JP2006021976A - Method and apparatus for manufacturing thin film-like organic single crystal - Google Patents

Method and apparatus for manufacturing thin film-like organic single crystal Download PDF

Info

Publication number
JP2006021976A
JP2006021976A JP2004203696A JP2004203696A JP2006021976A JP 2006021976 A JP2006021976 A JP 2006021976A JP 2004203696 A JP2004203696 A JP 2004203696A JP 2004203696 A JP2004203696 A JP 2004203696A JP 2006021976 A JP2006021976 A JP 2006021976A
Authority
JP
Japan
Prior art keywords
gas
solvent
single crystal
substrates
organic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004203696A
Other languages
Japanese (ja)
Inventor
Yasuhiro Azuma
康弘 東
Yukie Suzuki
幸栄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004203696A priority Critical patent/JP2006021976A/en
Publication of JP2006021976A publication Critical patent/JP2006021976A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin film-like organic single crystal by which a large size, high quality organic single crystal 6 can be manufactured with a desired thickness by a solvent evaporation method even when the organic material is unstable to heat or the like and cannot be crystallized by a melt method, and to provide an apparatus for manufacturing the thin film-like organic single crystal 6 which is suitable for manufacturing the large size, high quality organic single crystal 6 having a desired thickness. <P>SOLUTION: The method for manufacturing the thin film-like organic single crystal comprises filling a solution 5, obtained by dissolving an organic substance to be crystallized in a solvent, into a gap formed by a couple of substrates 4a, 4b, and then forming the organic single crystal 6 by controlling the evaporation speed of the solvent from the couple of substrates 4a, 4b between which the solution 5 is filled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非線形光学材料、電子材料、発光材料等に用いられる薄膜状有機単結晶を基板上に形成する、溶媒蒸発法を用いた薄膜状有機単結晶の作製方法および作製装置に関するものである。   The present invention relates to a method and apparatus for producing a thin-film organic single crystal using a solvent evaporation method in which a thin-film organic single crystal used for a nonlinear optical material, an electronic material, a light-emitting material, or the like is formed on a substrate. .

近年、有機材料は、無機材料と比較して、優れた電気的特性、光学特性を有することが明らかとなり、熱伝導材料、EL(エレクトロルミネッセンス)材料、PHB(フォトケミカルホールバーニング)材料、フォトクロミック材料、非線形光学材料などの分野への応用開発が盛んに進められている。中でも、有機材料を非線形光学材料として使用する場合には、無機材料と比較して、大きな非線形光学定数が得られ、高速応答性などに優れていることが見出され、有機材料の二次の非線形光学効果を利用した、光波長変換用バルク単結晶、光波長変換素子、光変調器や、有機材料の三次の非線形光学効果を利用した、光双安定素子、光シャッタ、光位相共役素子などの各種非線形光学素子への開発が盛んに進められている。   In recent years, it has been clarified that organic materials have superior electrical and optical properties compared to inorganic materials. Thermal conductive materials, EL (electroluminescence) materials, PHB (photochemical hole burning) materials, photochromic materials Application development in fields such as nonlinear optical materials has been actively promoted. In particular, when organic materials are used as nonlinear optical materials, it has been found that a large nonlinear optical constant is obtained compared to inorganic materials and that high-speed response is excellent. Optical wavelength conversion bulk single crystal using nonlinear optical effect, optical wavelength conversion element, optical modulator, optical bistable element, optical shutter, optical phase conjugate element using third-order nonlinear optical effect of organic materials, etc. Development of various non-linear optical elements has been actively promoted.

従来から、有機物質の単結晶の作成方法としては、真空蒸着法、分子線エピタキシャル(MBE)法、などの乾式法と、溶媒蒸発法、融液法、ラングミュア−ブロジェット(LB)法などの湿式法が用いられている。   Conventionally, methods for producing single crystals of organic materials include dry methods such as vacuum deposition and molecular beam epitaxy (MBE), solvent evaporation, melt methods, Langmuir-Blodget (LB), and the like. A wet method is used.

乾式法は、均一性、膜厚の制御性が優れている反面、有機材料は一般的に熱分解点が低く、熱による分解が発生するため、使用できる材料が非常に限定されている。   The dry method is excellent in uniformity and controllability of the film thickness, but organic materials generally have a low thermal decomposition point and are decomposed by heat. Therefore, usable materials are very limited.

湿式法では、有機材料を融点まで加温し液体にした後、除冷し結晶化を行う融液法と、有機材料を可溶な溶媒に完全に溶解した後に、溶質の飽和濃度を制御することで結晶化を行う溶液法が用いられている。   In the wet method, the organic material is heated to the melting point to form a liquid, then cooled and crystallized, and the organic material is completely dissolved in a soluble solvent, and then the saturation concentration of the solute is controlled. Thus, a solution method for crystallization is used.

融液法は、これまでも数多くの報告例があるが、有機材料の融点まで温度を上げる必要があるため、熱による昇華や分解のおそれのある材料では使用できないことから、使用できる材料が限定されている。   The melt method has been reported to date, but it is necessary to raise the temperature to the melting point of the organic material, so it cannot be used with materials that may be sublimated or decomposed by heat, so the materials that can be used are limited. Has been.

溶液法は、バルク単結晶の製造方法として、徐冷法、溶媒蒸発法などが、一般的に用いられている。   In the solution method, a slow cooling method, a solvent evaporation method or the like is generally used as a method for producing a bulk single crystal.

徐冷法では、飽和していない溶液を温度制御(冷却)し、飽和状態(材料によっては過飽和状態)にすることで、結晶を析出させる。また、溶媒蒸発法では、溶媒の蒸発により溶液を飽和状態(材料によっては過飽和状態)にして、結晶を析出させる方法である。   In the slow cooling method, the temperature of an unsaturated solution is controlled (cooled) to bring it into a saturated state (a supersaturated state depending on the material) to precipitate crystals. In the solvent evaporation method, the solution is saturated by the evaporation of the solvent (a supersaturated state depending on the material) to precipitate crystals.

有機単結晶は、上述したような多様な作製方法が提案されているが、実際の応用を考えた場合には、それぞれの析出した結晶形状をそのまま使用することは困難である。特に光学素子として使用する場合には、表面状態の平面性が特に問題となることが多いため、結晶作製後に研磨、研削等による加工が必要となる。   For organic single crystals, various manufacturing methods as described above have been proposed. However, in consideration of actual application, it is difficult to use the deposited crystal shapes as they are. In particular, when used as an optical element, the planarity of the surface state often becomes a problem, and thus processing by polishing, grinding, or the like is necessary after crystal production.

しかし、有機結晶の場合には一般的に硬度が低く、クラック(ひび)や、欠けの発生など加工上の問題が起こるため、特許文献1では、あらかじめ薄膜状に結晶を成長させる報告がされているが、融液法の応用であり、前述したように、融点付近で分解が発生する有機材料では使用できず、材料が限定される。   However, in the case of organic crystals, the hardness is generally low, and processing problems such as cracks and chipping occur. Therefore, Patent Document 1 reports that crystals are grown in a thin film form in advance. However, it is an application of the melt method, and as described above, it cannot be used with organic materials that decompose near the melting point, and the materials are limited.

一方、図5に示した、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(4−dimethylamino−N−methyl−4−stilbazolium tosylate)(以下、「DAST」という。)は、東北大学中西研究室において開発され、極めて大きな非線形光学定数と電気光学定数を有し、有機結晶特有の低い誘電率であるため、低電圧、高速の光変調や検波、ミリ波発生など関心を集めている。DASTの電気光学定数は、r11=53「pm/V」(1.3μm)、92「pm/V」(720nm)とLiNbO3のr33=30.8「pm/V」(633nm)と比較して大きい。DASTの誘電率は、ε11=5.2と、LiNbO3の28に比べて小さいため、光変調器において高速、低電圧の光変調の可能性がある。DASTの透過特性は、0.8〜1.6μmにおいてほぼ平坦であり、光通信波長帯用デバイスに適した材料である。 Meanwhile, 4-dimethylamino-N-methyl-4-stilbazolium tosylate (hereinafter referred to as “DAST”) shown in FIG. Developed in the Nakanishi Laboratory of Tohoku University, it has extremely large nonlinear optical constants and electro-optical constants, and has a low dielectric constant unique to organic crystals. ing. The electro-optic constants of DAST are r 11 = 53 “pm / V” (1.3 μm), 92 “pm / V” (720 nm) and LiNbO 3 r 33 = 30.8 “pm / V” (633 nm). Big in comparison. Since the dielectric constant of DAST is ε 11 = 5.2, which is smaller than that of LiNbO 3 28, there is a possibility of high-speed and low-voltage optical modulation in the optical modulator. The transmission characteristic of DAST is substantially flat at 0.8 to 1.6 μm, and is a material suitable for an optical communication wavelength band device.

DAST結晶作製に関しては、溶液からのバルク結晶の作製法(溶液法)では、大阪大学佐々木研究室などにより、数多くの報告がなされている(例えば、特許文献2など)。   Regarding the production of DAST crystals, many reports have been made on the production method of bulk crystals from solution (solution method) by the Sasaki Laboratory of Osaka University (for example, Patent Document 2).

しかし、結晶形状は制御されていないため、得られた結晶を加工なしで応用することは非常に困難である。また、溶液からのバルク結晶作製方法では、温度パラメータなどにより、結晶の厚さ(結晶形状)を任意に制御することは極めて困難である。   However, since the crystal shape is not controlled, it is very difficult to apply the obtained crystal without processing. Further, in the bulk crystal production method from a solution, it is extremely difficult to arbitrarily control the crystal thickness (crystal shape) by a temperature parameter or the like.

また、DAST薄膜状結晶作製については、M.Thakurらにより、非特許文献1において、改良シェア法を用いた、厚さ3〜4μm、1cm2の薄膜結晶の報告がされている。 For the preparation of DAST thin film crystals, see M.M. Non-Patent Document 1 reports a thin film crystal having a thickness of 3 to 4 μm and 1 cm 2 using the improved shear method.

しかし、非特許文献1に記載された改良シェア法は、スペーサを用いずに加重でのみ制御しているため、数ミクロン程度の比較的薄い方向でしか結晶の厚さを制御することができない。   However, since the improved shear method described in Non-Patent Document 1 is controlled only by weight without using a spacer, the thickness of the crystal can be controlled only in a relatively thin direction of about several microns.

さらに、P.Gunterらにより、DASTは、融点(約260℃)と熱分解点(約290℃)が近いため、融点付近では熱分解が発生し、多くの不純物を含んでしまうことが報告されており、融液法を用いて単結晶作製することはできないことが知られている。
特開平6−186600号公報 特開2002−29899号公報 M.Thakur APPLIED PHYSICS LETTERS,vol.74(1999)635
Furthermore, P.I. Gunter et al. Have reported that DAST has a melting point (about 260 ° C.) and a thermal decomposition point (about 290 ° C.), so that thermal decomposition occurs near the melting point and contains many impurities. It is known that single crystals cannot be produced using a liquid method.
JP-A-6-186600 JP 2002-29899 A M.M. Thaku APPLIED PHYSICS LETTERS, vol. 74 (1999) 635

以上のように、これまでDAST結晶を、任意の厚さに制御し、薄膜状単結晶を作製した報告はない。   As described above, there has been no report that a DAST crystal is controlled to an arbitrary thickness and a thin film single crystal is produced.

本発明は、以上の点に鑑みてなされたものであり、その目的とするところは、熱などに不安定で融液法では結晶化ができない有機材料であっても、溶媒蒸発法により任意の厚さでかつ大型、高品質な有機単結晶を作製できる薄膜状有機単結晶の製造方法を提供し、かつ任意の厚さでかつ大型で高品質な有機単結晶作製に適した薄膜状有機単結晶の製造装置を提供することにあり、さらに、DASTの有機単結晶を作製する薄膜状有機単結晶の製造方法および製造装置を提供することにある。   The present invention has been made in view of the above points. The object of the present invention is that any organic material that is unstable to heat and cannot be crystallized by the melt method can be obtained by the solvent evaporation method. A method for producing a thin-film organic single crystal capable of producing a thick, large, and high-quality organic single crystal is provided, and a thin-film organic single crystal having an arbitrary thickness and suitable for producing a large-scale, high-quality organic single crystal. The object is to provide a crystal manufacturing apparatus, and further to provide a thin-film organic single crystal manufacturing method and manufacturing apparatus for manufacturing a DAST organic single crystal.

本発明者らは、上記目的を達成すべく様々な検討を重ねた結果、一対の基板によって形成された隙間に、結晶化させる有機物質を溶媒に溶解させて得られた溶液を充填した後、溶媒を蒸発させる速度の制御を行うことにより、上記課題を達成することを見出し、本発明をするに至った。   As a result of repeating various studies to achieve the above-mentioned object, the present inventors filled a gap formed by a pair of substrates with a solution obtained by dissolving an organic substance to be crystallized in a solvent, The inventors have found that the above-mentioned problems can be achieved by controlling the rate at which the solvent is evaporated, and have reached the present invention.

即ち、請求項1記載の薄膜状有機単結晶の作製方法は、一対の基板によって形成された隙間に、結晶化させる有機物質を溶媒に溶解させて得られた溶液を充填した後、当該溶液を充填した当該一対の基板から当該溶媒を蒸発させる速度の制御を行って有機単結晶を作製することを特徴とする。   That is, in the method for producing a thin-film organic single crystal according to claim 1, after filling a gap formed by a pair of substrates with a solution obtained by dissolving an organic substance to be crystallized in a solvent, The organic single crystal is manufactured by controlling the rate of evaporation of the solvent from the pair of filled substrates.

請求項2記載の薄膜状有機単結晶の作製方法は、請求項1に記載の発明において、前記溶媒を蒸発させる速度の制御は、前記溶液が充填された一対の基板を密閉可能な作製容器内に設置した後、前記溶媒の一定の蒸気量を含む添加ガスを収納したガス収納容器から当該作製容器内に、当該添加ガスを導入して行うことを特徴とする。   The method for producing a thin-film organic single crystal according to claim 2 is the invention according to claim 1, wherein the solvent evaporation rate is controlled in a production container capable of sealing a pair of substrates filled with the solution. After the installation, the additive gas is introduced into the production container from a gas storage container containing an additive gas containing a certain amount of vapor of the solvent.

請求項3記載の薄膜状有機単結晶の作製方法は、請求項2に記載の発明において、前記溶媒を蒸発させる速度の制御は、前記作製容器内と前記ガス収納容器内を、異なる温度に制御して行うことを特徴とする。   The method for producing a thin-film organic single crystal according to claim 3 is the invention according to claim 2, wherein the rate of evaporation of the solvent is controlled at different temperatures in the production container and the gas storage container. It is characterized by being performed.

請求項4記載の薄膜状有機単結晶の作製方法は、請求項2または3に記載の発明において、前記溶媒を蒸発させる速度の制御は、前記溶媒を飽和状態になるまで蒸発させて前記作製容器内を前記溶媒蒸気の飽和状態にした後、前記溶液を充填した一対の基板を密閉可能な作製容器内に配置することを特徴とする。   The method for producing a thin-film organic single crystal according to claim 4 is the invention according to claim 2 or 3, wherein the rate of evaporation of the solvent is controlled by evaporating the solvent until saturated. After the inside is saturated with the solvent vapor, a pair of substrates filled with the solution is placed in a sealable manufacturing container.

請求項5記載の薄膜状有機単結晶の作製方法は、請求項1〜4のいずれか1項に記載の発明において、前記隙間は、前記一対の基板の間にスペーサを設置して形成することを特徴とする。   The thin-film organic single crystal manufacturing method according to claim 5 is the invention according to any one of claims 1 to 4, wherein the gap is formed by installing a spacer between the pair of substrates. It is characterized by.

請求項6記載の薄膜状有機単結晶の作製方法は、請求項1〜5のいずれか1項に記載の発明において、前記有機物質は、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレートであることを特徴とする。   The method for producing a thin-film organic single crystal according to claim 6 is the invention according to any one of claims 1 to 5, wherein the organic substance is 4-dimethylamino-N-methyl-4-stilbazo. It is characterized by being lithium tosylate.

請求項7記載の薄膜状有機単結晶の作製装置は、ガスを導入するガス導入口および当該ガス導入口から導入されるガスの流量を調節する導入ガス流量弁と、ガスを排出するガス排出口および当該ガス排出口から排出されるガスの流量を調節する排出ガス流量弁とを備えた密閉可能な作製容器と、当該ガス導入口と接続され、結晶化させる有機物質を溶解させる溶媒の一定の蒸気量を含む添加ガスを収納したガス収納容器とを有する薄膜状有機単結晶の作製装置であって、前記作製容器内と前記ガス収納容器内とを異なる温度に制御することができるように構成したことを特徴とする。   The thin-film organic single crystal manufacturing apparatus according to claim 7 includes a gas introduction port for introducing a gas, an introduction gas flow valve for adjusting a flow rate of the gas introduced from the gas introduction port, and a gas discharge port for discharging the gas. And a sealable production container provided with an exhaust gas flow valve for adjusting the flow rate of the gas discharged from the gas discharge port, and a fixed solvent of a solvent that is connected to the gas inlet and dissolves the organic substance to be crystallized. An apparatus for producing a thin-film organic single crystal having a gas storage container containing an additive gas containing a vapor amount, wherein the inside of the preparation container and the inside of the gas storage container can be controlled at different temperatures. It is characterized by that.

請求項1記載の発明によれば、熱による分解などで融液法が使用できない有機材料においても、溶液蒸発法において溶媒の蒸発量を制御することで、基板上に安定して大型で高品質な薄膜状有機単結晶を作製することができる。   According to the first aspect of the present invention, even in an organic material that cannot be used by the melt method due to thermal decomposition or the like, the solvent evaporation amount is controlled in the solution evaporation method, so that the substrate is stably large and high quality. A thin film-like organic single crystal can be produced.

請求項2記載の発明によれば、溶液が充填された一対の基板を設置する作製容器内に溶媒の一定の蒸気量を含むガスを導入することで、溶媒の蒸発量を制御することができ、基板上に安定して大型で高品質な薄膜状有機単結晶を作製することができる。   According to the second aspect of the present invention, the amount of evaporation of the solvent can be controlled by introducing a gas containing a certain amount of vapor of the solvent into the production container in which the pair of substrates filled with the solution is installed. A large-scale and high-quality thin-film organic single crystal can be produced stably on the substrate.

請求項3記載の発明によれば、一対の基板が配置された作製容器内の温度と、溶媒の一定の蒸気量を含むガスを収納したガス収納容器内の温度を、異なる温度に制御して行うことで、作製容器内よりも少ない溶媒の蒸気量を含むガスを作製することができ、溶媒の蒸発量をより-容易に制御することが可能となり、基板上に安定して大型で高品質な薄膜状単結晶を作製することができる。   According to the invention of claim 3, the temperature in the fabrication container in which the pair of substrates is arranged and the temperature in the gas storage container storing the gas containing a certain amount of vapor of the solvent are controlled to different temperatures. By doing so, it is possible to produce a gas containing less solvent vapor than in the production container, and it is possible to control the amount of evaporation of the solvent more easily, and it is stable and large in size on the substrate A thin film-like single crystal can be produced.

請求項4記載の発明によれば、作製容器内を溶媒により飽和状態にした後、溶液を充填した一対の基板を密閉可能な作製容器内に配置することにより、単結晶の作製時における最初の溶媒の蒸発を緩やかにすることが可能となり、急激な溶媒の蒸発による多結晶化を抑え、基板上により安定して大型で高品質な薄膜状単結晶を作製することができる。   According to the invention of claim 4, after the inside of the production container is saturated with a solvent, the pair of substrates filled with the solution are placed in a production container that can be sealed, so that the first time when the single crystal is produced It becomes possible to moderate the evaporation of the solvent, suppress the polycrystallization due to the rapid evaporation of the solvent, and produce a large-scale and high-quality thin-film single crystal on the substrate more stably.

請求項5記載の発明によれば、一対の基板の間にスペーサを設置して隙間を形成することによって、薄膜状単結晶の厚さを任意に調節することができる。   According to invention of Claim 5, the thickness of a thin film-like single crystal can be arbitrarily adjusted by installing a spacer between a pair of board | substrates and forming a clearance gap.

請求項6記載の発明によれば、結晶化させる有機物質が4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレートであることにより、極めて大きな非線形光学定数と電気光学定数を有し、有機結晶特有の低い誘電率であり、低電圧、高速の光変調や検波、ミリ波発生などに展開が可能なDASTの薄膜状単結晶を作製することができる。   According to the invention described in claim 6, since the organic substance to be crystallized is 4-dimethylamino-N-methyl-4-stilbazolium tosylate, it has extremely large nonlinear optical constants and electro-optical constants. It is possible to produce a DAST thin film single crystal that has a low dielectric constant peculiar to organic crystals and can be developed for low voltage, high-speed optical modulation, detection, millimeter wave generation, and the like.

請求項7記載の発明によれば、密閉可能な作製容器内とガス収納容器内を異なる温度に制御することができるように構成されているため、一対の基板の隙間から蒸発する溶媒の蒸発量を安定して制御することができ、その結果、基板上に安定して大型で高品質な薄膜状有機単結晶を作製することができる。   According to the seventh aspect of the present invention, since the inside of the sealable production container and the gas storage container can be controlled at different temperatures, the evaporation amount of the solvent that evaporates from the gap between the pair of substrates Can be stably controlled, and as a result, a large-sized and high-quality thin-film organic single crystal can be stably formed on the substrate.

本発明の薄膜状有機単結晶の作製方法は、「溶媒蒸発法による有機単結晶の作製において」一対の基板によって形成された隙間に結晶化させる有機物質を溶媒に溶解させて得られた溶液を充填した後、溶液を充填した一対の基板から溶媒を蒸発させる速度の制御を行って薄膜状有機単結晶を作製することを特徴とする。   The method for producing a thin film-like organic single crystal of the present invention includes a solution obtained by dissolving an organic substance to be crystallized in a gap formed by a pair of substrates in “preparing an organic single crystal by a solvent evaporation method” in a solvent. After filling, a thin film organic single crystal is produced by controlling the rate of evaporation of the solvent from the pair of substrates filled with the solution.

一対の基板によって形成された隙間で単結晶を作製することにより、得られる単結晶の厚さは、一対の基板によって形成された隙間の距離となり、平面性も良好となる。また、溶媒の蒸発速度を制御することで、急激な蒸発(急激な過飽和度の上昇)による多結晶化を抑えて、大型かつ高品質な薄膜状単結晶を効率的に作製することができる。   By producing a single crystal with a gap formed by a pair of substrates, the thickness of the obtained single crystal becomes the distance between the gaps formed by the pair of substrates, and the planarity is also improved. In addition, by controlling the evaporation rate of the solvent, it is possible to efficiently produce a large-scale and high-quality thin-film single crystal by suppressing polycrystallization due to rapid evaporation (rapid increase in supersaturation degree).

一対の基板は、石英基板、ポリイミド、ポリエチレンなどの樹脂基板、ガラス、シリコンなどを用いることができるが、発明の効果の点から、石英基板が好ましい。なお、一対の基板の表面形状は、特に限定されず、例えば、円形であっても、四角形であっても、楕円形であってもよい。   As the pair of substrates, a quartz substrate, a resin substrate such as polyimide or polyethylene, glass, silicon, or the like can be used, but a quartz substrate is preferable from the viewpoint of the effects of the invention. The surface shape of the pair of substrates is not particularly limited, and may be, for example, a circle, a rectangle, or an ellipse.

一対の基板によって形成された隙間の距離は、任意に定めることができ、特に限定されないが、光変調器などの光学デバイスへの応用を考えると、0.1μm〜1000μmが好ましく、特に、1.0μm〜100μmがより好ましい。   The distance between the gaps formed by the pair of substrates can be arbitrarily determined and is not particularly limited. However, considering application to an optical device such as an optical modulator, 0.1 to 1000 μm is preferable. 0 μm to 100 μm is more preferable.

有機物質としては、従来用いられ、KH2PO4、LiNbO3などに代表される無機材料に比べ、非線形光学定数が大きい有機材料であれば用いることができ、例えば、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(DAST)、2−メチル−4−ニトロアニリン(MNA)、メタニトロアニリン(mNA)、3−メチル−4−ニトロピリジン−1−オキサイド(POM)、尿素、2−シアノ−3−(2−メトキシフェニル)−2−プロペン酸メチル(CMPメチル)、L−アルギニンフォスフェイトモノハイドレイト(LAP)、4−(N,Nジメチルアミノ)−3−アセトアミドニトロベンゼン(DAN)、3,5−ジメチル−1−(4−ニトロフェニル)ピラゾール(DMNP)等が挙げられる。ここで、極めて大きな非線形光学定数と電気光学定数を有し、有機結晶特有の低い誘電率であることから、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(DAST)であることが好ましい。 As the organic substance, any organic material having a large nonlinear optical constant as compared with inorganic materials such as KH 2 PO 4 and LiNbO 3 that have been used in the past can be used. For example, 4-dimethylamino-N— Methyl-4-stilbazolium tosylate (DAST), 2-methyl-4-nitroaniline (MNA), metanitroaniline (mNA), 3-methyl-4-nitropyridine-1-oxide (POM), urea 2-methyl-3-cyano-2- (2-methoxyphenyl) -2-propenoate (CMP methyl), L-arginine phosphate monohydrate (LAP), 4- (N, N dimethylamino) -3-acetamidonitrobenzene (DAN), 3,5-dimethyl-1- (4-nitrophenyl) pyrazole (DMNP) and the like. Here, 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) has an extremely large nonlinear optical constant and electro-optical constant and has a low dielectric constant peculiar to organic crystals. It is preferable.

溶媒としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、アセトン、2−ブタノン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ジメチルエーテル、酢酸エチル、ヘキサン、シクロヘキサン、アセトニトリル、トルエン等を用いることができるが、揮発性が高く、低価格であり、入手が容易であるなどの理由から、メタノールが好ましい。   As the solvent, for example, methanol, ethanol, 1-propanol, 2-propanol, acetone, 2-butanone, chloroform, dichloromethane, 1,2-dichloroethane, dimethyl ether, ethyl acetate, hexane, cyclohexane, acetonitrile, toluene and the like are used. However, methanol is preferable because it is highly volatile, inexpensive, and easily available.

隙間に溶液を充填させる方法としては、毛細管現象等を利用して隙間に溶液を充填してもよく、注入手段を用いて隙間に溶液を適宜充填してもよく、特に限定されない。   The method of filling the gap with the solution is not particularly limited, and may be filled with the solution using a capillary phenomenon or the like, or may be appropriately filled with the solution using an injection means.

溶液を充填した一対の基板から溶媒を蒸発させる速度の制御は、溶液が充填された一対の基板を密閉可能な作製容器内に設置した後、溶媒の一定の蒸気量を含む添加ガスを収納したガス収納容器から作製容器内にその添加ガスを導入して行うことが好ましい。作製容器内に溶媒の一定の蒸気量を含む添加ガスを流すことにより、一対の基板の隙間から蒸発する溶媒の速度を一定にすることが可能になり、急激な蒸発速度の変化による多結晶化や品質の低下を抑えて、大型かつ高品質な薄膜状単結晶を効率的に作製することができるからである。   Control of the rate at which the solvent is evaporated from the pair of substrates filled with the solution is performed after the pair of substrates filled with the solution is placed in a sealable manufacturing container, and then an additive gas containing a certain amount of solvent vapor is stored. It is preferable to introduce the additive gas from the gas storage container into the production container. By flowing an additive gas containing a certain amount of solvent vapor into the production vessel, the rate of the solvent evaporating from the gap between the pair of substrates can be made constant, and polycrystallization due to a rapid change in evaporation rate This is because it is possible to efficiently produce a large-sized and high-quality thin-film single crystal while suppressing deterioration in quality.

一対の基板の隙間に充填された溶液から溶媒を蒸発させた結果生じる結晶成長については、溶液から溶媒を急激に蒸発させると、短時間に結晶が多数析出してしまうため、一つ一つの結晶が大きく成長せず、多結晶状態になるか又は結晶中に溶媒が取り込まれ欠陥となるなどの問題が発生するが、溶媒をゆっくり蒸発させることで、結晶数を少なく、かつ大きくすることが可能となる。   Regarding crystal growth that occurs as a result of evaporating the solvent from the solution filled in the gap between the pair of substrates, if the solvent is rapidly evaporated from the solution, many crystals will precipitate in a short time. Does not grow large and becomes a polycrystalline state, or a problem occurs such that the solvent is taken into the crystal and becomes a defect, but by slowly evaporating the solvent, the number of crystals can be reduced and increased. It becomes.

例えば、溶媒の一定の蒸気量と窒素ガスを含む添加ガスを作製容器内に流した場合の方が、通常の窒素ガスのみを作製容器内に流した場合よりも、一対の基板の隙間に充填された溶液からの溶媒の蒸発速度を遅くすることが可能であり、溶媒の蒸発量を制御することが可能である。   For example, filling a gap between a pair of substrates in a case where an additive gas containing a certain amount of solvent vapor and nitrogen gas is allowed to flow into the fabrication vessel is more effective than when only normal nitrogen gas is allowed to flow in the fabrication vessel. It is possible to slow down the evaporation rate of the solvent from the prepared solution and to control the evaporation amount of the solvent.

ここにいう溶媒の一定の蒸気量は、必ずしも溶媒の飽和蒸気である必要はなく、一対の基板の隙間に充填された溶液から溶媒が蒸発する量の制御が可能であればよいため、作製容器内の溶媒の飽和蒸気量よりも少ない一定の蒸気量であってもよい。なお、ここにいう溶媒の一定の蒸気量は、溶媒の蒸発量の制御が非常に良好になる点から、溶媒の飽和蒸気付近の蒸気量であればより好ましく、溶媒の飽和蒸気であればさらに好ましい。   The constant vapor amount of the solvent here does not necessarily need to be a saturated vapor of the solvent, and it is only necessary to be able to control the amount of the solvent evaporated from the solution filled in the gap between the pair of substrates. It may be a certain amount of vapor that is less than the saturated vapor amount of the solvent inside. The constant vapor amount of the solvent mentioned here is more preferably a vapor amount in the vicinity of the saturated vapor of the solvent from the viewpoint of very good control of the evaporation amount of the solvent, and further, if the saturated vapor of the solvent, preferable.

溶媒の一定の蒸気量を含む添加ガスとしては、例えば、溶媒の一定の蒸気量と窒素ガスの混合ガスが適しているが、有機物質を変質させないものであれば、窒素ガスの代わりにまたは窒素ガスに加えて他のガスを用いることができる。   As the additive gas containing a certain amount of vapor of the solvent, for example, a mixed gas of a certain amount of vapor of the solvent and nitrogen gas is suitable, but if the organic substance is not denatured, nitrogen gas can be used instead of nitrogen gas or nitrogen gas. Other gases can be used in addition to the gas.

溶液を充填した一対の基板から溶媒を蒸発させる速度の制御は、作製容器内とガス収納容器内を、異なる温度に制御して行うことがより好ましい。一対の基板を配置した作製容器内の温度と、溶媒の一定の蒸気量を含む添加ガスを収納したガス収納容器内の温度を異なる温度に制御することにより、作製容器内の溶媒蒸気量よりも少ない溶媒蒸気量を容易にかつ確実に実現することができ、溶媒の蒸発速度を正確に制御することが可能となり、大型かつ高品質な薄膜状有機単結晶を効率的に作製することができるからである。   More preferably, the rate at which the solvent is evaporated from the pair of substrates filled with the solution is controlled by controlling the inside of the production container and the inside of the gas storage container at different temperatures. By controlling the temperature in the production container in which the pair of substrates are arranged and the temperature in the gas storage container containing the additive gas containing a certain amount of solvent vapor to different temperatures, the amount of solvent vapor in the production container A small amount of solvent vapor can be easily and reliably realized, the evaporation rate of the solvent can be accurately controlled, and a large-scale and high-quality thin-film organic single crystal can be efficiently produced. It is.

作製容器内とガス収納容器内を異なる温度に制御する方法としては、例えば、恒温槽による温度制御、シート型ヒーターによる温度制御などが挙げられるが、これに限定されず、公知の温度制御方法を用いることが可能である。   Examples of the method for controlling the temperature inside the production container and the gas storage container to different temperatures include temperature control using a thermostatic bath, temperature control using a sheet-type heater, and the like. It is possible to use.

溶液を充填した一対の基板から溶媒を蒸発させる速度の制御は、溶媒を飽和状態になるまで蒸発させて、作製容器内を溶媒蒸気の飽和状態にした後、溶液を充填した一対の基板を密閉可能な作製容器内に配置することがさらに好ましい。作製容器内に結晶化させる有機物質を溶媒に溶解させて得られた溶液を充填した一対の基板を配置する前の段階で、作製容器内を溶媒蒸気の飽和状態にすることで、結晶作製時の最初の溶媒蒸発を緩やかにすることが可能となり、急激な溶媒蒸発による多結晶化を抑えて、大型かつ高品質な薄膜状有機単結晶をより効率的に作製することができるからである。   Control of the rate of evaporation of the solvent from the pair of substrates filled with the solution is achieved by evaporating the solvent until saturation is reached, and after the inside of the production container is saturated with solvent vapor, the pair of substrates filled with the solution is sealed. More preferably, it is placed in a possible production container. At the time of crystal production, the inside of the production container is saturated with solvent vapor at the stage before placing the pair of substrates filled with the solution obtained by dissolving the organic substance to be crystallized in the production container in the solvent. This is because the first solvent evaporation can be moderated, and polycrystallization due to rapid solvent evaporation can be suppressed, and a large-sized and high-quality thin-film organic single crystal can be produced more efficiently.

一対の基板によって形成された隙間は、一対の基板の間にスペーサを設置して形成することが好ましい。一対の基板間にスペーサを設置することにより、作製する薄膜状単結晶の厚さを自在に変化させることができ、任意の厚さとすることが可能となるからである。   The gap formed by the pair of substrates is preferably formed by installing a spacer between the pair of substrates. This is because by installing a spacer between the pair of substrates, the thickness of the thin film-like single crystal to be manufactured can be freely changed, and an arbitrary thickness can be obtained.

スペーサは、隙間に充填した溶液によって変質しないものであれば特に限定されない。スペーサとしては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリテトラフルオロエチレン(PTFE)、パーフロロアルコキシエチレン樹脂(PFA)、ポリカーボネイト(PC)、ポリビニルアルコール(PVA)、ポリメタクリル酸メチル(PMMA)、ポリスチレン、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリイミドなどが挙げられる。   The spacer is not particularly limited as long as it is not altered by the solution filled in the gap. Examples of the spacer include polyethylene terephthalate (PET) film, polytetrafluoroethylene (PTFE), perfluoroalkoxyethylene resin (PFA), polycarbonate (PC), polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), and polystyrene. , Polysulfone (PSF), polyethersulfone (PES), polyimide and the like.

本発明の薄膜状有機単結晶の作製装置は、ガスを導入するガス導入口およびガス導入口から導入されるガスの流量を調節する導入ガス流量弁と、ガスを排出するガス排出口およびガス排出口から排出されるガスの流量を調節する排出ガス流量弁とを備えた密閉可能な作製容器と、ガス導入口と接続され、結晶化させる有機物質を溶解させる溶媒の一定の蒸気量を含む添加ガスを収納したガス収納容器とを有し、作製容器内とガス収納容器内とを異なる温度に制御することができるように構成したことを特徴とする。本発明の薄膜状有機単結晶の作製装置により、大型かつ高品質な薄膜状有機単結晶の作製装置を提供することが可能となる。   The thin-film organic single crystal production apparatus of the present invention includes a gas introduction port for introducing a gas, an introduction gas flow valve for adjusting the flow rate of the gas introduced from the gas introduction port, a gas discharge port and a gas exhaust for discharging the gas. A sealable production vessel with an exhaust gas flow valve that regulates the flow rate of gas discharged from the outlet, and an addition that includes a certain amount of vapor connected to the gas inlet and that dissolves the organic material to be crystallized. It has a gas storage container that stores gas, and is configured to be able to control the inside of the production container and the inside of the gas storage container at different temperatures. The thin-film organic single crystal manufacturing apparatus of the present invention can provide a large-sized and high-quality thin-film organic single crystal manufacturing apparatus.

(実施例1)
まず、作製容器1の中にメタノール(溶媒)を入れた容器3を置き、作製容器1のガス導入口にある導入ガス流量弁8およびガス排出口にある排出ガス流量弁9を閉じて、作製容器1内を恒温槽で20℃にして2時間保持し、作製容器1内をメタノール蒸気の飽和状態にした(図1−1)。
Example 1
First, the container 3 containing methanol (solvent) is placed in the production container 1, the introduction gas flow valve 8 at the gas introduction port of the production container 1 and the exhaust gas flow valve 9 at the gas discharge port are closed, and production is performed. The inside of the container 1 was kept at 20 ° C. in a thermostatic bath for 2 hours, and the inside of the production container 1 was saturated with methanol vapor (FIG. 1-1).

これとは別に、直径100mmの円形石英基板を二枚用意して、基板間の距離を1μmとして一対の基板4a,4bを形成し、一対の基板4a,4bを、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(DAST、有機物質)25mgにつきメタノール1mlを加えて作成したDASTメタノール溶液5(溶液)に接触させ、毛細管現象等を利用して、一対の基板4a,4bの隙間にDASTメタノール溶液5を充填した。   Separately, two circular quartz substrates having a diameter of 100 mm are prepared, the pair of substrates 4a and 4b is formed with a distance of 1 μm between the substrates, and the pair of substrates 4a and 4b is converted to 4-dimethylamino-N—. A pair of substrates 4a and 4b are brought into contact with DAST methanol solution 5 (solution) prepared by adding 1 ml of methanol to 25 mg of methyl-4-stilbazolium tosylate (DAST, organic substance) and utilizing capillary action or the like. The DAST methanol solution 5 was filled in the gap.

次いで、メタノールを入れた容器3を作製容器1から取り出した後、DASTメタノール溶液5を隙間に充填した一対の基板4a,4bを作製容器1内に設置した(図1−2)。なお、この段階では、作製容器1内は、メタノール蒸気の飽和状態になっているため、一対の基板4a,4bの隙間に存在するDASTメタノール溶液5からメタノールが蒸発することがない。   Next, after removing the container 3 containing methanol from the production container 1, a pair of substrates 4a and 4b filled with a DAST methanol solution 5 in the gap was placed in the production container 1 (FIG. 1-2). At this stage, since the inside of the production container 1 is saturated with methanol vapor, methanol does not evaporate from the DAST methanol solution 5 present in the gap between the pair of substrates 4a and 4b.

これとは別に、メタノールを入れたガス収納容器内2を恒温槽で15℃にして保持し、ガス収納容器2内をメタノール蒸気の飽和状態にしてから、メタノールの中に窒素ガスを毎分0.5ml流し、メタノールの飽和蒸気と窒素ガスとからなる添加ガスを作製した。   Separately, the inside of the gas storage container 2 containing methanol is kept at a temperature of 15 ° C. in a thermostatic bath, the inside of the gas storage container 2 is saturated with methanol vapor, and nitrogen gas is then added to the methanol at a rate of 0 per minute. An additive gas consisting of methanol saturated vapor and nitrogen gas was produced.

なお、メタノールの中に窒素ガスを流すのが望ましいのは、時間当たりの窒素ガスとメタノールの接触面積が増え、混合ガス中のメタノール蒸気の量が一定になり、混合ガスの混合比が安定するからであり、逆に、メタノールの中に窒素ガスを流さないと、メタノールが液体/気体の平衡状態に達する時間が足りず、メタノール蒸気が少なくなり、混合ガス中のメタノール蒸気の比率が少なくなるからである。   In addition, it is desirable to flow nitrogen gas into methanol. The contact area between nitrogen gas and methanol per hour increases, the amount of methanol vapor in the mixed gas becomes constant, and the mixing ratio of the mixed gas becomes stable. On the other hand, if nitrogen gas is not flowed into methanol, there is not enough time for methanol to reach a liquid / gas equilibrium state, methanol vapor decreases, and the ratio of methanol vapor in the mixed gas decreases. Because.

また、メタノールの中に窒素ガスを流す管の先は、ガラスフィルタのように多孔状になっている方が望ましい。時間当たりの窒素ガスとメタノールの接触面積が増加し、効率よくメタノールの飽和蒸気と窒素ガスとからなる添加ガスを作成することができるからである。   Moreover, it is desirable that the tip of the tube through which nitrogen gas flows into methanol be porous like a glass filter. This is because the contact area between nitrogen gas and methanol per hour increases, and an additive gas composed of methanol saturated vapor and nitrogen gas can be efficiently produced.

そして、作製した添加ガスを、導入ガス流量弁8を調節して、ガス収納容器2から作製容器1内へ毎分0.5mlの流量で流した(図1−3)。ここで、15℃におけるメタノール蒸気の飽和量は、20℃におけるメタノール蒸気の飽和量よりも小さいため、20℃に保持されている作製容器1内のメタノール蒸気の量は徐々に減少することから、一対の基板4a,4bの隙間に充填されたDASTメタノール溶液5からメタノールが徐々に蒸発し、DASTメタノール溶液におけるDASTの濃度が上昇することで、有機単結晶6が析出し始めた。   Then, the prepared additive gas was flowed from the gas storage container 2 into the preparation container 1 at a flow rate of 0.5 ml per minute by adjusting the introduction gas flow rate valve 8 (FIGS. 1-3). Here, since the saturation amount of methanol vapor at 15 ° C. is smaller than the saturation amount of methanol vapor at 20 ° C., the amount of methanol vapor in the production container 1 held at 20 ° C. gradually decreases. Methanol gradually evaporated from the DAST methanol solution 5 filled in the gap between the pair of substrates 4a and 4b, and the concentration of DAST in the DAST methanol solution increased, whereby the organic single crystal 6 began to precipitate.

なお、当然であるが、メタノールの飽和蒸気と窒素ガスを含む添加ガスを作製容器1内に流した場合の方が、通常の窒素ガスのみを作製容器1内に流した場合よりも、一対の基板4a,4bの隙間に充填されたDASTメタノール溶液5からのメタノールの蒸発速度は遅くすることが可能であり、メタノールの蒸発量を制御することが可能である。   As a matter of course, a case where an additive gas containing a saturated vapor of methanol and nitrogen gas is caused to flow into the production container 1 is a pair of a case where only a normal nitrogen gas is caused to flow into the production container 1. The evaporation rate of methanol from the DAST methanol solution 5 filled in the gap between the substrates 4a and 4b can be reduced, and the evaporation amount of methanol can be controlled.

また、一対の基板4a,4bの隙間に充填されたDASTメタノール溶液5からメタノールを蒸発させた結果生じる結晶成長は、DASTメタノール溶液5からメタノールを急激に蒸発させると、短時間に結晶が多数析出してしまうため、一つ一つの結晶が大きく成長せず、多結晶状態になるか又は結晶中に溶媒が取り込まれ欠陥となるなどの問題が発生するが、蒸発速度をゆっくりとすることで、結晶数を少なく、かつ大きくすることが可能となる。   In addition, crystal growth caused as a result of evaporation of methanol from the DAST methanol solution 5 filled in the gap between the pair of substrates 4a and 4b causes many crystals to precipitate in a short time when methanol is rapidly evaporated from the DAST methanol solution 5. Therefore, each crystal does not grow greatly, and there is a problem that it becomes a polycrystal state or a solvent is taken into the crystal and becomes a defect, but by slowing the evaporation rate, The number of crystals can be reduced and increased.

添加ガスを作製容器1内に流し始めてから168時間後(7日後)、一対の基板4a,4bの隙間に存在した溶媒は完全に消滅した。その後、作製容器1のガス導入口から作製容器内に導入するガスを窒素ガスのみに変更して5時間流し続け、作製容器1内のメタノールを完全に除去した(図1−4)。   168 hours (7 days later) after the additive gas began to flow into the production container 1, the solvent present in the gap between the pair of substrates 4a and 4b was completely extinguished. Thereafter, the gas introduced into the production container from the gas introduction port of the production container 1 was changed to only nitrogen gas and continued to flow for 5 hours to completely remove the methanol in the production container 1 (FIGS. 1-4).

一対の基板4a,4bを取り出し結晶を確認したところ、厚さ1μm、約5.0mm×約5.0mmの有機単結晶6を3個得ることができた。結晶の均一性を調べるために、偏光顕微鏡による観察を行ったところ、結晶全体で一様に消光し、欠陥がないこと確認され、大型で高品質な有機単結晶6が得られていることわかった。   When the pair of substrates 4a and 4b were taken out and the crystals were confirmed, three organic single crystals 6 having a thickness of 1 μm and about 5.0 mm × about 5.0 mm could be obtained. In order to investigate the uniformity of the crystal, it was observed with a polarizing microscope, and it was confirmed that the entire crystal was uniformly extinguished and free from defects, and that a large and high-quality organic single crystal 6 was obtained. It was.

(実施例2)
まず、作製容器1とメタノールを入れたガス収納容器2とを接続した後、恒温槽で両容器内を20℃にして2時間保持して、作製容器1内をメタノール蒸気の飽和状態にした(図2−1)。ここで、ガス収納容器2内のメタノール中には窒素ガスを毎分0.5ml流した。
(Example 2)
First, after the preparation container 1 and the gas storage container 2 containing methanol were connected, the inside of both containers was kept at 20 ° C. for 2 hours in a thermostatic bath, and the inside of the preparation container 1 was saturated with methanol vapor ( Fig. 2-1). Here, 0.5 ml of nitrogen gas was allowed to flow into the methanol in the gas storage container 2 per minute.

これとは別に、直径100mmの円形石英基板を二枚用意して、基板間の距離を1μmとして一対の基板4a,4bを形成し、一対の基板4a,4bを、DAST25mgにつきメタノール1mlを加えて作成したDASTメタノール溶液5に接触させ、毛細管現象等を利用して、一対の基板4a,4bの隙間にDASTメタノール溶液5を充填した後、DASTメタノール溶液5を隙間に充填した一対の基板4a,4bを作製容器1内に設置した(図2−2)。なお、この段階では、作製容器1内はメタノール蒸気の飽和状態になっているため、一対の基板4a,4bの隙間に存在するDASTメタノール溶液5からメタノールが蒸発することがない。   Separately, two circular quartz substrates having a diameter of 100 mm are prepared, a pair of substrates 4a and 4b is formed with a distance of 1 μm between the substrates, and 1 ml of methanol is added to the pair of substrates 4a and 4b per 25 mg of DAST. After making contact with the prepared DAST methanol solution 5 and using a capillary phenomenon or the like to fill the gap between the pair of substrates 4a and 4b with the DAST methanol solution 5, the pair of substrates 4a and 4b with the DAST methanol solution 5 filled in the gap 4b was installed in the production container 1 (FIG. 2-2). At this stage, since the inside of the production container 1 is saturated with methanol vapor, methanol does not evaporate from the DAST methanol solution 5 present in the gap between the pair of substrates 4a and 4b.

そして、ガス収納容器2内を恒温槽で15℃にし、メタノールの飽和蒸気と窒素ガスを含む添加ガスを、導入ガス流量弁8を調節して、ガス収納容器2から作製容器1内へ毎分0.5mlの流量で流した(図2−3)。   Then, the inside of the gas storage container 2 is brought to 15 ° C. in a constant temperature bath, and an additive gas containing saturated methanol vapor and nitrogen gas is adjusted from the gas storage container 2 into the production container 1 every minute by adjusting the introduction gas flow valve 8. The flow was 0.5 ml (FIG. 2-3).

添加ガスを作製容器内に流し始めてから168時間後(7日後)、一対の基板4a,4bの隙間に存在した溶媒は完全に消滅した。その後、作製容器1の導入口から作製容器1内に導入するガスを窒素ガスのみに変更して5時間流し続け、作製容器1内のメタノールを完全に除去した(図2−4)。   168 hours (7 days later) after the additive gas began to flow into the production container, the solvent present in the gap between the pair of substrates 4a and 4b was completely extinguished. Thereafter, the gas introduced into the production container 1 from the introduction port of the production container 1 was changed to only nitrogen gas and kept flowing for 5 hours to completely remove the methanol in the production container 1 (FIG. 2-4).

一対の基板4a,4bを取り出し結晶を確認したところ、厚さ1μm、約5.0mm×約5.0mmの有機単結晶6を3個得ることができた。ここで、結晶の均一性を調べるため、偏光顕微鏡による観察を行ったところ、結晶全体で一様に消光し、欠陥がないこと確認され、大型で高品質な有機単結晶6が得られていることがわかった。   When the pair of substrates 4a and 4b were taken out and the crystals were confirmed, three organic single crystals 6 having a thickness of 1 μm and about 5.0 mm × about 5.0 mm could be obtained. Here, in order to examine the uniformity of the crystal, observation with a polarizing microscope was performed, and it was confirmed that the entire crystal was uniformly extinguished and free of defects, and a large-sized and high-quality organic single crystal 6 was obtained. I understood it.

(実施例3)
実施例2と同様の操作を繰り返し、作製容器1内(20℃)をメタノール蒸気の飽和状態にした(図3−1)。
Example 3
The same operation as in Example 2 was repeated, and the inside of the production container 1 (20 ° C.) was saturated with methanol vapor (FIG. 3A).

これとは別に、直径100mmの円形石英基板を二枚用意して、二枚の円形石英基板の間に厚さ12μmのPETフィルムを配置してスペーサ7とし、隙間12μmの一対の基板4a,4bを作製した(図4)。   Separately, two circular quartz substrates having a diameter of 100 mm are prepared, a PET film having a thickness of 12 μm is arranged between the two circular quartz substrates to form a spacer 7, and a pair of substrates 4 a and 4 b having a gap of 12 μm. Was prepared (FIG. 4).

次いで、一対の基板4a,4bを、DAST30mgにつきメタノール1mlを加えて作成したDASTメタノール溶液5に接触させ、毛細管現象等を利用して、一対の基板4a,4bの隙間にDASTメタノール溶液5を充填した後、DASTメタノール溶液5を隙間に充填した一対の基板4a,4bを作製容器1内に設置した(図3−2)。なお、この段階では、作製容器1内はメタノール蒸気の飽和状態になっているため、一対の基板4a,4bの隙間に存在するDASTメタノール溶液5からメタノールが蒸発することがない。   Next, the pair of substrates 4a and 4b is brought into contact with the DAST methanol solution 5 prepared by adding 1 ml of methanol per 30 mg of DAST, and the gap between the pair of substrates 4a and 4b is filled with the DAST methanol solution 5 using a capillary phenomenon or the like. After that, a pair of substrates 4a and 4b filled with the DAST methanol solution 5 in the gap was placed in the production container 1 (FIG. 3-2). At this stage, since the inside of the production container 1 is saturated with methanol vapor, methanol does not evaporate from the DAST methanol solution 5 present in the gap between the pair of substrates 4a and 4b.

そして、ガス収納容器2内を恒温槽で17℃にし、メタノールの飽和蒸気と窒素ガスを含む添加ガスを、導入ガス流量弁8を調節して、ガス収納容器2から作製容器1内へ毎分0.5mlの流量で流した(図3−3)。   Then, the inside of the gas storage container 2 is brought to 17 ° C. in a thermostatic bath, and an additive gas containing saturated methanol vapor and nitrogen gas is adjusted from the gas storage container 2 into the production container 1 every minute by adjusting the introduction gas flow valve 8. The flow was 0.5 ml (FIG. 3-3).

添加ガスを作製容器1内に流し始めてから240時間後(10日後)、一対の基板4a,4bの隙間に存在した溶媒は完全に消滅した。その後、作製容器1を30℃に保持し、作製容器1の導入口から作製容器1内に導入するガスを窒素ガスのみに変更して5時間流し続け、作製容器1内のメタノールを完全に除去した(図3−4)。   240 hours (10 days later) after the additive gas began to flow into the production container 1, the solvent present in the gap between the pair of substrates 4a and 4b was completely extinguished. Thereafter, the production container 1 is kept at 30 ° C., and the gas introduced into the production container 1 from the introduction port of the production container 1 is changed to only nitrogen gas and kept flowing for 5 hours to completely remove the methanol in the production container 1. (FIG. 3-4).

一対の基板4a,4bを取り出し結晶を確認したところ、厚さ12μm、約3.0mm×約3.0mmの有機単結晶6を3個得ることができた。ここで、結晶の均一性を調べるために、偏光顕微鏡による観察を行ったところ、結晶全体で一様に消光し、欠陥がないこと確認され、大型で高品質な有機単結晶6が得られていることがわかった。   When the pair of substrates 4a and 4b were taken out and the crystals were confirmed, three organic single crystals 6 having a thickness of 12 μm and about 3.0 mm × about 3.0 mm could be obtained. Here, in order to investigate the uniformity of the crystal, observation with a polarizing microscope was carried out. As a result, it was confirmed that the entire crystal was uniformly extinguished and free of defects, and a large and high-quality organic single crystal 6 was obtained. I found out.

(比較例1)
メタノールの飽和蒸気と窒素ガスを含む添加ガスを窒素ガスのみに代えた以外は、実施例2と同様の操作を繰り返した。
(Comparative Example 1)
The same operation as in Example 2 was repeated except that the additive gas containing saturated methanol vapor and nitrogen gas was replaced with nitrogen gas only.

窒素ガスを作製容器1内に流し始めてから3時間後、一対の基板4a,4bの隙間に存在した溶媒は完全に消滅した。   Three hours after the nitrogen gas began to flow into the production vessel 1, the solvent present in the gap between the pair of substrates 4a and 4b disappeared completely.

一対の基板4a,4bの隙間には、数μm〜数10μmの結晶が多数析出した。これらの結晶には、クラックや溶媒の取り込みによると思われる欠陥が見られた。   A large number of crystals of several μm to several tens of μm were deposited in the gap between the pair of substrates 4a and 4b. These crystals were found to have defects that may be due to cracks and solvent incorporation.

本発明の薄膜状有機単結晶の作製方法における手順の概略の一例を示す図である。It is a figure which shows an example of the outline of the procedure in the preparation methods of the thin film organic single crystal of this invention. 本発明の薄膜状有機単結晶の作製方法における手順の概略の他の一例を示す図である。It is a figure which shows another example of the outline of the procedure in the preparation methods of the thin film organic single crystal of this invention. 本発明の薄膜状有機単結晶の作製方法における手順の概略の他の一例を示す図である。It is a figure which shows another example of the outline of the procedure in the preparation methods of the thin film organic single crystal of this invention. スペーサを設置して隙間を形成した一対の基板の一例を示す概略図である。It is the schematic which shows an example of a pair of board | substrate which installed the spacer and formed the clearance gap. 4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(DAST)の構造式を示す図である。FIG. 4 is a diagram showing a structural formula of 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST).

符号の説明Explanation of symbols

1 作製容器
2 ガス収納容器
3 メタノールを入れた容器
4a,4b 一対の基板
5 DASTメタノール溶液
6 有機単結晶
7 スペーサ
8 導入ガス流量弁
9 排出ガス流量弁
DESCRIPTION OF SYMBOLS 1 Preparation container 2 Gas storage container 3 Container 4a, 4b A pair of substrates 5 DAST methanol solution 6 Organic single crystal 7 Spacer 8 Introducing gas flow valve 9 Exhaust gas flow valve

Claims (7)

一対の基板によって形成された隙間に、結晶化させる有機物質を溶媒に溶解させて得られた溶液を充填した後、当該溶液を充填した当該一対の基板から当該溶媒を蒸発させる速度の制御を行って有機単結晶を作製することを特徴とする薄膜状有機単結晶の作製方法。   A gap formed by a pair of substrates is filled with a solution obtained by dissolving an organic substance to be crystallized in a solvent, and then the rate of evaporation of the solvent from the pair of substrates filled with the solution is controlled. A method for producing a thin-film organic single crystal, comprising producing an organic single crystal. 前記溶媒を蒸発させる速度の制御は、前記溶液が充填された一対の基板を密閉可能な作製容器内に設置した後、前記溶媒の一定の蒸気量を含む添加ガスを収納したガス収納容器から当該作製容器内に、当該添加ガスを導入して行うことを特徴とする請求項1に記載の薄膜状有機単結晶の作製方法。   Control of the rate of evaporation of the solvent is performed by installing a pair of substrates filled with the solution in a sealable production container and then from a gas storage container containing an additive gas containing a certain amount of vapor of the solvent. The method for producing a thin-film organic single crystal according to claim 1, wherein the additive gas is introduced into a production container. 前記溶媒を蒸発させる速度の制御は、前記作製容器内と前記ガス収納容器内を、異なる温度に制御して行うことを特徴とする請求項2に記載の薄膜状有機単結晶の作製方法。   The method for producing a thin-film organic single crystal according to claim 2, wherein the rate of evaporation of the solvent is controlled by controlling the inside of the production container and the inside of the gas storage container at different temperatures. 前記溶媒を蒸発させる速度の制御は、前記溶媒を飽和状態になるまで蒸発させて前記作製容器内を前記溶媒蒸気の飽和状態にした後、前記溶液を充填した一対の基板を密閉可能な作製容器内に配置することを特徴とする請求項2または3に記載の薄膜状有機単結晶の作製方法。   Control of the speed at which the solvent is evaporated is controlled by evaporating the solvent until the solvent is saturated, and after the inside of the preparation container is saturated with the solvent vapor, a pair of substrates filled with the solution can be sealed. 4. The method for producing a thin-film organic single crystal according to claim 2 or 3, wherein the thin-film organic single crystal is disposed inside. 前記隙間は、前記一対の基板の間にスペーサを設置して形成することを特徴とする請求項1〜4のいずれか1項に記載の薄膜状有機単結晶の作製方法。   The method for producing a thin-film organic single crystal according to claim 1, wherein the gap is formed by installing a spacer between the pair of substrates. 前記有機物質は、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレートであることを特徴とする請求項1〜5のいずれか1項に記載の薄膜状有機単結晶の作製方法。   6. The method for producing a thin-film organic single crystal according to claim 1, wherein the organic substance is 4-dimethylamino-N-methyl-4-stilbazolium tosylate. . ガスを導入するガス導入口および当該ガス導入口から導入されるガスの流量を調節する導入ガス流量弁と、ガスを排出するガス排出口および当該ガス排出口から排出されるガスの流量を調節する排出ガス流量弁とを備えた密閉可能な作製容器と、当該ガス導入口と接続され、結晶化させる有機物質を溶解させる溶媒の一定の蒸気量を含む添加ガスを収納したガス収納容器とを有する薄膜状有機単結晶の作製装置であって、
前記作製容器内と前記ガス収納容器内とを異なる温度に制御することができるように構成したことを特徴とする薄膜状有機単結晶の作製装置。
A gas introduction port for introducing gas, an introduction gas flow valve for adjusting the flow rate of gas introduced from the gas introduction port, a gas discharge port for discharging gas, and a flow rate of gas discharged from the gas discharge port are adjusted. A sealable production container having an exhaust gas flow valve, and a gas storage container connected to the gas inlet and storing an additive gas containing a certain amount of vapor of a solvent that dissolves an organic substance to be crystallized. An apparatus for producing a thin-film organic single crystal,
An apparatus for producing a thin-film organic single crystal, characterized in that the inside of the production container and the inside of the gas storage container can be controlled at different temperatures.
JP2004203696A 2004-07-09 2004-07-09 Method and apparatus for manufacturing thin film-like organic single crystal Withdrawn JP2006021976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203696A JP2006021976A (en) 2004-07-09 2004-07-09 Method and apparatus for manufacturing thin film-like organic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203696A JP2006021976A (en) 2004-07-09 2004-07-09 Method and apparatus for manufacturing thin film-like organic single crystal

Publications (1)

Publication Number Publication Date
JP2006021976A true JP2006021976A (en) 2006-01-26

Family

ID=35795524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203696A Withdrawn JP2006021976A (en) 2004-07-09 2004-07-09 Method and apparatus for manufacturing thin film-like organic single crystal

Country Status (1)

Country Link
JP (1) JP2006021976A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074969A (en) * 2010-09-29 2012-04-12 Seiko Instruments Inc Package manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
CN105648519A (en) * 2016-01-11 2016-06-08 青岛大学 Square rectangular-pyramid-bottom DAST (diethylaminosulfurtrifluoride) crystal growth device
CN106222752A (en) * 2016-08-29 2016-12-14 上海理工大学 A kind of method preparing organic crystal thin film
CN109355708A (en) * 2018-10-29 2019-02-19 天津理工大学 A kind of two-dimentional hydridization perovskite crystal growing method of space limitation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074969A (en) * 2010-09-29 2012-04-12 Seiko Instruments Inc Package manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
CN105648519A (en) * 2016-01-11 2016-06-08 青岛大学 Square rectangular-pyramid-bottom DAST (diethylaminosulfurtrifluoride) crystal growth device
CN106222752A (en) * 2016-08-29 2016-12-14 上海理工大学 A kind of method preparing organic crystal thin film
CN106222752B (en) * 2016-08-29 2019-02-15 上海理工大学 A method of preparing organic crystal film
CN109355708A (en) * 2018-10-29 2019-02-19 天津理工大学 A kind of two-dimentional hydridization perovskite crystal growing method of space limitation

Similar Documents

Publication Publication Date Title
Dang et al. Recent progress in the synthesis of hybrid halide perovskite single crystals
JP5212711B2 (en) Method for producing single crystal thin film of organic semiconductor compound
Shah et al. Heterogeneous nucleants for crystallogenesis and bioseparation
US20150013593A1 (en) Thin film formation
CN107287578A (en) A kind of chemical gas-phase deposition process for preparing of a wide range of uniform double-deck molybdenum disulfide film
KR20140024303A (en) Method for surfactant crystal growth of a metal-nonmetal compound
Chen et al. Amplifying surface energy difference toward anisotropic growth of all‐inorganic perovskite single‐crystal wires for highly sensitive photodetector
US20100209686A1 (en) Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL, LAMINATE THEREOF AND THEIR PRODUCTION METHODS
Xia et al. Solvent‐Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains
JP2006021976A (en) Method and apparatus for manufacturing thin film-like organic single crystal
CN112397649A (en) Preparation method of large-area perovskite semiconductor single crystal film
CN102560678B (en) A kind of method that stray crystal occurs in suppression 4-(4-dimethylaminostyryl) picoline tosilate crystal growing process
JP4272778B2 (en) Method for producing crystalline thin film
Lee et al. Large‐Scale Assembly of Peptide‐Based Hierarchical Nanostructures and Their Antiferroelectric Properties
Sasaki et al. New developments in crystal growth from solutions: Oxides, proteins, and nitrides
JP4982845B2 (en) Material single crystal thin film manufacturing method and single crystal thin film manufacturing apparatus
Sun et al. Nucleation kinetics, micro-crystallization and etching studies of l-histidine trifluoroacetate crystal
Watanabe et al. Single Crystallization of an Organic Semiconductor in Hydrogel Capillaries for Transferring onto Substrates
Seta et al. Giant Grain Growth of 2, 5-Di (2-thienyl)-1 H-pyrrole Crystal Films: Kinetic Analysis of Self-Crystallization from Its Supercooled Liquid in Vacuum Deposition
Rashid et al. Self-assembled organic supramolecular thin films for nonlinear optics
Boeck et al. A method to grow silicon crystallites on glass
JP4587723B2 (en) Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal
JP2005216966A (en) Manufacturing method for organic semiconductor crystal, and organic semiconductor crystal
US7368012B2 (en) Methods and apparatuses for a dynamic growing of single-crystal thin-film composed of organic materials
JPH01172297A (en) Production of organic single crystal

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002