JP2006021372A - Mold release laminated film - Google Patents

Mold release laminated film Download PDF

Info

Publication number
JP2006021372A
JP2006021372A JP2004200159A JP2004200159A JP2006021372A JP 2006021372 A JP2006021372 A JP 2006021372A JP 2004200159 A JP2004200159 A JP 2004200159A JP 2004200159 A JP2004200159 A JP 2004200159A JP 2006021372 A JP2006021372 A JP 2006021372A
Authority
JP
Japan
Prior art keywords
film
layer
pps
laminated film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004200159A
Other languages
Japanese (ja)
Other versions
JP4529565B2 (en
Inventor
Shinichiro Miyaji
新一郎 宮治
Minoru Shimizu
実 清水
Naoki Kawaji
直樹 川治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004200159A priority Critical patent/JP4529565B2/en
Publication of JP2006021372A publication Critical patent/JP2006021372A/en
Application granted granted Critical
Publication of JP4529565B2 publication Critical patent/JP4529565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold release laminated film excellent in heat resistance, chemical resistance, hydrolysis resistance and mold releasability, having flexibility and cushioning properties following the stepped parts of the circuit of a circuit board, excellent in press workability, not containing a substance which is bled out of a mold release material to stain the circuit board and optimum to a circuit board manufacturing process using a press. <P>SOLUTION: The mold release laminated film is formed by laminating biaxially stretched films (layers A), which comprises a resin composition based on polyphenylene sulfide, on both sides of a resin composition layer (layer B) with a thermal deformation temperature of 70-150°C and constituted so that the ratio of the thickness of the layers A [thickness of layers A/(thickness of layers A + thickness of layer B)] to the whole thickness of the laminated film becomes 0.05-0.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二軸延伸ポリフェニレンサルファイドフィルムを用いた離型用積層フィルムに関するもので、特に耐熱性、耐薬品性、耐加水分解性及びクッション性等が要求される回路基板の製造工程用離型フィルムに最適な離型用積層フィルムに関するものである。    The present invention relates to a laminated film for mold release using a biaxially stretched polyphenylene sulfide film, and in particular, a mold release for a circuit board manufacturing process that requires heat resistance, chemical resistance, hydrolysis resistance, cushioning properties, and the like. The present invention relates to a release film that is optimal for a film.

近年、IT機器やデジタル機器等のめざましい発展に伴い、回路基板の多機能、高機能化の開発が激しくなっておりリジット多層基板、ビルドアップ多層基板、フレキシブルプリント基板(以下FPCと略称する場合がある)およびこれらを組み合わせた回路基板が多用化されてる。これらの回路基板の製造は、一般的は熱板プレスで積層加工される。例えばビルドアップ多層基板の場合は先に製造した回路基板の上に耐熱絶縁性を有する接着剤層を介して導体の金属層が積層され回路加工されるし、FPCの場合も接着剤を介して回路層が多層化されたりカバーレイとよばれる絶縁層を表層に積層したり、またコネクター部分の強度を向上させるためにFPCのコネクター部分の裏面に接着剤を介して補強板が積層される。これらは打ち抜きや穴空け加工を施した後積層加工される場合が多く、各回路基板の間に離型シートを入れ接着剤の染みだしによる回路基板間のくっつきを防止して行われる。また形成された回路間に絶縁層がフィットするように積層する必要がありその追従性が、またプレス圧力が均等に回路基板に与えられるよう離型シートにクッション性が要求される。特に最近の回路基板は回路が高密度化しておりその要求は日増しに厳しくなってきている。一般的な熱プレス温度は160〜190℃程度であるが、回路基板に使用される接着剤や絶縁樹脂層の軟化温度が異なり200℃以上の温度でプレス加工される場合があり離型材の耐熱性の向上が要求されている。該プレス加工の時間は数十分から数時間と長く接着剤や絶縁樹脂から出るガスに対する耐性(耐薬品性)や水分による加水分解に対する耐性(耐加水分解性)も要求される。また離型材側からはブリードアウトする物質がないことも回路基板の汚染防止の点で要求されている。    In recent years, with the remarkable development of IT equipment, digital equipment, etc., development of multi-function and high-performance circuit boards has been intense, and rigid multi-layer boards, build-up multi-layer boards, flexible printed boards (hereinafter abbreviated as FPCs). And circuit boards that combine these are widely used. These circuit boards are generally laminated by a hot plate press. For example, in the case of a build-up multilayer substrate, a metal layer of a conductor is laminated on a previously manufactured circuit substrate through an adhesive layer having heat resistance insulation, and the circuit processing is performed in the case of FPC. A circuit board is multilayered or an insulating layer called a coverlay is laminated on the surface layer, and a reinforcing plate is laminated on the back surface of the connector portion of the FPC via an adhesive to improve the strength of the connector portion. In many cases, these are laminated after punching or punching, and a release sheet is inserted between the circuit boards to prevent sticking between the circuit boards due to bleeding of the adhesive. Moreover, it is necessary to laminate | stack so that an insulating layer may fit between the formed circuits, and the followability and the cushioning property are requested | required of a release sheet so that a press pressure may be equally applied to a circuit board. In particular, the circuit density of recent circuit boards has been increasing, and the demand has become increasingly strict. The general hot press temperature is about 160 to 190 ° C, but the softening temperature of the adhesive used for the circuit board and the insulating resin layer is different, and the press processing may be performed at a temperature of 200 ° C or higher. There is a demand for improved performance. The press working time is as long as several tens of minutes to several hours, and resistance to gases (chemical resistance) from the adhesive and insulating resin and resistance to hydrolysis by moisture (hydrolysis resistance) are also required. In addition, it is required from the side of the release material that no substance bleeds out from the viewpoint of preventing contamination of the circuit board.

従来この分野にはポリオレフィン系のシートやフィルム、弗素系のフィルムが知られている。オレフィン系のシートやフィルムは離型性には優れるが耐熱性が低い。また弗素系フィルムは腰がないので作業性が悪くまたコストが高い。またポリメチルペンテンのシートやシートと特種オレフィンシートの積層品(例えば特許文献1参照)が用いられている。   Conventionally, polyolefin sheets and films and fluorine films are known in this field. Olefin-based sheets and films are excellent in releasability but low in heat resistance. In addition, since a fluorine-based film is not stiff, workability is poor and cost is high. Also, polymethylpentene sheets and laminates of special olefin sheets (see, for example, Patent Document 1) are used.

一方、二軸延伸ポリフェニレンサルファイドフィルム(以下PPSフィルムと略称する場合がある)は耐熱性、耐薬品性や機械特性に優れること(例えば特許文献2参照)が知られている。またPPSフィルムが離型用途に用いられていることは以下のものが知られている。   On the other hand, it is known that a biaxially stretched polyphenylene sulfide film (hereinafter sometimes abbreviated as a PPS film) is excellent in heat resistance, chemical resistance and mechanical properties (see, for example, Patent Document 2). In addition, the following is known that PPS films are used for mold release.

(1)PPSフィルムをそのまま液晶膜等の製造工程離型に用いられること(例えば特許文献3、4参照)。  (1) A PPS film is used as it is for mold release of a liquid crystal film or the like (see, for example, Patent Documents 3 and 4).

(2)PPSフィルムにシリコーン樹脂を塗布した離型フィルムがセラミックシートや
ウレタンシート等の製造工程用キャリアシート(離型シート)に用いられること(特許文献5参照)
(3)各フィルム間の密着力を剥離可能な範囲にしたPPSフィルムと別の有機高分子
フィルムの積層フィルムをセラミックのグリーンシートの加工工程用離型材に用い、該加工工程内でPPSフィルムを剥離しながら使用すること(例えば特許文献6参照)。
プラスチックフィルム・レジン材料便覧1997/98 (株式会社加工技術研究会 1997年12月18日発行) P305〜306 特開昭56−62121号公報 特開平09−278912号公報 特開平09−300365号公報 特開平04−90774号公報 特開平05−261868号公報
(2) A release film obtained by applying a silicone resin to a PPS film is used as a carrier sheet (release sheet) for a manufacturing process such as a ceramic sheet or a urethane sheet (see Patent Document 5).
(3) A laminated film of a PPS film and a separate organic polymer film in which the adhesion between each film can be peeled is used as a release material for a ceramic green sheet processing process, and the PPS film is used in the processing process. Use while peeling (see, for example, Patent Document 6).
Plastic Film / Resin Material Handbook 1997/98 (Processing Technology Research Group, issued on December 18, 1997) P305-306 JP-A-56-62121 JP 09-278912 A JP 09-300365 A Japanese Patent Laid-Open No. 04-90774 JP 05-261868 A

しかしながら、上記TPXシートおよびその積層フィルム、PPSフィルムおよびその加工品は下記の問題点を有しており回路基板の製造工程用離型フィルムの分野では展開が制限されていた。TPXシートを用いたものは離型性、耐薬品性、耐加水分解性およびクッション性は優れているが、可塑剤等の添加剤が多く含まれており、加熱した長時間のプレス加工では該可塑剤がブリードアウトし回路基板を汚染することが指摘されているし、
耐熱性が乏しく例えばBTレジンの加工のように200℃を越える高温のプレス加工では使用が制限されていた。今後多機能、高機能化する回路基板において耐熱性の向上の要求は厳しくなるし回路の汚染も大きな問題になる。
However, the above TPX sheet, laminated film thereof, PPS film and processed product thereof have the following problems, and development has been limited in the field of release films for circuit board manufacturing processes. Those using TPX sheets are excellent in releasability, chemical resistance, hydrolysis resistance and cushioning properties, but contain a lot of additives such as plasticizers. It has been pointed out that plasticizers bleed out and contaminate circuit boards,
The heat resistance is poor and its use has been limited in press processing at a high temperature exceeding 200 ° C. such as processing of BT resin. In the future, the demand for improvement in heat resistance will be stricter in circuit boards that are multifunctional and highly functional, and contamination of the circuit will become a major problem.

(1)のPPSフィルムや(2)の離型PPSフィルムは耐熱性、耐薬品性、耐加水分解性および離型性には優れるがクッション性が劣り、銅箔等の導体で形成された回路と該回路の絶縁層の段差に追従する柔軟性がなくプレスで積層された絶縁層が、回路基板の積層加工後の回路と絶縁層の界面で浮いてしまう。該現象は絶縁不良の原因となり回路間の導通や放電を引き起こし短絡する原因にもなる。   The PPS film of (1) and the release PPS film of (2) are excellent in heat resistance, chemical resistance, hydrolysis resistance and releasability, but are inferior in cushioning and formed of a conductor such as copper foil. The insulating layer laminated by pressing without the flexibility of following the step of the insulating layer of the circuit floats at the interface between the circuit and the insulating layer after the circuit board is laminated. This phenomenon causes insulation failure and also causes conduction and discharge between circuits and causes a short circuit.

(3)のPPSフィルムを用いた離型用積層フィルムは、加工工程内で剥離しながら使用されるよう設計されているので密着力が弱いこと、また別の有機高分子シートを支持層として用いるため離型積層フィルム全体が硬く、加熱しても簡単に軟化するものでなく本発明に求められるクッション性、追従性にも問題があった。   The laminated film for release using the PPS film of (3) is designed to be used while being peeled in the processing step, so that the adhesion is weak, and another organic polymer sheet is used as the support layer. Therefore, the entire release laminate film is hard and does not easily soften even when heated, and there is a problem in cushioning properties and followability required for the present invention.

そこで、本発明は上記の問題点を鑑み、耐熱性、耐薬品性、耐加水分解性および離型性に優れ、かつ回路基板の回路の段差に追従する柔軟性とクッション性の付与、およびプレスの作業性に優れた、プレスによる回路基板の製造工程に最適な離型フィルムを提供せんとするものである。   Therefore, in view of the above problems, the present invention is excellent in heat resistance, chemical resistance, hydrolysis resistance and releasability, and gives flexibility and cushioning to follow the steps of the circuit on the circuit board, and press It is intended to provide a release film that is excellent in workability and is optimal for a circuit board manufacturing process using a press.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、熱変形温度が70〜150℃の樹脂組成物層(B層)の両面に、ポリフェニレンサルファイドを主成分とする樹脂組成物からなる二軸延伸フィルム(A層)が積層された積層フィルムであって、積層フィルム全体の厚さに対するA層の厚さの比率(A層厚さ/(A層厚さ+B層厚さ))が0.05〜0.5の範囲であることを特徴とする離型用積層フィルムである。   The present invention employs the following means in order to solve such problems. That is, a laminated film in which a biaxially stretched film (A layer) made of a resin composition containing polyphenylene sulfide as a main component is laminated on both surfaces of a resin composition layer (B layer) having a heat deformation temperature of 70 to 150 ° C. The ratio of the thickness of the A layer to the total thickness of the laminated film (A layer thickness / (A layer thickness + B layer thickness)) is in the range of 0.05 to 0.5. It is a laminated film for mold release.

また、熱変形温度が70〜150℃の樹脂組成物層(B層)がポリオレフィン系樹脂を主成分とする樹脂組成物層であることを特徴とする上記離型用積層フィルムである。   In the above release film, the resin composition layer (B layer) having a heat distortion temperature of 70 to 150 ° C. is a resin composition layer mainly composed of a polyolefin resin.

さらに、積層フィルム全体の厚さ(A層厚さ+B層厚さ)が40〜250 μmの範囲であることを特徴とする上記離型用積層フィルムである。   Furthermore, the thickness of the whole laminated film (A layer thickness + B layer thickness) is in the range of 40 to 250 μm.

本発明の離型用積層フィルムは以上の構成としたため、離型性、耐熱性、耐薬品性、耐加水分解性等に優れPPSフィルムの特性に、回路基板の回路段差に追従する柔軟性と圧力を均等にするクッション性を付与できた。さらに加熱長時間プレス加工してもアウトガスやブリードアウト物質がなく回路基板を汚染させることもなくなったしプレス加工の作業性にも優れる。本発明の離型用積層フィルムはリジット多層回路基板、ビルドアップ多層回路基板、FPC、多層フレキシブル回路基板やこれらを組み合わせた回路基板のプレス製造離型工程フィルムとして最適なものになった。   Since the laminated film for release of the present invention has the above configuration, it has excellent release properties, heat resistance, chemical resistance, hydrolysis resistance, etc., and has the flexibility to follow the circuit steps of the circuit board to the characteristics of the PPS film. Cushioning ability to equalize pressure could be given. Furthermore, there is no outgas or bleed-out substance even if the pressing process is performed for a long time, and the circuit board is not contaminated and the press workability is excellent. The release laminated film of the present invention has become an optimal film for press production release process of rigid multilayer circuit boards, build-up multilayer circuit boards, FPCs, multilayer flexible circuit boards, and circuit boards combining these.

本発明は、特定の熱変形温度を有する樹脂組成物層(B層)の両面にPPSフィルムを積層し、かつ積層比を特定の範囲に制御することで前記課題を解決するものである。   This invention solves the said subject by laminating | stacking a PPS film on both surfaces of the resin composition layer (B layer) which has specific heat deformation temperature, and controlling a lamination ratio to a specific range.

本発明において、熱変形温度とは、融点とガラス転移温度のどちらか高い値(DSC法で測定したピーク温度)をいうが、一般的には結晶性の樹脂組成物層の場合は融点を、また非晶性の樹脂組成物層の場合はガラス転移温度をいう。   In the present invention, the heat distortion temperature refers to the higher of the melting point and the glass transition temperature (peak temperature measured by DSC method), but generally in the case of a crystalline resin composition layer, In the case of an amorphous resin composition layer, it refers to the glass transition temperature.

本発明は樹脂組成物層の熱変形温度が70〜150℃(より好ましくは80〜145℃)の範囲にあることが回路基板のプレス加工で本発明の離型用積層フィルムが回路の段差にフィットし、プレス圧力を均一化させる上で重要な要件である。すなわち、温度が70℃未満であると、加熱プレス時に離型用積層フィルムの端部から樹脂層の染みだしが多くなり回路基板に付着したり別(上下の)の離型用積層フィルムと密着してしまい加工性が著しく低下してしまう。逆に温度が150℃を越えると加熱プレス時に本発明の離型用積層フィルムの柔軟性が低下して回路の段差に追従しにくくなる。さらに、加熱プレス圧力の均一性にも欠け回路間、回路基板間の短絡等の原因になる。   In the present invention, the heat-deformation temperature of the resin composition layer is in the range of 70 to 150 ° C. (more preferably 80 to 145 ° C.). It is an important requirement for fitting and making the press pressure uniform. That is, if the temperature is less than 70 ° C., the resin layer oozes out from the end of the release laminate film during hot pressing and adheres to the circuit board or adheres to another (upper and lower) release laminate films. As a result, the workability is significantly reduced. On the other hand, when the temperature exceeds 150 ° C., the flexibility of the release laminate film of the present invention is reduced during hot pressing, making it difficult to follow the steps of the circuit. Furthermore, the uniformity of the heating press pressure is also lacking, causing short circuits between circuits and circuit boards.

また、樹脂組成物層とは、有機高分子の単体または数種が化学反応または混合されているシート、フィルム状のものをいう。厚さは30〜250 μmの範囲が好ましい。また無機粒子や可塑剤、着色剤等の添加剤、別のポリマが添加されていても差し支えない。その場合は、層中に30重量%未満であることが好ましい。PPSフィルムとの密着性が低下したり加熱時にアウトガス等が発生しやすいためである。   The resin composition layer refers to a sheet or film in which a single organic polymer or several kinds of organic polymers are chemically reacted or mixed. The thickness is preferably in the range of 30 to 250 μm. Also, additives such as inorganic particles, plasticizers, colorants, and other polymers may be added. In that case, it is preferable that it is less than 30 weight% in a layer. This is because the adhesion to the PPS film is lowered or outgas is easily generated during heating.

樹脂層としては、例えば、ポリエステル系、ポリオレフィン系、アクリル系、ポリカーボネート、ナイロン系、アクリル系等があるが耐薬品性、耐加水分解性、柔軟性等からポリオレフィン系の樹脂が特に好ましい。樹脂層は未延伸、延伸は問わないが、熱寸法安定性から未延伸シートの方が好ましい。ここで、本発明でいうオレフィンとは、基本的に炭素原子と水素原子からなる脂肪族の炭化水素高分子化合物を基本構造とするものをいう。例えばポリエチレン、ポリプロピレン、ビニル系等である。またこれらの共重合、炭化水素高分子を基本に他の誘導体を化学結合したり、変性混合物としたものも含まれる。例を挙げるばらば、エチレン−エチルアクリレート共重合体(以下EEAと略称する場合がある)、エチレン−酢酸ビニル共重合体(以下EVAと略称する場合がある)、エチレン−アクリル酸メチル共重合体(以下EMAと略称する場合がある)、エチレン−メタクリル酸共重合体(以下EMAAと略称する場合がある)、エチレン−メチルメタクリル酸共重合体(以下EMMAと略称する場合がある)、エチレン−アクリル酸共重合体(EAAと以下略称する場合がある)、エチレン−ビニルアルコール共重合体(以下EVOHと略称する場合がある)等がある。   Examples of the resin layer include polyester-based, polyolefin-based, acrylic-based, polycarbonate, nylon-based, and acrylic-based, but polyolefin-based resins are particularly preferable in view of chemical resistance, hydrolysis resistance, flexibility, and the like. The resin layer may be unstretched or stretched, but an unstretched sheet is preferred from the viewpoint of thermal dimensional stability. Here, the olefin as referred to in the present invention refers to an olefin basically having an aliphatic hydrocarbon polymer compound composed of carbon atoms and hydrogen atoms as a basic structure. For example, polyethylene, polypropylene, vinyl, etc. These copolymers and those obtained by chemically bonding other derivatives based on hydrocarbon polymers or modified mixtures are also included. For example, an ethylene-ethyl acrylate copolymer (hereinafter sometimes abbreviated as EEA), an ethylene-vinyl acetate copolymer (hereinafter sometimes abbreviated as EVA), and an ethylene-methyl acrylate copolymer. (Hereinafter sometimes abbreviated as EMA), ethylene-methacrylic acid copolymer (hereinafter sometimes abbreviated as EMAA), ethylene-methyl methacrylic acid copolymer (hereinafter sometimes abbreviated as EMMA), ethylene- Examples include acrylic acid copolymers (hereinafter sometimes abbreviated as EAA), ethylene-vinyl alcohol copolymers (hereinafter sometimes abbreviated as EVOH), and the like.

また、オレフィン系とは、上記高分子化合物が30重量%以上含有されていることを意味する。他に別の高分子を混合させたり、可塑剤、着色剤、無機、有機フィラー等が添加されたりしてもよい。また樹脂層(B層)としては全体として熱変形温度が本発明の範囲内であれば異なった樹脂層が何層か積層されたものであってもよい。   In addition, the olefin type means that the polymer compound is contained in an amount of 30% by weight or more. In addition, another polymer may be mixed, or a plasticizer, a colorant, an inorganic, an organic filler, or the like may be added. The resin layer (B layer) may be a laminate of several different resin layers as long as the heat deformation temperature is within the range of the present invention.

また、 本発明のポリフェニレンサルファイド(以下PPSと略称する場合がある)とは、PPS成分を好ましくは90モル%以上、より好ましくは95モル%以上含む次式で示される構成単位からなる重合体をいう。  The polyphenylene sulfide of the present invention (hereinafter sometimes abbreviated as PPS) is preferably a polymer composed of a structural unit represented by the following formula containing a PPS component of 90 mol% or more, more preferably 95 mol% or more. Say.

Figure 2006021372
Figure 2006021372

かかるPPS成分が90モル%以上であることにより、ポリマの結晶性と熱転移温度、融点などが高く、PPSを主成分とする樹脂組成物の特徴である耐熱性、寸法安定性、機械特性、耐薬品性、離型性などを十分に発揮できるためである。より好ましくは、PPSがポリ−p−フェニレンサルファイドであることである。   When the PPS component is 90 mol% or more, the crystallinity and thermal transition temperature of the polymer, the melting point, etc. are high, and the heat resistance, dimensional stability, mechanical properties, which are the characteristics of the resin composition containing PPS as the main component, This is because chemical resistance, releasability, etc. can be fully exhibited. More preferably, the PPS is poly-p-phenylene sulfide.

上記PPS樹脂において、共重合可能な他のサルファイド結合を含有する単位が含まれていても差し支えない。この場合、構成単位は、ランダム型またはブロック型のいずれの共重合方法であってもよい。   The PPS resin may contain other copolymerizable units containing sulfide bonds. In this case, the structural unit may be either a random type or a block type copolymerization method.

本発明において、PPSを主成分とする樹脂組成物とは、PPSを60重量%以上含む組成物をいう。PPSの含有量が60重量%未満では、本発明の離型用積層フィルムの該組成物からなる層の機械特性、耐熱性、耐薬品性、耐加水分解性、離型性などを損なう。また、該組成物中の残りの40重量%未満はPPS以外のポリマー、無機または有機のフィラー、滑剤、着色剤などの添加物を含むことができる。さらに、PPS組成物の溶融粘度は、温度300℃、剪断速度200sec-1のもとで、100〜50000ポイズであることが好ましく、より好ましくは、500〜20000ポイズの範囲である。フィルムの成形、製膜加工しやすく、また積層加工もしやすいためである。 In the present invention, the resin composition containing PPS as a main component refers to a composition containing 60% by weight or more of PPS. When the content of PPS is less than 60% by weight, the mechanical properties, heat resistance, chemical resistance, hydrolysis resistance, mold release and the like of the layer made of the composition of the laminated film for release of the present invention are impaired. Further, the remaining less than 40% by weight in the composition may contain additives such as polymers other than PPS, inorganic or organic fillers, lubricants, and colorants. Further, the melt viscosity of the PPS composition is preferably 100 to 50000 poise, more preferably 500 to 20000 poise under a temperature of 300 ° C. and a shear rate of 200 sec −1 . This is because it is easy to form and form a film, and to easily perform lamination processing.

また本発明の二軸延伸フィルムとは、上記のPPSを主成分とする樹脂組成物を溶融押し出し、二軸延伸、熱処理してなるフィルム(以下PPS−BOと略称する場合がある)で、厚さが4〜60 μmの範囲が好ましい。   The biaxially stretched film of the present invention is a film (hereinafter sometimes abbreviated as PPS-BO) obtained by melt-extruding, biaxially stretching and heat-treating the resin composition containing PPS as a main component. Is preferably in the range of 4 to 60 μm.

また本発明のPPS−BOの結晶構造は、広角X線回折法によって測定される次の3つのパラメーターが下記特定の範囲に入っていることが特に好ましい。   In the crystal structure of the PPS-BO of the present invention, it is particularly preferable that the following three parameters measured by the wide angle X-ray diffraction method fall within the following specific ranges.

まず第1に、EdgeおよびEnd方向から各々測定した配向度(以下OFと略称することがある)がいずれも0.2〜0.8の範囲にある方がフィルムの厚みの均一性や機械特性、耐熱性の点で好ましい。ここに、Edge方向(またはEnd方向)から測定した配向度とは、フィルム面に平行でかつ幅方向(または長手方向)にも平行な方向からX線入射によるX線プレート写真を撮影し、PPS結晶の(200)面からの回折の強度をマイクロデンシトメータで赤道線上を半径方向に走査したときの黒化度(Iφ=0°)と同じく30°方向での黒化度(Iφ=30°)の比Iφ=30°/Iφ=0°によって定義される。
該OFが両方とも0.2未満では機械特性、熱寸法安定性が不充分で、一方両方とも0.8を越えるとフィルムの厚み斑が低下したり耐熱性、耐加水分解性等が損なわれることがある。また一方向が大きく他の方向が小さい場合は二軸延伸フィルムとしての基本的な物性が低下することがある。
First, the film thickness uniformity and mechanical properties are those in which the degree of orientation measured from the Edge and End directions (hereinafter sometimes referred to as OF) is in the range of 0.2 to 0.8. From the viewpoint of heat resistance, it is preferable. Here, the degree of orientation measured from the Edge direction (or End direction) is an X-ray plate photograph by X-ray incidence from a direction parallel to the film surface and parallel to the width direction (or longitudinal direction), and PPS Similar to the degree of blackness (Iφ = 0 °) when the intensity of diffraction from the (200) plane of the crystal is scanned on the equator line in the radial direction with a microdensitometer (Iφ = 30). °) ratio Iφ = 30 ° / Iφ = 0 °.
If both of the OFs are less than 0.2, the mechanical properties and thermal dimensional stability are insufficient, while if both of them exceed 0.8, the thickness unevenness of the film is lowered and the heat resistance and hydrolysis resistance are impaired. Sometimes. When one direction is large and the other direction is small, the basic physical properties as a biaxially stretched film may be lowered.

第2に、フィルム内のPPS微結晶の大きさ(以下ACSと略称する場合がある)が50〜100オングストロームの範囲が耐熱性と高温時のフィルムの柔軟性の点で好ましい。ここの微結晶の大きさとはPPS結晶の(200)回折ピークの半価幅にSchellerの式を適用して得られる見かけの結晶粒子サイズを意味する。このACSが50オングストローム未満では高温時に収縮変形しやすといった耐熱性の低下があり、逆に100オングストロームを越えると高温時にぜい化を招きフィルムの柔軟性が著しく低下する傾向となる。   Second, the size of PPS crystallites in the film (hereinafter sometimes abbreviated as ACS) is preferably in the range of 50 to 100 angstroms from the viewpoints of heat resistance and flexibility of the film at high temperatures. The size of the microcrystal here means the apparent crystal particle size obtained by applying the Scheller equation to the half width of the (200) diffraction peak of the PPS crystal. If the ACS is less than 50 angstroms, there is a decrease in heat resistance such that the film tends to shrink and deform at high temperatures. Conversely, if the ACS exceeds 100 angstroms, embrittlement occurs at high temperatures, and the flexibility of the film tends to decrease significantly.

第3に、相対結晶化指数が4以上25以下(より好ましくは5以上25以下)が高温時の寸法安定性と機械特性の点で好ましい。ここに相対結晶化指数とは、フィルムの広角X線によるプロフィル中のPPS結晶の(200)回折ピークの最大強度(I200)と2θ=25°での強度(I25)の比I200 /I25をもって定義される。係る相対結晶化指数が4未満では、高温時の寸法変化率が大きく、逆に該指数が25を越えるフィルムは実質的には得にくく、得られたとしてもかなり脆いフィルムになってしまう。   Third, a relative crystallization index of 4 or more and 25 or less (more preferably 5 or more and 25 or less) is preferable in terms of dimensional stability at high temperatures and mechanical properties. Here, the relative crystallization index is defined as the ratio I200 / I25 of the maximum intensity (I200) of the (200) diffraction peak of the PPS crystal in the profile by wide-angle X-ray of the film and the intensity (I25) at 2θ = 25 °. Is done. If the relative crystallization index is less than 4, the dimensional change rate at high temperature is large, and conversely, a film having an index exceeding 25 is practically difficult to obtain, and even if obtained, the film becomes quite brittle.

さらに該フィルムの150℃30分間における加熱収縮率(JIS C 2151−1990年版)が両軸とも3%以下であることが積層加工時のカール防止や加熱プレス加工時の寸法安定性の上で好ましい。また該フィルムの表面にプライマー処理やコロナ放電処理、プラズマ処理等の易接着を目的とした表面処理が施されていることは好ましい。   Furthermore, the heat shrinkage rate (JIS C 2151-1990 edition) of the film at 150 ° C. for 30 minutes is preferably 3% or less for both axes in view of curling prevention during lamination processing and dimensional stability during hot press processing. . Further, it is preferable that the surface of the film is subjected to a surface treatment for easy adhesion such as primer treatment, corona discharge treatment, plasma treatment or the like.

本発明の離型用積層フィルムは、熱変形温度が70〜150℃の樹脂組成物層(B層)の両面にPPS−BO(A層)が積層されている。本発明の離型用積層フィルムは回路基板の製造工程の離型材を目的にしており、該離型材の片面は回路材から染みだしてくる接着剤や樹脂の離型が、また他面は高温のプレス板(金属板)やスペーサーとして用いられる金属板との離型が必要であり両面に耐熱性、離型性、耐薬品性、耐加水分解性等に優れるPPSフィルムを積層するものである。   In the release laminated film of the present invention, PPS-BO (A layer) is laminated on both surfaces of a resin composition layer (B layer) having a heat deformation temperature of 70 to 150 ° C. The release laminated film of the present invention is intended as a release material for the production process of a circuit board. One side of the release material is a release of an adhesive or resin that oozes out from the circuit material, and the other side is a high temperature. It is necessary to release from a press plate (metal plate) or a metal plate used as a spacer, and a PPS film excellent in heat resistance, release property, chemical resistance, hydrolysis resistance, etc. is laminated on both sides. .

また、該積層フィルムの積層全体の厚さ(A層厚さ+B層厚さ)に対するA層の厚さの比率(A層厚さ/(A層厚さ+B層厚さ))が0.05〜0.5の範囲であることが必要である。なお、ここで言うA層厚さとはB層の両面のA層の合計厚さのことである。より好ましくは0.06〜0.45の範囲である。すなわち、該厚さ比率が上記下限値未満では、全体の厚さが薄くなると表層のA層が薄くなり積層加工時に皺が入ったり、加工時のフィルムの張力制御が難しく積層フィルムにカールが発生しやすく積層加工性が低下する。また回路基板のプレス加工の作業性も低下する。逆に該厚さ比が上記上限値を越えると、特定の範囲に熱変形温度を制御した該積層フィルムの芯層(B層)の効果が低下して、加熱プレス時の離型用積層フィルムの柔軟性、クッション性が低下しプレス圧力の均一性や回路基板の回路段差に対する追従性が低下してしまうためである。   Further, the ratio of the thickness of the A layer to the thickness of the entire laminated film (A layer thickness + B layer thickness) (A layer thickness / (A layer thickness + B layer thickness)) is 0.05. It must be in the range of ~ 0.5. The A layer thickness referred to here is the total thickness of the A layers on both sides of the B layer. More preferably, it is the range of 0.06-0.45. In other words, if the thickness ratio is less than the above lower limit, the surface layer A becomes thin when the overall thickness is reduced, and wrinkles occur during lamination processing, and it is difficult to control film tension during processing, and curling occurs in the laminated film. It is easy to do and lamination workability falls. In addition, the workability of the circuit board pressing process also decreases. On the contrary, when the thickness ratio exceeds the above upper limit, the effect of the core layer (B layer) of the laminated film in which the heat distortion temperature is controlled within a specific range is lowered, and the laminated film for release at the time of hot press This is because the flexibility and cushioning properties are reduced, and the uniformity of the pressing pressure and the followability to the circuit step of the circuit board are lowered.

本発明の離型用積層フィルムの全体の厚さは、回路基板製造工程での離型材の取り扱い性(ハンドリング性)と本発明の効果である離型用積層フィルムのクッション性、回路段差への追従性および加熱プレス時のB層の染みだしによる回路基板への付着、および作業性から40〜250 μmの範囲が好ましい。より好ましくは、45〜245 μmの範囲である。すなわち、該厚さが上記下限値 未満になると回路基板の製造工程でのハンドリングが低下し、耐熱性も低下する。一方該厚さが上記上限値を越えると本発明で言うクッション性や追従性の効果がなくなったり、加熱プレス時で軟化したB層樹脂の染みだしが増加し回路基板に付着させたり多層プレス時に別の離型材と密着したりして回路基板の製造効率を低下させてしまうためである。また該離型用積層フィルムの両面のPPS−BO層の厚さの差は±10%の範囲が積層フィルムのカールを抑制するうえで好ましい。また本発明の離型用積層フィルムの表裏に別の層(樹脂フィルム、繊維シート、金属等)が積層されてあってもよい。   The overall thickness of the release laminate film of the present invention is such that the release material handling property (handling property) in the circuit board manufacturing process and the effect of the present invention are the cushioning property of the release laminate film and the circuit step difference. A range of 40 to 250 μm is preferable from the viewpoint of followability and adhesion to the circuit board due to oozing out of the B layer during hot pressing, and workability. More preferably, it is the range of 45-245 micrometers. That is, when the thickness is less than the lower limit, handling in the circuit board manufacturing process is lowered, and heat resistance is also lowered. On the other hand, if the thickness exceeds the above upper limit value, the cushioning effect and follow-up effect referred to in the present invention are lost, or the oozing of the B layer resin softened during the heating press increases and adheres to the circuit board or during the multilayer press. This is because the manufacturing efficiency of the circuit board is lowered due to close contact with another release material. The difference in thickness between the PPS-BO layers on both sides of the release laminate film is preferably within a range of ± 10% in order to suppress curling of the laminate film. Moreover, another layer (a resin film, a fiber sheet, a metal, etc.) may be laminated | stacked on the front and back of the laminated | multilayer film for mold release of this invention.

次に本発明の離型用積層フィルムの製造方法について述べる。
まず、本発明の離型用積層フィルムのA層に用いるPPSは、例えば、硫化アルカリとp−ジクロルベンゼンを極性溶媒中で高温高圧下に反応させる方法を用いることができる。特に硫化ナトリウムとp−ジクロルベンゼンをN−メチル−ピロリドン等のアミド系高沸点極性溶媒中で反応させるのが好ましい。この場合、重合度を調整するために苛性アルカリ、カルボン酸アルカリ金属塩などのいわゆる重合助剤を添加して、230〜280℃で反応させるのが最も好ましい。重合系内の圧力および重合時間は使用する助剤の種類や量および所望する重合度などによって適宜決定される。さらに、最終的に得られるフィルムの揮発分等を取り除くために重合されたポリマ(一般的に粉末状)を金属イオンを含まない水や湯、有機溶媒で充分洗浄し、重合中の副生塩、重合助剤を除去することが好ましい。
Next, the manufacturing method of the release laminated film of the present invention will be described.
First, the PPS used for the A layer of the release laminate film of the present invention can use, for example, a method in which an alkali sulfide and p-dichlorobenzene are reacted in a polar solvent under high temperature and high pressure. In particular, it is preferable to react sodium sulfide and p-dichlorobenzene in an amide-based high-boiling polar solvent such as N-methyl-pyrrolidone. In this case, in order to adjust the degree of polymerization, it is most preferable to add a so-called polymerization aid such as a caustic alkali or an alkali metal carboxylate and react at 230 to 280 ° C. The pressure in the polymerization system and the polymerization time are appropriately determined depending on the type and amount of the auxiliary agent used and the desired degree of polymerization. Furthermore, in order to remove the volatile matter etc. of the film finally obtained, the polymer (generally in powder form) is thoroughly washed with water, hot water or organic solvent not containing metal ions, and a by-product salt during polymerization. It is preferable to remove the polymerization aid.

このようにして得られたPPSポリマに不活性無機粒子等を混合しPPS樹脂組成物を製造する。混合方法は、両者を混合しミキサー等でブレンドした後エクストルーダーに代表される溶融押出機で、溶融押出混合しながらガット状に押し出し、それをカットしてペレット化する。また、予め高濃度の添加物を溶融混合したものをペレット化し、該ペレットを添加物が混入していない別のペレットで薄めて使用してもよい。   Inert inorganic particles and the like are mixed with the PPS polymer thus obtained to produce a PPS resin composition. In the mixing method, both are mixed and blended with a mixer or the like, and then extruded in a gut shape while being melt-extruded mixed by a melt extruder represented by an extruder, and then cut into pellets. Moreover, what melt-mixed the additive of a high density | concentration previously is pelletized, and this pellet may be diluted with another pellet in which the additive is not mixed and used.

次に本発明の離型用積層フィルムに用いる二軸延伸PPSフィルムの製造方法について述べる。   Next, a method for producing a biaxially stretched PPS film used for the release laminated film of the present invention will be described.

上記で得られたPPS樹脂組成物を130〜180℃の温度で2〜10時間真空乾燥してエクストルーダーに代表される溶融押出機に供給し、Tダイ等のスリット状のダイから溶融されたポリマを連続的に押しだし、その後強制的に冷却し未配向非晶状態のシートを得る。係る強制冷却の手段としては、冷却された金属ドラム上にキャストし該溶融ポリマをPPSのガラス転移点以下に冷却固化する方法が厚み斑が少なく最も好ましい。   The PPS resin composition obtained above was vacuum dried at a temperature of 130 to 180 ° C. for 2 to 10 hours, supplied to a melt extruder represented by an extruder, and melted from a slit die such as a T die. The polymer is continuously extruded and then forcibly cooled to obtain an unoriented amorphous sheet. As such forced cooling means, a method of casting on a cooled metal drum and cooling and solidifying the molten polymer below the glass transition point of PPS is most preferable because there is little thickness variation.

このようにして得られたシートを二軸に延伸する。延伸方法は逐次二軸延伸法、テンター法やチューブラー法による同時二軸延伸法を用いることができる。本発明で言う二軸延伸PPSフィルムの配向度OF、ACS、相対結晶化指数を好適な範囲に制御するための延伸条件としては、使用するポリマの性質や延伸方法によって多少異なるが、逐次二軸延伸法の場合、フィルムの長手方向、幅方向とも延伸温度が85〜105℃の範囲で、延伸倍率が1.5〜4.5の範囲が好ましい。   The sheet thus obtained is stretched biaxially. As a stretching method, a sequential biaxial stretching method, a tenter method or a simultaneous biaxial stretching method using a tubular method can be used. The stretching conditions for controlling the orientation degree OF, ACS, and relative crystallization index of the biaxially stretched PPS film referred to in the present invention to a suitable range are slightly different depending on the properties of the polymer used and the stretching method. In the case of the stretching method, the stretching temperature is preferably in the range of 85 to 105 ° C. and the stretching ratio in the range of 1.5 to 4.5 in both the longitudinal direction and the width direction of the film.

このようにして得られた二軸延伸PPSフィルムを、さらに定長または15%以下の制限収縮下で熱処理する(制限収縮下での熱処理が特に好ましい)。熱処理温度は240℃〜ポリマの融点で時間が1〜60秒の範囲が本発明でいう150℃30分間の熱収縮率が両軸とも3%以下に制御でき好ましい。   The biaxially stretched PPS film thus obtained is further heat-treated under a constant length or a limited shrinkage of 15% or less (a heat treatment under a restricted shrinkage is particularly preferred). The heat treatment temperature is preferably 240 ° C. to the melting point of the polymer and the time is in the range of 1 to 60 seconds.

次に本発明のB層に用いる樹脂として好適なものはオレフィン系の樹脂で、ポリエチレン、ポリプロピレン、およびこれらの誘導体、混合物があり、EVA、EEA、EMA、EMAA、EMMA、EVOH等市販されている、シートやフィルム、ペレット状ポリマを購入しエクストルーダに代表される溶融押出機で融点以上に溶融、押し出しし冷却ロールで急冷しキャストすることでシートを得ることができる。滑剤や着色剤、可塑剤等を添加する場合は溶融押出成形する前にミキサー等で均一混合することができる。   Next, preferred resins for the layer B of the present invention are olefin resins, such as polyethylene, polypropylene, and derivatives and mixtures thereof, which are commercially available such as EVA, EEA, EMA, EMAA, EMMA, EVOH. A sheet can be obtained by purchasing a sheet, a film, a pellet-like polymer, melting and extruding to a melting point or higher with a melt extruder represented by an extruder, quenching with a cooling roll, and casting. When a lubricant, a colorant, a plasticizer or the like is added, it can be uniformly mixed with a mixer or the like before melt extrusion molding.

次に本発明の離型用積層フィルムを製造する。該製造方法としては、オレフィン系樹脂シート(B)とPPS−BO(A)をA/B/Aの順に重ね合わせて熱融着または接着剤を介して熱プレスか加熱ロールプレスするドライラミネート法とB層を溶融押出機でシート状に押しだしながら該層の両側にA層をプレス積層するエクストルジョンラミネート法の2つの方法がある。ドライラミネート法で、A層とB層を熱融着する場合は各層のフィルム、シートをA/B/Aの順に重ね合わせてB層の熱変形温度以上の温度、1〜10kg/cm2の圧力で熱板プレスで熱融着するか加熱プレスロールで連続的に熱融着する。また接着剤を用いる場合はA層の片面またB層の両面に溶剤系または無溶剤系の接着剤を塗布する。塗布する方法はグラビアロール法、リバースロール法、ダイ法、コンマ法等周知の方法を用いることができる。溶剤の乾燥が必要な場合は60〜120℃の範囲が好ましい。また接着剤の厚さは1〜10 μmの範囲が密着力と加工性の点で好ましい。用いる接着剤は、アクリル系、オレフィン系、エポキシ系、シリコン系、ポリエステル系、ポリウレタン系等が好ましい。上記で得られた接着剤付きフィルムまたはシートを用い、A/B/Aの順に重ね合わせて接着剤層の軟化点以上の温度で加熱ロールにてプレス積層する。また、シート状の接着剤を用いる場合は、予めA層の片面またはB層の両面に熱板プレスまたは加熱ロールで積層した後A/B/Aの順に重ねて同様に熱板プレスまたは加熱プレスロールで積層することができる。エクストルジョンラミネート法は、2層のPPS−BOの間にB層を溶融押出しダイから溶融吐出させた直後に冷却ロールプレスすることによって一体化積層するか、1層のPPS−BOに同様の溶融押し出し積層した後、該B層面ともう1層のPPS−BOの間に同一のB層を溶融押し出しして一体化積層する方法もある。この場合のプレス圧力は1〜10kg/cm2が好ましい。もちろん、エクストルジョンラミネート法とドライラミネート法を組み合わせた方法を用いてもよし、PPS樹脂(A)とB層の樹脂組成物をA/B/Aの構成になるよう周知の方法で溶融複合製膜して二軸延伸してもよい。この場合、B層は二軸延伸配向されていてもよいし上記PPSフィルムの製膜条件で熱処理され該熱処理ゾーンでB層の配向が溶融し未配向化させてもよい。。更に各フィルムに易接着を目的とした表面処理を施したり、接着性に富むオレフィンシートを各層間に用いたりすることは密着力が向上し好ましい。 Next, the release laminated film of the present invention is produced. As the production method, a dry laminating method in which an olefin resin sheet (B) and PPS-BO (A) are superposed in the order of A / B / A and heat-pressed or hot-rolled via an adhesive. There are two methods, namely, an extrusion laminating method in which the A layer is pressed and laminated on both sides of the layer while the B layer is extruded into a sheet by a melt extruder. When the A and B layers are heat-sealed by the dry laminating method, the films and sheets of each layer are superposed in the order of A / B / A, and the temperature is equal to or higher than the thermal deformation temperature of the B layer, 1 to 10 kg / cm 2 . It is heat-sealed with a hot plate press under pressure or continuously with a hot press roll. When an adhesive is used, a solvent-based or solvent-free adhesive is applied to one side of the A layer or both sides of the B layer. As a coating method, a known method such as a gravure roll method, a reverse roll method, a die method, or a comma method can be used. When drying of a solvent is required, the range of 60-120 degreeC is preferable. The thickness of the adhesive is preferably in the range of 1 to 10 μm from the viewpoint of adhesion and workability. The adhesive used is preferably acrylic, olefin, epoxy, silicon, polyester, polyurethane or the like. Using the film or sheet with adhesive obtained above, the films are laminated in the order of A / B / A and press laminated with a heating roll at a temperature equal to or higher than the softening point of the adhesive layer. In the case of using a sheet-like adhesive, a hot plate press or a hot press is applied in the same manner in the order of A / B / A after being previously laminated on one side of the A layer or both sides of the B layer with a hot plate press or a heating roll. It can be laminated with a roll. The extrusion laminating method is a method of laminating B layers between two layers of PPS-BO immediately after being melt-extruded from a melt-extrusion die and then cold-roll pressing, or the same melting for one layer of PPS-BO. There is also a method in which, after extrusion lamination, the same B layer is melt-extruded between the B layer surface and the other PPS-BO and laminated integrally. In this case, the pressing pressure is preferably 1 to 10 kg / cm 2 . Of course, a method combining the extrusion laminating method and the dry laminating method may be used, and the PPS resin (A) and the resin composition of the B layer are manufactured by a melt composite by a well-known method so as to have an A / B / A configuration. The film may be biaxially stretched. In this case, the B layer may be biaxially oriented, or may be heat-treated under the film forming conditions of the PPS film, and the orientation of the B layer may be melted and unoriented in the heat treatment zone. . Furthermore, it is preferable to apply a surface treatment for easy adhesion to each film, or to use an olefin sheet rich in adhesiveness between the respective layers in order to improve adhesion.

以下に実施例を示し、本発明を更に詳しく説明する。
<物性および評価方法、評価基準>
(1)熱変形温度
離型積層フィルムの断面からB層の樹脂を取り出して示差熱量分析法(DSC法)で、下記の条件で測定した融点またはガラス転移温度のピークの頂点をその樹脂組成物の熱変形温度とした。
測定装置 : PERKIN ELMER社製DSC7
想定条件 : 昇温速度 20℃/分
サンプル量 10mg。
The following examples illustrate the present invention in more detail.
<Physical properties and evaluation methods, evaluation criteria>
(1) Thermal deformation temperature The resin of the peak of the melting point or the glass transition temperature measured by the differential calorimetry (DSC method) by taking out the resin of the B layer from the cross section of the release laminate film under the following conditions. The heat deformation temperature of
Measuring device: DSC7 manufactured by PERKIN ELMER
Assumed conditions: Temperature rising rate 20 ° C./min Sample amount 10 mg.

(2)離型積層フィルムの積層比(A/A+B)
離型用積層フィルムの断面を下記の条件で電子顕微鏡写真を撮りA層およびB層の厚さを金尺で測定し積層比率を計算して求めた。
測定装置 : (株)日立製作所製S−4300型電界放出型走査電子顕微鏡
測定条件 : 加速電圧 3kV
倍率 積層フィルム厚さで1000倍。
(2) Lamination ratio of release laminate film (A / A + B)
The cross section of the release film was obtained by taking an electron micrograph under the following conditions, measuring the thicknesses of the A layer and the B layer with a metal ruler, and calculating the lamination ratio.
Measuring device: S-4300 type field emission scanning electron microscope manufactured by Hitachi, Ltd. Measurement conditions: Accelerating voltage 3 kV
Magnification 1000 times in laminated film thickness.

(3)離型用積層フィルムの厚さ
JIS C2151(1990)に準じて、マイクロメータ(M30、ソニー社製)で5点以上測定した平均値とした。
(3) Thickness of laminated film for mold release According to JIS C2151 (1990), an average value measured with 5 or more points with a micrometer (M30, manufactured by Sony Corporation) was used.

(4)追従性
ポリイミドフィルム(25 μm)の1オンス(35 μm)電解銅箔貼り合わせ品(東レ片面銅張ポリイミド)の銅箔側を1mm幅間隔(線間幅1mm)にエッチングして20cm角のプリント配線回路基板を作成した。一方、ポリイミドフィルム(25 μm)のカバーレイフィルム(東レポリイミドカバーレイフィルムHタイプ)を準備した。カバーレイフィルムも上記のプリント回路基板のサイズにし、1mmφの穴を適当に10カ所パンチで打ち抜きあけた。カバーレイの接着剤層側とプリント回路基板の回路側とをプリント回路基板と同サイズの離型フィルムを用いて10層重ねて熱板プレスで積層した。熱板プレスとしては60tの油圧式平板(ヒーター加熱方式:GONNO社製)プレスを用い、離型フィルム/カバーレイ/プリント回路基板の繰り返しを10層繰り返し最後に1層離型フィルムを設けた。更に重ねた基材の両側に5mm厚さのステンレス板を挟むように設けた。プレス温度は170℃とし、圧力は20kg/cm2、プレス時間は所定の温度に達成して0.75時間とした。
(4) Followability Etch the copper foil side of 1 ounce (35 μm) electrolytic copper foil laminated product (Toray single-sided copper-clad polyimide) of polyimide film (25 μm) to a 1 mm width interval (line width 1 mm) to 20 cm A square printed circuit board was created. Meanwhile, a polyimide film (25 μm) coverlay film (Toray polyimide coverlay film H type) was prepared. The coverlay film was also made the size of the above-mentioned printed circuit board, and 1 mmφ holes were appropriately punched out at 10 locations. Ten layers of the adhesive layer side of the cover lay and the circuit side of the printed circuit board were stacked using a release film having the same size as the printed circuit board, and were laminated by a hot plate press. A 60-t hydraulic flat plate (heater heating method: manufactured by GONNO) press was used as the hot plate press, and the release film / coverlay / printed circuit board was repeated 10 layers, and finally a single layer release film was provided. Furthermore, it provided so that the 5 mm-thick stainless steel board might be pinched | interposed into the both sides of the accumulated base material. The pressing temperature was 170 ° C., the pressure was 20 kg / cm 2 , and the pressing time was 0.75 hours to achieve a predetermined temperature.

上記の条件でプリント回路基板にカバーレイを積層し回路基板の回路と回路基板のベースの界面を倍率2倍のルーペで20カ所観察し下記の基準で離型フィルムの回路基板への追従性(回路段差に対する追従性)を評価した。   Under the above conditions, a cover lay is laminated on a printed circuit board, and the interface between the circuit board circuit and the circuit board base is observed at 20 places with a magnifying glass with a magnification of 2 times. The followability to the circuit step was evaluated.

○ : 回路と回路基板ベースとの界面までカバーレイの接着剤がきちんと入っておりカバーレイも回路の段差に沿ってきちんと接着されている。
△ : 上記回路と回路基板ベースとの界面一部に、接着剤がきちんと入っていない部分があるが実用上問題ないレベル。
× : 観察箇所の30%以上に回路と回路基板ベースとの界面までカバーレイの接着剤が入っていない箇所があり、かつカバーレイが回路段差で浮いている分部がある。
○: Coverlay adhesive is properly contained up to the interface between the circuit and the circuit board base, and the coverlay is also properly adhered along the step of the circuit.
Δ: Although there is a portion where the adhesive is not properly contained in a part of the interface between the circuit and the circuit board base, there is no practical problem.
X: 30% or more of the observed locations include a portion where the coverlay adhesive is not contained up to the interface between the circuit and the circuit board base, and there is a portion where the coverlay is floating at a circuit step.

(5)クッション性
上記(4)と同様の方法で熱板プレスして、上下のステンレス板と離型フィルムの間に感圧紙を挟んでプレスする。その時の加圧の均一性を離型フィルムと同サイズの感圧紙の変色状態を見て下記基準で評価した。なお、用いた感圧紙は富士フィルムプレススケール 超極低圧用(ツーシートタイプ)である。
○ :ほぼ均一に赤色に変色している。
△ :80%以上が均等に圧力がかかっている。
× :均等に加圧されている部分は80%未満である。
(5) Cushioning Hot plate pressing is performed in the same manner as in (4) above, and pressure sensitive paper is sandwiched between the upper and lower stainless steel plates and the release film. The uniformity of the pressure at that time was evaluated according to the following criteria by looking at the color change state of the pressure-sensitive paper having the same size as the release film. The pressure sensitive paper used was for Fuji Film Press Scale for ultra-low pressure (two-sheet type).
○: Almost uniformly discolored red.
(Triangle | delta): The pressure is applied equally 80% or more.
X: The part pressurized uniformly is less than 80%.

(6)離型性
上記(4)と同じ方法で、カバーレイにあけた10カ所の穴部分の離型フィルムと、カバーレイが積層されたプリント回路基板との密着力を手で確認し下記基準で判定した。
○ :ほとんど抵抗なく簡単に剥がれる。
△ :剥がれるが少し抵抗がある。
× :剥がれないか、剥がれてもかなりの抵抗がある。
(6) Releasability By the same method as (4) above, the adhesion between the release film at the 10 holes formed in the cover lay and the printed circuit board on which the cover lay was laminated was confirmed by hand, and the following Judged by criteria.
○: It peels easily with almost no resistance.
Δ: Peeled but slightly resistant.
X: Not peeled off or has considerable resistance even when peeled off.

(7)離型用積層フィルムからのB層樹脂の染みだし状態
上記(4)と同じ方法で熱プレスした後の、離型用積層フィルムの端面からB層の樹脂組成物が軟化して染み出す状態を目視で観察し下記の基準で判定した。
○ :全く染み出しがないか、少し染みだしているが加工性には全く問題ないレベル。
△ :染み出しているが回路の付着はなく、同様に染み出した上下の離型用積層フィルムとの密着力も低く加工性に大きな支障がないレベル。
× :染み出しが多くて回路に付着したり、同様に染み出した上下の離型用積層フィルムと強固に接着しており加工性に支障を与えるレベル。
(7) B layer resin exuding state from release laminate film B layer resin composition softens and stains from end face of release release laminate film after hot pressing in the same manner as (4) above. The state to be taken out was visually observed and judged according to the following criteria.
○: There is no oozing out or a slight oozing, but there is no problem in workability.
Δ: Spilled out but no circuit adhered, and the level of adhesiveness with the top and bottom release laminate films that leaked out was also low so that there was no significant hindrance to workability.
X: A level that would cause troubles in workability because there was a large amount of oozing and adhered to the circuit, or was firmly bonded to the upper and lower release laminate films that had oozed out in the same manner.

(8)耐熱性
耐熱性のリジット回路基板に対する加工性を想定して、上記(4)で使用したプリント回路基板の両側に離型フィルムを挟み、更に5mm厚さのステンレス板を基材の両側に設けて、60t熱板プレス(ヒーター加熱方式:GONNO社製)で熱プレスし、離型フィルムの状態を観察して下記の基準で判定した。なお、この時の熱板プレスの温度は220℃、圧力は20kg/cm2、時間は所定の温度に達してから1時間とした。
○ :離型フィルムの表面が溶融したり、劣化したりすることは全くない。
△ ;離型フィルムの表面が一部溶融したり、変色したりしているが離型フィルムの機能は果たしている。
× :離型フィルムの表面が溶融したり、変形したり、また劣化して脆化し離型材の機能を果たさないレベル。
(9)回路基板の汚染状態
上記(4)の方法で得られた回路基板の表層を20カ所顕微鏡で観察し下記の基準で判定した。なお、観察に用いた顕微鏡はNikon社製OPTIPHOTノマルスキー型 XF−NRで倍率150倍の視野を1カ所当たりの観察面積とした。
○ :回路基板への汚染は全くない。
△ :汚染箇所は20%未満である。
× :汚染箇所は20%以上である。
(8) Heat resistance Assuming workability for heat-resistant rigid circuit boards, a release film is sandwiched on both sides of the printed circuit board used in (4) above, and a 5 mm thick stainless steel plate is attached to both sides of the substrate. The film was hot-pressed with a 60-ton hot plate press (heater heating method: manufactured by GONNO), and the state of the release film was observed and judged according to the following criteria. The temperature of the hot plate press at this time was 220 ° C., the pressure was 20 kg / cm 2 , and the time was 1 hour after reaching the predetermined temperature.
○: The surface of the release film does not melt or deteriorate at all.
Δ: The surface of the release film is partially melted or discolored, but the release film functions.
X: Level at which the surface of the release film melts or deforms, or deteriorates and becomes brittle and does not function as a release material.
(9) Contamination state of the circuit board The surface layer of the circuit board obtained by the method (4) was observed with a microscope at 20 places and judged according to the following criteria. The microscope used for the observation was an OPTIPHOT Nomarski XF-NR manufactured by Nikon, and a field of view with a magnification of 150 was used as an observation area per place.
○: There is no contamination on the circuit board.
Δ: Contaminated part is less than 20%.
X: Contaminated part is 20% or more.

(10)作業性
回路基板の熱プレス工程の作業性は、上記(4)で述べた10層重ねて行う回路基板の製造工程でのハンドリング性を下記の基準で判定した。
○ :プレス前後の作業性は特に問題なく、効率よくプレス加工ができる。
△ :プレス前の10層の重ね合わせやプレス後のB層の染みだしで多少手間取るが作業効率が大きく低下することはない。
× :離型材のカールの発生や平面性が悪くプレス前の10層を重ね合わせる作業に時間がかかったり、プレス後のB層染みだしが多く離型材を取り除くのにかなりの時間を要して作業効率が大きく低下する。
(10) Workability The workability of the circuit board hot pressing process was determined based on the following criteria for handling in the circuit board manufacturing process performed by stacking 10 layers as described in (4) above.
○: Workability before and after pressing is not particularly problematic, and can be efficiently pressed.
[Delta]: Some work is required due to the overlap of 10 layers before pressing and the exudation of layer B after pressing, but the working efficiency is not significantly reduced.
×: The generation of curling of the release material is poor and the flatness is poor, and it takes time to superimpose the 10 layers before pressing, or there is a large amount of B layer seepage after pressing, and it takes considerable time to remove the release material. Work efficiency is greatly reduced.

(実施例1)
(1)PPSの重合
オートクレーブに硫化ナトリウム32kg(250モル、結晶水40wt%を含む)、水酸化ナトリウム100g、安息香酸ナトリウム36.1kg(250モル)、およびN−メチル−2−ピドリドン(以下NMPと略称する)79.2kgを仕込み、撹拌しながら徐々に205℃まで昇温し、水6.9kgを含む留出液7リットルを除去した。残留混合物に1,4−ジクロルベンゼン(以下DCBと略称する)37.5kg(255モル)、およびNMP20kgを加え、250℃で5時間重合した。得られた反応生成物をイオン交換水を用いた熱湯とNMPで交互に8回洗浄し、真空乾燥機で80℃、24時間乾燥した。得られたPPS粉末ポリマの溶融粘度は4100ポイズ、ガラス転移温度90℃、融点285℃であった。
Example 1
(1) Polymerization of PPS In an autoclave, 32 kg (250 mol, containing 40 wt% of crystal water) of sodium sulfide, 100 g of sodium hydroxide, 36.1 kg (250 mol) of sodium benzoate, and N-methyl-2-pyridone (hereinafter referred to as NMP) 79.2 kg), and gradually heated to 205 ° C. while stirring to remove 7 liters of distillate containing 6.9 kg of water. To the residual mixture, 37.5 kg (255 mol) of 1,4-dichlorobenzene (hereinafter abbreviated as DCB) and 20 kg of NMP were added and polymerized at 250 ° C. for 5 hours. The obtained reaction product was washed 8 times alternately with hot water using ion-exchanged water and NMP, and dried in a vacuum dryer at 80 ° C. for 24 hours. The resulting PPS powder polymer had a melt viscosity of 4100 poise, a glass transition temperature of 90 ° C., and a melting point of 285 ° C.

(2)PPS樹脂組成物の調合
上記(1)で得られたPPSの粉末に、平均粒径が1μmの炭酸カルシウム粉末を1%添加しヘンシェルミキサーで混合した後、30mmφ二軸押出機で320℃の温度にてガット状に押しだし、水中で冷却後短くカットしてPPS樹脂組成物のペレットを作成した。
得られたポリ−p−フェニレンサルファイド樹脂組成物を180℃、10mmHgの減圧下にてミキサーでかき混ぜながら7時間乾燥した。
(2) Preparation of PPS resin composition 1% of calcium carbonate powder having an average particle diameter of 1 μm was added to the PPS powder obtained in (1) above, mixed with a Henschel mixer, and then mixed with a 30 mmφ twin screw extruder. A PPS resin composition pellet was prepared by pushing out in a gut shape at a temperature of 0 ° C., and then cutting it short after cooling in water.
The obtained poly-p-phenylene sulfide resin composition was dried for 7 hours while stirring with a mixer under reduced pressure of 180 ° C. and 10 mmHg.

(3)二軸延伸PPSフィルムの製造
上記(3)の乾燥ペレットを50mmφの単軸押出機に供給し320℃の温度で溶融し、300mmのスリット状のTダイから押し出し、表面温度30℃の鏡面金属ドラムにキャストし、厚さ約200μmの未延伸PPSシートを得た。シートをロール群からなる縦延伸装置に導き、98℃の温度で3.6倍長手方向に延伸した。その後、横延伸装置(テンター)に一軸延伸フィルムを導き、延伸温度98℃、延伸倍率3.5倍で幅方向に延伸し、後続する熱処理室で270℃の温度で10秒間熱処理した。さらに同一テンターで幅方向に5%のリラックスを行い、16μm厚さの二軸延伸PPSフィルムを得た。
フィルムの配向度OFは、Edge方向が0.62、End方向が0.68で、微結晶のサイズ(CAS)は72オングストローム、相対結晶化指数は12であった。また150℃、30分間の加熱収縮率は長手方向が1.2%で幅方向が0.2%であった。更にフィルムの表面に6000J/m2のコロナ放電処理を施した。更にフィルムの片面にウレタン系のアンカーコート剤をグラビアロール法で0.2g/m2の塗布量になるよう調整した。なおウレタン系アンカーコート剤には武田薬品製のタケラックA310(主剤)/タケネートA3(硬化剤)を重量比で9/1の混合比で使用した。また溶剤は酢酸エチルを用いた(得られたPPSフィルムをPPS−1とする)。
(3) Production of biaxially stretched PPS film The dried pellets of (3) above are supplied to a 50 mmφ single screw extruder, melted at a temperature of 320 ° C., extruded from a 300 mm slit-shaped T-die, and a surface temperature of 30 ° C. An unstretched PPS sheet having a thickness of about 200 μm was obtained by casting on a mirror surface metal drum. The sheet was guided to a longitudinal stretching apparatus composed of a roll group and stretched 3.6 times in the longitudinal direction at a temperature of 98 ° C. Thereafter, the uniaxially stretched film was guided to a transverse stretching apparatus (tenter), stretched in the width direction at a stretching temperature of 98 ° C. and a stretching ratio of 3.5 times, and heat-treated at a temperature of 270 ° C. for 10 seconds in the subsequent heat treatment chamber. Furthermore, relaxation was performed 5% in the width direction using the same tenter, and a biaxially stretched PPS film having a thickness of 16 μm was obtained.
The orientation degree OF of the film was 0.62 in the Edge direction and 0.68 in the End direction, the crystallite size (CAS) was 72 Å, and the relative crystallization index was 12. The heat shrinkage rate at 150 ° C. for 30 minutes was 1.2% in the longitudinal direction and 0.2% in the width direction. Further, the surface of the film was subjected to a corona discharge treatment of 6000 J / m 2 . Further, a urethane-based anchor coating agent was adjusted on one side of the film by a gravure roll method so that the coating amount was 0.2 g / m 2 . For the urethane-based anchor coating agent, Takelac A310 (main agent) / Takenate A3 (curing agent) manufactured by Takeda Pharmaceutical was used at a weight ratio of 9/1. Further, ethyl acetate was used as the solvent (the obtained PPS film is referred to as PPS-1).

(4)B層の樹脂組成物の準備
日本ユニカー(株)製のエチレン−酢酸ビニル共重合ポリマ(EVA)、タイプNUC−3150を準備した。
(4) Preparation of B-layer resin composition An ethylene-vinyl acetate copolymer (EVA), type NUC-3150 manufactured by Nippon Unicar Co., Ltd. was prepared.

(5)離型用積層フィルムの製造
(4)で準備したEVAを50mm孔径の押出機に投入し、250℃の温度で溶融押出し直線上の口金リップからシート状に吐出させた。吐出ポリマの直下には、二層のPPS−1の間に溶融ポリマがエクストルジョンラミネートできるように配置し、ラミネート後直ちに冷却ロールプレスで連続積層固化ですようして、PPS−1/EVA/PPS−1の3層積層フィルムを得た。プレス圧力は3kg/cm2で冷却温度は4℃とした。フィルム幅400mmで離型用積層フィルム全体の厚さが120 μmになるよう調整した。積層比率A/A+Bは0.27であった。またB層の樹脂の熱変形温度は75℃であった。得られた積層フィルムを積層フィルム−1とする。
(5) Production of release laminated film EVA prepared in (4) was put into an extruder having a 50 mm hole diameter, melt-extruded at a temperature of 250 ° C., and discharged in a sheet form from a straight die lip. Immediately below the discharge polymer, the molten polymer is placed between the two layers of PPS-1 so that it can be extrusion laminated, and immediately after lamination, it is continuously laminated and solidified with a cooling roll press, so that PPS-1 / EVA / PPS A three-layer laminated film of -1 was obtained. The pressing pressure was 3 kg / cm 2 and the cooling temperature was 4 ° C. The film width was adjusted to 400 mm and the entire thickness of the release laminated film was adjusted to 120 μm. The lamination ratio A / A + B was 0.27. The thermal deformation temperature of the resin of the B layer was 75 ° C. The obtained laminated film is designated as laminated film-1.

(実施例2)
(1)B層の樹脂組成物の準備
日本ユニカー(株)製エチレン− エチルアクリレート共重合ポリマ(EEA)、タイプN
UC−6170準備した。
(Example 2)
(1) Preparation of resin composition for layer B Nippon Unicar Co., Ltd. ethylene-ethyl acrylate copolymer (EEA), type N
UC-6170 was prepared.

(2)離型用積層フィルムの製造
実施例1と同様の方法で、PPS−1/EEA/PPS−1の3層積層フィルムを得た。溶融押し出し時の樹脂温度は250℃であった。また積層フィルムの厚さは120 μmになるよう調整した。B層の樹脂の熱変形温度は88℃であった。得られた積層フィルムを積層フィルム−2とする。
(2) Manufacture of laminated film for release In the same manner as in Example 1, a three-layer laminated film of PPS-1 / EEA / PPS-1 was obtained. The resin temperature at the time of melt extrusion was 250 ° C. The thickness of the laminated film was adjusted to 120 μm. The heat distortion temperature of the resin of the B layer was 88 ° C. Let the obtained laminated | multilayer film be laminated | multilayer film-2.

(実施例3)
B層の樹脂として日本ユニカー製ポリエチレン(PE)、タイプNUC−8010を準備した。このポリマを用い実施例1の方法でPPS−1/PE/PPS−1の3積層フィルムを得た。なお、溶融押出時の樹脂温度は320℃であり、積層フィルムの厚さは120 μmになるよう調整した。B層の樹脂の熱変形温度は115℃であった。このようにして得られた積層フィルムを積層フィルム−3とする。
Example 3
Nippon Unicar polyethylene (PE), type NUC-8010 was prepared as the resin for the B layer. Using this polymer, a three-layer film of PPS-1 / PE / PPS-1 was obtained by the method of Example 1. The resin temperature during melt extrusion was 320 ° C., and the thickness of the laminated film was adjusted to 120 μm. The heat distortion temperature of the resin of the B layer was 115 ° C. The laminated film thus obtained is designated as laminated film-3.

(実施例4)
B層の樹脂として 住友化学ポリオレフィンの変性ポリプロピレン(PP−1)、商標:“タフセン” T3712を準備し、実施例1の方法でPPS−1/PP−1/PPS−1の3層積層フィルムを得た。溶融押出時の樹脂温度は330℃であり、積層フィルムの厚さは120 μmになるよう調整した。B層の樹脂の熱変形温度は135℃であった。このようにして得られた積層フィルムを積層フィルム−4とする。
Example 4
A modified polypropylene (PP-1) of Sumitomo Chemical Polyolefin, trade name: “Tuffsen” T3712, was prepared as the resin for layer B, and a three-layer laminated film of PPS-1 / PP-1 / PPS-1 was prepared by the method of Example 1. Obtained. The resin temperature during melt extrusion was 330 ° C., and the thickness of the laminated film was adjusted to 120 μm. The heat distortion temperature of the resin of the B layer was 135 ° C. The laminated film thus obtained is designated as laminated film-4.

(実施例5)
B層の樹脂に日本ポリオレフィン(株)製の変性ポリプロピレン(PP−2)、商標:“アドテックス”ER3531LAを準備し、実施例1と同様の方法でPPS−1/PP−2/PPS−1の3層積層フィルムを得た。溶融押出時の樹脂温度は350℃であり、積層フィルムの厚さは120 μmになるよう調整した。B層の樹脂の熱変形温度は148℃であった。このようにして得られた積層フィルムを積層フィルム−5とする。
(Example 5)
A modified polypropylene (PP-2) manufactured by Nippon Polyolefin Co., Ltd., trademark: “Adtex” ER3531LA was prepared as the resin for the B layer, and PPS-1 / PP-2 / PPS-1 was prepared in the same manner as in Example 1. A three-layer laminated film was obtained. The resin temperature during melt extrusion was 350 ° C., and the thickness of the laminated film was adjusted to 120 μm. The heat distortion temperature of the resin of the B layer was 148 ° C. The laminated film thus obtained is designated as laminated film-5.

(比較例1)
B層の樹脂に住友化学ポリオレフィンの変性ポリプロピレン(PP−3)、商標:“タフセン”T3512を用い、実施例1と同様の方法でPPS−1/PP−3/PPS−1の3層積層フィルムを得た。溶融押出時の樹脂温度は350℃であり、積層フィルムの厚さは120 μmになるよう調整した。またB層樹脂層の熱変形温度は160℃であった。このようにして得られた積層フィルムを積層フィルム−6とする。
(Comparative Example 1)
A three-layer laminated film of PPS-1 / PP-3 / PPS-1 in the same manner as in Example 1 using Sumitomo Chemical polyolefin-modified polypropylene (PP-3), trademark: “Tuffsen” T3512, as the resin for layer B Got. The resin temperature during melt extrusion was 350 ° C., and the thickness of the laminated film was adjusted to 120 μm. The thermal deformation temperature of the B layer resin layer was 160 ° C. The laminated film thus obtained is designated as laminated film-6.

(比較例2)
(1)二軸延伸PPSフィルムの製造
実施例1と同様の方法でPPSポリマを重合し二軸延伸フィルムとした。溶融PPSの吐出量を制御し未延伸PPSシートの厚さを45 μmに調整し二軸延伸PPSフィルムの厚さが3.5 μmになるようにした。フィルムの延伸倍率は縦横ともに3.5倍で熱処理条件は260℃の温度で時間は10秒間であった。また幅方向のリラックス率は実施例1と同様の5%とした。さらにフィルムの片面に6000J/m2のコロナ放電処理を施した。このフィルムをPPS−2とる。
(Comparative Example 2)
(1) Production of biaxially stretched PPS film A PPS polymer was polymerized in the same manner as in Example 1 to obtain a biaxially stretched film. The discharge amount of molten PPS was controlled to adjust the thickness of the unstretched PPS sheet to 45 μm so that the thickness of the biaxially stretched PPS film was 3.5 μm. The stretch ratio of the film was 3.5 times in both length and width, the heat treatment conditions were 260 ° C., and the time was 10 seconds. Further, the relaxation rate in the width direction was set to 5% as in the first embodiment. Further, a corona discharge treatment of 6000 J / m 2 was performed on one side of the film. Take this film with PPS-2.

(2)離型積層フィルムの製造
実施例3の方法および同じB層の樹脂を用いて、PPS−2/PE/PPS−2の3層積層フィルムを製造した。積層フィルムの厚さは160 μmに調整し、積層比率(A/A+B)を0.043とした。斯くして得られた積層フィルムは表層のPPSフィルム層がかなり薄く積層加工時に皺が入りやすく加工性が良くなかった。この積層フィルムを積層フィルム−7とする。
(2) Production of Release Laminated Film Using the method of Example 3 and the same B-layer resin, a three-layer laminated film of PPS-2 / PE / PPS-2 was produced. The thickness of the laminated film was adjusted to 160 μm, and the lamination ratio (A / A + B) was 0.043. The laminated film thus obtained had a very thin PPS film layer, which was prone to wrinkles during lamination and was not workable. This laminated film is designated as laminated film-7.

(実施例6)
実施例1と同じ方法で5 μm厚さのPPS−BOを得た(PPS−3)。フィルムを用い、実施例3の方法でPPS−3/PE/PPS−3の3層積層フィルムを得た。積層フィルムの厚さは160 μmになるようB層の厚さを制御し、積層比率を0.063とした。このようにして得られた積層フィルムを積層フィルム−8とする。
(Example 6)
PPS-BO having a thickness of 5 μm was obtained in the same manner as in Example 1 (PPS-3). Using the film, a three-layer laminated film of PPS-3 / PE / PPS-3 was obtained by the method of Example 3. The thickness of layer B was controlled so that the thickness of the laminated film was 160 μm, and the lamination ratio was 0.063. The laminated film thus obtained is designated as laminated film-8.

(実施例7)
実施例1と同じ方法で、厚さ35 μmのPPS−BOを得た(PPS−4)。フィルムを用い、実施例3の方法でPPS−4/PE/PPS−4の3層積層フィルムを得た。積層フィルムの厚さは160 μmにし、積層比率が0.44になるよう調整した。斯くして得られた積層フィルムを積層フィルム−9とする。
(Example 7)
PPS-BO having a thickness of 35 μm was obtained in the same manner as in Example 1 (PPS-4). Using the film, a three-layer laminated film of PPS-4 / PE / PPS-4 was obtained by the method of Example 3. The thickness of the laminated film was 160 μm, and the lamination ratio was adjusted to 0.44. The laminated film thus obtained is designated as laminated film-9.

(比較例3)
実施例1の方法で、厚さ50 μmのPPS−BOを得た(PPS−5)。フィルムを用いて実施例3の方法でPPS−5/PE/PPS−5の3層積層フィルムを製造した。積層フィルムの厚さは160 μmにし、積層比率が0.63になるよう調整した。得られた積層フィルムを積層フィルム−10とする。
(Comparative Example 3)
PPS-BO having a thickness of 50 μm was obtained by the method of Example 1 (PPS-5). A three-layer laminated film of PPS-5 / PE / PPS-5 was produced by the method of Example 3 using the film. The thickness of the laminated film was 160 μm, and the lamination ratio was adjusted to 0.63. Let the obtained laminated | multilayer film be laminated | multilayer film-10.

(実施例8)
比較例2で作成したPPS−2(厚さ3.5 μm)を用い、実施例3と同じ方法で3層積層しB層の厚さを調整して積層厚さが38 μmになるよう調整した。積層時に皺が入りやすく、また表裏のPPS−2のテンション制御がかなり難しく積層フィルムがカールしやすかった。得られた積層フィルムを積層フィルム−11とする。
(Example 8)
Using PPS-2 (thickness 3.5 μm) created in Comparative Example 2, three layers were stacked in the same manner as in Example 3, and the thickness of Layer B was adjusted to adjust the stack thickness to 38 μm. did. It was easy to get wrinkles at the time of lamination, and the tension control of PPS-2 on the front and back sides was quite difficult and the laminated film was easy to curl. Let the obtained laminated | multilayer film be the laminated | multilayer film-11.

(実施例9)
実施例6で得たPPS−3を用い、実施例3と同じ方法で3層積層しB層の樹脂層の厚
さを制御して積層フィルムの厚さが45 μmになるよう調整した。実施例8の積層フィルム−11よりは制御しやすかったが積層加工時に皺が入りやすく、また表裏のPPS−3のテンション差によりカールしやすい傾向であった。得られた積層フィルムを積層フィルム−12とする。
Example 9
Using PPS-3 obtained in Example 6, three layers were laminated in the same manner as in Example 3, and the thickness of the B layer resin layer was controlled to adjust the thickness of the laminated film to 45 μm. Although it was easier to control than the laminated film 11 of Example 8, wrinkles were liable to occur during the lamination process, and it was liable to curl due to the difference in tension between the front and back PPS-3. Let the obtained laminated film be laminated film-12.

(実施例10)
実施例7で得たPPS−4を実施例3と同じ方法で3層積層フィルムを製造し、B層の樹脂層の厚さを制御して積層フィルムの厚さが245 μmになるよう調整した。得られた積層フィルムを積層フィルム−13とする。
(Example 10)
A PPS-4 obtained in Example 7 was produced in the same manner as in Example 3 to produce a three-layer laminated film, and the thickness of the laminated film was adjusted to 245 μm by controlling the thickness of the B layer resin layer. . Let the obtained laminated film be laminated film-13.

(実施例11)
実施例10の積層フィルム−13と同様の方法で、B層の厚さを調整して積層フィルムの厚さが253 μmになるよう調整した。得られた積層フィルムを積層フィルム−14
する。
(Example 11)
In the same manner as in the laminated film-13 of Example 10, the thickness of the B layer was adjusted so that the laminated film had a thickness of 253 μm. The resulting laminated film was designated as laminated film-14.
To do.

(比較例4)
三井化学製ポリメチルペンテンフィルム(商標:オピュラン)の積層加工フィルムであるCR−1024の150 μm厚さを準備した。積層フィルムを積層フィルム−15とする。なお積層フィルムのB層の樹脂の熱変形温度を分析したら91℃であった。
(Comparative Example 4)
A 150 μm thickness of CR-1024, a laminated processed film of Mitsui Chemicals polymethylpentene film (trademark: Opylan), was prepared. The laminated film is designated as laminated film-15. When the thermal deformation temperature of the resin of the B layer of the laminated film was analyzed, it was 91 ° C.

(比較例5)
実施例1と同じ方法で厚さ120 μmのPPS−BOを得た。得られたフィルムをPPS−5とする。
(Comparative Example 5)
PPS-BO having a thickness of 120 μm was obtained in the same manner as in Example 1. Let the obtained film be PPS-5.

(比較例6)
比較にために耐熱性に富むポリイミドフィルム(PI)の25 μm(東レ−デュポン製カプトン100H)を準備し、実施例3と同じ方法でフィルムの片面にポリウレタン系樹脂をアンカーコートして実施例3のPEとエクストルジョンラミネートした。得られたPI/PE/PIの3層積層フィルムの全厚みは120 μmになるよう調整した。得られた積層フィルムを積層フィルム−16とした。
(Comparative Example 6)
For comparison, a heat-resistant polyimide film (PI) 25 μm (Toray-DuPont Kapton 100H) was prepared, and a polyurethane resin was anchor-coated on one side of the film in the same manner as in Example 3. PE and extrusion laminate. The total thickness of the obtained PI / PE / PI three-layer laminated film was adjusted to 120 μm. The obtained laminated film was designated as laminated film-16.

(比較例7)
実施例7で得られた35 μm厚さのPPS−BO(PPS−4)用い、実施例2と同じ方法でPPS−4/EVAの2層積層した。積層フィルムの厚さはB層のEVAの厚さを調整して120 μmにした。得られた2層積層フィルムを積層フィルム−17とした。
(Comparative Example 7)
Using PPS-BO (PPS-4) having a thickness of 35 μm obtained in Example 7, two layers of PPS-4 / EVA were laminated in the same manner as in Example 2. The thickness of the laminated film was adjusted to 120 μm by adjusting the EVA thickness of the B layer. The obtained two-layer laminated film was named laminated film-17.

各実施例および比較例の評価の結果を表1、2に比較して示す。   The results of evaluation of each example and comparative example are shown in Tables 1 and 2 in comparison.

Figure 2006021372
Figure 2006021372

Figure 2006021372
Figure 2006021372

(まとめ)
本発明の離型用積層フィルムは、PPSフィルムが持つ優れた耐熱性、耐加水分解性および耐薬品性、離型性等の特性を生かし回路基板のプレス加工工程の離型材として要求される回路の段差への追従性、プレス圧力の均一化のためのクッション性、作業性等が付与できた。このことは本発明の各実施例の各離型用積層フィルムと比較例5のPPSフィルム単体の場合と比較すると追従性とクッション性が付与されていることが判る。また耐熱離型性が優れることは比較例6の積層フィルム−16の耐熱性が極めて高いポリイミドフィルムを用いたものと比較してもよく判る。さらに従来使用されていたポリメチルペンテンシートを用いた離型用積層フィルムに比べても、耐熱性が向上し、シート内の可塑剤等がブリードアウトして回路基板を汚染することもないことが実施例で示す各積層フィルムと比較例4の積層フィルム−13を比較することでよく判る。更に本発明の離型用積層フィルムは、回路基板の製造プレス工程を経ても機械特性の変化や変色等なく、回路基材の含水や接着剤の残存溶媒等に対する加水分解劣化、残存溶剤ガスによる劣化にも耐性があった。
(Summary)
The laminated film for mold release of the present invention is a circuit required as a mold release material for the circuit board pressing process by taking advantage of the excellent heat resistance, hydrolysis resistance, chemical resistance, mold release characteristics, etc. of the PPS film. It was possible to provide the ability to follow the level difference, cushioning for uniform press pressure, workability, and the like. This indicates that followability and cushioning properties are imparted when compared to the case of each release laminate film of each example of the present invention and the PPS film alone of Comparative Example 5. Further, it can be seen that the heat release property is excellent even when compared with a film using the polyimide film 16 of Comparative Example 6 having a very high heat resistance. Furthermore, compared to the release film using a polymethylpentene sheet that has been used in the past, the heat resistance is improved and the plasticizer in the sheet does not bleed out and contaminate the circuit board. It can be understood by comparing each laminated film shown in the Examples with laminated film-13 of Comparative Example 4. Furthermore, the laminated film for release of the present invention has no change in mechanical properties or discoloration even after the circuit board manufacturing press step, hydrolyzed deterioration of the circuit substrate with respect to water content or adhesive residual solvent, etc., due to residual solvent gas It was also resistant to degradation.

また本発明の構成にすることで、追従性、クッション性、B層の樹脂の染みだし性、作業性をバランス良く兼ね備えた離型用積層フィルムにできることが判る。実施例1〜6及び比較例1から、B層の樹脂層の熱変形温度を70〜150℃の特定の範囲に制御することで前述の各特性がバランスする。すなわち、温度が70℃未満ではB層の樹脂が軟化してプレス時に樹脂が離型用積層フィルムの端面から染み出る量が多くなり熱プレス加工で離型用積層フィルム同士が樹脂を介して接着してしまう。そのため、プレス加工後の作業性が低下する。逆に温度が150℃越えると、回路の段差への追従性、クッション性が低下し回路基板の電気的な不良や外観上の不良が発生し本発明の目的が達成できなくなる。   Moreover, it turns out that it can be set as the laminated | multilayer film for mold release which has followable | trackability, cushioning property, the bleeding property of the resin of B layer, and workability | operativity by setting it as the structure of this invention. From Examples 1 to 6 and Comparative Example 1, the above-described characteristics are balanced by controlling the heat deformation temperature of the resin layer of the B layer to a specific range of 70 to 150 ° C. That is, when the temperature is less than 70 ° C., the resin of the B layer is softened, and the amount of the resin that oozes out from the end face of the release laminate film during pressing increases, and the release laminate films adhere to each other through the resin by hot pressing. Resulting in. For this reason, workability after press working is reduced. On the other hand, when the temperature exceeds 150 ° C., the followability to the level difference of the circuit and the cushioning property are deteriorated, and an electrical defect and an appearance defect of the circuit board occur, and the object of the present invention cannot be achieved.

また、表層のPPSフィルムの積層比率(A/(A+B))も、上記特性の追従性、クッション性、作業性のバランスに効く大きな要件であるが、このことは、実施例6、7および比較例2、3を比較することで適正な範囲が0.05〜0.5であることがよく判る。すなわち、比率が0.05未満になると積層フィルムの加工性が低下し、積層フィルムに皺やカールを発生させてしまう。この欠陥が回路基板のプレス加工時の作業性を低下させてしまう。また比率が0.5を越えると本発明でいう追従性、クッション性が悪化し高密度な回路基板への適用ができなくなる。   Further, the lamination ratio (A / (A + B)) of the PPS film of the surface layer is also a large requirement that works for the balance of the following characteristics, cushioning properties, and workability. This is the same as in Examples 6 and 7 and the comparison. By comparing Examples 2 and 3, it is well understood that the proper range is 0.05 to 0.5. That is, when the ratio is less than 0.05, the processability of the laminated film is lowered, and wrinkles and curls are generated in the laminated film. This defect reduces workability when the circuit board is pressed. On the other hand, when the ratio exceeds 0.5, the followability and cushioning properties referred to in the present invention are deteriorated and cannot be applied to a high-density circuit board.

更に本発明の離型用積層フィルムの全厚さは40〜250 μmの範囲がプレス加工の耐熱性、作業性と回路の段差への追従性、クッション性およびB層の樹脂の染みだしから好適な範囲であることがほぼ同じA層積層比率の実施例3と実施例8〜11の比較から判る。   Further, the total thickness of the laminated film for release according to the present invention is preferably in the range of 40 to 250 μm from the viewpoint of heat resistance of press working, workability and follow-up of circuit steps, cushioning and B-layer resin oozing. It can be seen from a comparison between Example 3 and Examples 8 to 11 having the same A layer stacking ratio.

また、比較例7の積層フィルム−17はA/Bの2層積層フィルムである。本発明の実施例で示した各3層積層フィルム(A/B/A)と比較すると、PPS−BOを積層していない層が急激に溶出して回路基板材およびプレスの金属板との離型性、耐熱性が低下したりしてプレス加工の作業性が著しく低下し本発明の目的が達成できないことが判る。   Moreover, the laminated film -17 of Comparative Example 7 is an A / B two-layer laminated film. Compared with each of the three-layer laminated films (A / B / A) shown in the examples of the present invention, the layer on which PPS-BO is not laminated is eluted rapidly, and the circuit board material and the metal plate of the press are separated. It can be seen that the moldability and heat resistance are lowered and the workability of the press working is remarkably lowered, so that the object of the present invention cannot be achieved.

本発明の離型用積層フィルムは、リジット多層回路基板、ビルドアップ多層回路基板、フレキシブルプリント配線基板(カバーレイ、コネクター部分の補強板)多層フレキシブル回路基板やこれらを組み合わせた回路基板の製造工程離型材として最適なものである。ただし、これらには限定されない。 The release laminate film of the present invention is a rigid multilayer circuit board, a build-up multilayer circuit board, a flexible printed wiring board (coverlay, a connector reinforcement plate), a multilayer flexible circuit board, and a circuit board that combines these. It is optimal as a mold material. However, it is not limited to these.

Claims (3)

熱変形温度が70〜150℃の樹脂組成物層(B層)の両面に、ポリフェニレンサルファイドを主成分とする樹脂組成物からなる二軸延伸フィルム(A層)が積層された積層フィルムであって、積層フィルム全体の厚さに対するA層の厚さの比率(A層厚さ/(A層厚さ+B層厚さ))が0.05〜0.5の範囲であることを特徴とする離型用積層フィルム。 A laminated film in which a biaxially stretched film (A layer) made of a resin composition mainly composed of polyphenylene sulfide is laminated on both surfaces of a resin composition layer (B layer) having a heat deformation temperature of 70 to 150 ° C. The ratio of the thickness of the A layer to the total thickness of the laminated film (A layer thickness / (A layer thickness + B layer thickness)) is in the range of 0.05 to 0.5. Mold laminated film. B層がポリオレフィン系樹脂を主成分とする樹脂組成物層である請求項1記載の離型用積層フィルム。 The laminated film for mold release according to claim 1, wherein the B layer is a resin composition layer containing a polyolefin resin as a main component. 積層フィルム全体の厚さ(A層厚さ+B層厚さ)が40〜250 μmの範囲である請求項1または2記載の離型用積層フィルム。 The laminated film for mold release according to claim 1 or 2, wherein the total thickness of the laminated film (A layer thickness + B layer thickness) is in the range of 40 to 250 µm.
JP2004200159A 2004-07-07 2004-07-07 Circuit board manufacturing method Expired - Fee Related JP4529565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200159A JP4529565B2 (en) 2004-07-07 2004-07-07 Circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200159A JP4529565B2 (en) 2004-07-07 2004-07-07 Circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2006021372A true JP2006021372A (en) 2006-01-26
JP4529565B2 JP4529565B2 (en) 2010-08-25

Family

ID=35795004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200159A Expired - Fee Related JP4529565B2 (en) 2004-07-07 2004-07-07 Circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP4529565B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090871A1 (en) * 2007-01-23 2008-07-31 Tohcello Co., Ltd. Biaxially oriented multilayer film
EP4046768A4 (en) * 2019-10-18 2024-02-07 DIC Corporation Method for manufacturing molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261868A (en) * 1992-03-16 1993-10-12 Toray Ind Inc Release laminated sheet and use thereof
JPH1076604A (en) * 1996-09-02 1998-03-24 Mitsubishi Chem Mkv Co Laminated body for preventing scattering of glass
JP2002292800A (en) * 2001-03-29 2002-10-09 Panac Co Ltd Release sheet for molding prepreg material
JP2003001777A (en) * 2001-06-27 2003-01-08 Toray Ind Inc Laminated film for release

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261868A (en) * 1992-03-16 1993-10-12 Toray Ind Inc Release laminated sheet and use thereof
JPH1076604A (en) * 1996-09-02 1998-03-24 Mitsubishi Chem Mkv Co Laminated body for preventing scattering of glass
JP2002292800A (en) * 2001-03-29 2002-10-09 Panac Co Ltd Release sheet for molding prepreg material
JP2003001777A (en) * 2001-06-27 2003-01-08 Toray Ind Inc Laminated film for release

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090871A1 (en) * 2007-01-23 2008-07-31 Tohcello Co., Ltd. Biaxially oriented multilayer film
JPWO2008090871A1 (en) * 2007-01-23 2010-05-20 東セロ株式会社 Biaxially oriented laminated film
JP5047994B2 (en) * 2007-01-23 2012-10-10 三井化学東セロ株式会社 Biaxially oriented laminated film
EP4046768A4 (en) * 2019-10-18 2024-02-07 DIC Corporation Method for manufacturing molded article

Also Published As

Publication number Publication date
JP4529565B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP1674230B1 (en) Multi-layer sheet
JP2007175885A (en) Mold release film
KR101084879B1 (en) Mold release sheet for hot pressing and method for manufacturing flexible printed wiring board using the same
KR100806763B1 (en) Release film for PCB lamination process
JP5119401B2 (en) Flexible laminate having thermoplastic polyimide layer and method for producing the same
JPH0669720B2 (en) Method for producing roughened film and sheet made of poly-4-methyl-1-pentene for producing multilayer printed wiring board
TW200823053A (en) Encapsulation film for photovoltaic module and photovoltaic module using the same
JP5245497B2 (en) Release film
TW201124280A (en) Release film
JP2016168688A (en) Release film
EP1698655A1 (en) Mold release film
WO2018186355A1 (en) Multilayer film and heat-resistant adhesive tape
WO2006067964A1 (en) Polyester release film for hot-press molding
JP4529565B2 (en) Circuit board manufacturing method
JP4598408B2 (en) Adhesive sheet
JP2012082267A (en) Masking film supporting base
JP4385693B2 (en) Laminated body and method for producing the same
JPH0771842B2 (en) Laminated body and manufacturing method thereof
JP7298194B2 (en) Method for manufacturing release film and molded product
JP2006212954A (en) Mold release film
KR100721655B1 (en) Releasing film and method for producing the same
JP2009277764A (en) Sheet for coverlay film thermocompression bonding
JP7204658B2 (en) Single-layer film and heat-resistant adhesive tape using the same
WO2024090185A1 (en) Laminate, and metal-clad laminate and production method therefor
KR20110121981A (en) Release film for manufacturing printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees