JP4587723B2 - Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal - Google Patents

Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal Download PDF

Info

Publication number
JP4587723B2
JP4587723B2 JP2004210652A JP2004210652A JP4587723B2 JP 4587723 B2 JP4587723 B2 JP 4587723B2 JP 2004210652 A JP2004210652 A JP 2004210652A JP 2004210652 A JP2004210652 A JP 2004210652A JP 4587723 B2 JP4587723 B2 JP 4587723B2
Authority
JP
Japan
Prior art keywords
crystal
substrate
solution
organic
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004210652A
Other languages
Japanese (ja)
Other versions
JP2006027967A (en
Inventor
康弘 東
幸栄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004210652A priority Critical patent/JP4587723B2/en
Publication of JP2006027967A publication Critical patent/JP2006027967A/en
Application granted granted Critical
Publication of JP4587723B2 publication Critical patent/JP4587723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、非線形光学材料、電子材料、発光材料等に用いられる薄膜状有機単結晶を基板上に形成する、温度差法を用いた有機結晶付基板作製装置及び有機結晶付基板作製方法に関するものである。   The present invention relates to a substrate manufacturing apparatus with an organic crystal and a method for manufacturing a substrate with an organic crystal using a temperature difference method for forming a thin-film organic single crystal used for a nonlinear optical material, an electronic material, a light emitting material, etc. on a substrate. It is.

近年、有機材料は、無機材料と比較して優れた電気的特性や光学特性を有していることが明らかになり注目されてきている。このため有機材料は、熱伝導材料、EL(エレクトロルミネッセンス)材料、PHB(フォトケミカルホールバーニング)材料、フォトクロミック材料、非線形光学材料などの分野への応用開発が盛んに進められている。
中でも、有機材料を非線形光学材料として使用する場合、無機材料と比較して大きな非線形光学定数が得られ、また高速応答性などに優れていることが見出されている。このため、有機材料の2次の非線形光学効果を利用した光波長変換用バルク単結晶、光波長変換素子、光変調器、また3次の非線形光学効果を利用した光双安定素子、光シャッター、光位相共役素子などの各種非線形光学素子への開発が盛んに進められている。
In recent years, it has become clear that organic materials have superior electrical and optical properties compared to inorganic materials, and have attracted attention. For this reason, organic materials have been actively developed in fields such as heat conductive materials, EL (electroluminescence) materials, PHB (photochemical hole burning) materials, photochromic materials, and nonlinear optical materials.
In particular, when an organic material is used as a nonlinear optical material, it has been found that a large nonlinear optical constant is obtained as compared with an inorganic material and that high-speed response is excellent. For this reason, a bulk single crystal for optical wavelength conversion using a second-order nonlinear optical effect of an organic material, an optical wavelength conversion element, an optical modulator, an optical bistable element using a third-order nonlinear optical effect, an optical shutter, Development of various nonlinear optical elements such as optical phase conjugate elements has been actively promoted.

従来から、有機材料の単結晶の作成方法としては真空蒸着法、分子線エピタキシャル(MBE)法などの乾式法と、溶媒蒸発法、融液法、ラングミュアーブロジェット(LB)法などの湿式法とが用いられている。
ここで、乾式法は、均一性、膜厚の制御性が優れている方法である反面、有機材料は一般的に熱分解点が低く、熱による分解が発生するため、使用できる材料が非常に限定さたものとなる(例えば、特許文献1参照)。
また、湿式法には、有機材料を融点まで加温して液体にした後、除冷し結晶化を行う融液法と、有機材料(溶質)を可溶な溶媒に完全に溶解した後に、飽和濃度を制御することで結晶化を行う溶液法とが知られている。
融液法は、これまでも数多くの報告例があるが(例えば、特許文献2、3参照)、有機材料の融点まで温度を上げる必要があるため、高温により昇華や分解の恐れのある材料では使用できないため、使用できる材料が限定されたものとなる。
また、溶液法は、使用する溶媒を選択することで多様な条件を選択することができる。中でも徐冷法や温度差法、溶媒蒸発法がバルク単結晶の製造方法として一般的に用いられている。
徐冷法は、飽和していない溶液を温度制御(冷却)して飽和状態(材料によっては過飽和状態)にすることで結晶を析出させる方法である。温度差法は、2つのタンクの温度差が成長に必要な過飽和を作り出し、結晶成長を行う方法である。また、溶媒蒸発法は溶媒の蒸発により溶液が飽和状態(材料によっては過飽和状態)になることで結晶を析出させる方法である。
Conventionally, methods for producing single crystals of organic materials include dry methods such as vacuum deposition and molecular beam epitaxy (MBE), and wet methods such as solvent evaporation, melt, and Langmuir Blodget (LB). And are used.
Here, while the dry method is a method with excellent uniformity and controllability of the film thickness, organic materials generally have a low thermal decomposition point and are decomposed by heat. Limited (see, for example, Patent Document 1).
In addition, in the wet method, the organic material is heated to the melting point to be liquid, and then the melt method is performed by cooling and crystallization, and after the organic material (solute) is completely dissolved in a soluble solvent, A solution method is known in which crystallization is performed by controlling the saturation concentration.
There have been many reports on the melt method until now (see, for example, Patent Documents 2 and 3), but it is necessary to raise the temperature to the melting point of the organic material. Since it cannot be used, the materials that can be used are limited.
In the solution method, various conditions can be selected by selecting a solvent to be used. Among them, a slow cooling method, a temperature difference method, and a solvent evaporation method are generally used as a method for producing a bulk single crystal.
The slow cooling method is a method of precipitating crystals by controlling the temperature (cooling) of an unsaturated solution to a saturated state (a supersaturated state depending on the material). In the temperature difference method, the temperature difference between two tanks creates supersaturation necessary for growth, and crystal growth is performed. Further, the solvent evaporation method is a method in which crystals are precipitated by the solution becoming saturated (supersaturated depending on the material) by evaporation of the solvent.

有機単結晶は上記に記述したような様々な作製方法が提案されているが、実際の応用を考えた場合には、それぞれの析出した結晶形状をそのまま使用することは困難であり、有機単結晶を切削や研磨等により適した形状に加工する必要がある。特に光学素子として使用する場合には結晶面の平坦性も重要である。
その点から、特許文献3記載の技術では、基板間で薄膜状に結晶を成長させる報告がされているが、融液法の応用であり、前述したように融点付近で分解が発生する有機材料では使用できず、材料が限定されたものである。
Various manufacturing methods as described above have been proposed for organic single crystals, but it is difficult to use the deposited crystal shapes as they are when considering actual applications. Must be processed into a more suitable shape by cutting or polishing. In particular, when used as an optical element, the flatness of the crystal plane is also important.
From this point, in the technique described in Patent Document 3, it has been reported that crystals are grown in a thin film shape between substrates, but this is an application of the melt method, and as described above, an organic material that decomposes near the melting point. In this case, the material is limited.

また、図16に示す4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(以下「DAST」という。)は、東北大学中西研究室において開発され、極めて大きな非線形光学定数と電気光学定数とを有し、有機結晶特有の低い誘電率を有することから、低電圧、高速の光変調や検波、ミリ波発生など関心を集めている。
ここで、DASTの電気光学定数は、r11=53〔pm/V〕(1.3μm)、92〔pm/V〕(720nm)とLiNbO3のr33=30.8〔pm/V〕(633nm)と比較して大きく、また、DASTの誘電率はε11=5.2と、LiNbO3の28に比べて小さいため、光変調器において高速、低電圧の光変調の可能性がある。
一方、DASTは、その透過特性が0.8〜1.6μm帯においてほぼ平坦であり、光通信波長帯用デバイスに適した材料である。
DAST結晶作製に関しては、溶液からのバルク結晶の作製法(溶液法)では大阪大学佐々木研究室などから、数多く報告されている(例えば、特許文献4参照)。
また、佐々木氏らは特許文献5記載の技術では、溶液の濃度の制御により結晶形のアスペクト比を制御する方法を開示しているが、アスペクト比は3〜25であり、同一条件下でもアスペクト比の変動は大きく、制御性は良好ではない。
Further, 4-dimethylamino-N-methyl-4-stilbazolium tosylate (hereinafter referred to as “DAST”) shown in FIG. 16 was developed in the Nakanishi Laboratory of Tohoku University, and has an extremely large nonlinear optical constant and electro-optics. And has a low dielectric constant peculiar to organic crystals, it has attracted attention such as low voltage, high-speed light modulation and detection, and generation of millimeter waves.
Here, the electro-optic constants of DAST are r 11 = 53 [pm / V] (1.3 μm), 92 [pm / V] (720 nm), and r 33 of LiNbO 3 = 30.8 [pm / V] ( 633 nm), and the dielectric constant of DAST is ε 11 = 5.2, which is smaller than that of LiNbO 3 , so that there is a possibility of high-speed and low-voltage optical modulation in the optical modulator.
On the other hand, DAST is a material suitable for optical communication wavelength band devices because its transmission characteristics are almost flat in the 0.8 to 1.6 μm band.
Regarding the production of DAST crystals, a lot of methods for producing a bulk crystal from a solution (solution method) have been reported by Sasaki Laboratory, Osaka University, etc. (see, for example, Patent Document 4).
Sasaki et al. Disclosed a method for controlling the aspect ratio of the crystal form by controlling the concentration of the solution in the technique described in Patent Document 5, but the aspect ratio is 3 to 25, and the aspect ratio is the same under the same conditions. The ratio fluctuation is large and the controllability is not good.

また、得られた結晶に加工を施さずに応用することは非常に困難である。また、溶液からのバルク結晶作製方法では温度パラメーター等を制御することで結晶を任意の厚さ(結晶形状)に設定することは極めて困難である。   Further, it is very difficult to apply the obtained crystal without processing. In addition, it is extremely difficult to set a crystal to an arbitrary thickness (crystal shape) by controlling a temperature parameter or the like in a bulk crystal production method from a solution.

また、DAST薄膜状結晶作製において、改良シェア法を用いて、M.Thakur氏らから厚さ3〜4μm、1cm2の薄膜結晶の報告がされている(例えば、非特許文献1参照)。
しかし、この改良シェア法においては、結晶の厚さを加重のみで制御しているため、数μm程度の比較的薄い結晶しか作製することができない。
さらに、DASTは融点(約260℃)と熱分解点(約290℃)とが近く、融点付近で熱分解が発生し、多くの不純物を含んでしまうことがP.Gunter氏らからで報告されており(例えば、非特許文献2参照)、融液法を用いて単結晶作製することは困難であることが知られている。
また、P.Gunter氏らは、Flow Cell Methodとして石英セル中11mm2、厚さ40μmの薄膜状DAST結晶を作製した報告(例えば、非特許文献3参照)があるが、その結晶作製位置、結晶方位については制御されているものではない。
以上のように、これまでDAST薄膜状結晶を位置及び方位を制御して作製した報告はない。
以上のことから、結晶成長基板上に位置及び方位を制御して大型な単結晶を成長させるには、新たな方法が必要であることが判明した。
特開平7−10698号公報 特開平5−170600号公報 特開平6−186600号公報 特開2002−29899号公報 特開2004−83345号公報 「APPLIED PHYSICS LETTERS」VOLUME74,NUMBER5,1999年2月1日,p.635 「ADVANCED MATERIALS No.7」1996年8月,p.592 「C.R.Physique」Sabine Manetta,Peter Gunter,2002年3月1日,p.449−462
In the DAST thin film crystal production, M. Thakur et al. Reported a thin film crystal having a thickness of 3 to 4 μm and 1 cm 2 (for example, see Non-Patent Document 1).
However, in this improved shear method, since the thickness of the crystal is controlled only by the weight, only a relatively thin crystal of about several μm can be produced.
Furthermore, DAST has a melting point (about 260 ° C.) and a thermal decomposition point (about 290 ° C.) that are close to each other, causing thermal decomposition near the melting point and containing many impurities. Reported by Gunter et al. (For example, see Non-Patent Document 2), and it is known that it is difficult to produce a single crystal using a melt method.
P.P. Gunter et al. Reported that a thin DAST crystal having a thickness of 11 mm 2 and a thickness of 40 μm in a quartz cell was produced as a Flow Cell Method (see, for example, Non-Patent Document 3), but the crystal production position and crystal orientation were controlled. It is not what has been done.
As described above, there has been no report of producing a DAST thin film crystal with controlled position and orientation.
From the above, it has been found that a new method is required to grow a large single crystal by controlling the position and orientation on the crystal growth substrate.
Japanese Patent Laid-Open No. 7-10698 JP-A-5-170600 JP-A-6-186600 JP 2002-29899 A JP 2004-83345 A "APPLIED PHYSICS LETTERS" VOLUME 74, NUMBER 5, February 1, 1999, p. 635 “ADVANCED MATERIALS No. 7”, August 1996, p. 592 “CR Physique” Savine Manetta, Peter Gunter, March 1, 2002, p. 449-462

以上のように、これまでDAST結晶を、任意の厚さでかつ位置と方位とを制御し、薄膜状単結晶を作製した報告はない。   As described above, there has been no report that a DAST crystal has a desired thickness and is controlled in position and orientation to produce a thin film single crystal.

本発明は、以上の点に鑑みてなされたものであり、その目的とするところは、熱などに不安定で融液法では結晶化ができない有機材料であっても、温度差法により任意の厚さでかつ位置と方位とを制御し大型で高品質な有機結晶付基板の作製に適した有機結晶付基板製造装置を提供し、かつ任意の厚さでかつ位置と方位とを制御し、大型、高品質な有機結晶付基板を作製できる有機結晶付基板製造方法を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is that any temperature difference method can be used even if an organic material is unstable to heat and cannot be crystallized by the melt method. Providing a substrate manufacturing apparatus with an organic crystal suitable for the production of a large, high-quality substrate with an organic crystal by controlling the thickness and position and orientation, and controlling the position and orientation with an arbitrary thickness, An object of the present invention is to provide a method for producing a substrate with an organic crystal capable of producing a large-sized, high-quality substrate with an organic crystal.

上記課題を解決するため、請求項1記載の発明は、有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製装置において、結晶作製領域内に種結晶が配置された結晶作製基板の温度を調整する温度調整モジュールと、前記結晶作製基板上に載置され前記結晶作製基板との間に所定の間隔を有する密閉空間を形成するセルモジュールと、前記温度調整モジュール上に配置され前記結晶作製基板と前記セルモジュールとを着脱自在に保持する保持手段と、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させる循環手段とを備え、前記結晶作製基板は、前記種結晶に対する溶液の下流側に凹部が形成されていることを特徴とする。 In order to solve the above-mentioned problems, the invention according to claim 1 is a substrate with an organic crystal for producing a film-like organic crystal on a crystal production substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved. In the manufacturing apparatus, a temperature adjustment module that adjusts a temperature of a crystal manufacturing substrate in which a seed crystal is arranged in a crystal manufacturing region, and a predetermined interval is placed between the crystal manufacturing substrate and the crystal manufacturing substrate. A cell module that forms a sealed space; a holding means that is disposed on the temperature adjustment module and that detachably holds the crystal production substrate and the cell module; and a supply that passes through the cell module and communicates with the sealed space parts and through the respective discharge portions connected to the flow path and a circulating means for circulating the solution between the sealed space and the solution holding portion, the crystal formation substrate is Wherein the recess on the downstream side of the solution for serial seed crystal is formed.

請求項2記載の発明は、有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製装置において、結晶作製領域内に種結晶が配置された結晶作製基板の温度を調整する温度調整モジュールと、前記結晶作製基板上に載置され前記結晶作製基板との間に所定の間隔を有する密閉空間を形成するセルモジュールと、前記温度調整モジュール上に配置され前記結晶作製基板と前記セルモジュールとを着脱自在に保持する保持手段と、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させる循環手段とを備え、前記セルモジュールは、前記密閉空間の外周部を形成するように前記結晶作製基板上に載置され弾性体からなる環状のシール部材と、前記シール部材を押圧するように配置されるセル基板と、前記所定の間隔を調整する調整手段とを備えたことを特徴とすAccording to a second aspect of the present invention, there is provided a substrate manufacturing apparatus with an organic crystal for manufacturing a film-like organic crystal on a crystal manufacturing substrate by using a temperature difference method for controlling a temperature of a solution in which the organic crystal is dissolved. A temperature adjustment module that adjusts the temperature of the crystal production substrate in which the seed crystal is disposed, and a cell module that is placed on the crystal production substrate and forms a sealed space having a predetermined interval between the crystal production substrate And a holding means disposed on the temperature adjustment module for detachably holding the crystal production substrate and the cell module, and connected to a supply unit and a discharge unit that penetrate the cell module and communicate with the sealed space, respectively. Circulation means for circulating the solution between the inside of the sealed space and the solution holding unit through the formed flow path, and the cell module has an outer peripheral part of the sealed space. An annular sealing member made of an elastic material placed on the crystal production substrate, a cell substrate disposed so as to press the sealing member, and an adjusting means for adjusting the predetermined interval. was it it said.

請求項記載の発明は、有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製方法において、結晶作製基板上に種結晶を配置し、該種結晶が密閉空間内に位置すると共に所定の間隔になるように前記結晶作製基板上にセルモジュールを保持し、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させ、前記結晶作製基板として、前記種結晶に対する溶液の下流側に凹部が形成された基板を用いることを特徴とする。 According to a third aspect of the present invention, there is provided a method for producing a substrate with an organic crystal in which a film-like organic crystal is produced on a crystal production substrate by using a temperature difference method for controlling a temperature of a solution in which the organic crystal is dissolved. A seed crystal is placed on the cell module, the cell module is held on the crystal production substrate so that the seed crystal is located in the sealed space and at a predetermined interval, and communicates with the sealed space through the cell module. The solution is circulated between the sealed space and the solution holding unit through flow paths connected to the supply unit and the discharge unit, respectively, and a recess is formed on the downstream side of the solution with respect to the seed crystal as the crystal production substrate. A substrate on which is formed is used .

請求項記載の発明は、有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製方法において、結晶作製基板上に種結晶を配置し、該種結晶が密閉空間内に位置すると共に所定の間隔になるように前記結晶作製基板上にセルモジュールを保持し、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させ、前記セルモジュールとして、前記密閉空間の外周部を形成するように前記結晶作製基板上に載置され弾性体からなる環状のシール部材と、前記シール部材を押圧するように配置されるセル基板と、前記所定の間隔を調整する調整手段とを備えたモジュールを用いることを特徴とする。 According to a fourth aspect of the present invention, there is provided an organic crystal-attached substrate manufacturing method for manufacturing a film-like organic crystal on a crystal manufacturing substrate by using a temperature difference method for controlling a temperature of a solution in which the organic crystal is dissolved. A seed crystal is placed on the cell module, the cell module is held on the crystal production substrate so that the seed crystal is located in the sealed space and at a predetermined interval, and communicates with the sealed space through the cell module. The solution is circulated between the inside of the sealed space and the solution holding unit through flow paths respectively connected to the supply unit and the discharge unit to form an outer peripheral part of the sealed space as the cell module. A module comprising an annular seal member placed on the crystal production substrate and made of an elastic body, a cell substrate disposed so as to press the seal member, and an adjusting means for adjusting the predetermined interval. Characterized by using Lumpur.

請求項記載の発明は、有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製方法において、結晶作製基板上に種結晶を配置し、該種結晶が密閉空間内に位置すると共に所定の間隔になるように前記結晶作製基板上にセルモジュールを保持し、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させ、結晶作製開始時に前記種結晶の表面を溶解してから結晶成長させることを特徴とする。 According to a fifth aspect of the present invention, there is provided an organic crystal-attached substrate manufacturing method for manufacturing a film-like organic crystal on a crystal manufacturing substrate by using a temperature difference method for controlling a temperature of a solution in which the organic crystal is dissolved. A seed crystal is placed on the cell module, the cell module is held on the crystal production substrate so that the seed crystal is located in the sealed space and at a predetermined interval, and communicates with the sealed space through the cell module. The solution is circulated between the sealed space and the solution holding unit via flow paths connected to the supply unit and the discharge unit, respectively, and the crystal growth is performed after the surface of the seed crystal is dissolved at the start of crystal production. It is characterized by making it.

発明によれば、溶液からの結晶作製装置/方法において、密閉空間内(以下「微小ギャップ間」という)で結晶成長を行うことで薄膜状結晶を作製することが可能になる。また、微小ギャップ間においても、結晶に溶液を供給しながら結晶成長を行うことで、大型結晶を得ることが可能となる。また、種結晶を用いることで結晶成長部分の特定と、結晶方位の特定とを行うことができる。また、自然核による結晶が発生しにくい低過飽和溶液を用いて結晶成長を行うことができ、成長部位以外での結晶成長(雑晶)を抑制することができる。また、種結晶が配置されている位置よりも下流域部分に凹部を形成して結晶作製基板とセルモジュールとの間の間隔を大きくすることで、雑晶発生が発生した場合でも溶液の流れが妨げられることなく、結晶成長を行うことが可能となる。また、結晶作製基板とセルモジュールとの間の間隔を変化させることにより、結晶成長に伴う溶液の流れの不均一化を解消し、効率的に大型結晶を作製することが可能になる。また、種結晶の作製および設置時の操作により、種結晶表面に微細な欠陥(傷)が発生していることがある。種結晶表面の構造欠陥は結晶成長部分の結晶構造(結晶品質)に大きく影響する。そのために結晶成長前に結晶表面を溶解する(メルトバック)ことで結晶表面の欠陥が除去され、構造欠陥の少ない結晶を得ることが可能になる。 According to the present invention, it is possible to produce a thin film crystal by performing crystal growth in a sealed space (hereinafter referred to as “between micro gaps”) in a crystal production apparatus / method from a solution. In addition, large crystals can be obtained by performing crystal growth while supplying a solution to the crystals even between minute gaps. Further, by using a seed crystal, it is possible to specify a crystal growth portion and a crystal orientation. In addition, crystal growth can be performed using a low supersaturated solution in which crystals due to natural nuclei are unlikely to occur, and crystal growth (miscellaneous crystals) other than the growth site can be suppressed. In addition, by forming a recess in the downstream area from the position where the seed crystal is arranged, and increasing the distance between the crystal production substrate and the cell module, the flow of the solution can be improved even when miscellaneous crystals are generated. Crystal growth can be performed without hindrance. Further, by changing the distance between the crystal production substrate and the cell module, non-uniformity of the solution flow accompanying crystal growth can be eliminated, and a large crystal can be produced efficiently. In addition, fine defects (scratches) may be generated on the surface of the seed crystal due to operations during preparation and installation of the seed crystal. The structural defect on the seed crystal surface greatly affects the crystal structure (crystal quality) of the crystal growth portion. Therefore, by dissolving the crystal surface before the crystal growth (melt back), defects on the crystal surface are removed, and a crystal with few structural defects can be obtained.

本発明の有機結晶付基板作製装置は、有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製装置であって、結晶作製領域内に種結晶が配置された結晶作製基板が載置される温度調整モジュールと、結晶作製基板上に載置され結晶作製基板との間に所定の間隔を有する密閉空間を形成するセルモジュールと、温度調整モジュールに一端が固定され他端がセルモジュールを着脱自在に保持する保持手段と、セルモジュールに形成され密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して密閉空間内と溶液保持部との間で溶液を循環させる循環手段とを備えたことを特徴とする。   The organic crystal-attached substrate manufacturing apparatus of the present invention is an organic crystal-attached substrate manufacturing apparatus that forms a film-like organic crystal on a crystal-prepared substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved. Forming a sealed space between the temperature adjustment module on which the crystal production substrate having the seed crystal disposed in the crystal production region is placed and the crystal production substrate placed on the crystal production substrate. A cell module, one end fixed to the temperature control module and the other end detachably holding the cell module, and a flow path formed in the cell module and connected to a supply unit and a discharge unit communicating with the sealed space, respectively And a circulating means for circulating the solution between the sealed space and the solution holding part.

また、本発明の有機結晶付基板作製方法は、有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製方法であって、結晶作製基板上に種結晶を配置し、種結晶が密閉空間内に位置すると共に所定の間隔になるように結晶作製基板上にセルモジュールを載置し、セルモジュールに形成され密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して密閉空間内と溶液保持部との間で溶液を循環させることを特徴とする。   The method for producing a substrate with an organic crystal of the present invention is a method for producing a substrate with an organic crystal in which a film-like organic crystal is produced on a crystal production substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved. The seed crystal is arranged on the crystal production substrate, and the cell module is placed on the crystal production substrate so that the seed crystal is located in the sealed space and at a predetermined interval. It is characterized in that the solution is circulated between the sealed space and the solution holding unit through flow paths respectively connected to the supply unit and the discharge unit communicating with the space.

結晶作製基板とセル基板とによって形成された微小ギャップ内に有機結晶を作製することにより、得られる有機結晶の厚さは、両基板によって形成された隙間の距離となり、平面性も良好となる。   By producing an organic crystal in a minute gap formed by the crystal production substrate and the cell substrate, the thickness of the organic crystal obtained is the distance between the gaps formed by both substrates, and the planarity is also improved.

両基板は、石英基板、ポリイミド、ポリエチレンなどの樹脂基板、ガラス、シリコンなどを用いることができる。なお、両基板の表面形状は、特に限定されず、例えば、円形であっても、四角形であっても、楕円形であってもよい。   As both substrates, a quartz substrate, a resin substrate such as polyimide or polyethylene, glass, silicon, or the like can be used. The surface shapes of both substrates are not particularly limited, and may be, for example, a circle, a rectangle, or an ellipse.

両基板によって形成された隙間の距離は、任意に定めることができ、特に限定されないが、光変調器などの光学デバイスへの応用を考えると、300nm〜800μmであり、特に導波路型光デバイスにおいては1μm〜100μmが好ましい。   The distance between the gaps formed by the two substrates can be arbitrarily determined, and is not particularly limited. However, considering application to an optical device such as an optical modulator, it is 300 nm to 800 μm, and particularly in a waveguide type optical device. Is preferably 1 μm to 100 μm.

有機物質としては、従来用いられ、KH2PO4、LiNbO3などに代表される無機材料に比べ、非線形光学定数が大きい有機材料であれば用いることができ、例えば、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(DAST)、2−メチル−4−ニトロアニリン(MNA)、メタニトロアニリン(mNA)、3−メチル−4−ニトロピリジン−1−オキサイド(POM)、尿素、2−シアノ−3−(2−メトキシフェニル)−2−プロペン酸メチル(CMPメチル)、L−アルギニンフォスフェイトモノハイドレイト(LAP)、4−(N,Nジメチルアミノ)−3−アセトアミドニトロベンゼン(DAN)、3,5−ジメチル−1−(4−ニトロフェニル)ピラゾール(DMNP)、4’−ニトロベンジリデン−3−アセトアミノ−4−メトキシアニリン(MNBA)等が挙げられる。ここで、極めて大きな非線形光学定数と電気光学定数を有し、有機結晶特有の低い誘電率であることから、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレートであることが好ましい。 As the organic substance, any organic material having a large nonlinear optical constant as compared with inorganic materials such as KH 2 PO 4 and LiNbO 3 that have been used in the past can be used. For example, 4-dimethylamino-N— Methyl-4-stilbazolium tosylate (DAST), 2-methyl-4-nitroaniline (MNA), metanitroaniline (mNA), 3-methyl-4-nitropyridine-1-oxide (POM), urea 2-methyl-3- (2-methoxyphenyl) -2-propenoate (CMP methyl), L-arginine phosphate monohydrate (LAP), 4- (N, N dimethylamino) -3-acetamidonitrobenzene (DAN), 3,5-dimethyl-1- (4-nitrophenyl) pyrazole (DMNP), 4'-nitrobenzylidene- - acetamino-4-methoxyaniline (MNBA), and the like. Here, 4-dimethylamino-N-methyl-4-stilbazolium tosylate is preferable because it has a very large nonlinear optical constant and electro-optical constant and has a low dielectric constant specific to organic crystals. .

溶媒としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、アセトン、2−ブタノン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ジメチルエーテル、酢酸エステル、ヘキサン、シクロヘキサン、アセトニトリル、トルエン等、各種有機物質にあわせて、温度に対する溶解度の変化が大きく、溶質との会合等がない溶媒を選定すればよい。4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレートの場合は、メタノールが最適な溶媒のひとつである。   Examples of the solvent include various organic substances such as methanol, ethanol, 1-propanol, 2-propanol, acetone, 2-butanone, chloroform, dichloromethane, 1,2-dichloroethane, dimethyl ether, acetate ester, hexane, cyclohexane, acetonitrile, toluene, and the like. A solvent having a large change in solubility with respect to temperature and having no association with a solute may be selected according to the substance. In the case of 4-dimethylamino-N-methyl-4-stilbazolium tosylate, methanol is one of the most suitable solvents.

図1は本発明の有機結晶付基板作製方法を適用した有機結晶付基板作製装置の一実施例を示す概略図である。
(構成)
図1に示す装置は、温度調整モジュール150及び温度調整モジュール100の温度制御により溶液の過飽和度を制御する温度差法を用いることにより結晶作製基板101上に膜状の有機結晶を作製する有機結晶付基板作製装置であって、結晶作製領域内に種結晶120が配置された結晶作製基板101の温度を調整する温度調整モジュール(例えば、ペルチェ素子)100と、結晶作製基板101上に載置され結晶作製基板101との間に所定の間隔を有する密閉空間(以下「微小ギャップ」という)301を形成するセル基板103と、温度調整モジュール100上に配置され結晶作製基板101とセル基板103とを着脱自在に保持する保持手段200と、セル基板103を貫通して微小ギャップ301に連通する供給部113及び排出部114にそれぞれ接続された流路105、106を介して微小ギャップ301内と溶液保持部130との間で溶液112を循環させる循環手段152とを備えている。
FIG. 1 is a schematic view showing an embodiment of a substrate manufacturing apparatus with an organic crystal to which the method for manufacturing a substrate with an organic crystal of the present invention is applied.
(Constitution)
The apparatus shown in FIG. 1 uses a temperature difference method for controlling the degree of supersaturation of a solution by controlling the temperature of the temperature adjustment module 150 and the temperature adjustment module 100 to produce an organic crystal on a crystal production substrate 101. An attached substrate manufacturing apparatus, which is mounted on the crystal manufacturing substrate 101, and a temperature adjustment module (for example, a Peltier element) 100 that adjusts the temperature of the crystal manufacturing substrate 101 in which the seed crystal 120 is arranged in the crystal manufacturing region. A cell substrate 103 that forms a sealed space (hereinafter referred to as “micro gap”) 301 having a predetermined interval with the crystal production substrate 101, and the crystal production substrate 101 and the cell substrate 103 that are arranged on the temperature adjustment module 100. A holding means 200 for detachably holding, a supply unit 113 that passes through the cell substrate 103 and communicates with the minute gap 301, and a drain. Through the flow path 105, 106 which are respectively connected to part 114 and a circulation means 152 for circulating the solution 112 between the minute gap 301 and the solution holding portion 130.

セル基板103の微小ギャップ301側にはフッ素部材が設けられており、種結晶120は、4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレート(DAST)である。
保持手段200は、結晶作製基板101及びセル基板103が載置される台座201と、セル基板103の上に載置される枠状部材(板状であってもよい)153と、枠状部材153の両側に形成された貫通孔を介して台座201に螺合することで枠状部材153を固定する固定ネジ154a、154bとを備えている。結晶作製後の結晶作製基板101及びセル基板103を取り出すには固定ネジ154a、154bを外せばよい。枠状部材153及び台座201の対向面には結晶作製基板101の位置合わせをしやすくするための凹部が形成されているのが好ましい。
枠状部材153には供給部113及び排出部114が設けられている。供給部113は、例えば中空のネジが用いられ、流路としての送液チューブ106の一端(図では左端)がその貫通孔に挿入接続されている。供給部113用の中空ネジの先端(この場合下端)には気密性を保持するためのOリングが配置されている。同様に排出部114も中空のネジが用いられ、流路としての送液チューブ105の一端(この場合左端)がその貫通孔に挿入接続されている。排出部114用の中空ネジの先端(この場合下端)には気密性を保持するためのOリングが配置されている。
A fluorine member is provided on the micro gap 301 side of the cell substrate 103, and the seed crystal 120 is 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST).
The holding means 200 includes a base 201 on which the crystal production substrate 101 and the cell substrate 103 are placed, a frame-like member (may be plate-like) 153 placed on the cell substrate 103, and a frame-like member Fixing screws 154a and 154b for fixing the frame-like member 153 by being screwed to the base 201 through through holes formed on both sides of the 153 are provided. In order to take out the crystal production substrate 101 and the cell substrate 103 after the crystal production, the fixing screws 154a and 154b may be removed. It is preferable that a recess for facilitating the alignment of the crystal production substrate 101 is formed on the opposing surfaces of the frame member 153 and the base 201.
The frame-like member 153 is provided with a supply unit 113 and a discharge unit 114. For example, a hollow screw is used for the supply unit 113, and one end (the left end in the drawing) of the liquid feeding tube 106 as a flow path is inserted and connected to the through hole. An O-ring for maintaining airtightness is disposed at the tip (in this case, the lower end) of the hollow screw for the supply unit 113. Similarly, a hollow screw is used for the discharge portion 114, and one end (in this case, the left end) of the liquid supply tube 105 as a flow path is inserted and connected to the through hole. An O-ring for maintaining airtightness is disposed at the tip (in this case, the lower end) of the hollow screw for the discharge portion 114.

循環手段152は、一端が供給部113に接続された送液チューブ106と、吐出側が送液チューブ106の他端に接続された送液ポンプ104と、供給口が送液ポンプ104の吸入側に接続された溶液保持部130と、一端が排出部114に接続され他端が溶液保持部130の排出口に接続された送液チューブ105とを備えている。
溶液保持部130は、溶液112の温度を調整する温度調整モジュール150と、温度調整モジュール150上に配置され溶液を収容するリザーバー151と、リザーバー151内の溶液112の温度が一定になるように保持する恒温槽108とを備えている。
The circulation means 152 has a liquid feeding tube 106 whose one end is connected to the supply unit 113, a liquid feeding pump 104 whose discharge side is connected to the other end of the liquid feeding tube 106, and a supply port on the suction side of the liquid feeding pump 104. A connected solution holding unit 130 and a liquid feeding tube 105 having one end connected to the discharge unit 114 and the other end connected to the discharge port of the solution holding unit 130 are provided.
The solution holding unit 130 holds the temperature adjustment module 150 that adjusts the temperature of the solution 112, the reservoir 151 that is disposed on the temperature adjustment module 150 and stores the solution, and the temperature of the solution 112 in the reservoir 151 is constant. And a constant temperature bath 108.

次に、結晶作製基板101とセル基板103とで構成される結晶成長部(微小ギャップ301)に有機結晶120を配置する。結晶作製基板101及びセル基板103を台座201に配置する。枠状部材153を固定ネジ154a、154bで固定する。送液チューブ105を溶液保持部130に接続し、送液チューブ106を送液ポンプ104に接続する。送液ポンプ104を作動させて有機結晶を溶解した溶液112を微小ギャップ301内に供給すると共に循環させて結晶成長を行う。種結晶120は、結晶作製基板101とセル基板103との間の間隔が厚さの結晶となり、最終的に薄膜状の有機結晶付基板が得られる。溶液112を保持している恒温槽108の温度(T1)と結晶作製部である微小ギャップ301の温度調整モジュール100の温度(T2)との間に温度差(ΔT=T1−T2>0)を与えることで、溶液の過飽和度σの差を与え、選択的に微小ギャップ301内の種結晶120のみを成長させることができる。
(過飽和度σ=(C−Ce)/Ce Ce:飽和濃度、C:溶液濃度)
リザーバー151の溶液は、DASTをメタノールに溶解した濃度20mg/mlのDAST溶液を使用した場合、リザーバー151の温度を35℃、温度調整モジュール100の温度を20℃に設定する。この場合、図17のDASTのメタノールへの溶解度曲線から35℃ではDAST溶液は未飽和状態であるため、リザーバー151では結晶の析出は起こらない。また、20℃においては、過飽和状態のため、結晶成長部(微少ギャップ301)の結晶は成長することになる。
Next, the organic crystal 120 is disposed in a crystal growth portion (the minute gap 301) constituted by the crystal production substrate 101 and the cell substrate 103. The crystal production substrate 101 and the cell substrate 103 are placed on the base 201. The frame-like member 153 is fixed with fixing screws 154a and 154b. The liquid feeding tube 105 is connected to the solution holding unit 130, and the liquid feeding tube 106 is connected to the liquid feeding pump 104. The liquid feeding pump 104 is operated to supply the solution 112 in which the organic crystals are dissolved into the minute gap 301 and circulate it to perform crystal growth. The seed crystal 120 becomes a crystal having a thickness between the crystal production substrate 101 and the cell substrate 103, and finally a thin film-like substrate with an organic crystal is obtained. A temperature difference (ΔT = T1−T2> 0) between the temperature (T1) of the thermostatic chamber 108 holding the solution 112 and the temperature (T2) of the temperature adjustment module 100 of the micro gap 301 which is a crystal production unit. By giving, the difference of the supersaturation degree (sigma) of a solution is given and only the seed crystal 120 in the microgap 301 can be selectively grown.
(Supersaturation σ = (C−Ce) / Ce Ce: saturation concentration, C: solution concentration)
When the DAST solution having a concentration of 20 mg / ml in which DAST is dissolved in methanol is used as the solution in the reservoir 151, the temperature of the reservoir 151 is set to 35 ° C., and the temperature of the temperature adjustment module 100 is set to 20 ° C. In this case, since the DAST solution is unsaturated at 35 ° C. from the solubility curve of DAST in methanol in FIG. 17, no crystal precipitation occurs in the reservoir 151. Further, at 20 ° C., the crystal in the crystal growth part (the minute gap 301) grows due to the supersaturated state.

図2(a)は図1に示した結晶作製基板及びセル基板の一実施例を示す横断面図であり、図2(b)は図2(a)のIIb−IIb線断面図であり、図2(c)は図2(b)に示した種結晶の拡大図である。
図2(a)に示すように微小ギャップ301内には矢印P3方向に溶液112(図1参照)が供給され、矢印P4方向に溶液112が排出される。種結晶120は、結晶作製基板101に接着剤(例えば、エポキシ系接着剤もしくはホットメルト型接着剤等)で固定されている。
図2(b)に示すように微小ギャップ301内では溶液が矢印P5〜P7方向に流れる(層流)。なお、図では微小ギャップ301の平面形状が六角形となっているが、本発明はこれに限定されるものではなく、楕円形、長円形、多角形のいずれであってもよい。
図2(c)に示すように種結晶120の結晶の優先成長方位(最大成長方位)が矢印P8方向となっており、溶液の流れる方向(矢印P5〜P7方向)とは逆方向になっている。
2A is a cross-sectional view showing an embodiment of the crystal production substrate and the cell substrate shown in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line IIb-IIb in FIG. FIG. 2C is an enlarged view of the seed crystal shown in FIG.
As shown in FIG. 2A, the solution 112 (see FIG. 1) is supplied in the direction of the arrow P3 into the minute gap 301, and the solution 112 is discharged in the direction of the arrow P4. The seed crystal 120 is fixed to the crystal production substrate 101 with an adhesive (for example, an epoxy-based adhesive or a hot-melt adhesive).
As shown in FIG. 2B, the solution flows in the direction of arrows P5 to P7 in the minute gap 301 (laminar flow). In the drawing, the planar shape of the minute gap 301 is a hexagon, but the present invention is not limited to this, and may be any one of an ellipse, an oval, and a polygon.
As shown in FIG. 2C, the preferential growth direction (maximum growth direction) of the seed crystal 120 is the arrow P8 direction, which is opposite to the direction in which the solution flows (arrows P5 to P7). Yes.

図3(a)、(b)は種結晶の優先成長方位と溶液の流れとの関係を示す図である。
図3(a)は種結晶120の優先成長方位(矢印P9方向)が溶液の流れ(矢印P10)に対して90度の場合、種結晶120の優先成長方位(矢印P11方向)が溶液の流れ(矢印P12方向)に対して135度の場合、種結晶120の優先成長方位(矢印P13方向)が溶液の流れ(矢印P14方向)に対して180度の場合、種結晶120の優先成長方位(矢印P15方向)が溶液の流れ(矢印P16方向)に対して225度の場合、種結晶120の優先成長方位(矢印P17方向)が溶液の流れ(矢印P18方向)に対して270度の場合をそれぞれ示しており、いずれの場合も優先成長方位への溶液供給が行われるが、特に種結晶120の優先成長方位(矢印P13方向)が溶液の流れ(矢印P14方向)に対して180度の場合が好ましく最大優先成長が行われる。
これに対して、図3(b)に示すように種結晶120の優先成長方位(矢印P19方向)が溶液の流れ(矢印P20方向)に対して315度の場合、種結晶120の優先成長方位(矢印P21方向)が溶液の流れ(矢印P22方向)に対して0度の場合、種結晶120の優先成長方位(矢印P23方向)が溶液の流れ(矢印P24方向)に対して45度の場合には優先成長方位の溶液供給が不足する。
有機結晶は結晶方位により成長速度が異なることが多く、最も成長速度が速い方向に溶液が供給されるように配置することで、効率的に結晶成長を行うことができる。溶液の流れが通る方位(溶液の流れに対し種結晶120の優先成長方位が90度から325度の範囲内)であれば良く、特に溶液の流れに対し、種結晶120の優先結晶方位が向かい合うように配置することが最も好ましい。
FIGS. 3A and 3B are diagrams showing the relationship between the preferential growth orientation of the seed crystal and the flow of the solution.
FIG. 3A shows the case where the preferential growth direction (arrow P9 direction) of the seed crystal 120 is 90 degrees with respect to the solution flow (arrow P10), and the preferential growth direction (arrow P11 direction) of the seed crystal 120 is the solution flow. In the case of 135 degrees with respect to (the direction of arrow P12), the preferred growth direction of seed crystal 120 (in the direction of arrow P13) is 180 degrees with respect to the flow of the solution (in the direction of arrow P14). When the arrow P15 direction is 225 degrees with respect to the solution flow (arrow P16 direction), the preferential growth direction (arrow P17 direction) of the seed crystal 120 is 270 degrees with respect to the solution flow (arrow P18 direction). In each case, the solution is supplied in the preferential growth direction. In particular, when the preferential growth direction (arrow P13 direction) of the seed crystal 120 is 180 degrees with respect to the flow of the solution (arrow P14 direction). Maximum priority growth is preferably carried out.
On the other hand, as shown in FIG. 3B, when the preferential growth direction of the seed crystal 120 (arrow P19 direction) is 315 degrees with respect to the flow of the solution (arrow P20 direction), the preferential growth direction of the seed crystal 120 When the (arrow P21 direction) is 0 degrees with respect to the solution flow (arrow P22 direction), the preferential growth direction (arrow P23 direction) of the seed crystal 120 is 45 degrees with respect to the solution flow (arrow P24 direction). However, there is a shortage of solution supply in the preferred growth direction.
Organic crystals often have different growth rates depending on the crystal orientation, and the crystals can be efficiently grown by arranging them so that the solution is supplied in the direction of the highest growth rate. The orientation through which the solution flow passes (the preferential growth orientation of the seed crystal 120 within the range of 90 to 325 degrees with respect to the solution flow) may be sufficient, and in particular, the preferential crystal orientation of the seed crystal 120 faces the solution flow. It is most preferable to arrange them as follows.

図4(a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、図4(b)は図4(a)のIVb−IVb線断面図である。
図4(a)、(b)に示した実施例の図3(a)、(b)に示した実施例との相違点は、結晶作製基板101の微小ギャップ301内には種結晶120に対する溶液の下流側に種結晶120の側面と当接するように保持するくの字平面形状の突起部400が形成されている点である。
このように突起部400を結晶作製基板101に構成することで(立体的構造)、矢印P25〜P29方向に流れる溶液の中で種結晶120が配置位置(設置位置)から動かない。この結果、高品質、大サイズの有機結晶を有する有機結晶付基板が得られる。
4A is a cross-sectional view showing another embodiment of the crystal production substrate and the cell substrate shown in FIG. 1, and FIG. 4B is a cross-sectional view taken along line IVb-IVb in FIG. 4A. .
4 (a) and 4 (b) is different from the embodiment shown in FIGS. 3 (a) and 3 (b) in that the microgap 301 of the crystal production substrate 101 has no difference with respect to the seed crystal 120. A point-shaped protrusion 400 is formed on the downstream side of the solution so as to be held in contact with the side surface of the seed crystal 120.
By forming the protrusion 400 on the crystal production substrate 101 in this manner (three-dimensional structure), the seed crystal 120 does not move from the arrangement position (installation position) in the solution flowing in the directions of arrows P25 to P29. As a result, a substrate with an organic crystal having a high-quality, large-size organic crystal is obtained.

図5(a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、図5(b)は図5(a)のVb−Vb線断面図である。
図5(a)、(b)に示した実施例の図4(a)、(b)に示した実施例との相違点は、結晶作製基板101の種結晶120の下流側に種結晶の側面と当接するように保持するくの字平面形状の切り欠きを有する段差部500が形成されている点である。
このように段差部500を結晶作製基板101に構成することで(立体的構造)、矢印P30〜P34方向に流れる溶液の中で種結晶120が配置位置(設置位置)から動かない。この結果、高品質、大サイズの有機結晶を有する有機結晶付基板が得られる。
ここで、溶液の流れの中で種結晶120が設置位置(配置位置)から移動しないようにするために、結晶作製基板101もしくはセル基板103に種結晶を固定するための立体的構造を構成する。結晶への溶液供給が妨げられない構造であれば、凸部からなる構造でもよく、凹部からなる構造でもよい。
構造は図のように結晶作製基板101を加工するようにしてもよく、溶媒に耐性のある樹脂等で構成してもよい。
FIG. 5A is a transverse sectional view showing another embodiment of the crystal production substrate and the cell substrate shown in FIG. 1, and FIG. 5B is a sectional view taken along the line Vb-Vb in FIG. .
The difference between the embodiment shown in FIGS. 5A and 5B and the embodiment shown in FIGS. 4A and 4B is that the seed crystal is formed on the downstream side of the seed crystal 120 of the crystal production substrate 101. The difference is that a stepped portion 500 having a notch in the shape of a dogleg shape that is held so as to be in contact with the side surface is formed.
By forming the stepped portion 500 on the crystal production substrate 101 in this manner (three-dimensional structure), the seed crystal 120 does not move from the arrangement position (installation position) in the solution flowing in the directions of arrows P30 to P34. As a result, a substrate with an organic crystal having a high-quality, large-size organic crystal is obtained.
Here, in order to prevent the seed crystal 120 from moving from the installation position (arrangement position) in the flow of the solution, a three-dimensional structure for fixing the seed crystal to the crystal production substrate 101 or the cell substrate 103 is configured. . As long as the solution supply to the crystal is not hindered, the structure may be a convex part or a concave part.
The structure may be such that the crystal production substrate 101 is processed as shown, or may be composed of a resin or the like that is resistant to solvents.

図6(a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、図6(b)は図6(a)のVIb−VIb線断面図である。
図6(a)、(b)に示した実施例の図2(a)、(b)に示した実施例との相違点は、結晶作製基板101とセル基板103との間に種結晶120ごと挟み込まれる環状のスペーサー600を備えた点である。
この場合、結晶作製基板101とセル基板103との間の間隔は種結晶120の厚さにすることができる。
スペーサー600には例えばシリコーンゴムが用いられる。
このようにスペーサー600を用いることで、矢印P35〜P39方向に流れる溶液の中で種結晶120が配置位置(設置位置)から動かない。この結果、高品質、大サイズの有機結晶を有する有機結晶付基板が得られる。
6A is a cross-sectional view showing another embodiment of the crystal production substrate and the cell substrate shown in FIG. 1, and FIG. 6B is a cross-sectional view taken along the line VIb-VIb of FIG. 6A. .
The difference between the embodiment shown in FIGS. 6A and 6B and the embodiment shown in FIGS. 2A and 2B is that a seed crystal 120 is provided between the crystal production substrate 101 and the cell substrate 103. It is the point provided with the cyclic | annular spacer 600 inserted | pinched together.
In this case, the distance between the crystal production substrate 101 and the cell substrate 103 can be the thickness of the seed crystal 120.
For example, silicone rubber is used for the spacer 600.
By using the spacer 600 in this way, the seed crystal 120 does not move from the arrangement position (installation position) in the solution flowing in the directions of the arrows P35 to P39. As a result, a substrate with an organic crystal having a high-quality, large-size organic crystal is obtained.

図7は本発明の有機結晶付基板作製方法を適用した有機結晶付基板作製装置の他の実施例を示す概略図である。
図1に示した装置との相違点は、温度調整モジュールが種結晶10に対する溶液の上流側の温度調整モジュール100aと下流側の温度調整モジュール100bとに分割され、かつ上流側の温度調整モジュール100aの温度(Ta)より下流側の温度調整モジュール100bの温度(Tb)を高くするようにした点である(Ta<Tb)。
図7に示す有機結晶付基板作製装置は、溶液112の流れ方向(矢印P40、41方向)に対して種結晶120の上流側と下流側とで別々の温度調整モジュール100a、100bを使用して結晶作製基板101の下流側における溶液112の過飽和度を下げ、不要な結晶(雑晶)の発生、成長を抑制することができる。
FIG. 7 is a schematic view showing another embodiment of the organic crystal-attached substrate manufacturing apparatus to which the organic crystal-attached substrate manufacturing method of the present invention is applied.
The difference from the apparatus shown in FIG. 1 is that the temperature adjustment module is divided into a temperature adjustment module 100a on the upstream side of the solution for the seed crystal 10 and a temperature adjustment module 100b on the downstream side, and the temperature adjustment module 100a on the upstream side. The temperature (Tb) of the temperature adjustment module 100b on the downstream side of the temperature (Ta) is increased (Ta <Tb).
The organic crystal-attached substrate manufacturing apparatus shown in FIG. 7 uses separate temperature control modules 100a and 100b on the upstream side and the downstream side of the seed crystal 120 with respect to the flow direction of the solution 112 (arrow P40, 41 direction). The degree of supersaturation of the solution 112 on the downstream side of the crystal production substrate 101 can be reduced, and generation and growth of unnecessary crystals (miscellaneous crystals) can be suppressed.

図8(a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、図8(b)は図8(a)のVIIIb−VIIIb線断面図である。
図8(a)、(b)に示した実施例の図6(a)、(b)に示した実施例との相違点は、結晶作製基板101の種結晶120に対する溶液の下流側に凹部800が形成されている点である。
このように、溶液の流れ方向(矢印P42〜P46方向)に対して、種結晶120の下流側における結晶作製基板101とセル基板103との間の間隔を大きくすることで、下流側における雑晶による詰まりを抑制することができる。
8A is a cross-sectional view showing another embodiment of the crystal production substrate and the cell substrate shown in FIG. 1, and FIG. 8B is a cross-sectional view taken along the line VIIIb-VIIIb of FIG. 8A. .
The difference between the embodiment shown in FIGS. 8A and 8B and the embodiment shown in FIGS. 6A and 6B is that a recess is formed on the downstream side of the solution with respect to the seed crystal 120 of the crystal production substrate 101. 800 is formed.
In this way, by increasing the distance between the crystal production substrate 101 and the cell substrate 103 on the downstream side of the seed crystal 120 with respect to the solution flow direction (arrow P42 to P46 direction), the miscellaneous crystal on the downstream side. Can prevent clogging.

図9(a)は図1に示した有機結晶付基板作製装置に用いられるセルモジュールの他の実施例を示す概略図であり、図9(b)は図9(a)のIXb−IXb線断面図である。
図10(a)は図9(a)に示したセルモジュールの結晶作製基板とセル基板との間の間隔を広げた状態を示す図であり、図10(b)は図10(a)のXb−Xb線断面図である。
図9(a)、(b)に示した装置の図1に示した装置との相違点は、セルモジュールが微小ギャップ301の外周部を形成するように結晶作製基板101上に載置され弾性体からなる環状のシール部材900と、シール部材900を押圧するように配置されるセル基板103と、所定の間隔を調整する調整手段としてのマイクロメータ205a、205bとを備えた点である。
結晶の成長に伴い、成長した結晶自体により溶液112(図1参照)の流れ(矢印P47〜P51方向)が抑制され、溶液112の流路の断面が狭くなってしまう。そのため、段階的または無段階で結晶作製基板101とセル基板103との間の間隔を大きくすることにより(図10(a)、(b))、溶液112の流路を確保し、溶液112の流れを一定に保つことが可能となり、安定した結晶成長を行うことができる。結晶作製基板101とセル基板103との間のシール部材900には圧力により厚さが変化するもの(例えば、シリコーンゴム)を用い、マイクロメータの機能を備えた調整手段で正確に微小ギャップ301の間隔を制御することが可能となる。シール部材900には溶液112に耐性のあるものであればよく、バイトン(商品名)等を用いてもよい。
FIG. 9A is a schematic view showing another embodiment of the cell module used in the organic crystal-attached substrate manufacturing apparatus shown in FIG. 1, and FIG. 9B is a line IXb-IXb in FIG. 9A. It is sectional drawing.
FIG. 10A is a diagram showing a state in which the space between the crystal production substrate and the cell substrate of the cell module shown in FIG. 9A is widened, and FIG. 10B is a diagram of FIG. It is Xb-Xb sectional view taken on the line.
The difference between the apparatus shown in FIGS. 9A and 9B and the apparatus shown in FIG. 1 is that the cell module is placed on the crystal production substrate 101 so as to form the outer periphery of the minute gap 301 and is elastic. An annular seal member 900 made of a body, a cell substrate 103 arranged so as to press the seal member 900, and micrometers 205a and 205b as adjusting means for adjusting a predetermined interval are provided.
As the crystal grows, the flow of the solution 112 (see FIG. 1) (in the direction of arrows P47 to P51) is suppressed by the grown crystal itself, and the cross section of the flow path of the solution 112 becomes narrow. Therefore, by increasing the distance between the crystal production substrate 101 and the cell substrate 103 stepwise or steplessly (FIGS. 10A and 10B), the flow path of the solution 112 is secured, and the solution 112 The flow can be kept constant, and stable crystal growth can be performed. The sealing member 900 between the crystal production substrate 101 and the cell substrate 103 is a member whose thickness changes with pressure (for example, silicone rubber), and the minute gap 301 is accurately formed by an adjusting means having a micrometer function. It is possible to control the interval. The seal member 900 only needs to be resistant to the solution 112, and Viton (trade name) or the like may be used.

図11は種結晶としてのDAST結晶の形状及び方位を示す図である。
同図において座標軸と共にDAST結晶が示されている。DAST結晶120は単斜晶系、空間群Ce、点群mに属し(S.R.Marder,J.W.Perry,C.P.Yakymysyn,Chem.Mater.,6,1137(1994)),結晶形状は菱形平板状である。矢印P55は最優先成長方位である。
結晶のa軸、b軸は菱形の対角線上にあり、(001)面1102のりょうの角度で見分けることができる。図に示すように(001面)1102は平坦な面であり、(00−1)面1101が傾斜を持つ面となる。また、[100]方向は(00−1)面1101の平坦な面からの傾斜面の方向で見分けることができる。
FIG. 11 is a diagram showing the shape and orientation of a DAST crystal as a seed crystal.
In the figure, a DAST crystal is shown together with coordinate axes. The DAST crystal 120 belongs to the monoclinic system, the space group Ce, and the point group m (SR Marder, JW Perry, CP Yakimysyn, Chem. Mater., 6, 1137 (1994)), The crystal shape is a rhomboid plate. Arrow P55 is the highest priority growth direction.
The a-axis and b-axis of the crystal lie on a rhombus diagonal, and can be distinguished by the angle of the (001) plane 1102. As shown in the figure, (001 plane) 1102 is a flat plane, and (00-1) plane 1101 is a tilted plane. Further, the [100] direction can be distinguished by the direction of the inclined surface from the flat surface of the (00-1) surface 1101.

図12(a)、(b)、(c)はDAST結晶の成長異方性の概略図である。
DAST結晶120のメタノール中における成長速度は[100]方向が[−100]方向よりも速く、[001]方向が[00−1]方向よりも速いことが報告されている(信学技報EMD2001−44(2001−08))。
12A, 12B, and 12C are schematic views of the growth anisotropy of the DAST crystal.
It has been reported that the growth rate of the DAST crystal 120 in methanol is higher in the [100] direction than in the [-100] direction and faster in the [001] direction than in the [00-1] direction (Science Technical Report EMD2001). -44 (2001-08)).

図13(a)〜(d)は溶液の流れに対するDAST結晶の成長の略図を示す。図13(a)は溶液の流れと結晶の最大成長方位とが180度の関係にある場合の平面図であり、図13(b)は図13(a)の側面図である。図13(c)は溶液の流れと結晶の最大成長方位とが0度、すなわち同一方向の場合の平面図であり、図13(d)は図13(c)の側面図である。図13(a)〜(d)において、種結晶120のサイズは同一である。
DAST結晶は、a軸[100]方向における結晶への分子の取り込みが速い(結晶成長速度が速い)。そのため、結晶成長の速い方向は、他の部分よりも結晶周辺の溶液濃度が低くなる。結晶周辺の溶液濃度の低下は結晶成長を妨げる。
通常、溶液濃度の不均一は自然拡散により時間と共に均一化されるが、結晶成長速度が速い場合には拡散による均一化が追いつかない。また、本実施例のように、微小ギャップ環境では自然拡散はさらに抑制されやすい状況となっている。そのため溶液(すなわち結晶を構成する分子)の結晶の最大成長方位への供給を効率的にすることで、効率的に結晶成長を行うことができる。
すなわち、種結晶120を、最大成長方位(矢印P56方向)が溶液の流れP57〜P59に対し180度となるように配置することで得られる結晶成長部分1300(図13(a)、(b))と、種結晶120を、最大成長方位(矢印P60方向)が溶液の流れP61〜P63に対し0度となるように配置することで得られる結晶成長部分1301(図13(c)、(d))とを比較すると明らかに、結晶成長部分1300が結晶成長部分1301より大きいことが分かる。
FIGS. 13 (a)-(d) show schematic diagrams of DAST crystal growth versus solution flow. FIG. 13A is a plan view when the flow of the solution and the maximum crystal growth direction are in a relationship of 180 degrees, and FIG. 13B is a side view of FIG. 13A. FIG. 13C is a plan view when the flow of the solution and the maximum growth direction of the crystal are 0 degrees, that is, in the same direction, and FIG. 13D is a side view of FIG. 13A to 13D, the seed crystal 120 has the same size.
The DAST crystal has a fast uptake of molecules into the crystal in the a-axis [100] direction (the crystal growth rate is fast). For this reason, in the direction of fast crystal growth, the solution concentration around the crystal is lower than in other portions. Reduction of the solution concentration around the crystal prevents crystal growth.
Usually, the non-uniform solution concentration is uniformed with time by natural diffusion, but when the crystal growth rate is high, the uniformization by diffusion cannot catch up. Further, as in this embodiment, natural diffusion is more easily suppressed in a minute gap environment. Therefore, by efficiently supplying the solution (that is, molecules constituting the crystal) to the maximum growth direction of the crystal, the crystal can be efficiently grown.
That is, the crystal growth portion 1300 obtained by arranging the seed crystal 120 such that the maximum growth direction (direction of arrow P56) is 180 degrees with respect to the solution flows P57 to P59 (FIGS. 13A and 13B). ) And a crystal growth portion 1301 (FIG. 13C, FIG. 13D) obtained by arranging the seed crystal 120 so that the maximum growth direction (arrow P60 direction) is 0 degrees with respect to the solution flow P61 to P63. )) Clearly shows that the crystal growth portion 1300 is larger than the crystal growth portion 1301.

図14(a)〜(e)はDAST結晶の(001)面と溶液の流れとの関係を説明するための説明図である。
図14(a)において座標軸及びDAST結晶120が示されている。1100は(00−1)面であり、1101は(001)面であり、矢印P66方向が最大成長方位である。
DAST結晶120の成長速度は、[001]方向が[00−1]方向よりも速い。このため、図14(b)、(c)に示すように(001)面を結晶作製基板101に接触する共に最大成長方位(矢印P67)を溶液の流れに対し180度となるように固定した場合には、[100]方向(a軸)への成長に対して、[00−1]方向への成長速度が遅いため、(00−1)面がセル基板103に到達するまでに時間がかかり、溶液の流れ(矢印P68方向)を妨げることなく効率的に結晶成長を行うことができる([100](a軸)方向にアスペクト比の大きな薄膜状結晶が得られる)。
ところが、図14(d)、(e)のように(00−1)面を結晶作製基板101に接触すると共に最大成長方位(矢印P69方向)が溶液の流れ(矢印P70)と180度となるようにDAST結晶120を固定した場合には、(00−1)面に対して、成長速度の速い(001)面が成長するため、短い時間でセル基板103に到達してしまい、溶液の均一な流れ(矢印P70方向)を妨げることになる。
14A to 14E are explanatory views for explaining the relationship between the (001) plane of the DAST crystal and the flow of the solution.
In FIG. 14A, coordinate axes and the DAST crystal 120 are shown. 1100 is the (00-1) plane, 1101 is the (001) plane, and the direction of arrow P66 is the maximum growth direction.
The growth rate of the DAST crystal 120 is higher in the [001] direction than in the [00-1] direction. Therefore, as shown in FIGS. 14B and 14C, the (001) plane is brought into contact with the crystal production substrate 101 and the maximum growth direction (arrow P67) is fixed to be 180 degrees with respect to the flow of the solution. In this case, since the growth rate in the [00-1] direction is slower than the growth in the [100] direction (a axis), it takes time until the (00-1) plane reaches the cell substrate 103. Therefore, crystal growth can be efficiently performed without hindering the flow of the solution (in the direction of arrow P68) (a thin film crystal having a large aspect ratio in the [100] (a-axis) direction is obtained).
However, as shown in FIGS. 14D and 14E, the (00-1) plane is brought into contact with the crystal production substrate 101 and the maximum growth direction (arrow P69 direction) is 180 degrees with the solution flow (arrow P70). When the DAST crystal 120 is fixed as described above, the (001) plane having a high growth rate grows with respect to the (00-1) plane, so that the cell substrate 103 is reached in a short time, and the solution is uniform. Is obstructed (in the direction of arrow P70).

図15(a)〜(d)はパターンが形成された結晶作製基板に固定されたDAST結晶と溶液の流れとの関係を説明するための説明図である。
DAST結晶120を(001)面がパターン(凹部)の形成された結晶作製基板101に固定した場合には結晶作製基板101の構造を反映した結晶形状に作製することができる。
すなわち、図15(a)、(b)に示すように(001)面を、パターン1500(凹部)が形成された結晶作製基板101に接触すると共に最大成長方位(矢印P71方向)が溶液の流れ(矢印P72方向)と180度となるようにDAST結晶120を固定した場合には、パターン(凹部)1500の容積分を含むDAST結晶1501が得られる。
また、図15(c)、(d)に示すように(001)面を、パターン1500より小さいパターン(凹部)1502が形成された結晶作製基板101に接触すると共に最大成長方位(矢印P73方向)が溶液の流れ(矢印P74方向)と180度となるようにDAST結晶120を固定した場合には、パターン(凹部)1502の容積分を含むDAST結晶1503が得られる。
FIGS. 15A to 15D are explanatory views for explaining the relationship between the DAST crystal fixed to the crystal production substrate on which the pattern is formed and the flow of the solution.
When the DAST crystal 120 is fixed to the crystal production substrate 101 in which the (001) plane is formed with a pattern (concave portion), it can be produced in a crystal shape reflecting the structure of the crystal production substrate 101.
That is, as shown in FIGS. 15A and 15B, the (001) plane is brought into contact with the crystal production substrate 101 on which the pattern 1500 (concave portion) is formed, and the maximum growth direction (direction of arrow P71) is the flow of the solution. When the DAST crystal 120 is fixed so as to be 180 degrees (in the direction of arrow P72), the DAST crystal 1501 including the volume of the pattern (concave portion) 1500 is obtained.
Further, as shown in FIGS. 15C and 15D, the (001) plane is in contact with the crystal production substrate 101 on which a pattern (concave portion) 1502 smaller than the pattern 1500 is formed, and the maximum growth direction (direction of arrow P73). When the DAST crystal 120 is fixed so as to be 180 degrees with the flow of the solution (in the direction of the arrow P74), the DAST crystal 1503 including the volume of the pattern (concave portion) 1502 is obtained.

本発明の有機結晶付基板作製方法を適用した有機結晶付基板作製装置の一実施例を示す概略図である。It is the schematic which shows one Example of the board | substrate preparation apparatus with an organic crystal to which the board | substrate preparation method with an organic crystal of this invention is applied. (a)は図1に示した結晶作製基板及びセル基板の一実施例を示す横断面図であり、(b)は(a)のIIb−IIb線断面図であり、(c)は(b)に示した種結晶の拡大図である。(A) is the cross-sectional view which shows one Example of the crystal production board | substrate and cell substrate which were shown in FIG. 1, (b) is the IIb-IIb sectional view taken on the line of (a), (c) is (b) 2 is an enlarged view of the seed crystal shown in FIG. (a)、(b)は種結晶の優先成長方位と溶液の流れとの関係を示す図である。(A), (b) is a figure which shows the relationship between the preferential growth direction of a seed crystal, and the flow of a solution. (a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、(b)は(a)のIVb−IVb線断面図である。(A) is the cross-sectional view which shows the other Example of the crystal production board | substrate and cell substrate which were shown in FIG. 1, (b) is the IVb-IVb sectional view taken on the line of (a). (a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、(b)は(a)のVb−Vb線断面図である。(A) is the cross-sectional view which shows the other Example of the crystal production board | substrate and cell substrate which were shown in FIG. 1, (b) is the Vb-Vb sectional view taken on the line of (a). (a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、(b)は(a)のVIb−VIb線断面図である。(A) is the cross-sectional view which shows the other Example of the crystal production board | substrate and cell substrate which were shown in FIG. 1, (b) is VIb-VIb sectional view taken on the line of (a). 本発明の有機結晶付基板作製方法を適用した有機結晶付基板作製装置の他の実施例を示す概略図である。It is the schematic which shows the other Example of the board | substrate preparation apparatus with an organic crystal to which the board | substrate manufacturing method with an organic crystal of this invention is applied. (a)は図1に示した結晶作製基板及びセル基板の他の実施例を示す横断面図であり、(b)は(a)のVIIIb−VIIIb線断面図である。(A) is the cross-sectional view which shows the other Example of the crystal production board | substrate and cell substrate which were shown in FIG. 1, (b) is the VIIIb-VIIIb sectional view taken on the line of (a). (a)は図1に示した有機結晶付基板作製装置に用いられるセルモジュールの他の実施例を示す概略図であり、(b)は(a)のIXb−IXb線断面図である。(A) is the schematic which shows the other Example of the cell module used for the board | substrate preparation apparatus with an organic crystal shown in FIG. 1, (b) is the IXb-IXb sectional view taken on the line of (a). (a)は図9(a)に示したセルモジュールの結晶作製基板とセル基板との間の間隔を広げた状態を示す図であり、(b)は(a)のXb−Xb線断面図である。(A) is a figure which shows the state which expanded the space | interval between the crystal production board | substrate of a cell module shown to Fig.9 (a), and a cell substrate, (b) is the Xb-Xb sectional view taken on the line of (a). It is. 種結晶としてのDAST結晶の形状及び方位を示す図である。It is a figure which shows the shape and orientation of a DAST crystal as a seed crystal. (a)、(b)、(c)はDAST結晶の成長異方性の概略図である。(A), (b), (c) is the schematic of the growth anisotropy of a DAST crystal. (a)〜(d)は溶液の流れに対するDAST結晶の成長の略図を示す。(A)-(d) shows a schematic representation of DAST crystal growth with respect to solution flow. (a)〜(e)はDAST結晶の(001)面と溶液の流れとの関係を説明するための説明図である。(A)-(e) is explanatory drawing for demonstrating the relationship between the (001) plane of a DAST crystal, and the flow of a solution. (a)〜(d)はパターンが形成された結晶作製基板に固定されたDAST結晶と溶液の流れとの関係を説明するための説明図である。(A)-(d) is explanatory drawing for demonstrating the relationship between the DAST crystal fixed to the crystal production substrate in which the pattern was formed, and the flow of a solution. 4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレートの分子構造を示す図である。It is a figure which shows the molecular structure of 4-dimethylamino-N-methyl-4-stilbazolium tosylate. 4−ジメチルアミノ−N−メチル−4−スチルバゾリウムトシレートのメタノールに対する溶解度曲線である。It is a solubility curve with respect to methanol of 4-dimethylamino-N-methyl-4-stilbazolium tosylate.

符号の説明Explanation of symbols

100、150 温度調整モジュール
101 結晶作製基板
103 セル基板
104 送液ポンプ
105、106 流路
108 恒温槽
112 溶液
113 供給部
114 排出部
120 種結晶(DAST結晶)
130 溶液保持部
151 リザーバー
152 循環手段
153 枠状部材
154a、154b 固定ネジ
200 保持手段
301 密閉空間(微小ギャップ)
100, 150 Temperature adjustment module 101 Crystal production substrate 103 Cell substrate 104 Liquid feed pump 105, 106 Flow path 108 Constant temperature bath 112 Solution 113 Supply unit 114 Discharge unit 120 Seed crystal (DAST crystal)
130 Solution Holding Unit 151 Reservoir 152 Circulating Means 153 Frame-Shaped Members 154a, 154b Fixing Screw 200 Holding Means 301 Sealed Space (Micro Gap)

Claims (5)

有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製装置において、
結晶作製領域内に種結晶が配置された結晶作製基板の温度を調整する温度調整モジュールと、
前記結晶作製基板上に載置され前記結晶作製基板との間に所定の間隔を有する密閉空間を形成するセルモジュールと、
前記温度調整モジュール上に配置され前記結晶作製基板と前記セルモジュールとを着脱自在に保持する保持手段と、
前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させる循環手段とを備え、前記結晶作製基板は、前記種結晶に対する溶液の下流側に凹部が形成されていることを特徴とする有機結晶付基板作製装置。
In an organic crystal-attached substrate manufacturing apparatus for manufacturing a film-like organic crystal on a crystal manufacturing substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved,
A temperature adjustment module for adjusting the temperature of the crystal production substrate in which the seed crystal is arranged in the crystal production region;
A cell module which is placed on the crystal production substrate and forms a sealed space having a predetermined interval with the crystal production substrate;
Holding means disposed on the temperature adjustment module and detachably holding the crystal production substrate and the cell module;
A circulation unit that circulates the solution between the sealed space and the solution holding unit through flow paths connected to a supply unit and a discharge unit that penetrate the cell module and communicate with the sealed space, respectively. The substrate for producing an organic crystal is characterized in that the crystal production substrate has a recess formed on the downstream side of the solution with respect to the seed crystal .
有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製装置において、
結晶作製領域内に種結晶が配置された結晶作製基板の温度を調整する温度調整モジュールと、
前記結晶作製基板上に載置され前記結晶作製基板との間に所定の間隔を有する密閉空間を形成するセルモジュールと、
前記温度調整モジュール上に配置され前記結晶作製基板と前記セルモジュールとを着脱自在に保持する保持手段と、
前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させる循環手段とを備え、
前記セルモジュールは、前記密閉空間の外周部を形成するように前記結晶作製基板上に載置され弾性体からなる環状のシール部材と、前記シール部材を押圧するように配置されるセル基板と、前記所定の間隔を調整する調整手段とを備えたことを特徴とする有機結晶付基板作製装置。
In an organic crystal-attached substrate manufacturing apparatus for manufacturing a film-like organic crystal on a crystal manufacturing substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved,
A temperature adjustment module for adjusting the temperature of the crystal production substrate in which the seed crystal is arranged in the crystal production region;
A cell module which is placed on the crystal production substrate and forms a sealed space having a predetermined interval with the crystal production substrate;
Holding means disposed on the temperature adjustment module and detachably holding the crystal production substrate and the cell module;
A circulation unit that circulates the solution between the sealed space and the solution holding unit through flow paths connected to a supply unit and a discharge unit that penetrate the cell module and communicate with the sealed space, respectively. ,
The cell module is an annular seal member made of an elastic body placed on the crystal production substrate so as to form an outer peripheral portion of the sealed space, and a cell substrate arranged to press the seal member; the features and organic crystal substrate with manufacturing apparatus you that an adjusting means for adjusting a predetermined distance.
有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製方法において、
結晶作製基板上に種結晶を配置し、該種結晶が密閉空間内に位置すると共に所定の間隔になるように前記結晶作製基板上にセルモジュールを保持し、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させ、前記結晶作製基板として、前記種結晶に対する溶液の下流側に凹部が形成された基板を用いることを特徴とする有機結晶付基板作製方法。
In a method for producing a substrate with an organic crystal, which produces a film-like organic crystal on a crystal production substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved,
A seed crystal is arranged on the crystal production substrate, the cell module is held on the crystal production substrate so that the seed crystal is located in a sealed space and at a predetermined interval, and the cell module is penetrated to form the sealed The solution is circulated between the sealed space and the solution holding unit through flow paths respectively connected to a supply unit and a discharge unit communicating with the space, and the solution for the seed crystal is downstream of the crystal preparation substrate. A method for producing a substrate with an organic crystal, comprising using a substrate having a recess formed on a side thereof.
有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製方法において、
結晶作製基板上に種結晶を配置し、該種結晶が密閉空間内に位置すると共に所定の間隔になるように前記結晶作製基板上にセルモジュールを保持し、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させ、前記セルモジュールとして、前記密閉空間の外周部を形成するように前記結晶作製基板上に載置され弾性体からなる環状のシール部材と、前記シール部材を押圧するように配置されるセル基板と、前記所定の間隔を調整する調整手段とを備えたモジュールを用いることを特徴とする有機結晶付基板作製方法。
In a method for producing a substrate with an organic crystal, which produces a film-like organic crystal on a crystal production substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved,
A seed crystal is arranged on the crystal production substrate, the cell module is held on the crystal production substrate so that the seed crystal is located in a sealed space and at a predetermined interval, and the cell module is penetrated to form the sealed The solution is circulated between the inside of the sealed space and the solution holding unit through flow paths connected to a supply unit and a discharge unit communicating with the space, and an outer peripheral portion of the sealed space is formed as the cell module. An annular sealing member made of an elastic body placed on the crystal production substrate, a cell substrate arranged to press the sealing member, and an adjusting means for adjusting the predetermined interval A method for producing a substrate with an organic crystal, comprising using a module .
有機結晶が溶解した溶液の温度を制御する温度差法を用いることにより結晶作製基板上に膜状の有機結晶を作製する有機結晶付基板作製方法において、
結晶作製基板上に種結晶を配置し、該種結晶が密閉空間内に位置すると共に所定の間隔になるように前記結晶作製基板上にセルモジュールを保持し、前記セルモジュールを貫通して前記密閉空間に連通する供給部及び排出部にそれぞれ接続された流路を介して前記密閉空間内と溶液保持部との間で前記溶液を循環させ、結晶作製開始時に前記種結晶の表面を溶解してから結晶成長させることを特徴とする有機結晶付基板作製方法。
In a method for producing a substrate with an organic crystal, which produces a film-like organic crystal on a crystal production substrate by using a temperature difference method for controlling the temperature of a solution in which the organic crystal is dissolved,
A seed crystal is arranged on the crystal production substrate, the cell module is held on the crystal production substrate so that the seed crystal is located in a sealed space and at a predetermined interval, and the cell module is penetrated to form the sealed The solution is circulated between the sealed space and the solution holding unit through channels connected to the supply unit and the discharge unit communicating with the space, respectively, and the surface of the seed crystal is dissolved at the start of crystal production. wherein the organic crystal substrate with a manufacturing method you that crystal growth occurs from.
JP2004210652A 2004-07-16 2004-07-16 Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal Expired - Fee Related JP4587723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210652A JP4587723B2 (en) 2004-07-16 2004-07-16 Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210652A JP4587723B2 (en) 2004-07-16 2004-07-16 Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal

Publications (2)

Publication Number Publication Date
JP2006027967A JP2006027967A (en) 2006-02-02
JP4587723B2 true JP4587723B2 (en) 2010-11-24

Family

ID=35894757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210652A Expired - Fee Related JP4587723B2 (en) 2004-07-16 2004-07-16 Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal

Country Status (1)

Country Link
JP (1) JP4587723B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2819451B1 (en) 2012-01-16 2020-11-04 Nec Corporation Mobile communications system, control apparatus, network optimization methods, and non-temporary computer-readable medium having program stored therein
CN105951167B (en) * 2016-05-05 2018-12-11 国家纳米科学中心 Ultra-thin band-like micro-meter scale small organic molecule monocrystalline of one kind and its preparation method and application
CN108642558B (en) * 2018-05-23 2023-12-22 天津大学 Annular ladder base and system for spontaneous nucleation growth of organic crystals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063200A (en) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd Method and device for growing crystal
JP2006027968A (en) * 2004-07-16 2006-02-02 Ricoh Co Ltd Apparatus and method for manufacturing substrate with organic crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063200A (en) * 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd Method and device for growing crystal
JP2006027968A (en) * 2004-07-16 2006-02-02 Ricoh Co Ltd Apparatus and method for manufacturing substrate with organic crystal

Also Published As

Publication number Publication date
JP2006027967A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
KR102391029B1 (en) Manufacturing method of fluorescent polarizing film according to quantum bar oriented arrangement
TWI460324B (en) Apparatus and method for producing quantum dot
Sun et al. Self-assembly of ultralong aligned dipeptide single crystals
JP4587723B2 (en) Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal
Ge et al. Linearly polarized photoluminescence from anisotropic perovskite nanostructures: emerging materials for display technology
US8685160B2 (en) Substrate having fullerene thin wires and method for manufacture thereof
JP4865996B2 (en) Substrate manufacturing apparatus with organic crystal and substrate manufacturing method with organic crystal
CN103765256B (en) Method for producing pattern phase difference film
US7368012B2 (en) Methods and apparatuses for a dynamic growing of single-crystal thin-film composed of organic materials
Senthil et al. Unidirectional growth of largest L-LMHCl dihydrate crystal by SR method
Peng et al. Direct growth and patterning of single-crystal perovskites via antisolvent inkjet printing
JP2006021976A (en) Method and apparatus for manufacturing thin film-like organic single crystal
CN104947195B (en) C15H11NO2S nonlinear optical crystal and its preparation method and use
JP2011081227A (en) Method of manufacturing liquid crystal display device, liquid crystal display device and electronic equipment
Zhang et al. Precise arraying of perovskite single crystals through droplet-assisted self-alignment
CN104862783B (en) C23H15NO2Nonlinear optical crystal and its preparation method and use
US20230357948A1 (en) Device and method for manufacturing a crystalline conversion layer from a solution
Reed et al. Bottom-up growth of shape-engineered molecular single crystals
Yu et al. Precise in-situ fabrication of perovskite single crystal arrays via cosolvent based electrohydrodynamic printing
RU2569551C2 (en) Boring of monocrystal silicon plates
Guo et al. A novel organometallic nonlinear optical complex crystal: Cadmium mercury thiocyanate dimethyl-sulphoxide
CN112626617B (en) Seed crystal fixing device, growth device and crystal rapid growth method
Rashid et al. Self-assembled organic supramolecular thin films for nonlinear optics
He et al. Chiral Lead Halide Perovskite Nanocrystals: Construction Strategies and Photophysical Properties
JP3297702B2 (en) Equipment for crystal growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees