵抗に対する温度係数が高い白金やタングステン等を含む金属線のコイルの表面が、被検知ガスに対して活性な白金やパラジウムといった貴金属等からなる触媒を坦持するアルミナ等の坦体で被覆されて形成されている。当該検出素子10は、被検知ガス中に置かれたとき、通電により発熱することで自身が備える触媒が加熱されて被検知ガスと反応し、その反応熱に応じて(被検知ガスの濃度に応じて)抵抗値が変化する。   The detection element 10 is made of alumina or the like on which the surface of a coil of a metal wire containing platinum or tungsten having a high temperature coefficient with respect to electric resistance carries a catalyst made of a noble metal such as platinum or palladium that is active against the gas to be detected. It is formed by covering with a carrier. When the detection element 10 is placed in the gas to be detected, it generates heat by energization, whereby the catalyst provided in itself is heated and reacts with the gas to be detected, and the concentration of the gas to be detected depends on the reaction heat. The resistance value changes.

補償素子20は、検知素子と同様に被検知ガス中に置かれて通電されることで、検知素子の温度補償を行うための素子であり、検知素子が有する触媒による燃焼熱に応じた抵抗値の変化分のみ取り出すために用いられる。
補償素子20は、例えば検出素子10と同等のコイルの表面がアルミナ等の坦体で被覆されて形成されている。補償素子20は触媒を有しないため、触媒反応による被検知ガスの燃焼が生じないため、被検知ガスに対して不活性とされる。当該補償素子20は、通電されることにより発熱してその周囲を覆うアルミナ等の坦体を加熱するものであり、熱により自らの抵抗値が変化する。
The compensation element 20 is an element for performing temperature compensation of the detection element by being placed in the gas to be detected and energized in the same manner as the detection element, and has a resistance value corresponding to the combustion heat generated by the catalyst of the detection element. It is used to extract only the amount of change.
The compensation element 20 is formed, for example, by coating the surface of a coil equivalent to the detection element 10 with a carrier such as alumina. Since the compensation element 20 does not have a catalyst, combustion of the gas to be detected due to a catalytic reaction does not occur, so that the compensation element 20 is inactive to the gas to be detected. The compensation element 20 generates heat when energized and heats a carrier such as alumina covering the periphery thereof, and its own resistance value changes due to heat.

通常、接触燃焼式ガスセンサXは、被検知ガスが検出素子10の触媒に接触した際に生じる燃焼反応の発熱により高温となった検出素子10と、被検知ガスによる燃焼反応が発生せず検出素子10よりも低温の補償素子20との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して被検知ガスの濃度を検出すること
ができる。
Usually, the contact combustion type gas sensor X includes a detection element 10 that has become a high temperature due to heat generated by a combustion reaction that occurs when the gas to be detected contacts the catalyst of the detection element 10, and a detection element in which the combustion reaction by the gas to be detected does not occur. By utilizing the fact that a difference in electrical resistance value occurs between the compensation element 20 and a temperature lower than 10, it is possible to detect the concentration of the gas to be detected by offsetting the change in the electrical resistance value due to the ambient temperature.

本発明の接触燃焼式ガスセンサXにおいて、ガス種識別手段30は、補償素子20が被検知ガスの濃度に応じて熱が収奪されることにより変化する抵抗値によって、被検知ガスの種類を識別する。当該補償素子20の抵抗値変化は、被検知ガスの種類によって異なった出力となるため、ガス種の識別が可能となる。特に、メタンおよび13A等の都市ガスと、LPG、プロパン、イソブタン、6A等のガスでは、空気に対する熱伝導率の違いによってセンサ出力の極性が反転するため、容易に識別することができる。
ガス種識別手段30は、このように変化する抵抗値を検知して、気体固有の抵抗値の変化と比較することで、被検知ガスの種類を識別するマイコンなどで構成してあれば、どのような態様であってもよい。
In the catalytic combustion type gas sensor X of the present invention, the gas type identifying means 30 identifies the type of gas to be detected based on the resistance value that changes when the compensation element 20 absorbs heat according to the concentration of the gas to be detected. . The change in the resistance value of the compensation element 20 results in an output that differs depending on the type of gas to be detected, so that the gas type can be identified. In particular, city gas such as methane and 13A and gas such as LPG, propane, isobutane, and 6A can be easily identified because the polarity of the sensor output is reversed due to the difference in thermal conductivity with respect to air.
The gas type identification means 30 detects the resistance value that changes in this way, and compares it with the change in the resistance value specific to the gas, so that any type of gas can be used as long as it is configured with a microcomputer or the like that identifies the type of gas to be detected. Such a mode may be sufficient.

濃度演算手段40は、検出素子10及び補償素子20によって得られた出力に対して、ガス種識別手段30によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出する。
検出素子10は、通電により発熱することで触媒が加熱されて被検知ガスと反応し、その反応熱に応じて(被検知ガスの濃度に応じて)抵抗値が変化する。濃度演算手段40は、このように変化する抵抗値を検知して得られた出力値に、ガス種識別手段30によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出するマイコンなどで構成してあれば、どのような態様であってもよい。
当該係数は、ガス種に応じた固有の値を予め決定しておいた数値とするのがよい。
The concentration calculation means 40 multiplies the output obtained by the detection element 10 and the compensation element 20 by a coefficient corresponding to the gas type determined by the gas type identification means 30 to calculate the concentration of the gas to be detected.
The detection element 10 generates heat when energized, whereby the catalyst is heated and reacts with the gas to be detected, and the resistance value changes according to the reaction heat (depending on the concentration of the gas to be detected). The concentration calculating means 40 calculates the concentration of the detected gas by multiplying the output value obtained by detecting the resistance value changing in this way by a coefficient corresponding to the gas type determined by the gas type identifying means 30. Any form may be used as long as it is constituted by a microcomputer or the like.
The coefficient is preferably a numerical value in which a specific value corresponding to the gas type is determined in advance.

本発明の接触燃焼式ガスセンサXにおいて、図2に示したように、検出素子10および補償素子20は、負荷抵抗RL1,RL2、対辺抵抗R1,R2とブリッジ回路Aを形成している。即ち、当該ブリッジ回路Aは、検出素子10および負荷抵抗RL1が直列接続される枝辺と、補償素子20および負荷抵抗RL2が直列接続される枝辺と、対辺抵抗R1,R2が直列接続される枝辺とが並列に接続され、電源Eから供給される電圧に基づいて所定の電圧が印加される。   In the catalytic combustion type gas sensor X of the present invention, as shown in FIG. 2, the detection element 10 and the compensation element 20 form a bridge circuit A with the load resistances RL1 and RL2 and the opposite resistances R1 and R2. That is, in the bridge circuit A, the branch side where the detection element 10 and the load resistor RL1 are connected in series, the branch side where the compensation element 20 and the load resistor RL2 are connected in series, and the opposite side resistors R1 and R2 are connected in series. The branches are connected in parallel, and a predetermined voltage is applied based on the voltage supplied from the power supply E.

このようなブリッジ回路Aにおいて、メタンおよびイソブタンのガス種識別を行う場合、検出素子10および負荷抵抗RL1の接続点aと、補償素子20および負荷抵抗RL2の接続点bとの間の電圧を検出することで、濃度検知用出力Vd1が得られる(図3)。この濃度検知用出力Vd1は、検出素子10および負荷抵抗RL1の接続点aと対辺抵抗R1,R2の接続点cとの間の電圧と、補償素子20および負荷抵抗RL2の接続点bと
対辺抵抗R1,R2の接続点cの電圧との差分と等価であり、補償素子20によって周囲の温湿度変動の影響が取り除かれている。
In such a bridge circuit A, when the gas type identification of methane and isobutane is performed, the voltage between the connection point a of the detection element 10 and the load resistance RL1 and the connection point b of the compensation element 20 and the load resistance RL2 is detected. Thus, the density detection output Vd1 is obtained (FIG. 3). The concentration detection output Vd1 includes a voltage between a connection point a between the detection element 10 and the load resistor RL1 and a connection point c between the opposite resistances R1 and R2, and a connection point b between the compensation element 20 and the load resistance RL2 and the opposite resistance. This is equivalent to the difference from the voltage at the connection point c of R1 and R2, and the influence of ambient temperature and humidity fluctuations is eliminated by the compensation element 20.

また、対辺抵抗R1,R2の接続点cと、補償素子20および負荷抵抗RL2の接続点bと、の間の電圧を検出することで、ガス種識別用出力Vd2が得られる(図4)。   Further, by detecting the voltage between the connection point c of the opposite resistances R1, R2 and the connection point b of the compensation element 20 and the load resistance RL2, a gas type identification output Vd2 is obtained (FIG. 4).

ガス種識別手段30におけるガス種識別の一例を以下に説明する。
まず濃度検知用出力Vd1およびガス種識別用出力Vd2をそれぞれメタンの100%LEL出力で規格化する。次に規格化されたVd1とVd2の比率(規格化Vd2÷規格化Vd1)を計算し、その結果が気体固有の熱伝導率によって異なるため、それを利用してガス種の識別を行う。
An example of gas type identification in the gas type identification unit 30 will be described below.
First, the concentration detection output Vd1 and the gas type identification output Vd2 are each normalized by the 100% LEL output of methane. Next, the ratio of normalized Vd1 and Vd2 (standardized Vd2 ÷ normalized Vd1) is calculated, and the result differs depending on the thermal conductivity specific to the gas.

濃度演算手段40は、ガス種識別手段30によって予測されたガス種に応じてあらかじめ決定しておいた係数を、検出素子10および補償素子20によって得られた出力に乗じることで被検知ガスの濃度を算出する。   The concentration calculation means 40 multiplies the output obtained by the detection element 10 and the compensation element 20 by a coefficient determined in advance according to the gas type predicted by the gas type identification means 30 to thereby determine the concentration of the gas to be detected. Is calculated.

本発明の実施例について説明する。
本発明の識別機能付接触燃焼式ガスセンサXでの実施について動作説明する。
まず暖機処理後、Vd1、Vd2それぞれのAD変換結果にゼロ点補正を実施して、メタンの実ガス濃度にて校正された濃度値に換算するためのスパン係数を乗算する。これにより、メタンの100%LEL出力で規格化された値となる。その後、ガス種識別処理、濃度表示処理、警報処理を実施する。
Examples of the present invention will be described.
The operation of the contact combustion type gas sensor with identification function X according to the present invention will be described.
First, after the warm-up process, zero point correction is performed on the AD conversion results of Vd1 and Vd2, and a span coefficient for conversion to a concentration value calibrated with the actual gas concentration of methane is multiplied. Thereby, it becomes the value normalized by the 100% LEL output of methane. Thereafter, gas type identification processing, concentration display processing, and alarm processing are performed.

(ガス種識別処理)
メタンとイソブタンを識別する場合、ガス種識別用出力Vd2の出力は、図4のようにガス濃度に対してメタンとイソブタンで極性が異なるため、識別が容易である。
濃度検知用出力Vd1とガス種識別用出力Vd2を、それぞれメタン100%LELで規格化し、規格化されたVd1とVd2の比率(規格化Vd2÷規格化Vd1)を計算した(図5〜7)。
(Gas type identification process)
When identifying methane and isobutane, the output of the gas type identification output Vd2 is easy to identify because the polarity differs between methane and isobutane with respect to the gas concentration as shown in FIG.
The concentration detection output Vd1 and the gas type identification output Vd2 were normalized with 100% LEL of methane, respectively, and the ratio of normalized Vd1 and Vd2 (standardized Vd2 ÷ normalized Vd1) was calculated (FIGS. 5 to 7). .

その結果、図7に示したようにメタンのVd1とVd2の比率が約1.0であるに対し
、イソブタンのVd1とVd2の比率は約−1.3から約−2.0であった。
As a result, as shown in FIG. 7, the ratio of Vd1 and Vd2 of methane was about 1.0, whereas the ratio of Vd1 and Vd2 of isobutane was about -1.3 to about -2.0.

ガス警報値を1/4LEL(25%LEL)とした識別機能付接触燃焼式ガスセンサXの場合の一例として、識別下限をメタン10%LEL、イソブタンと識別する閾値を−0.5として、メタン100%LELで規格化した濃度値が10%以上かつ、規格化Vd2÷規格化Vd1がマイナス方向に−0.5以上をイソブタンと判断し、それ以外はメタンと判断して2種のガス種を識別した。
必要に応じてLCD表示または、LED表示によりガス種の識別結果を表示部(図外)によって表示した。
As an example of the contact combustion type gas sensor X with an identification function having a gas alarm value of 1/4 LEL (25% LEL), the lower limit of identification is 10% LEL, the threshold value for identifying isobutane is −0.5, and methane 100 If the concentration value normalized by% LEL is 10% or more and the standardized Vd2 ÷ standardized Vd1 is −0.5 or more in the negative direction, it is determined to be isobutane, and other than that, it is determined to be methane and the two gas types are determined. Identified.
The identification result of the gas type was displayed on the display unit (not shown) by LCD display or LED display as necessary.

(濃度表示処理)
識別結果がイソブタンでない場合、濃度検知用出力Vd1をメタン100%LELで規格化した値にさらに直線化処理を実施し、その結果を濃度表示部にメタンの濃度値として表示部(図外)によって表示した。
(Density display processing)
If the identification result is not isobutane, further linearization processing is performed on the value Vd1 for concentration detection normalized to 100% LEL of methane, and the result is displayed as a concentration value of methane on the concentration display portion by a display portion (not shown). displayed.

識別結果がイソブタンの場合は、濃度検知用出力Vd1をメタン100%LELで規格化した値に約2倍のイソブタンの濃度に換算する係数を乗算し、さらにイソブタンの直線化処理を実施した後その結果を濃度表示部にイソブタンの濃度値として表示した。この時のイソブタンの直線化処理に、イソブタンの濃度に換算する係数を含めてもよい。   When the identification result is isobutane, the concentration detection output Vd1 is normalized by 100% LEL of methane, multiplied by a coefficient for converting the concentration of isobutane to approximately twice the concentration, and then linearized with isobutane. The result was displayed as a concentration value of isobutane on the concentration display section. A coefficient for conversion to the isobutane concentration may be included in the linearization treatment of isobutane at this time.

(警報処理)
直線化処理後の濃度値が警報設定値に達するか超えた場合にガス濃度警報を警報部(図外)によって発した。
(Alarm processing)
When the concentration value after linearization processing reaches or exceeds the alarm set value, a gas concentration alarm is issued by the alarm unit (not shown).

一般的に都市ガスや下水工事で爆発事故防止の目的で使用されるガス検知器は、メタン校正で使用されている。図3に示したようにイソブタンやプロパンはメタンの約1/2の出力であるため、通常の接触燃焼式ガスセンサでは、メタンの約2倍の濃度にならないと発報しない。例えば都市ガス工事では、都市ガスの供給地域とLPG使用の地域が隣接して混在している現場があり、このような現場でのLPG漏洩に関しては、本発明の接触燃焼式ガスセンサXによって、より安全に爆発の危険性の検知が可能となる。   In general, gas detectors used for the purpose of preventing explosion accidents in city gas and sewage works are used in methane calibration. As shown in FIG. 3, since isobutane and propane output about 1/2 that of methane, an ordinary catalytic combustion type gas sensor does not report unless the concentration is about twice that of methane. For example, in city gas construction, there are sites where a city gas supply area and an LPG use area are mixed adjacent to each other. With regard to LPG leakage at such a site, the contact combustion type gas sensor X of the present invention is used. The danger of explosion can be detected safely.

本発明は、被検知ガスと感応する検出素子および補償素子を有する接触燃焼式ガスセンサに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a catalytic combustion type gas sensor having a detection element and a compensation element that are sensitive to the gas to be detected.

X 接触燃焼式ガスセンサ
10 検出素子
20 補償素子
30 ガス種識別手段
40 濃度演算手段
X catalytic combustion type gas sensor 10 detection element 20 compensation element 30 gas type identification means 40 concentration calculation means

本発明は、被検知ガスと感応する検出素子および補償素子を有する接触燃焼式ガスセンサに関する。   The present invention relates to a catalytic combustion type gas sensor having a detection element and a compensation element that are sensitive to a gas to be detected.

接触燃焼式ガスセンサは、ヒータと温度計を兼ねる白金線コイルに貴金属触媒を担持させたアルミナを球状に焼結させた構造のセンサで、可燃性ガスの接触燃焼に伴う素子の温度変化を検知して被検知ガスの濃度を検出するガスセンサである。一般的には、同じく触媒のないアルミナのみを焼結させた補償素子と共にブリッジ接続することで、爆発限界(LEL)までの可燃性ガスの濃度を、環境温度、湿度の影響が少なく安定して検出することができる。   The catalytic combustion type gas sensor is a sensor with a structure in which alumina with a noble metal catalyst supported on a platinum wire coil that doubles as a heater and thermometer is sintered in a spherical shape. It detects the temperature change of the element due to contact combustion of combustible gas. The gas sensor detects the concentration of the gas to be detected. In general, a bridge connection with a compensation element made by sintering only alumina without a catalyst is also used to stabilize the concentration of combustible gas up to the explosion limit (LEL) with less influence of environmental temperature and humidity. Can be detected.

従来、被検知ガスのガス種を識別するに際し、特性の異なる複数のセンサ出力の比率を算出する場合があった。例えば、メタンに反応しないが他の炭化水素系のガスに反応する接触燃焼式ガスセンサと、メタンを含む炭化水素系のガスに反応する接触燃焼式ガスセンサとの2つの出力比率により、自然発生メタン、都市ガス、LPG、プロパンガスの何れかを識別する識別機能付きガス検知器が実用化されている。   Conventionally, when identifying the gas type of the gas to be detected, a ratio of a plurality of sensor outputs having different characteristics may be calculated. For example, by using two output ratios of a catalytic combustion type gas sensor that does not react with methane but reacts with other hydrocarbon gases and a catalytic combustion type gas sensor that reacts with hydrocarbon gases including methane, naturally generated methane, A gas detector with an identification function for identifying one of city gas, LPG, and propane gas has been put into practical use.

また、カラムにてガスの成分を分離し、カラムの通過時間の差により各成分の濃度を検出してガスの種類を識別する装置も知られている。   An apparatus is also known in which gas components are separated by a column, and the concentration of each component is detected based on the difference in passage time of the column to identify the type of gas.

尚、本発明における従来技術となる上述した接触燃焼式ガスセンサは、一般的な技術であるため、特許文献等の従来技術文献は示さない。   In addition, since the above-mentioned contact combustion type gas sensor used as the prior art in the present invention is a general technique, prior art documents such as patent documents are not shown.

特性の異なる複数のセンサ出力の比率を算出して被検知ガスのガス種を識別する場合、特性の異なる複数の接触燃焼式ガスセンサが必要となるため、大掛かりな構成となっていた。
また、カラムを使用してガス種を識別する場合、時間差によって検出するため、ガス種の識別結果が得られるまである程度の時間を要し、迅速にガス種を識別できなかった。
When calculating the ratio of the output of a plurality of sensors having different characteristics to identify the gas type of the gas to be detected, a plurality of catalytic combustion gas sensors having different characteristics are required.
Further, when a gas type is identified using a column, since it is detected by a time difference, a certain amount of time is required until a gas type identification result is obtained, and the gas type cannot be quickly identified.

従って、本発明の目的は、簡便な構成で迅速にガス種を識別できる接触燃焼式ガスセンサを提供することにある。   Accordingly, an object of the present invention is to provide a catalytic combustion type gas sensor capable of quickly identifying a gas type with a simple configuration.

上記目的を達成するための本発明に係る接触燃焼式ガスセンサは、被検知ガスと感応する検出素子および補償素子を有する接触燃焼式ガスセンサであって、その第一特徴構成は、前記補償素子が被検知ガスと接触することで変化する抵抗値によって被検知ガスの種類を識別するガス種識別手段を備えた点にある。 In order to achieve the above object, a catalytic combustion type gas sensor according to the present invention is a catalytic combustion type gas sensor having a detection element and a compensation element that are sensitive to a gas to be detected. It lies in having a gas type identification manually stage for identifying the type of the gas to be detected by the resistance value that changes by contact with the gas to be detected.

補償素子は、被検知ガスの濃度に応じて熱が収奪されることによりその抵抗値が変化する特性を有する。当該補償素子の抵抗値変化を取り出すことで、気体固有の熱伝導率の違いによる微小発熱素子の温度変化を検出する気体熱伝導式センサと等価の挙動を示す出力が得られる。これは、被検知ガスの種類によって異なった出力となる。ガス種識別手段は、このように変化する抵抗値を検知して、気体固有の抵抗値の変化と比較することでガス種の識別が可能となる。   The compensation element has a characteristic that its resistance value changes due to heat being deprived according to the concentration of the gas to be detected. By taking out the resistance value change of the compensation element, an output showing a behavior equivalent to that of a gas heat conduction sensor that detects a temperature change of the minute heating element due to a difference in heat conductivity inherent to the gas can be obtained. This is an output that varies depending on the type of gas to be detected. The gas type identification means can identify the gas type by detecting the resistance value changing in this way and comparing it with a change in the resistance value unique to the gas.

このように本構成によれば、簡便な構成で迅速にガス種を識別することができる。 According to the present configuration, it is possible to quickly identify the gas species in simple and convenient construction.

本発明の接触燃焼式ガスセンサの概要を示す図である。It is a figure which shows the outline | summary of the contact combustion type gas sensor of this invention. ブリッジ回路を示す図である。It is a figure which shows a bridge circuit. 濃度検知用出力Vd1のグラフである。It is a graph of output Vd1 for density detection. ガス種識別用出力Vd2のグラフである。It is a graph of gas type identification output Vd2. 濃度検知用出力Vd1を規格化したグラフである。It is the graph which normalized output Vd1 for density detection. ガス種識別用出力Vd2を規格化したグラフである。It is the graph which normalized the output Vd2 for gas kind identification. 規格化されたVd1とVd2の比率を示したグラフである。It is the graph which showed the ratio of normalized Vd1 and Vd2.

以下、本発明の実施形態を図面に基づいて説明する。
図1に示したように、本発明の接触燃焼式ガスセンサXは、検出素子10および補償素子20を有する。
当該接触燃焼式ガスセンサXは、補償素子20が被検知ガスと接触することで変化する抵抗値によって被検知ガスの種類を識別するガス種識別手段30を備える。
また、接触燃焼式ガスセンサXは、検出素子10の出力に対して、ガス種識別手段30によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出する濃度演算手段40を備えてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the catalytic combustion type gas sensor X of the present invention includes a detection element 10 and a compensation element 20.
The catalytic combustion type gas sensor X includes a gas type identification means 3 0 identifying the type of the gas to be detected compensating element 20 by the resistance value that varies by contact with the gas to be detected.
Further, the catalytic combustion type gas sensor X includes a concentration calculation means 40 that calculates the concentration of the gas to be detected by multiplying the output of the detection element 10 by a coefficient corresponding to the gas type determined by the gas type identification means 30. May be.

検出素子10は、電気抵抗に対する温度係数が高い白金やタングステン等を含む金属線のコイルの表面が、被検知ガスに対して活性な白金やパラジウムといった貴金属等からなる触媒を担持するアルミナ等の担体で被覆されて形成されている。当該検出素子10は、被検知ガス中に置かれたとき、通電により発熱することで自身が備える触媒が加熱されて被検知ガスと反応し、その反応熱に応じて(被検知ガスの濃度に応じて)抵抗値が変化する。   The detection element 10 is a carrier made of alumina or the like on which the surface of a coil of a metal wire containing platinum or tungsten having a high temperature coefficient with respect to electric resistance carries a catalyst made of a noble metal such as platinum or palladium that is active against the gas to be detected. It is formed by coating with. When the detection element 10 is placed in the gas to be detected, it generates heat by energization, whereby the catalyst provided in itself is heated and reacts with the gas to be detected, and the concentration of the gas to be detected depends on the reaction heat. The resistance value changes.

補償素子20は、検知素子と同様に被検知ガス中に置かれて通電されることで、検知素子の温度補償を行うための素子であり、検知素子が有する触媒による燃焼熱に応じた抵抗値の変化分のみ取り出すために用いられる。
補償素子20は、例えば検出素子10と同等のコイルの表面がアルミナ等の担体で被覆されて形成されている。補償素子20は触媒を有しないため、触媒反応による被検知ガスの燃焼が生じないため、被検知ガスに対して不活性とされる。当該補償素子20は、通電されることにより発熱してその周囲を覆うアルミナ等の担体を加熱するものであり、熱により自らの抵抗値が変化する。
The compensation element 20 is an element for performing temperature compensation of the detection element by being placed in the gas to be detected and energized in the same manner as the detection element, and has a resistance value corresponding to the combustion heat generated by the catalyst of the detection element. It is used to extract only the amount of change.
The compensation element 20 is formed, for example, by coating the surface of a coil equivalent to the detection element 10 with a carrier such as alumina. Since the compensation element 20 does not have a catalyst, combustion of the gas to be detected due to a catalytic reaction does not occur, so that the compensation element 20 is inactive to the gas to be detected. The compensation element 20 generates heat when energized and heats a carrier such as alumina covering the periphery thereof, and its resistance value changes due to heat.

通常、接触燃焼式ガスセンサXは、被検知ガスが検出素子10の触媒に接触した際に生じる燃焼反応の発熱により高温となった検出素子10と、被検知ガスによる燃焼反応が発生せず検出素子10よりも低温の補償素子20との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して被検知ガスの濃度を検出することができる。   Usually, the contact combustion type gas sensor X includes a detection element 10 that has become a high temperature due to heat generated by a combustion reaction that occurs when the gas to be detected contacts the catalyst of the detection element 10, and a detection element in which the combustion reaction by the gas to be detected does not occur. By utilizing the fact that a difference in electrical resistance value occurs between the compensation element 20 and a temperature lower than 10, it is possible to detect the concentration of the gas to be detected by offsetting the change in the electrical resistance value due to the ambient temperature.

本発明の接触燃焼式ガスセンサXにおいて、ガス種識別手段30は、補償素子20が被検知ガスの濃度に応じて熱が収奪されることにより変化する抵抗値によって、被検知ガスの種類を識別する。当該補償素子20の抵抗値変化は、被検知ガスの種類によって異なった出力となるため、ガス種の識別が可能となる。特に、メタンおよび13A等の都市ガスと、LPG、プロパン、イソブタン、6A等のガスでは、空気に対する熱伝導率の違いによってセンサ出力の極性が反転するため、容易に識別することができる。
ガス種識別手段30は、このように変化する抵抗値を検知して、気体固有の抵抗値の変化と比較することで、被検知ガスの種類を識別するマイコンなどで構成してあれば、どのような態様であってもよい。
In the catalytic combustion type gas sensor X of the present invention, the gas type identifying means 30 identifies the type of gas to be detected based on the resistance value that changes when the compensation element 20 absorbs heat according to the concentration of the gas to be detected. . The change in the resistance value of the compensation element 20 results in an output that differs depending on the type of gas to be detected, so that the gas type can be identified. In particular, city gas such as methane and 13A and gas such as LPG, propane, isobutane, and 6A can be easily identified because the polarity of the sensor output is reversed due to the difference in thermal conductivity with respect to air.
The gas type identification means 30 detects the resistance value that changes in this way, and compares it with the change in the resistance value specific to the gas, so that any type of gas can be used as long as it is configured with a microcomputer or the like that identifies the type of gas to be detected. Such a mode may be sufficient.

濃度演算手段40は、検出素子10及び補償素子20によって得られた出力に対して、ガス種識別手段30によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出する。
検出素子10は、通電により発熱することで触媒が加熱されて被検知ガスと反応し、その反応熱に応じて(被検知ガスの濃度に応じて)抵抗値が変化する。濃度演算手段40は、このように変化する抵抗値を検知して得られた出力値に、ガス種識別手段30によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出するマイコンなどで構成してあれば、どのような態様であってもよい。
当該係数は、ガス種に応じた固有の値を予め決定しておいた数値とするのがよい。
The concentration calculation means 40 multiplies the output obtained by the detection element 10 and the compensation element 20 by a coefficient corresponding to the gas type determined by the gas type identification means 30 to calculate the concentration of the gas to be detected.
The detection element 10 generates heat when energized, whereby the catalyst is heated and reacts with the gas to be detected, and the resistance value changes according to the reaction heat (depending on the concentration of the gas to be detected). The concentration calculating means 40 calculates the concentration of the detected gas by multiplying the output value obtained by detecting the resistance value changing in this way by a coefficient corresponding to the gas type determined by the gas type identifying means 30. Any form may be used as long as it is constituted by a microcomputer or the like.
The coefficient is preferably a numerical value in which a specific value corresponding to the gas type is determined in advance.

本発明の接触燃焼式ガスセンサXにおいて、図2に示したように、検出素子10および補償素子20は、負荷抵抗RL1,RL2、対辺抵抗R1,R2とブリッジ回路Aを形成している。即ち、当該ブリッジ回路Aは、検出素子10および負荷抵抗RL1が直列接続される枝辺と、補償素子20および負荷抵抗RL2が直列接続される枝辺と、対辺抵抗R1,R2が直列接続される枝辺とが並列に接続され、電源Eから供給される電圧に基づいて所定の電圧が印加される。   In the catalytic combustion type gas sensor X of the present invention, as shown in FIG. 2, the detection element 10 and the compensation element 20 form a bridge circuit A with the load resistances RL1 and RL2 and the opposite resistances R1 and R2. That is, in the bridge circuit A, the branch side where the detection element 10 and the load resistor RL1 are connected in series, the branch side where the compensation element 20 and the load resistor RL2 are connected in series, and the opposite side resistors R1 and R2 are connected in series. The branches are connected in parallel, and a predetermined voltage is applied based on the voltage supplied from the power supply E.

このようなブリッジ回路Aにおいて、メタンおよびイソブタンのガス種識別を行う場合、検出素子10および負荷抵抗RL1の接続点aと、補償素子20および負荷抵抗RL2の接続点bとの間の電圧を検出することで、濃度検知用出力Vd1が得られる(図3)。この濃度検知用出力Vd1は、検出素子10および負荷抵抗RL1の接続点aと対辺抵抗R1,R2の接続点cとの間の電圧と、補償素子20および負荷抵抗RL2の接続点bと
対辺抵抗R1,R2の接続点cの電圧との差分と等価であり、補償素子20によって周囲の温湿度変動の影響が取り除かれている。
In such a bridge circuit A, when the gas type identification of methane and isobutane is performed, the voltage between the connection point a of the detection element 10 and the load resistance RL1 and the connection point b of the compensation element 20 and the load resistance RL2 is detected. Thus, the density detection output Vd1 is obtained (FIG. 3). The concentration detection output Vd1 includes a voltage between a connection point a between the detection element 10 and the load resistor RL1 and a connection point c between the opposite resistances R1 and R2, and a connection point b between the compensation element 20 and the load resistance RL2 and the opposite resistance. This is equivalent to the difference from the voltage at the connection point c of R1 and R2, and the influence of ambient temperature and humidity fluctuations is eliminated by the compensation element 20.

また、対辺抵抗R1,R2の接続点cと、補償素子20および負荷抵抗RL2の接続点bと、の間の電圧を検出することで、ガス種識別用出力Vd2が得られる(図4)。   Further, by detecting the voltage between the connection point c of the opposite resistances R1, R2 and the connection point b of the compensation element 20 and the load resistance RL2, a gas type identification output Vd2 is obtained (FIG. 4).

ガス種識別手段30におけるガス種識別の一例を以下に説明する。
まず濃度検知用出力Vd1およびガス種識別用出力Vd2をそれぞれメタンの100%LEL出力で規格化する。次に規格化されたVd1とVd2の比率(規格化Vd2÷規格化Vd1)を計算し、その結果が気体固有の熱伝導率によって異なるため、それを利用してガス種の識別を行う。
An example of gas type identification in the gas type identification unit 30 will be described below.
First, the concentration detection output Vd1 and the gas type identification output Vd2 are each normalized by the 100% LEL output of methane. Next, the ratio of normalized Vd1 and Vd2 (standardized Vd2 ÷ normalized Vd1) is calculated, and the result differs depending on the thermal conductivity specific to the gas.

濃度演算手段40は、ガス種識別手段30によって予測されたガス種に応じてあらかじめ決定しておいた係数を、検出素子10および補償素子20によって得られた出力に乗じることで被検知ガスの濃度を算出する。   The concentration calculation means 40 multiplies the output obtained by the detection element 10 and the compensation element 20 by a coefficient determined in advance according to the gas type predicted by the gas type identification means 30 to thereby determine the concentration of the gas to be detected. Is calculated.

本発明の実施例について説明する。
本発明の識別機能付接触燃焼式ガスセンサXでの実施について動作説明する。
まず暖機処理後、Vd1、Vd2それぞれのAD変換結果にゼロ点補正を実施して、メタンの実ガス濃度にて校正された濃度値に換算するためのスパン係数を乗算する。これにより、メタンの100%LEL出力で規格化された値となる。その後、ガス種識別処理、濃度表示処理、警報処理を実施する。
Examples of the present invention will be described.
The operation of the contact combustion type gas sensor with identification function X according to the present invention will be described.
First, after the warm-up process, zero point correction is performed on the AD conversion results of Vd1 and Vd2, and a span coefficient for conversion to a concentration value calibrated with the actual gas concentration of methane is multiplied. Thereby, it becomes the value normalized by the 100% LEL output of methane. Thereafter, gas type identification processing, concentration display processing, and alarm processing are performed.

(ガス種識別処理)
メタンとイソブタンを識別する場合、ガス種識別用出力Vd2の出力は、図4のようにガス濃度に対してメタンとイソブタンで極性が異なるため、識別が容易である。
濃度検知用出力Vd1とガス種識別用出力Vd2を、それぞれメタン100%LELで規格化し、規格化されたVd1とVd2の比率(規格化Vd2÷規格化Vd1)を計算した(図5〜7)。
(Gas type identification process)
When identifying methane and isobutane, the output of the gas type identification output Vd2 is easy to identify because the polarity differs between methane and isobutane with respect to the gas concentration as shown in FIG.
The concentration detection output Vd1 and the gas type identification output Vd2 were normalized with 100% LEL of methane, respectively, and the ratio of normalized Vd1 and Vd2 (standardized Vd2 ÷ normalized Vd1) was calculated (FIGS. 5 to 7). .

その結果、図7に示したようにメタンのVd1とVd2の比率が約1.0であるに対し
、イソブタンのVd1とVd2の比率は約−1.3から約−2.0であった。
As a result, as shown in FIG. 7, the ratio of Vd1 and Vd2 of methane was about 1.0, whereas the ratio of Vd1 and Vd2 of isobutane was about -1.3 to about -2.0.

ガス警報値を1/4LEL(25%LEL)とした識別機能付接触燃焼式ガスセンサXの場合の一例として、識別下限をメタン10%LEL、イソブタンと識別する閾値を−0.5として、メタン100%LELで規格化した濃度値が10%以上かつ、規格化Vd2÷規格化Vd1がマイナス方向に−0.5以上をイソブタンと判断し、それ以外はメタンと判断して2種のガス種を識別した。
必要に応じてLCD表示または、LED表示によりガス種の識別結果を表示部(図外)によって表示した。
As an example of the contact combustion type gas sensor X with an identification function having a gas alarm value of 1/4 LEL (25% LEL), the lower limit of identification is 10% LEL, the threshold value for identifying isobutane is −0.5, and methane 100 If the concentration value normalized by% LEL is 10% or more and the standardized Vd2 ÷ standardized Vd1 is −0.5 or more in the negative direction, it is determined to be isobutane, and other than that, it is determined to be methane and the two gas types are determined. Identified.
The identification result of the gas type was displayed on the display unit (not shown) by LCD display or LED display as necessary.

(濃度表示処理)
識別結果がイソブタンでない場合、濃度検知用出力Vd1をメタン100%LELで規格化した値にさらに直線化処理を実施し、その結果を濃度表示部にメタンの濃度値として表示部(図外)によって表示した。
(Density display processing)
If the identification result is not isobutane, further linearization processing is performed on the value Vd1 for concentration detection normalized to 100% LEL of methane, and the result is displayed as a concentration value of methane on the concentration display portion by a display portion (not shown). displayed.

識別結果がイソブタンの場合は、濃度検知用出力Vd1をメタン100%LELで規格化した値に約2倍のイソブタンの濃度に換算する係数を乗算し、さらにイソブタンの直線化処理を実施した後その結果を濃度表示部にイソブタンの濃度値として表示した。この時のイソブタンの直線化処理に、イソブタンの濃度に換算する係数を含めてもよい。   When the identification result is isobutane, the concentration detection output Vd1 is normalized by 100% LEL of methane, multiplied by a coefficient for converting the concentration of isobutane to approximately twice the concentration, and then linearized with isobutane. The result was displayed as a concentration value of isobutane on the concentration display section. A coefficient for conversion to the isobutane concentration may be included in the linearization treatment of isobutane at this time.

(警報処理)
直線化処理後の濃度値が警報設定値に達するか超えた場合にガス濃度警報を警報部(図外)によって発した。
(Alarm processing)
When the concentration value after linearization processing reaches or exceeds the alarm set value, a gas concentration alarm is issued by the alarm unit (not shown).

一般的に都市ガスや下水工事で爆発事故防止の目的で使用されるガス検知器は、メタン校正で使用されている。図3に示したようにイソブタンやプロパンはメタンの約1/2の出力であるため、通常の接触燃焼式ガスセンサでは、メタンの約2倍の濃度にならないと発報しない。例えば都市ガス工事では、都市ガスの供給地域とLPG使用の地域が隣接して混在している現場があり、このような現場でのLPG漏洩に関しては、本発明の接触燃焼式ガスセンサXによって、より安全に爆発の危険性の検知が可能となる。   In general, gas detectors used for the purpose of preventing explosion accidents in city gas and sewage works are used in methane calibration. As shown in FIG. 3, since isobutane and propane output about 1/2 that of methane, an ordinary catalytic combustion type gas sensor does not report unless the concentration is about twice that of methane. For example, in city gas construction, there are sites where a city gas supply area and an LPG use area are mixed adjacent to each other. With regard to LPG leakage at such a site, the contact combustion type gas sensor X of the present invention is used. The danger of explosion can be detected safely.

本発明は、被検知ガスと感応する検出素子および補償素子を有する接触燃焼式ガスセンサに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a catalytic combustion type gas sensor having a detection element and a compensation element that are sensitive to the gas to be detected.

X 接触燃焼式ガスセンサ
10 検出素子
20 補償素子
30 ガス種識別手
X catalytic combustion type gas sensor 10 detecting element 20 compensating element 30 Gas type identification manually stage

Claims (1)

被検知ガスと感応する検出素子および補償素子を有する接触燃焼式ガスセンサにおいて、
前記補償素子が被検知ガスと接触することで変化する抵抗値によって被検知ガスの種類を識別するガス種識別手段と、
前記検出素子の出力に対して、前記ガス種識別手段によって決定されたガス種に応じた係数を乗じて被検知ガスの濃度を算出する濃度演算手段と、を備えた接触燃焼式ガスセンサ。
In a contact combustion type gas sensor having a detection element and a compensation element that are sensitive to a gas to be detected,
A gas type identifying means for identifying the type of the gas to be detected by a resistance value that changes when the compensation element comes into contact with the gas to be detected;
A contact combustion type gas sensor comprising: concentration calculation means for calculating the concentration of the gas to be detected by multiplying the output of the detection element by a coefficient corresponding to the gas type determined by the gas type identification means.
JP2017106880A 2017-05-30 2017-05-30 Contact combustion type gas sensor Active JP6427226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106880A JP6427226B2 (en) 2017-05-30 2017-05-30 Contact combustion type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106880A JP6427226B2 (en) 2017-05-30 2017-05-30 Contact combustion type gas sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013156794A Division JP6153804B2 (en) 2013-07-29 2013-07-29 Contact combustion type gas sensor

Publications (2)

Publication Number Publication Date
JP2017142274A true JP2017142274A (en) 2017-08-17
JP6427226B2 JP6427226B2 (en) 2018-11-21

Family

ID=59627866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106880A Active JP6427226B2 (en) 2017-05-30 2017-05-30 Contact combustion type gas sensor

Country Status (1)

Country Link
JP (1) JP6427226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220326169A1 (en) * 2021-03-30 2022-10-13 Dräger Safety AG & Co. KGaA Gas detection device with a detector and a compensator and gas detection process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040360B1 (en) * 1968-08-22 1975-12-23
JPS56168543A (en) * 1980-05-30 1981-12-24 Shibaura Denshi Seisakusho:Kk Method for constituting bridge circuit for gas detection
DE4025875A1 (en) * 1990-08-16 1992-02-20 Draegerwerk Ag Electronic circuit measuring combustible components of gas - uses catholytic temp.-dependent detector resistor and non-catholytic temp.-dependent compensation resistor
JPH08226908A (en) * 1994-12-20 1996-09-03 Fuji Electric Co Ltd Contact-combustion-type gas sensor
JP2007333594A (en) * 2006-06-15 2007-12-27 Toyota Motor Corp Gas concentration detector and fuel cell system
JP2008064491A (en) * 2006-09-05 2008-03-21 Yazaki Corp Gas detection device
JP2009103605A (en) * 2007-10-24 2009-05-14 Yazaki Corp Circuit and method for measuring gas concentration
JP2010256052A (en) * 2009-04-22 2010-11-11 Yazaki Corp Gas analyzer
JP2011257347A (en) * 2010-06-11 2011-12-22 Yazaki Corp Gas analyzer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040360B1 (en) * 1968-08-22 1975-12-23
JPS56168543A (en) * 1980-05-30 1981-12-24 Shibaura Denshi Seisakusho:Kk Method for constituting bridge circuit for gas detection
DE4025875A1 (en) * 1990-08-16 1992-02-20 Draegerwerk Ag Electronic circuit measuring combustible components of gas - uses catholytic temp.-dependent detector resistor and non-catholytic temp.-dependent compensation resistor
JPH08226908A (en) * 1994-12-20 1996-09-03 Fuji Electric Co Ltd Contact-combustion-type gas sensor
JP2007333594A (en) * 2006-06-15 2007-12-27 Toyota Motor Corp Gas concentration detector and fuel cell system
JP2008064491A (en) * 2006-09-05 2008-03-21 Yazaki Corp Gas detection device
JP2009103605A (en) * 2007-10-24 2009-05-14 Yazaki Corp Circuit and method for measuring gas concentration
JP2010256052A (en) * 2009-04-22 2010-11-11 Yazaki Corp Gas analyzer
JP2011257347A (en) * 2010-06-11 2011-12-22 Yazaki Corp Gas analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220326169A1 (en) * 2021-03-30 2022-10-13 Dräger Safety AG & Co. KGaA Gas detection device with a detector and a compensator and gas detection process

Also Published As

Publication number Publication date
JP6427226B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
Sears et al. Algorithms to improve the selectivity of thermally-cycled tin oxide gas sensors
Baroncini et al. Thermal characterization of a microheater for micromachined gas sensors
US11703473B2 (en) Operation of combustible gas sensor in a dynamic mode with a constant resistance setpoint
US20200088669A1 (en) Method for Operating a Sensor Device
Debeda et al. Development of a reliable methane detector
US7028530B2 (en) Gas detector
JP6427226B2 (en) Contact combustion type gas sensor
US4870025A (en) Method of sensing methane gas-I
JP6153804B2 (en) Contact combustion type gas sensor
JP2017142273A (en) Contact combustion type gas sensor and detection method of the same
US20190079034A1 (en) Method and device for determining concentration of gas components in a gas mixture
JP4528638B2 (en) Gas detector
JPH08201326A (en) Exhaust co concentration detecting device for combustion apparatus
CA2238464A1 (en) A gas sensor with multi-level sensitivity circuitry
US20080156076A1 (en) Low Power Combustible Gas Sensor
JP2015068820A (en) Gas sensor device
JP6300203B2 (en) Gas detector
JP4820174B2 (en) Heater control circuit and thermal conductivity measuring device
JP2015025783A (en) Contact combustion type gas sensor
JP2002286668A (en) Gas detection output correction method and gas detector
JPS6046479B2 (en) Detection device
JP2014235082A (en) Gas alarm system
JP4711332B2 (en) Hydrogen detector
US20230213467A1 (en) Gas sensor comprising one or more sensing wires
JP2010256172A (en) Gas detector and method of correcting temperature of the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181026

R150 Certificate of patent or registration of utility model

Ref document number: 6427226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250