WO2024090185A1 - Laminate, and metal-clad laminate and production method therefor - Google Patents

Laminate, and metal-clad laminate and production method therefor Download PDF

Info

Publication number
WO2024090185A1
WO2024090185A1 PCT/JP2023/036628 JP2023036628W WO2024090185A1 WO 2024090185 A1 WO2024090185 A1 WO 2024090185A1 JP 2023036628 W JP2023036628 W JP 2023036628W WO 2024090185 A1 WO2024090185 A1 WO 2024090185A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
metal
easy
silane coupling
Prior art date
Application number
PCT/JP2023/036628
Other languages
French (fr)
Japanese (ja)
Inventor
弘康 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024090185A1 publication Critical patent/WO2024090185A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins

Definitions

  • the present invention relates to a laminate, a metal laminate, and a method for manufacturing the same.
  • a laminate obtained by bonding a layer made of a crystalline olefin resin having a melting point and a layer made of copper via a layer made of an alicyclic structure-containing resin that contains a predetermined functional group is known as a resin substrate that is suitably used as a printed wiring board (see Patent Document 1).
  • a laminate in which, when the resin layer is thermocompression bonded to the metal layer to form a metal laminate, deformation of the resin layer is suppressed and the peel strength of the metal layer can be improved compared to a metal laminate consisting of only a metal layer and a base layer; a metal laminate in which deformation of the resin layer is suppressed and the peel strength of the metal layer is improved compared to a metal laminate consisting of only a metal layer and a base layer; and a method for manufacturing such a metal laminate.
  • the present inventors have conducted extensive research to solve the above problems. As a result, they have found that the above problems can be solved by a laminate including a predetermined base layer and a predetermined easy-adhesion layer directly attached to at least one main surface of the base layer, and have completed the present invention. That is, the present invention provides the following.
  • a laminate comprising a base layer and an easy-adhesion layer directly on at least one main surface of the base layer,
  • the substrate layer contains a crystalline cyclic olefin polymer,
  • the easy-adhesion layer is provided on the outermost side of the laminate and is formed from a silane coupling agent (A).
  • A silane coupling agent
  • the at least one main surface of the base layer has been subjected to at least one surface treatment selected from a corona treatment, a plasma treatment, and an ultraviolet treatment.
  • [4] The laminate according to any one of [1] to [3], wherein the silane coupling agent (A) is water-soluble.
  • [5] The laminate according to any one of [1] to [4], wherein the silane coupling agent (A) contains one or more selected from the group consisting of an amino group, a (meth)acryloyloxy group, a mercapto group, and a vinyl group.
  • a metal laminate comprising the laminate according to any one of [1] to [5] and a metal layer directly on the easy-adhesion layer of the laminate,
  • the metal layer is a layer of a metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel.
  • Step (1) preparing a substrate layer containing a crystalline cyclic olefin polymer;
  • Step (2) preparing a metal layer, which is a layer of metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel;
  • Step (3) subjecting at least one of the main surfaces of the substrate layer to at least one surface treatment selected from a corona treatment, a plasma treatment, and an ultraviolet treatment;
  • Step (4b) A step of applying a liquid composition containing a silane coupling agent (A) to one main surface of the metal layer to form a coating layer, and drying the coating layer to form an easy-adhesion layer;
  • the present invention can provide a laminate in which, when the resin layer is thermocompression bonded to a metal layer to form a metal laminate, deformation of the resin layer is suppressed and the peel strength of the metal layer can be improved compared to a metal laminate consisting of only a metal layer and a base layer; a metal laminate in which deformation of the resin layer is suppressed and the peel strength of the metal layer is improved compared to a metal laminate consisting of only a metal layer and a base layer; and a method for producing such a metal laminate.
  • FIG. 1 is a cross-sectional view that illustrates a metal laminate according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view that illustrates a metal laminate according to a second embodiment of the present invention.
  • a "long" film refers to a film that is 5 times or more longer than its width, and preferably 10 times or more longer, specifically a film long enough to be wound into a roll for storage or transportation. There is no particular upper limit to the length of the film, and it can be, for example, 100,000 times or less than its width.
  • (meth)acryloyl includes “acryloyl,” “methacryloyl,” and combinations thereof.
  • the laminate according to one embodiment of the present invention is The adhesive sheet includes a base layer and an easy-adhesion layer directly on at least one main surface of the base layer.
  • the substrate layer contains a cyclic olefin polymer having crystallinity.
  • the easy-adhesion layer is provided on the outermost side of the laminate and is a layer formed from a silane coupling agent (A).
  • the metal laminate obtained by thermocompression bonding the laminate of this embodiment to a metal layer has improved peel strength of the metal layer, and therefore the laminate can be suitably used for producing a circuit board having fine wiring.
  • the laminate of this embodiment includes a base layer containing a crystalline cyclic olefin polymer having a low dielectric constant and heat resistance. Therefore, a substrate using the laminate can reduce the transmission loss of high-frequency electric signals and can withstand high-temperature treatment such as soldering. Therefore, the laminate of this embodiment can be suitably used for manufacturing a high-frequency antenna circuit board.
  • the substrate layer included in the laminate of the present embodiment is generally made of a resin, and the resin contains a cyclic olefin polymer having crystallinity, and further contains an optional component that is included as necessary.
  • the cyclic olefin polymer having such a structure is also called a crystalline cyclic olefin polymer.
  • a crystalline polymer is a polymer that has a melting point Tm.
  • a polymer that has a melting point Tm is a polymer whose melting point Tm can be observed using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • Cyclic olefin polymer refers to a polymer that can be obtained by a polymerization reaction using a cyclic olefin as a monomer, or a polymer that is a hydrogenated product thereof.
  • the polymer is not limited by its manufacturing method.
  • the cyclic olefin polymer usually contains an alicyclic structure.
  • the alicyclic structure contained in the cyclic olefin polymer include a cycloalkane structure and a cycloalkene structure.
  • the cycloalkane structure is preferred because it is easy to obtain a base layer having excellent properties such as thermal stability.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, and preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. When the number of carbon atoms contained in one alicyclic structure is within the above range, the mechanical strength, heat resistance, and moldability of the cyclic olefin polymer are highly balanced.
  • the ratio of the structural units having an alicyclic structure to all structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more.
  • the heat resistance can be improved.
  • the remainder other than the structural unit having an alicyclic structure is not particularly limited and can be appropriately selected depending on the intended use.
  • Preferred examples of the crystalline cyclic olefin polymer include the following polymers ( ⁇ ) to ( ⁇ ). Among these, polymer ( ⁇ ) is particularly preferred because it is easy to obtain a base layer having excellent heat resistance.
  • Polymer ( ⁇ ) A ring-opening polymer of a cyclic olefin monomer, which has crystallinity.
  • Polymer ( ⁇ ) A hydrogenated product of polymer ( ⁇ ) and has crystallinity.
  • Polymer ( ⁇ ) An addition polymer of a cyclic olefin monomer, which has crystallinity.
  • Polymer ( ⁇ ) A hydride of polymer ( ⁇ ) or the like, which has crystallinity.
  • the crystalline cyclic olefin polymer is preferably a ring-opening polymer of dicyclopentadiene having crystallinity, or a hydrogenated ring-opening polymer of dicyclopentadiene having crystallinity, and particularly preferably a hydrogenated ring-opening polymer of dicyclopentadiene having crystallinity.
  • a ring-opening polymer of dicyclopentadiene refers to a polymer in which the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, and even more preferably 100% by weight.
  • the crystalline cyclic olefin polymer preferably has a syndiotactic structure, and more preferably has a high degree of syndiotactic stereoregularity. This can increase the crystallinity of the polymer, thereby making it possible to particularly increase heat resistance.
  • the degree of syndiotactic stereoregularity of the crystalline cyclic olefin polymer can be expressed by the proportion of racemo dyads in the crystalline cyclic olefin polymer.
  • the specific proportion of racemo dyads is preferably 51% or more, more preferably 60% or more, and particularly preferably 70% or more.
  • the proportion of racemo dyads can be measured by the following method.
  • the polymer is subjected to 13 C-NMR measurement by applying the inverse-gated decoupling method at 200° C. using orthodichlorobenzene- d4 as a solvent.
  • a signal at 43.35 ppm derived from the meso dyad and a signal at 43.43 ppm derived from the racemo dyad are identified, with the peak at 127.5 ppm of orthodichlorobenzene- d4 being used as the reference shift.
  • the ratio of the racemo dyads in the polymer can be determined based on the intensity ratio of these signals.
  • the crystalline cyclic olefin polymer may be used alone or in combination of two or more types in any ratio.
  • the crystalline cyclic olefin polymer contained in the base layer is usually crystallized, and thus can have a high degree of crystallinity.
  • the specific range of the degree of crystallinity can be appropriately selected according to the desired performance, but is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more. By making the degree of crystallinity equal to or higher than the lower limit of the above range, the base layer can be given high heat resistance.
  • the crystallinity of a polymer can be measured by X-ray diffraction methods.
  • the weight average molecular weight (Mw) of the crystalline cyclic olefin polymer is preferably 1,000 or more, more preferably 2,000 or more, and is preferably 1,000,000 or less, more preferably 500,000 or less.
  • a crystalline cyclic olefin polymer having such a weight average molecular weight has an excellent balance between moldability and heat resistance.
  • the molecular weight distribution (Mw/Mn) of the crystalline cyclic olefin polymer is preferably 1.0 or more, more preferably 1.5 or more, and is preferably 4.0 or less, more preferably 3.5 or less.
  • Mn represents the number average molecular weight.
  • a crystalline cyclic olefin polymer having such a molecular weight distribution has excellent moldability.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the polymer can be measured in polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as the developing solvent.
  • the melting point Tm of the crystalline cyclic olefin polymer is preferably 200°C or higher, more preferably 230°C or higher, particularly preferably 250°C or higher, and preferably 290°C or lower.
  • the glass transition temperature Tg of the crystalline cyclic olefin polymer is not particularly limited, but is preferably 85°C or higher, preferably 200°C or lower, and more preferably 170°C or lower.
  • the temperature can be set low when thermocompression bonding the laminate including the substrate layer to the metal layer.
  • the crystalline cyclic olefin polymer can be produced by any method, for example, the method described in WO 2016/067893.
  • the proportion of crystalline cyclic olefin polymer in the resin forming the base layer is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the resin forming the base layer may contain optional components in addition to the crystalline cyclic olefin polymer.
  • Optional components include, for example, antioxidants such as phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants; light stabilizers such as hindered amine-based light stabilizers; waxes such as petroleum wax, Fischer-Tropsch wax, and polyalkylene wax; nucleating agents such as sorbitol-based compounds, metal salts of organic phosphoric acids, metal salts of organic carboxylic acids, kaolin, and talc; diaminostilbene derivatives, coumarin derivatives, and azole-based derivatives (for example, benzoxazole derivatives, benzotriazole derivatives, benzoimide derivatives, and benzotriazole derivatives);
  • the optional components include fluorescent brighteners such as benzothiazole derivatives, carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivative
  • the substrate layer can be produced, for example, by a production method including a step of forming a resin containing a crystalline cyclic olefin polymer into a film.
  • Examples of the resin molding method for forming the base layer include resin molding methods such as injection molding, extrusion molding, press molding, inflation molding, blow molding, calendar molding, cast molding, and compression molding. Among these, extrusion molding is preferred because it is easy to control the thickness.
  • the film produced by the above-mentioned production method may be subjected to a process for crystallizing the crystalline cyclic olefin polymer contained in the film to obtain a base layer.
  • the production method for the base layer may include a crystallization step for crystallizing the crystalline cyclic olefin polymer.
  • the film that is the subject of the process for crystallizing the crystalline cyclic olefin polymer is appropriately referred to as the "original film.”
  • This original film may be a film that has been subjected to a stretching process, or may be a film that has not been subjected to a stretching process.
  • the original film is usually held at least two edges and tensioned while being subjected to a predetermined temperature range, thereby carrying out a crystallization process to crystallize the crystalline cyclic olefin polymer.
  • This process makes it easy to manufacture a substrate layer containing a crystallized crystalline cyclic olefin polymer, so that a substrate layer having the above-mentioned excellent properties can be easily obtained.
  • the temperature in the crystallization process is usually set to a temperature equal to or higher than the glass transition temperature Tg of the crystalline cyclic olefin polymer and equal to or lower than the melting point Tm of the crystalline cyclic olefin polymer.
  • Tg glass transition temperature
  • Tm melting point
  • the processing time for maintaining the raw film in the above-mentioned temperature range is preferably 1 second or more, more preferably 5 seconds or more, and preferably 30 minutes or less, more preferably 10 minutes or less.
  • the above-mentioned substrate layer may also be manufactured by, for example, the method described in WO 2016/067893.
  • At least one of the main surfaces of the substrate layer may be surface-treated.
  • the surface treatment include corona treatment, plasma treatment, ultraviolet treatment, flame treatment, and chemical treatment. These surface treatments can increase the affinity between the substrate layer and the easy-adhesion layer described below, and can effectively increase the peel strength between the substrate layer and the metal layer.
  • the surface treatment is preferably a corona treatment, a plasma treatment, an ultraviolet treatment, or a combination thereof.
  • the plasma treatment include atmospheric pressure plasma treatment and vacuum plasma treatment, with atmospheric pressure plasma treatment being preferred since it is possible to treat a long substrate layer continuously.
  • corona treatment is more preferable since it can be performed with a simple device.
  • the discharge power in the corona treatment is preferably 100 W or more, more preferably 200 W or more, and is preferably 2000 W or less, more preferably 1000 W or less.
  • the feed speed of the substrate layer in the corona treatment is preferably 10 mm/sec or more, more preferably 30 mm/sec or more, and is preferably 300 mm/sec or less, more preferably 200 mm/sec or less.
  • an easy-adhesion layer is provided directly on the main surface of the surface-treated base layer.
  • the thickness of the substrate layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more, and is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the substrate layer can have better insulation properties, heat resistance, and flexibility.
  • the easy-adhesion layer is formed from the silane coupling agent (A) and contains a reaction product of the silane coupling agent (A).
  • silane coupling agent is a substituted silane compound that has a hydrolyzable group that can be hydrolyzed and a reactive group.
  • the silane coupling agent (A) preferably contains one or more selected from the group consisting of an amino group, a (meth)acryloyloxy group, a mercapto group, and a vinyl group.
  • the amino group may have a substituent. It is preferable that the silane coupling agent (A) contains an amino group.
  • the amino group is preferable because it has high chemical adsorption to metals (especially copper), and it is preferable that the silane coupling agent (A) contains an amino group that has high chemical adsorption to copper, especially when the metal layer described later contains copper.
  • the hydrolyzable group contained in the silane coupling agent (A) can generate a silanol group when hydrolyzed. It is believed that the easy-adhesion layer contains various compounds, such as a polycondensate of the hydrolyzed silane coupling agent (A); a compound obtained by condensation of a group present on the surface of the layer directly facing the easy-adhesion layer with a silanol group of the hydrolyzed silane coupling agent (A); and a compound obtained by reaction of a group present on the surface of the layer directly facing the easy-adhesion layer with a reactive group possessed by the silane coupling agent.
  • the easy-adhesion layer may contain these various compounds as reaction products of the silane coupling agent (A).
  • the silane coupling agent (A) is more preferably a compound represented by the following general formula (1). (R 1 O) a SiR 2 (3-a) R 3 (1)
  • R1 and R2 each independently represent an unsubstituted monovalent hydrocarbon group, preferably a methyl group or an ethyl group;
  • R3 represents a reactive group containing one or more heteroatoms selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom, or a reactive group containing a vinyl group, preferably a group containing one or more selected from the group consisting of an amino group, a (meth)acryloyloxy group, a mercapto group, and a vinyl group, preferably a group containing an amino group; and a is 2 or 3.
  • the amino group may or may not have a substituent.
  • silane coupling agents containing amino groups include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, and N-2-(aminoethyl)-8-aminooctyltrimethoxysilane.
  • silane coupling agents containing amino groups include “KBM-602”, “KBM-603”, “KBM-903”, “KBE-903”, “KBE-9103P”, “KBM-573”, “KBM-575”, and “KBM-6803” manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agents containing methacryloyloxy groups include 3-methacryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriethoxysilane, and 8-methacryloyloxyoctyltrimethoxysilane.
  • a specific example of a silane coupling agent containing an acryloyloxy group is 3-acryloyloxypropyltrimethoxysilane.
  • silane coupling agents containing (meth)acryloyloxy groups include “KBM-502,” “KBM-503,” “KBE-502,” “KBE-503,” “KBM-5803,” and “KBM-5103,” manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agents containing mercapto groups include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • silane coupling agents containing mercapto groups include “KBM-802” and “KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agents containing vinyl groups include vinyltrimethoxysilane, vinyltriethoxysilane, 7-octenyltrimethoxysilane, p-styryltrimethoxysilane, and allyltrimethoxysilane.
  • silane coupling agents containing vinyl groups include “KBM-1003,” “KBE-1003,” “KBM-1083,” and “KBM-1403,” manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agents containing epoxy groups include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, and 8-glycidyloxyoctyltrimethoxysilane.
  • silane coupling agents containing epoxy groups include “KBM-303,” “KBM-402,” “KBM-403,” “KBE-402,” “KBE-403,” and “KBM-4803,” manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling examples include 3-ureidopropyltrialkoxysilane, 3-isocyanatepropyltriethoxysilane, and tris(trimethoxysilylpropyl)isocyanurate.
  • the silane coupling agent (A) may be used alone or in combination of two or more in any ratio.
  • the silane coupling agent (A) is preferably water-soluble.
  • a silane coupling agent being water-soluble means that when 1 g of the silane coupling agent (A) is dissolved in 100 g of water at 25°C, no insoluble matter is observed and a 1 wt% aqueous solution can be prepared without adjusting the pH.
  • the thickness of the easy-adhesion layer is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more, and is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 80 nm or less.
  • the thickness of the easy-adhesion layer is within the above range, the peel strength between the base layer and the metal layer can be effectively increased.
  • the thickness of each of the two easy-adhesion layers is within the above thickness range.
  • the laminate may have one easy-adhesion layer, and the one easy-adhesion layer may be directly attached to one of the two main surfaces of the base layer.
  • the laminate may have two easy-adhesion layers, and each of the two easy-adhesion layers may be directly attached to each of the two main surfaces of the base layer.
  • the laminate may include an optional layer in addition to the substrate layer and the easy-adhesion layer.
  • optional layers include an adhesive layer for bonding to other members, a matte layer that improves the slipperiness of the film, a hard coat layer such as an impact-resistant polymethacrylate resin layer, an anti-reflection layer, and an anti-fouling layer.
  • the easy-adhesion layer is provided on the outermost side of the laminate, and the optional layer is provided on a main surface other than the one main surface of the substrate layer that the easy-adhesion layer directly contacts.
  • each of the two easy-adhesion layers is provided on the outermost side of the laminate, and the laminate has a first easy-adhesion layer, a base material layer, and a second easy-adhesion layer in this order.
  • the first and second easy-adhesion layers may be formed from the same silane coupling agent (A) or may be formed from different silane coupling agents (A).
  • the first and second easy-adhesion layers are formed from the same silane coupling agent (A).
  • the thickness of the laminate may be determined according to the application of the laminate, and is, for example, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, and is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less.
  • the laminate may be long or may be in the form of a sheet, but it is preferable that the laminate is long. If the laminate is long, any layer (for example, a metal layer, which will be described later) can be efficiently laminated onto the laminate by the roll-to-roll method.
  • any layer for example, a metal layer, which will be described later
  • the laminate of this embodiment can be, for example, a metal laminate by laminating a metal layer on the outermost easy-adhesion layer.
  • the laminate of this embodiment can be suitably used for manufacturing a circuit board having fine wiring. It can also be suitably used for manufacturing a circuit board, particularly for manufacturing a high-frequency antenna circuit board.
  • the laminate can be produced by any method.
  • the laminate can be produced by a method including the following steps (1), (3), and (4a). Steps (1), (3), and (4a) are usually carried out in this order.
  • Step (1) preparing a substrate layer containing a crystalline cyclic olefin polymer;
  • Step (3) subjecting at least one main surface of the substrate layer to at least one surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment;
  • A silane coupling agent
  • the substrate layer prepared in step (1) may be formed from the resin described above as the resin forming the substrate layer contained in the laminate.
  • a commercially available product may be used as the substrate layer.
  • the thickness range of the substrate layer may be the same as the thickness range of the substrate layer contained in the laminate.
  • the discharge power and feed speed of the base layer for the corona treatment that can be performed in step (3) can be in the same range as the above-mentioned preferred range.
  • coating in step (4a) means using a liquid material to form a layer of the liquid material, and coating also includes spraying.
  • the liquid composition used in step (4a) contains the silane coupling agent (A) and usually further contains a solvent.
  • the solvent means a medium that dissolves or disperses the silane coupling agent (A).
  • the solvent is preferably a solvent that dissolves at least a part of the silane coupling agent (A).
  • solvents examples include water, ketone solvents (e.g., acetone, methyl ethyl ketone, methyl isobutyl ketone), alcohol solvents (e.g., methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, sec-butyl alcohol, tert-butyl alcohol), hydrocarbon solvents (e.g., benzene, toluene, xylene, cyclohexane, ethylcyclohexane), and combinations of two or more of these.
  • the liquid composition preferably contains water. When the liquid composition contains water, hydrolysis of the hydrolyzable group of the silane coupling agent (A) is promoted, and the function of the silane coupling agent (A) can be effectively exerted.
  • the liquid composition may contain optional components as necessary in addition to the silane coupling agent (A) and the solvent.
  • optional components include pH adjusters such as acids, bases, and salts; thickeners, defoamers; penetrating agents; curing catalysts; etc.
  • the content of the silane coupling agent (A) in the liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, even more preferably 0.1% by weight or more, and is preferably 3% by weight or less, more preferably 2% by weight or less, even more preferably 1% by weight or less, based on 100% by weight of the liquid composition.
  • the thickness of the easy-adhesion layer can be easily adjusted to the desired range.
  • the method for forming the coating layer, which is a layer of the liquid composition, on the main surface of the surface-treated substrate layer is not particularly limited, and any method can be used.
  • coating methods include curtain coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, die coating, and gap coating.
  • the thickness of the coating layer formed by coating the liquid composition can be any thickness depending on the thickness of the easy-adhesion layer, and may be, for example, 1 ⁇ m or more or 2 ⁇ m or more, for example, 100 ⁇ m or less or 50 ⁇ m or less.
  • the coating layer is dried by any method to form an easy-adhesion layer.
  • the drying method include natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying.
  • a method including heat drying is preferred.
  • the temperature for heat drying is preferably 60°C or higher, more preferably 80°C or higher, even more preferably 100°C or higher, and is preferably 200°C or lower, more preferably 180°C or lower, even more preferably 150°C or lower. This promotes the hydrolysis reaction of the silane coupling agent (A) and can effectively suppress deformation of the substrate layer.
  • the drying time of the coating layer can be set appropriately depending on the drying temperature.
  • the drying time is preferably 1 minute or more, more preferably 3 minutes or more, and preferably 30 minutes or less, more preferably 15 minutes or less. This can promote the hydrolysis reaction of the silane coupling agent (A) and effectively suppress deformation of the substrate layer.
  • step (3) one main surface of the substrate layer is surface-treated, and in step (4a), a liquid composition is applied onto one main surface of the substrate layer that has been surface-treated to form a coating layer, and the coating layer is dried to form an easy-adhesion layer, thereby obtaining a laminate comprising an easy-adhesion layer and a substrate layer.
  • step (3) both main surfaces of the substrate layer are surface-treated, and in step (4a), a liquid composition is applied to both main surfaces of the substrate layer that have been surface-treated to form coating layers, and the coating layers are dried to form easy-adhesion layers, thereby obtaining a laminate having a first easy-adhesion layer, a substrate layer, and a second easy-adhesion layer in this order.
  • the method for producing the laminate may include any optional steps in addition to the above steps (1), (3), and (4a).
  • the optional steps include a step of winding up a long laminate, a step of cutting the laminate, a step of laminating a protective film onto the laminate, and a step of overlaying an interleaf paper on the laminate and winding it up together with the laminate.
  • a metal laminate according to one embodiment of the present invention includes the laminate and a metal layer directly on the easy-adhesion layer of the laminate, the metal layer being a layer of metal containing at least one selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel.
  • the method for producing the metal laminate is not particularly limited, and a preferred method for producing the metal laminate will be described later.
  • the material for the metal layer is preferably copper, gold, silver, aluminum, nickel, chromium, or alloys thereof, or stainless steel, which have excellent chemical stability, electrical conductivity, cost, ease of processing, and peel strength. From the viewpoint of the balance between height and surface roughness, copper is more preferable.
  • the method for producing the copper foil is arbitrary.
  • the copper foil may be an electrolytic copper foil or a rolled copper foil.
  • the metal layer is preferably a rolled copper foil in terms of excellent flexibility and surface roughness.
  • the metal layer is preferably an electrolytic copper foil.
  • the thickness of the metal layer is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, even more preferably 10 ⁇ m or more, and is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 30 ⁇ m or less.
  • the arithmetic mean roughness Ra of the metal layer on the main surface directly contacting the adhesion layer is preferably greater than 50 nm, more preferably 60 nm or more, and is preferably 200 nm or less, more preferably 150 nm or less.
  • the arithmetic mean roughness Ra of the main surface of the metal layer is equal to or greater than the lower limit, the peel strength of the metal layer can be further increased.
  • the arithmetic mean roughness of the main surface of the metal layer is equal to or less than the upper limit, the transmission loss in the high frequency range in the circuit formed from the metal laminate can be further reduced.
  • the arithmetic mean roughness Ra of the metal layer can be measured in accordance with JIS B0601-2001 using various surface roughness measuring instruments.
  • the arithmetic mean roughness Ra of the metal layer in this specification is the value obtained by measuring in accordance with JIS B0601-2001 using an "ET4000A" manufactured by Kosaka Laboratory.
  • the laminate contained in the metal laminate is the above-mentioned laminate, and includes a base layer containing a cyclic olefin polymer having crystallinity and an easy-adhesion layer formed from a silane coupling agent (A).
  • A silane coupling agent
  • Examples of the substrate layer and the easy-adhesion layer contained in the metal laminate include the same examples as those mentioned above.
  • Fig. 1 is a cross-sectional view that shows a schematic diagram of the metal laminate according to the first embodiment of the present invention.
  • the metal laminate 100 includes a laminate 110 and a metal layer 120.
  • the laminate 110 includes a base layer 111 and an easy-adhesion layer 112.
  • the metal laminate 100 includes the base layer 111, the easy-adhesion layer 112, and the metal layer 120 in this order in the thickness direction.
  • the main surface 112D of the easy-adhesion layer 112 is directly on the main surface 111U of the base material layer 111, and no layer is interposed between the base material layer 111 and the easy-adhesion layer 112.
  • the main surface 120D of the metal layer 120 is directly on the main surface 112U of the easy-adhesion layer 112, and no layer is interposed between the metal layer 120 and the easy-adhesion layer 112.
  • Examples of the base material layer 111, the easy-adhesion layer 112, and the metal layer 120 are the same as the examples of the base material layer, the easy-adhesion layer, and the metal layer described above.
  • Fig. 2 is a cross-sectional view showing a schematic diagram of the metal laminate according to the second embodiment of the present invention.
  • the metal laminate 200 includes a metal layer 220a, a laminate 210, and a metal layer 220b in this order in the thickness direction.
  • the laminate 210 includes an easy-adhesion layer 212a, a base layer 211, and an easy-adhesion layer 212b in this order in the thickness direction.
  • a principal surface 212aU of the easy-adhesion layer 212a is directly in contact with a principal surface 211D of the base material layer 211, and no layer is interposed between the base material layer 211 and the easy-adhesion layer 212a.
  • a principal surface 212bD of the easy-adhesion layer 212b is directly in contact with a principal surface 211U of the base material layer 211, and no layer is interposed between the base material layer 211 and the easy-adhesion layer 212b.
  • the main surface 220aU of the metal layer 220a is directly in contact with the main surface 212aD of the easy-adhesion layer 212a, and no layer is interposed between the metal layer 220a and the easy-adhesion layer 212a.
  • a principal surface 220bD of the metal layer 220b is directly in contact with a principal surface 212bU of the easy-adhesion layer 212b, and no layer is interposed between the metal layer 220b and the easy-adhesion layer 212b.
  • Examples of the base material layer 211, the easy-adhesion layers 212a and 212b, and the metal layers 220a and 220b are the same as the examples of the base material layer, the easy-adhesion layers, and the metal layers described above.
  • the metal laminate of this embodiment can be suitably used for producing a double-sided wiring board.
  • the total thickness of the metal laminate may be within any range depending on the application of the metal laminate, but is, for example, preferably 6 ⁇ m or more, more preferably 11 ⁇ m or more, even more preferably 21 ⁇ m or more, and is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, even more preferably 150 ⁇ m or less.
  • the peel strength P1 of the metal layer of the metal laminate according to this embodiment is preferably 0.05 N/25 mm or more, more preferably 0.1 N/25 mm or more, and even more preferably 0.2 N/25 mm or more.
  • the value of P1/P0 is usually greater than 1, preferably 1.1 or more, more preferably 1.2 or more, even more preferably 1.3 or more, and even more preferably 1.5 or more, and the larger the value, the more preferable it is, but it may be, for example, equal to or less than 20.
  • the reference laminate is a laminate having the same configuration as the metal laminate according to this embodiment except that it does not have an easy-adhesion layer. There are also cases where the peel strength between the substrate layer and the metal layer is so small that the peel strength P0 cannot be measured.
  • the peel strength of the metal layer can be measured by the following method.
  • the metal laminate to be evaluated is punched out into a rectangle having dimensions of 25 mm width by 100 mm length.
  • a rectangular glass plate having dimensions of 25 mm width x 100 mm length is prepared, and the surface of the substrate layer of the metal laminate is bonded to the surface of the glass plate using an adhesive to produce a sample plate for peel strength measurement with an exposed metal layer.
  • the longitudinal ends of the metal layer were gripped with a load cell of 5N (ZP-5N), 20N (ZP-20N), or 50N (ZP-50N) manufactured by Imada Co., Ltd., and the metal layer was pulled in the 90° direction (normal direction) of the sample plate at a peel speed of 100 mm/min. The pulling force was recorded as the peel strength per 25 mm width (unit: N/25 mm) of the metal layer in the metal laminate.
  • the metal laminate has an improved peel strength of the metal layer, and can therefore be suitably used for producing circuit boards having fine wiring. Furthermore, the metal laminate includes a substrate layer containing a crystalline cyclic olefin polymer having a low dielectric constant and heat resistance, and therefore can reduce transmission loss of high-frequency electrical signals, making it suitable for use in the manufacture of high-frequency antenna circuit boards.
  • the metal laminate can be produced by any method, for example, by the following method.
  • the method for producing the metal laminate can include any steps in addition to the steps in the following method.
  • the method for producing a metal laminate according to embodiment A1 includes steps (1), (2), (3), (4a), and (5a).
  • step (1) a substrate layer containing a crystalline cyclic olefin polymer is prepared.
  • step (3) at least one of the main surfaces of the substrate layer is subjected to at least one surface treatment selected from a corona treatment, a plasma treatment, and an ultraviolet treatment.
  • step (4a) a liquid composition containing a silane coupling agent (A) is applied onto the main surface of the surface-treated base layer to form a coating layer, and the coating layer is dried to form an easy-adhesion layer.
  • steps (1), (3), and (4a) are the same as those described in the section on the method for producing a laminate. Steps (1), (3), and (4a) are usually performed in this order.
  • a metal layer is prepared, which is a layer of metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel.
  • the metal layer prepared in step (2) may be the same as the metal layer contained in the metal laminate.
  • step (5a) the easy-adhesion layer formed on the main surface of the base layer and the metal layer are arranged so as to be directly in contact with each other to obtain an intermediate laminate, and the intermediate laminate is thermocompression-bonded to obtain a metal laminate.
  • Steps (2) and (5a) are usually carried out in this order.
  • Step (5a) is usually carried out after steps (1), (2), (3), and (4a).
  • Step (2) may be carried out before, simultaneously with, or after each of steps (1), (3), and (4a).
  • the pressure of the thermocompression bonding in step (5a) is, for example, preferably 0.5 MPa or more, more preferably 1 MPa or more, even more preferably 2 MPa or more, and preferably 20 MPa or less, more preferably 15 MPa or less, even more preferably 10 MPa or less.
  • the temperature of the thermocompression bonding in step (5a) is, for example, preferably 120°C or higher, more preferably 150°C or higher, even more preferably 200°C or higher, and preferably 300°C or lower, more preferably 280°C or lower, even more preferably 250°C or lower.
  • the time for thermocompression bonding in step (5a) is, for example, preferably 0.1 minute or more, more preferably 1 minute or more, even more preferably 5 minutes or more, and preferably 30 minutes or less, more preferably 20 minutes or less, even more preferably 10 minutes or less.
  • step (3) one of the main surfaces of the substrate layer is surface-treated, and in step (4a), a liquid composition is applied onto one of the main surfaces of the substrate layer that has been surface-treated to form a coating layer, and the coating layer is dried to form an easy-adhesion layer, thereby obtaining a laminate having a two-layer structure including an easy-adhesion layer and a substrate layer.
  • step (5a) the easy-adhesion layer and the metal layer are arranged so as to be directly connected to each other to obtain an intermediate laminate, and this intermediate laminate is heat-pressed to obtain a metal laminate including a metal layer, an easy-adhesion layer, and a substrate layer in this order.
  • step (2) a first metal layer and a second metal layer are prepared, in step (3), both main surfaces of the substrate layer are surface-treated, and in step (4a), a liquid composition is applied to both main surfaces of the substrate layer that have been surface-treated to form a coating layer, and the coating layer is dried to form an easy-adhesion layer, thereby obtaining a three-layer structure laminate having a first easy-adhesion layer, a substrate layer, and a second easy-adhesion layer in this order.
  • step (5a) the first easy-adhesion layer and the first metal layer are arranged so as to be directly connected to each other, and the second easy-adhesion layer and the second metal layer are arranged so as to be directly connected to each other to obtain an intermediate laminate, and this intermediate laminate is heat-pressed to obtain a metal laminate having a first metal layer, a first easy-adhesion layer, a substrate layer, a second easy-adhesion layer, and a second metal layer in this order.
  • the method for producing a metal laminate according to embodiment A2 includes steps (1), (2), (3), (4b), and (5b). Steps (1), (2), and (3) are the same as steps (1), (2), and (3) in the embodiment A1.
  • step (4b) a liquid composition containing a silane coupling agent (A) is applied onto one of the main surfaces of the metal layer to form a coating layer, and the coating layer is dried to form an easy-adhesion layer.
  • step (5b) an intermediate laminate is obtained by arranging the easy-adhesion layer formed on the main surface of the metal layer so as to be directly in contact with the main surface of the surface-treated base layer, and the intermediate laminate is thermocompressed to obtain a metal laminate.
  • Steps (1), (3), and (5b) are usually performed in this order. Steps (2), (4b), and (5b) are usually performed in this order. Steps (1) and (3) and steps (2) and (4b) may be performed in parallel, steps (2) and (4b) may be performed before steps (1) and (3), and steps (2) and (4b) may be performed after steps (1) and (3).
  • the liquid composition containing the silane coupling agent (A) used in the step (4b) may be the same as the liquid composition described in the section on the method for producing the laminate.
  • the method for applying the liquid composition in step (4b) may be the same as the method for applying the liquid composition in step (4a) explained in the section on the method for producing the laminate.
  • the method for drying the coating layer in step (4b) may be the same as the method for drying in step (4a).
  • the conditions for the thermocompression bonding in step (5b) may be the same as the conditions for the thermocompression bonding in step (5a) of embodiment A1.
  • step (3) one of the main surfaces of the base layer is subjected to a surface treatment, and in step (5b), the easy-adhesion layer and the metal layer are arranged so as to be directly in contact with each other to obtain an intermediate laminate, which is then thermocompressed to obtain a metal laminate having a metal layer, an easy-adhesion layer, and a base layer in this order.
  • step (2) a first metal layer and a second metal layer are prepared, in step (3), both main surfaces of the base layer are surface-treated, in step (4b), a first easy-adhesion layer is formed on one main surface of the first metal layer, and a second easy-adhesion layer is formed on one main surface of the second metal layer, and then in step (5b), the first easy-adhesion layer formed on one main surface of the first metal layer and the first main surface of the base layer are arranged so as to be directly in contact with each other, and the second easy-adhesion layer formed on one main surface of the second metal layer and the second main surface of the base layer are arranged so as to be directly in contact with each other, thereby obtaining an intermediate laminate, and by thermocompressing the intermediate laminate, a metal laminate having the first metal layer, the first easy-adhesion layer, the base layer, the second easy-adhesion layer, and the second metal layer in this order can be obtained.
  • the ratio of racemo-dyads in the polymer was measured as follows.
  • the polymer was subjected to 13C -NMR measurement by applying the inverse-gated decoupling method at 200°C using orthodichlorobenzene- d4 as a solvent.
  • a signal at 43.35 ppm derived from a meso dyad and a signal at 43.43 ppm derived from a racemo dyad were identified, with the peak at 127.5 ppm of orthodichlorobenzene- d4 being the reference shift.
  • the proportion of the racemo dyad in the polymer was calculated based on the intensity ratio of these signals.
  • the glass transition temperature Tg and melting point Tm of a polymer were measured as follows. The polymer sample was melted by heating and the melt was quenched with dry ice. The glass transition temperature Tg and melting point Tm of the sample were then measured using a differential scanning calorimeter (DSC) at a heating rate of 10° C./min (heating mode).
  • DSC differential scanning calorimeter
  • the peel strength of the metal layer was measured by the following method.
  • the metal laminate to be evaluated was punched out into a rectangle having dimensions of 25 mm width ⁇ 100 mm length.
  • a rectangular glass plate having dimensions of 25 mm width ⁇ 100 mm length was prepared, and the surface of the base layer of the metal laminate and the surface of the glass plate were bonded together using an adhesive to prepare a sample plate for measuring peel strength in which the metal layer was exposed.
  • the longitudinal end of the metal layer was gripped by a 5N load cell (ZP-5N) manufactured by Imada Co., Ltd., and the metal layer was pulled in the 90° direction (normal direction) of the sample plate at a peel speed of 100 mm/min. The pulling force was recorded as the peel strength per 25 mm width (unit: N/25 mm) of the metal layer in the metal laminate.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opened polymer of dicyclopentadiene were 8,830 and 29,800, respectively, and the molecular weight distribution (Mw/Mn) calculated from these was 3.37.
  • a filter aid Showa Chemical Industry Co., Ltd.'s "Radiolite (registered trademark) #1500" was added, and the adsorbent and the solution were filtered using a PP pleated cartridge filter (Advantec Toyo Co., Ltd.'s "TCP-HX").
  • the hydride and the solution contained in the reaction liquid were separated using a centrifuge and dried under reduced pressure at 60°C for 24 hours to obtain 28.5 parts of a crystalline hydride of a ring-opening polymer of dicyclopentadiene.
  • the hydrogenation rate of this hydride was confirmed to be 99% or more, with a glass transition temperature Tg of 97°C, a melting point Tm of 266°C, and a racemo-dyad ratio of 89%.
  • the molded product was chopped with a strand cutter to obtain pellets of crystalline resin A.
  • the operating conditions of the twin-screw extruder are shown below. ⁇ Barrel temperature setting: 270°C ⁇ 280°C Die setting temperature: 250°C Screw rotation speed: 145 rpm
  • Both ends of the film in the width direction were gripped with clips of the tenter stretching machine, pulled, and stretched in the film width direction under the conditions of a stretching temperature of 125 ° C and a stretching ratio of 1.33 times. Then, while continuing to fix the width of the clip, the film was passed through an oven at 170 ° C for 30 seconds to perform a crystallization treatment. Then, both ends of the film in the width direction were cut. As a result, a resin film with a width of 1300 mm and a thickness of 38 ⁇ m was obtained. The crystallinity of the obtained resin film was measured as a sample, and it was 42%.
  • Metal Layer The following copper foil was used as the metal layer. (Rolled copper foil) Thickness: 20 ⁇ m, arithmetic mean surface roughness Ra: 64 nm (Electrolytic copper foil) Thickness: 18 ⁇ m, arithmetic mean surface roughness Ra: 179 nm
  • KBM603 silane coupling agent containing amino group, water-soluble
  • KBM1003 silane coupling agent containing vinyl group
  • KBM5103 silane coupling agent containing acryloyloxy group
  • KBM803 silane coupling agent containing mercapto group: 3-mercaptopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example Group A [Examples A1 to A8] (1-1. Preparation of Base Layer) As the substrate layer, the resin film produced in Production Example 1 was prepared.
  • silane coupling agent (A) was diluted with the solvent shown in the table to prepare a silane coupling agent solution as a liquid composition containing 0.2% by weight of the silane coupling agent (A).
  • silane coupling agent solution was applied to the corona-treated surface of the resin film with a bar coater to form a coating layer.
  • the thickness of the coating layer was set so that the layer (easy adhesion layer) after drying had the thickness shown in the table.
  • the thickness of the coating layer was adjusted by adjusting the coating conditions.
  • the resin film on which the coating layer was formed was heated in an oven at 100°C for 5 minutes to dry the coating layer, thereby obtaining a laminate comprising a resin film as a base layer and an easy-adhesion layer directly on the main surface of the resin film.
  • a surface-treated resin film was obtained by the same procedures as in (1-1) and (1-2) above.
  • a metal laminate was obtained in the same manner as in (1-4) above, except for the following points.
  • the obtained resin film was used in place of a laminate.
  • the corona-treated surface of the resin film was placed directly on the rolled copper foil to obtain an intermediate laminate.
  • the metal layer did not adhere to the resin film and peeled off immediately, so that the peel strength could not be measured by the above-mentioned method.
  • Comparative Example A2 A metal laminate was obtained in the same manner as in Comparative Example A1, except for the following points. Instead of the surface-treated resin film, the resin film produced in Production Example 1 was used. One surface of the resin film was directly connected to the rolled copper foil to obtain an intermediate laminate. In the obtained metal laminate, the metal layer did not adhere to the resin film and peeled off immediately, so that the peel strength could not be measured by the above-mentioned method.
  • the metal laminates of Comparative Examples A1 and A2 which do not have an easy-adhesion layer, have such low adhesion between the metal layer and the base layer that the peel strength is impossible to measure.
  • the metal laminates of Examples A1 to A8, which have a base layer, an easy-adhesion layer directly attached to the base layer, and a metal layer directly attached to the easy-adhesion layer have a significantly improved peel strength of the metal layer compared to the metal laminates of Comparative Examples A1 and A2.
  • Example B1 In the above (1-4), electrolytic copper foil was used instead of rolled copper foil.
  • a metal laminate was obtained in the same manner as in Example A1, except for the above.
  • the peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 1.01 N/25 mm, which was 4.6 times (1.01/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
  • Example B2 In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 10 nm. In the above (1-4), electrolytic copper foil was used instead of rolled copper foil. A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 2.39 N/25 mm, which was 10.9 times (2.39/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
  • Example B3 In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 14 nm. In the above (1-4), electrolytic copper foil was used instead of rolled copper foil. A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 2.92 N/25 mm, which was 13.3 times (2.92/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
  • Example B4 In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 24 nm. In the above (1-4), electrolytic copper foil was used instead of rolled copper foil. A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 2.94 N/25 mm, which was 13.4 times (2.94/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
  • Example B5 In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 50 nm. In the above (1-4), electrolytic copper foil was used instead of rolled copper foil. A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 3.18 N/25 mm, which was 14.5 times (3.18/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
  • a surface-treated resin film was obtained by the same procedures as in (1-1) and (1-2) above.
  • a metal laminate was obtained in the same manner as in (1-4) above, except for the following points.
  • the obtained resin film was used in place of a laminate.
  • Electrolytic copper foil was used instead of rolled copper foil.
  • the corona-treated surface of the resin film was placed directly on the electrolytic copper foil to obtain an intermediate laminate.
  • the peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method and was found to be 0.22 N/25 mm.
  • Comparative Example B2 A metal laminate was obtained in the same manner as in Comparative Example B1, except for the following points. Instead of the surface-treated resin film, the resin film produced in Production Example 1 was used. One side of the resin film was directly laminated onto the electrolytic copper foil to obtain an intermediate laminate. In the obtained metal laminate, the metal layer did not adhere to the resin film and peeled off immediately, so that the peel strength could not be measured by the above-mentioned method.
  • the metal laminates of Examples B1 to B5 which have a base layer, an easy-adhesion layer directly attached to the base layer, and a metal layer directly attached to the easy-adhesion layer, have a significantly improved peel strength of the metal layer compared to the metal laminates of Comparative Examples B1 and B2.

Landscapes

  • Laminated Bodies (AREA)

Abstract

A laminate comprising a base layer and an easy-to-bond layer in direct contact with at least one main surface of the base layer, wherein the base layer includes a cycloolefin polymer having crystallinity and the easy-to-bond layer is disposed as an outermost layer of the laminate and has been formed from a silane coupling agent (A).

Description

積層体、並びに、金属積層体及びその製造方法Laminate, metal laminate and method for producing same
 本発明は、積層体、並びに、金属積層体及びその製造方法に関する。 The present invention relates to a laminate, a metal laminate, and a method for manufacturing the same.
 プリント配線板として好適に用いられる樹脂基板として、融点を有する結晶性オレフィン樹脂からなる層と銅からなる層とが、所定の官能基を含む脂環式構造含有樹脂からなる層を介して接着されて得られる積層体が知られている(特許文献1参照)。
 また、ノルボルネン系重合体から形成された樹脂フィルムに大気圧プラズマ照射により表面処理を行い、次いで表面処理された樹脂フィルムをシランカップリング剤により処理し、次いでシリコンウェハ基板の一方の面に、表面処理及びシランカップリング剤による処理をされた樹脂フィルムを重ねて加熱圧着し、前記基板の他方の面に半導体回路を形成した後、樹脂フィルムを剥離する、半導体素子の製造方法が知られている。(特許文献2、実施例2参照)。
A laminate obtained by bonding a layer made of a crystalline olefin resin having a melting point and a layer made of copper via a layer made of an alicyclic structure-containing resin that contains a predetermined functional group is known as a resin substrate that is suitably used as a printed wiring board (see Patent Document 1).
Also known is a method for manufacturing a semiconductor element, which comprises surface-treating a resin film formed from a norbornene-based polymer by irradiating it with atmospheric pressure plasma, then treating the surface-treated resin film with a silane coupling agent, then overlaying the resin film that has been surface-treated and treated with the silane coupling agent on one side of a silicon wafer substrate and heat-pressing the resulting substrate to form a semiconductor circuit on the other side of the substrate, and then peeling off the resin film (see Patent Document 2, Example 2).
特開2015-104858号公報JP 2015-104858 A 特開2007-165636号公報JP 2007-165636 A
 しかし、従来の金属層と樹脂層とを含む金属積層体は、金属層の剥離強度が十分でない場合があった。また、金属層と樹脂層とを熱圧着する際に、樹脂層が変形する場合があった。 However, in conventional metal laminates that include a metal layer and a resin layer, the peel strength of the metal layer was sometimes insufficient. Also, when the metal layer and the resin layer were thermocompression-bonded, the resin layer sometimes deformed.
 したがって、金属層と熱圧着して金属積層体とした場合に、樹脂層の変形が抑制されており、金属層及び基材層のみからなる金属積層体よりも、金属層の剥離強度を向上させうる積層体;樹脂層の変形が抑制されており、金属層及び基材層のみからなる金属積層体よりも、金属層の剥離強度が向上している金属積層体;かかる金属積層体の製造方法;が求められる。 Therefore, what is required is a laminate in which, when the resin layer is thermocompression bonded to the metal layer to form a metal laminate, deformation of the resin layer is suppressed and the peel strength of the metal layer can be improved compared to a metal laminate consisting of only a metal layer and a base layer; a metal laminate in which deformation of the resin layer is suppressed and the peel strength of the metal layer is improved compared to a metal laminate consisting of only a metal layer and a base layer; and a method for manufacturing such a metal laminate.
 本発明者は、前記課題を解決するべく、鋭意検討した。その結果、所定の基材層と、前記基材層の少なくとも一方の主面に直接する所定の易接着層とを含む積層体により、前記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
The present inventors have conducted extensive research to solve the above problems. As a result, they have found that the above problems can be solved by a laminate including a predetermined base layer and a predetermined easy-adhesion layer directly attached to at least one main surface of the base layer, and have completed the present invention.
That is, the present invention provides the following.
 [1] 基材層と、前記基材層の少なくとも一方の主面に直接する易接着層とを含む積層体であって、
 前記基材層は、結晶性を有する環状オレフィン重合体を含み、
 前記易接着層は、前記積層体の最も外側に設けられシランカップリング剤(A)から形成された、積層体。
 [2] 前記易接着層の厚みが、5nm以上200nm以下である、[1]に記載の積層体。
 [3] 前記基材層の前記少なくとも一方の主面は、コロナ処理、プラズマ処理、及び紫外線処理から選ばれる少なくとも一つの表面処理がされている、[1]又は[2]に記載の積層体。
 [4] 前記シランカップリング剤(A)が、水溶性である、[1]~[3]のいずれか一項に記載の積層体。
 [5] 前記シランカップリング剤(A)が、アミノ基、(メタ)アクリロイルオキシ基、メルカプト基、及びビニル基からなる群から選択される一種以上を含む、[1]~[4]のいずれか一項に記載の積層体。
 [6] [1]~[5]のいずれか一項に記載の積層体と、前記積層体の前記易接着層に直接する金属層とを含む、金属積層体であって、
 前記金属層は、銅、金、銀、アルミニウム、ニッケル、及びクロムからなる群より選択される一種以上を含む金属の層又はステンレス鋼の層である、金属積層体。
 [7] 前記金属層の算術平均粗さRaが、50nmより大きい、[6]に記載の金属積層体。
 [8] [6]又は[7]に記載の金属積層体の製造方法であって、
 下記工程(1)、(2)、(3)、(4a)、及び(5a)を含むか、又は
 下記工程(1)、(2)、(3)、(4b)、及び(5b)を含む、金属積層体の製造方法。
 工程(1):結晶性を有する環状オレフィン重合体を含む基材層を用意する工程、
 工程(2):銅、金、銀、アルミニウム、ニッケル、及びクロムからなる群より選択される一種以上を含む金属の層又はステンレス鋼の層である、金属層を用意する工程、
 工程(3):前記基材層の少なくとも一方の主面に、コロナ処理、プラズマ処理、及び紫外線処理から選ばれる少なくとも一つの表面処理をする工程、
 工程(4a):表面処理をされた前記基材層の主面上に、シランカップリング剤(A)を含む液状組成物を塗工して塗工層を形成し、前記塗工層を乾燥させて易接着層を形成する工程、
 工程(4b):前記金属層の片方の主面上に、シランカップリング剤(A)を含む液状組成物を塗工して塗工層を形成し、前記塗工層を乾燥させて易接着層を形成する工程、
 工程(5a):前記基材層の主面上に形成された前記易接着層と前記金属層とを直接するように配置して中間積層体を得て、前記中間積層体を熱圧着して金属積層体を得る工程、
 工程(5b):前記金属層の主面上に形成された前記易接着層と表面処理をされた前記基材層の主面とを直接するように配置して中間積層体を得て、前記中間積層体を熱圧着して金属積層体を得る工程。
[1] A laminate comprising a base layer and an easy-adhesion layer directly on at least one main surface of the base layer,
The substrate layer contains a crystalline cyclic olefin polymer,
The easy-adhesion layer is provided on the outermost side of the laminate and is formed from a silane coupling agent (A).
[2] The laminate according to [1], wherein the thickness of the easy-adhesion layer is 5 nm or more and 200 nm or less.
[3] The laminate according to [1] or [2], wherein the at least one main surface of the base layer has been subjected to at least one surface treatment selected from a corona treatment, a plasma treatment, and an ultraviolet treatment.
[4] The laminate according to any one of [1] to [3], wherein the silane coupling agent (A) is water-soluble.
[5] The laminate according to any one of [1] to [4], wherein the silane coupling agent (A) contains one or more selected from the group consisting of an amino group, a (meth)acryloyloxy group, a mercapto group, and a vinyl group.
[6] A metal laminate comprising the laminate according to any one of [1] to [5] and a metal layer directly on the easy-adhesion layer of the laminate,
The metal layer is a layer of a metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel.
[7] The metal laminate according to [6], wherein the metal layer has an arithmetic mean roughness Ra of more than 50 nm.
[8] A method for producing a metal laminate according to [6] or [7],
A method for producing a metal laminate, comprising the following steps (1), (2), (3), (4a), and (5a), or comprising the following steps (1), (2), (3), (4b), and (5b).
Step (1): preparing a substrate layer containing a crystalline cyclic olefin polymer;
Step (2): preparing a metal layer, which is a layer of metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel;
Step (3): subjecting at least one of the main surfaces of the substrate layer to at least one surface treatment selected from a corona treatment, a plasma treatment, and an ultraviolet treatment;
Step (4a): A step of applying a liquid composition containing a silane coupling agent (A) to the main surface of the surface-treated base layer to form a coating layer, and drying the coating layer to form an easy-adhesion layer;
Step (4b): A step of applying a liquid composition containing a silane coupling agent (A) to one main surface of the metal layer to form a coating layer, and drying the coating layer to form an easy-adhesion layer;
Step (5a): A step of arranging the easy-adhesion layer formed on the main surface of the base layer and the metal layer so as to be directly connected to each other to obtain an intermediate laminate, and thermocompressing the intermediate laminate to obtain a metal laminate;
Step (5b): A step of arranging the easy-adhesion layer formed on the main surface of the metal layer so that it is directly connected to the main surface of the surface-treated base layer to obtain an intermediate laminate, and thermocompressing the intermediate laminate to obtain a metal laminate.
 本発明によれば、金属層と熱圧着して金属積層体とした場合に、樹脂層の変形が抑制されており、金属層及び基材層のみからなる金属積層体よりも、金属層の剥離強度を向上させうる積層体;樹脂層の変形が抑制されており、金属層及び基材層のみからなる金属積層体よりも、金属層の剥離強度が向上している金属積層体;かかる金属積層体の製造方法;を提供できる。 The present invention can provide a laminate in which, when the resin layer is thermocompression bonded to a metal layer to form a metal laminate, deformation of the resin layer is suppressed and the peel strength of the metal layer can be improved compared to a metal laminate consisting of only a metal layer and a base layer; a metal laminate in which deformation of the resin layer is suppressed and the peel strength of the metal layer is improved compared to a metal laminate consisting of only a metal layer and a base layer; and a method for producing such a metal laminate.
図1は、本発明の実施形態1に係る金属積層体を模式的に示す断面図である。FIG. 1 is a cross-sectional view that illustrates a metal laminate according to a first embodiment of the present invention. 図2は、本発明の実施形態2に係る金属積層体を模式的に示す断面図である。FIG. 2 is a cross-sectional view that illustrates a metal laminate according to a second embodiment of the present invention.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下に示す実施形態の構成要素は、適宜組み合わせうる。また、図において、同一の構成要素には同一の符号を付し、その説明を省略する場合がある。 The present invention will be described in detail below with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be modified and implemented as desired without departing from the scope of the claims of the present invention and their equivalents. The components of the embodiments shown below may be combined as appropriate. In addition, in the figures, the same components are given the same reference numerals, and their description may be omitted.
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, a "long" film refers to a film that is 5 times or more longer than its width, and preferably 10 times or more longer, specifically a film long enough to be wound into a roll for storage or transportation. There is no particular upper limit to the length of the film, and it can be, for example, 100,000 times or less than its width.
 以下の説明において、「(メタ)アクリロイル」の文言は、「アクリロイル」、「メタクリロイル」及びこれらの組み合わせを包含する。 In the following description, the term "(meth)acryloyl" includes "acryloyl," "methacryloyl," and combinations thereof.
[1.積層体]
[1.1.概要]
 本発明の一実施形態に係る積層体は、
 基材層と、前記基材層の少なくとも一方の主面に直接する易接着層とを含む。
 前記基材層は、結晶性を有する環状オレフィン重合体を含む。
 前記易接着層は、前記積層体の最も外側に設けられ、シランカップリング剤(A)から形成された層である。
[1. Laminate]
1.1 Overview
The laminate according to one embodiment of the present invention is
The adhesive sheet includes a base layer and an easy-adhesion layer directly on at least one main surface of the base layer.
The substrate layer contains a cyclic olefin polymer having crystallinity.
The easy-adhesion layer is provided on the outermost side of the laminate and is a layer formed from a silane coupling agent (A).
 本実施形態の積層体を金属層と熱圧着して得られる金属積層体は、金属層の剥離強度が向上する。したがって、積層体を、微細な配線を有する回路基板製造のために、好適に用いうる。
 さらに、本実施形態の積層体は、低誘電率であり耐熱性を有する、結晶性を有する環状オレフィン重合体を含む基材層を備えている。そのため積層体を用いた基板は、高周波数電気信号の伝送損失を低減することができ、はんだ付けなどの高温処理に耐えうる。したがって、本実施形態の積層体は、高周波アンテナ回路基板製造のために、好適に用いうる。
The metal laminate obtained by thermocompression bonding the laminate of this embodiment to a metal layer has improved peel strength of the metal layer, and therefore the laminate can be suitably used for producing a circuit board having fine wiring.
Furthermore, the laminate of this embodiment includes a base layer containing a crystalline cyclic olefin polymer having a low dielectric constant and heat resistance. Therefore, a substrate using the laminate can reduce the transmission loss of high-frequency electric signals and can withstand high-temperature treatment such as soldering. Therefore, the laminate of this embodiment can be suitably used for manufacturing a high-frequency antenna circuit board.
[1.2.基材層]
 本実施形態の積層体に含まれる基材層は、通常樹脂からなり、当該樹脂は結晶性を有する環状オレフィン重合体を含み、更に必要に応じて含まれる任意成分を含む。以下、結晶性を有する環状オレフィン重合体を、結晶性環状オレフィン重合体ともいう。
[1.2. Base material layer]
The substrate layer included in the laminate of the present embodiment is generally made of a resin, and the resin contains a cyclic olefin polymer having crystallinity, and further contains an optional component that is included as necessary. The cyclic olefin polymer having such a structure is also called a crystalline cyclic olefin polymer.
 結晶性を有する重合体は、融点Tmを有する重合体をいう。また、融点Tmを有する重合体とは、すなわち、示差走査熱量計(DSC)で融点Tmを観測することができる重合体をいう。 A crystalline polymer is a polymer that has a melting point Tm. A polymer that has a melting point Tm is a polymer whose melting point Tm can be observed using a differential scanning calorimeter (DSC).
 環状オレフィン重合体とは、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素化物である重合体をいう。但し、重合体は、その製造方法によっては限定されない。 Cyclic olefin polymer refers to a polymer that can be obtained by a polymerization reaction using a cyclic olefin as a monomer, or a polymer that is a hydrogenated product thereof. However, the polymer is not limited by its manufacturing method.
 環状オレフィン重合体は、通常脂環式構造を含む。
 環状オレフィン重合体に含まれる脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる基材層が得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、環状オレフィン重合体の機械的強度、耐熱性、及び成形性が高度にバランスされる。
The cyclic olefin polymer usually contains an alicyclic structure.
Examples of the alicyclic structure contained in the cyclic olefin polymer include a cycloalkane structure and a cycloalkene structure. Among these, the cycloalkane structure is preferred because it is easy to obtain a base layer having excellent properties such as thermal stability. The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, and preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. When the number of carbon atoms contained in one alicyclic structure is within the above range, the mechanical strength, heat resistance, and moldability of the cyclic olefin polymer are highly balanced.
 環状オレフィン重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造を有する構造単位の割合を前記の高い割合とすることにより、耐熱性を高めることができる。
 また、環状オレフィン重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
In the cyclic olefin polymer, the ratio of the structural units having an alicyclic structure to all structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more. By making the ratio of the structural units having an alicyclic structure to the above-mentioned high ratio, the heat resistance can be improved.
In the cyclic olefin polymer, the remainder other than the structural unit having an alicyclic structure is not particularly limited and can be appropriately selected depending on the intended use.
 結晶性環状オレフィン重合体の好ましい例としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる基材層が得られ易いことから、重合体(β)が特に好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物等であって、結晶性を有するもの。
Preferred examples of the crystalline cyclic olefin polymer include the following polymers (α) to (δ). Among these, polymer (β) is particularly preferred because it is easy to obtain a base layer having excellent heat resistance.
Polymer (α): A ring-opening polymer of a cyclic olefin monomer, which has crystallinity.
Polymer (β): A hydrogenated product of polymer (α) and has crystallinity.
Polymer (γ): An addition polymer of a cyclic olefin monomer, which has crystallinity.
Polymer (δ): A hydride of polymer (γ) or the like, which has crystallinity.
 より具体的には、結晶性環状オレフィン重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、更に好ましくは100重量%の重合体をいう。 More specifically, the crystalline cyclic olefin polymer is preferably a ring-opening polymer of dicyclopentadiene having crystallinity, or a hydrogenated ring-opening polymer of dicyclopentadiene having crystallinity, and particularly preferably a hydrogenated ring-opening polymer of dicyclopentadiene having crystallinity. Here, a ring-opening polymer of dicyclopentadiene refers to a polymer in which the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, and even more preferably 100% by weight.
 結晶性環状オレフィン重合体は、シンジオタクチック構造を有することが好ましく、そのシンジオタクチック立体規則性の度合いが高いことがより好ましい。これにより、重合体の結晶性を高めることができるので、耐熱性を特に大きくできる。結晶性環状オレフィン重合体のシンジオタクチック立体規則性の度合いは、結晶性環状オレフィン重合体のラセモ・ダイアッドの割合によって表しうる。具体的なラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは60%以上、特に好ましくは70%以上である。ラセモ・ダイアッドの割合は、下記の方法で測定できる。 The crystalline cyclic olefin polymer preferably has a syndiotactic structure, and more preferably has a high degree of syndiotactic stereoregularity. This can increase the crystallinity of the polymer, thereby making it possible to particularly increase heat resistance. The degree of syndiotactic stereoregularity of the crystalline cyclic olefin polymer can be expressed by the proportion of racemo dyads in the crystalline cyclic olefin polymer. The specific proportion of racemo dyads is preferably 51% or more, more preferably 60% or more, and particularly preferably 70% or more. The proportion of racemo dyads can be measured by the following method.
 オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行う。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定する。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めうる。 The polymer is subjected to 13 C-NMR measurement by applying the inverse-gated decoupling method at 200° C. using orthodichlorobenzene- d4 as a solvent. In the results of this 13 C-NMR measurement, a signal at 43.35 ppm derived from the meso dyad and a signal at 43.43 ppm derived from the racemo dyad are identified, with the peak at 127.5 ppm of orthodichlorobenzene- d4 being used as the reference shift. The ratio of the racemo dyads in the polymer can be determined based on the intensity ratio of these signals.
 また、結晶性環状オレフィン重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 In addition, the crystalline cyclic olefin polymer may be used alone or in combination of two or more types in any ratio.
 基材層に含まれる結晶性環状オレフィン重合体は、通常、結晶化していることにより、高い結晶化度を有することができる。具体的な結晶化度の範囲は所望の性能に応じて適宜選択しうるが、好ましくは10%以上、より好ましくは15%以上、特に好ましくは30%以上である。結晶化度を前記範囲の下限値以上にすることにより、基材層に高い耐熱性を付与することができる。
 重合体の結晶化度は、X線回折法によって測定しうる。
The crystalline cyclic olefin polymer contained in the base layer is usually crystallized, and thus can have a high degree of crystallinity. The specific range of the degree of crystallinity can be appropriately selected according to the desired performance, but is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more. By making the degree of crystallinity equal to or higher than the lower limit of the above range, the base layer can be given high heat resistance.
The crystallinity of a polymer can be measured by X-ray diffraction methods.
 結晶性環状オレフィン重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する結晶性環状オレフィン重合体は、成形加工性と耐熱性とのバランスに優れる。 The weight average molecular weight (Mw) of the crystalline cyclic olefin polymer is preferably 1,000 or more, more preferably 2,000 or more, and is preferably 1,000,000 or less, more preferably 500,000 or less. A crystalline cyclic olefin polymer having such a weight average molecular weight has an excellent balance between moldability and heat resistance.
 結晶性環状オレフィン重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する結晶性環状オレフィン重合体は、成形加工性に優れる。 The molecular weight distribution (Mw/Mn) of the crystalline cyclic olefin polymer is preferably 1.0 or more, more preferably 1.5 or more, and is preferably 4.0 or less, more preferably 3.5 or less. Here, Mn represents the number average molecular weight. A crystalline cyclic olefin polymer having such a molecular weight distribution has excellent moldability.
 重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。 The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the polymer can be measured in polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as the developing solvent.
 結晶性環状オレフィン重合体の融点Tmは、好ましくは200℃以上、より好ましくは230℃以上、特に好ましくは250℃以上であり、好ましくは290℃以下である。このような融点Tmを有する結晶性環状オレフィン重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた基材層を得ることができる。基材層の耐熱性が優れると、基材層を含む金属積層体に対して、はんだ付けなどの高温処理を容易に行いうる。 The melting point Tm of the crystalline cyclic olefin polymer is preferably 200°C or higher, more preferably 230°C or higher, particularly preferably 250°C or higher, and preferably 290°C or lower. By using a crystalline cyclic olefin polymer having such a melting point Tm, a substrate layer with an even better balance between formability and heat resistance can be obtained. When the substrate layer has excellent heat resistance, high-temperature treatment such as soldering can be easily performed on a metal laminate including the substrate layer.
 結晶性環状オレフィン重合体のガラス転移温度Tgは、特に限定されないが、好ましくは85℃以上、好ましくは200℃以下、より好ましくは170℃以下である。結晶性環状オレフィン重合体のガラス転移温度が前記上限値以下であると、基材層を含む積層体を金属層と熱圧着する際の温度を低く設定できる。 The glass transition temperature Tg of the crystalline cyclic olefin polymer is not particularly limited, but is preferably 85°C or higher, preferably 200°C or lower, and more preferably 170°C or lower. When the glass transition temperature of the crystalline cyclic olefin polymer is equal to or lower than the upper limit, the temperature can be set low when thermocompression bonding the laminate including the substrate layer to the metal layer.
 結晶性環状オレフィン重合体の製造方法は、任意であり、例えば、国際公開第2016/067893号に記載の方法で製造できる。 The crystalline cyclic olefin polymer can be produced by any method, for example, the method described in WO 2016/067893.
 基材層を形成する樹脂における結晶性環状オレフィン重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性環状オレフィン重合体の割合を前記範囲の下限値以上にすることにより、基材層の耐熱性を高めることができる。 The proportion of crystalline cyclic olefin polymer in the resin forming the base layer is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. By making the proportion of crystalline cyclic olefin polymer equal to or greater than the lower limit of the above range, the heat resistance of the base layer can be improved.
 基材層を形成する樹脂は、結晶性環状オレフィン重合体に加えて、任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアゾール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;及び、軟質重合体等の、結晶性重合体以外の任意の重合体;などが挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The resin forming the base layer may contain optional components in addition to the crystalline cyclic olefin polymer. Optional components include, for example, antioxidants such as phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants; light stabilizers such as hindered amine-based light stabilizers; waxes such as petroleum wax, Fischer-Tropsch wax, and polyalkylene wax; nucleating agents such as sorbitol-based compounds, metal salts of organic phosphoric acids, metal salts of organic carboxylic acids, kaolin, and talc; diaminostilbene derivatives, coumarin derivatives, and azole-based derivatives (for example, benzoxazole derivatives, benzotriazole derivatives, benzoimide derivatives, and benzotriazole derivatives); Examples of the optional components include fluorescent brighteners such as benzothiazole derivatives, carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; ultraviolet absorbers such as benzophenone-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, and benzotriazole-based ultraviolet absorbers; inorganic fillers such as talc, silica, calcium carbonate, and glass fiber; colorants; flame retardants; flame retardant assistants; antistatic agents; plasticizers; near-infrared absorbers; lubricants; fillers; and any polymer other than a crystalline polymer, such as a soft polymer. In addition, the optional components may be used alone or in combination of two or more in any ratio.
 (基材層の製造方法)
 基材層は、例えば、結晶性環状オレフィン重合体を含む樹脂をフィルム状に成形する工程を含む製造方法によって製造できる。
(Method of manufacturing base layer)
The substrate layer can be produced, for example, by a production method including a step of forming a resin containing a crystalline cyclic olefin polymer into a film.
 基材層を形成する樹脂の成形方法としては、例えば、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成形法が挙げられる。これらの中でも、厚みの制御が容易であることから、押出成形法が好ましい。  Examples of the resin molding method for forming the base layer include resin molding methods such as injection molding, extrusion molding, press molding, inflation molding, blow molding, calendar molding, cast molding, and compression molding. Among these, extrusion molding is preferred because it is easy to control the thickness.
 また、前記の製造方法にて製造されたフィルムに、当該フィルムに含まれる結晶性環状オレフィン重合体を結晶化させる処理を施して、基材層を得てもよい。よって、基材層の製造方法は、結晶性環状オレフィン重合体を結晶化させる結晶化工程を含みうる。以下の説明において、結晶性環状オレフィン重合体を結晶化させる処理の対象となるフィルムを、適宜「原反フィルム」と呼ぶ。この原反フィルムは、延伸処理を施されたフィルムであってもよく、延伸処理を施されていないフィルムであってもよい。 Furthermore, the film produced by the above-mentioned production method may be subjected to a process for crystallizing the crystalline cyclic olefin polymer contained in the film to obtain a base layer. Thus, the production method for the base layer may include a crystallization step for crystallizing the crystalline cyclic olefin polymer. In the following description, the film that is the subject of the process for crystallizing the crystalline cyclic olefin polymer is appropriately referred to as the "original film." This original film may be a film that has been subjected to a stretching process, or may be a film that has not been subjected to a stretching process.
 結晶化工程では、通常、原反フィルムの少なくとも二の端辺を保持して緊張させた状態で所定の温度範囲にすることで、結晶性環状オレフィン重合体を結晶化させる結晶化処理を行う。この工程によれば、結晶化した結晶性環状オレフィン重合体を含む基材層を容易に製造できるので、前記の優れた特性を有する基材層を容易に得ることができる。 In the crystallization process, the original film is usually held at least two edges and tensioned while being subjected to a predetermined temperature range, thereby carrying out a crystallization process to crystallize the crystalline cyclic olefin polymer. This process makes it easy to manufacture a substrate layer containing a crystallized crystalline cyclic olefin polymer, so that a substrate layer having the above-mentioned excellent properties can be easily obtained.
 結晶化工程における温度は、通常、結晶性環状オレフィン重合体のガラス転移温度Tg以上、結晶性環状オレフィン重合体の融点Tm以下の温度にする。前記のような温度にされた原反フィルムにおいては、結晶性環状オレフィン重合体の結晶化が進行する。そのため、この結晶化工程により、結晶化した結晶性環状オレフィン重合体を含む基材層としてのフィルムが得られる。 The temperature in the crystallization process is usually set to a temperature equal to or higher than the glass transition temperature Tg of the crystalline cyclic olefin polymer and equal to or lower than the melting point Tm of the crystalline cyclic olefin polymer. In the raw film that has been heated to the above-mentioned temperature, the crystallization of the crystalline cyclic olefin polymer progresses. Therefore, this crystallization process results in a film containing crystallized crystalline cyclic olefin polymer as a substrate layer.
 結晶化工程において、原反フィルムを前記の温度範囲に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは10分以下である。結晶化工程で、結晶性環状オレフィン重合体の結晶化を十分に進行させることにより、基材層の耐熱性を高めることができる。また、処理時間を前記範囲の上限以下にすることにより、基材層の白濁を抑制できる。 In the crystallization process, the processing time for maintaining the raw film in the above-mentioned temperature range is preferably 1 second or more, more preferably 5 seconds or more, and preferably 30 minutes or less, more preferably 10 minutes or less. By allowing the crystallization of the crystalline cyclic olefin polymer to proceed sufficiently in the crystallization process, the heat resistance of the base layer can be increased. In addition, by setting the processing time to below the upper limit of the above-mentioned range, clouding of the base layer can be suppressed.
 また、上述した基材層の製造は、例えば、国際公開第2016/067893号に記載の方法により行ってもよい。 The above-mentioned substrate layer may also be manufactured by, for example, the method described in WO 2016/067893.
 基材層の少なくとも一方の主面は、表面処理がされていてもよい。表面処理の例としては、コロナ処理、プラズマ処理、紫外線処理、火炎処理、及び化学薬品処理が挙げられる。これらの表面処理により、基材層と後述する易接着層との親和性を高め、基材層と金属層との剥離強度を効果的に高めることができる。
 中でも、表面処理としては、コロナ処理、プラズマ処理、及び紫外線処理、並びにこれらの組み合わせが好ましい。
 プラズマ処理の例としては、大気圧プラズマ処理及び真空プラズマ処理が挙げられ、長尺の基材層を連続的に処理しうることから、大気圧プラズマ処理が好ましい。
 基材層に行う表面処理としては、簡易な装置で行うことができることから、コロナ処理がより好ましい。
 コロナ処理の放電電力は、好ましくは100W以上、より好ましくは200W以上であり、好ましくは2000W以下、より好ましくは1000W以下である。
 コロナ処理における基材層の送り速度は、好ましくは10mm/秒以上、より好ましくは30mm/秒以上であり、好ましくは300mm/秒以下、より好ましくは200mm/秒以下である。
At least one of the main surfaces of the substrate layer may be surface-treated. Examples of the surface treatment include corona treatment, plasma treatment, ultraviolet treatment, flame treatment, and chemical treatment. These surface treatments can increase the affinity between the substrate layer and the easy-adhesion layer described below, and can effectively increase the peel strength between the substrate layer and the metal layer.
Among these, the surface treatment is preferably a corona treatment, a plasma treatment, an ultraviolet treatment, or a combination thereof.
Examples of the plasma treatment include atmospheric pressure plasma treatment and vacuum plasma treatment, with atmospheric pressure plasma treatment being preferred since it is possible to treat a long substrate layer continuously.
As the surface treatment to be performed on the base layer, corona treatment is more preferable since it can be performed with a simple device.
The discharge power in the corona treatment is preferably 100 W or more, more preferably 200 W or more, and is preferably 2000 W or less, more preferably 1000 W or less.
The feed speed of the substrate layer in the corona treatment is preferably 10 mm/sec or more, more preferably 30 mm/sec or more, and is preferably 300 mm/sec or less, more preferably 200 mm/sec or less.
 好ましくは、表面処理された基材層の主面に直接して、易接着層が設けられている。 Preferably, an easy-adhesion layer is provided directly on the main surface of the surface-treated base layer.
 基材層の厚みは、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、更に好ましくは50μm以下である。基材層の厚みが前記範囲内であることにより、絶縁性、耐熱性、屈曲性に、より優れた基材層としうる。 The thickness of the substrate layer is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more, and is preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less. By having the thickness of the substrate layer within the above range, the substrate layer can have better insulation properties, heat resistance, and flexibility.
[1.3.易接着層]
 (易接着層の材料)
 易接着層は、シランカップリング剤(A)から形成され、シランカップリング剤(A)の反応生成物を含む。
[1.3. Easy-adhesion layer]
(Material for easy adhesion layer)
The easy-adhesion layer is formed from the silane coupling agent (A) and contains a reaction product of the silane coupling agent (A).
 シランカップリング剤の例としては、加水分解しうる加水分解性基と、反応性基とを有する置換シラン化合物が挙げられる。 An example of a silane coupling agent is a substituted silane compound that has a hydrolyzable group that can be hydrolyzed and a reactive group.
 シランカップリング剤(A)は、好ましくは、アミノ基、(メタ)アクリロイルオキシ基、メルカプト基、及びビニル基からなる群から選択される一種以上を含む。アミノ基は、置換基を有していてもよい。シランカップリング剤(A)は、中でもアミノ基を含むことが好ましい。アミノ基は、金属(特に銅)に対する化学吸着性が高いため好ましく、後述する金属層が銅を含む場合は特に、シランカップリング剤(A)が、銅への化学吸着性の高いアミノ基を含むことが好ましい。 The silane coupling agent (A) preferably contains one or more selected from the group consisting of an amino group, a (meth)acryloyloxy group, a mercapto group, and a vinyl group. The amino group may have a substituent. It is preferable that the silane coupling agent (A) contains an amino group. The amino group is preferable because it has high chemical adsorption to metals (especially copper), and it is preferable that the silane coupling agent (A) contains an amino group that has high chemical adsorption to copper, especially when the metal layer described later contains copper.
 シランカップリング剤(A)に含まれる加水分解性基は、加水分解されると、シラノール基を生じうる。
 易接着層には、加水分解されたシランカップリング剤(A)の重縮合物;易接着層に直接する層の表面に存在する基と加水分解されたシランカップリング剤(A)のシラノール基との縮合により得られた化合物;易接着層に直接する層の表面に存在する基とシランカップリング剤が有する反応性基との反応により得られた化合物;などの様々な化合物が存在すると考えられる。
 易接着層は、シランカップリング剤(A)の反応生成物として、これらの様々な化合物を含みうる。
The hydrolyzable group contained in the silane coupling agent (A) can generate a silanol group when hydrolyzed.
It is believed that the easy-adhesion layer contains various compounds, such as a polycondensate of the hydrolyzed silane coupling agent (A); a compound obtained by condensation of a group present on the surface of the layer directly facing the easy-adhesion layer with a silanol group of the hydrolyzed silane coupling agent (A); and a compound obtained by reaction of a group present on the surface of the layer directly facing the easy-adhesion layer with a reactive group possessed by the silane coupling agent.
The easy-adhesion layer may contain these various compounds as reaction products of the silane coupling agent (A).
 シランカップリング剤(A)は、より好ましくは、下記の一般式(1)で表される化合物である。
(RO)SiR (3-a)  (1)
The silane coupling agent (A) is more preferably a compound represented by the following general formula (1).
(R 1 O) a SiR 2 (3-a) R 3 (1)
 前記式(1)において、
 R及びRは、それぞれ独立して、置換されていない一価の炭化水素基を表し、好ましくはメチル基又はエチル基であり、
 Rは、窒素原子、硫黄原子、及び酸素原子からなる群から選択される一種以上のヘテロ原子を含む反応性基又はビニル基を含む反応性基を表し、好ましくは、アミノ基、(メタ)アクリロイルオキシ基、メルカプト基、及びビニル基からなる群から選択される一種以上を含む基を表し、好ましくはアミノ基を含む基であり、aは、2又は3である。
 アミノ基は、置換基を有していてもよく、置換基を有していなくてもよい。
In the formula (1),
R1 and R2 each independently represent an unsubstituted monovalent hydrocarbon group, preferably a methyl group or an ethyl group;
R3 represents a reactive group containing one or more heteroatoms selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom, or a reactive group containing a vinyl group, preferably a group containing one or more selected from the group consisting of an amino group, a (meth)acryloyloxy group, a mercapto group, and a vinyl group, preferably a group containing an amino group; and a is 2 or 3.
The amino group may or may not have a substituent.
 アミノ基を含むシランカップリング剤の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、N-2-(アミノエチル)-8-アミノオクチルトリメトキシシランが挙げられる。 Specific examples of silane coupling agents containing amino groups include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, and N-2-(aminoethyl)-8-aminooctyltrimethoxysilane.
 アミノ基を含むシランカップリング剤の市販品の例としては、信越化学工業社製の、「KBM-602」、「KBM-603」、「KBM-903」、「KBE-903」、「KBE-9103P」、「KBM-573」、「KBM-575」、「KBM-6803」が挙げられる。 Commercially available examples of silane coupling agents containing amino groups include "KBM-602", "KBM-603", "KBM-903", "KBE-903", "KBE-9103P", "KBM-573", "KBM-575", and "KBM-6803" manufactured by Shin-Etsu Chemical Co., Ltd.
 メタクリロイルオキシ基を含むシランカップリング剤の具体例としては、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、8-メタクリロイルオキシオクチルトリメトキシシランが挙げられる。 Specific examples of silane coupling agents containing methacryloyloxy groups include 3-methacryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriethoxysilane, and 8-methacryloyloxyoctyltrimethoxysilane.
 アクリロイルオキシ基を含むシランカップリング剤の具体例としては、3-アクリロイルオキシプロピルトリメトキシシランが挙げられる。 A specific example of a silane coupling agent containing an acryloyloxy group is 3-acryloyloxypropyltrimethoxysilane.
 (メタ)アクリロイルオキシ基を含むシランカップリング剤の市販品の例としては、信越化学工業社製の、「KBM-502」、「KBM-503」、「KBE-502」、「KBE-503」、「KBM-5803」、「KBM-5103」が挙げられる。 Commercially available examples of silane coupling agents containing (meth)acryloyloxy groups include "KBM-502," "KBM-503," "KBE-502," "KBE-503," "KBM-5803," and "KBM-5103," manufactured by Shin-Etsu Chemical Co., Ltd.
 メルカプト基を含むシランカップリング剤の例としては、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランが挙げられる。 Examples of silane coupling agents containing mercapto groups include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
 メルカプト基を含むシランカップリング剤の市販品の例としては、信越化学工業社製の、「KBM-802」、「KBM-803」が挙げられる。 Commercially available examples of silane coupling agents containing mercapto groups include "KBM-802" and "KBM-803" manufactured by Shin-Etsu Chemical Co., Ltd.
 ビニル基を含むシランカップリング剤の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、7-オクテニルトリメトキシシラン、p-スチリルトリメトキシシラン、アリルトリメトキシシランが挙げられる。 Specific examples of silane coupling agents containing vinyl groups include vinyltrimethoxysilane, vinyltriethoxysilane, 7-octenyltrimethoxysilane, p-styryltrimethoxysilane, and allyltrimethoxysilane.
 ビニル基を含むシランカップリング剤の市販品の例としては、信越化学工業社製の、「KBM-1003」、「KBE-1003」、「KBM-1083」、「KBM-1403」が挙げられる。 Commercially available examples of silane coupling agents containing vinyl groups include "KBM-1003," "KBE-1003," "KBM-1083," and "KBM-1403," manufactured by Shin-Etsu Chemical Co., Ltd.
 エポキシ基を含むシランカップリング剤の具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシジルオキシプロピルメチルジメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、8-グリシジルオキシオクチルトリメトキシシランが挙げられる。 Specific examples of silane coupling agents containing epoxy groups include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, and 8-glycidyloxyoctyltrimethoxysilane.
 エポキシ基を含むシランカップリング剤の市販品の例としては、信越化学工業社製の、「KBM-303」、「KBM-402」、「KBM-403」、「KBE-402」、「KBE-403」、「KBM-4803」が挙げられる。 Commercially available examples of silane coupling agents containing epoxy groups include "KBM-303," "KBM-402," "KBM-403," "KBE-402," "KBE-403," and "KBM-4803," manufactured by Shin-Etsu Chemical Co., Ltd.
 その他のシランカップリングの具体例としては、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス(トリメトキシシリルプロピル)イソシアヌレートが挙げられる。 Other specific examples of silane coupling include 3-ureidopropyltrialkoxysilane, 3-isocyanatepropyltriethoxysilane, and tris(trimethoxysilylpropyl)isocyanurate.
 シランカップリング剤(A)は、一種単独で用いてもよく、二種以上を任意の比率で組み合わせて用いてもよい。 The silane coupling agent (A) may be used alone or in combination of two or more in any ratio.
 シランカップリング剤(A)は、水溶性であることが好ましい。シランカップリング剤が水溶性であるとは、25℃において、シランカップリング剤(A)の1gを、100gの水に溶解した際、不溶物が観察されず、pHを調整しなくても1重量%水溶液を作成できるような溶解性であることをいう。 The silane coupling agent (A) is preferably water-soluble. A silane coupling agent being water-soluble means that when 1 g of the silane coupling agent (A) is dissolved in 100 g of water at 25°C, no insoluble matter is observed and a 1 wt% aqueous solution can be prepared without adjusting the pH.
 (易接着層の厚み)
 易接着層の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上であり、好ましくは200nm以下、より好ましくは100nm以下、更に好ましくは80nm以下である。
 易接着層の厚みが前記範囲内であると、基材層と金属層との剥離強度を効果的に高めることができる。ここで、積層体が易接着層を二つ備える場合は、二つの易接着層のそれぞれの厚みが、前記厚みの範囲内であることが好ましい。
(Thickness of easy-adhesion layer)
The thickness of the easy-adhesion layer is preferably 5 nm or more, more preferably 10 nm or more, and even more preferably 20 nm or more, and is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 80 nm or less.
When the thickness of the easy-adhesion layer is within the above range, the peel strength between the base layer and the metal layer can be effectively increased. Here, when the laminate has two easy-adhesion layers, it is preferable that the thickness of each of the two easy-adhesion layers is within the above thickness range.
[1.4.積層体の構成]
 積層体は、易接着層を一つ備え、当該一つの易接着層が、基材層の二つの主面の一方に直接していてもよい。または、積層体は、易接着層を二つ備え、当該二つの易接着層のそれぞれが、基材層の二つの主面のそれぞれに直接していてもよい。
[1.4. Configuration of laminate]
The laminate may have one easy-adhesion layer, and the one easy-adhesion layer may be directly attached to one of the two main surfaces of the base layer. Alternatively, the laminate may have two easy-adhesion layers, and each of the two easy-adhesion layers may be directly attached to each of the two main surfaces of the base layer.
 積層体が、易接着層を一つ備える場合、積層体は、基材層及び易接着層に加えて、任意の層を含みうる。任意の層の例としては、他の部材と接着するための接着層、フィルムの滑り性を良くするマット層、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、反射防止層、及び防汚層が挙げられる。積層体が任意の層を含む場合、易接着層は、積層体の最も外側に設けられ、任意の層は、易接着層が直接する基材層の一方の主面とは別の主面上に、設けられる。 When the laminate has one easy-adhesion layer, the laminate may include an optional layer in addition to the substrate layer and the easy-adhesion layer. Examples of optional layers include an adhesive layer for bonding to other members, a matte layer that improves the slipperiness of the film, a hard coat layer such as an impact-resistant polymethacrylate resin layer, an anti-reflection layer, and an anti-fouling layer. When the laminate includes optional layers, the easy-adhesion layer is provided on the outermost side of the laminate, and the optional layer is provided on a main surface other than the one main surface of the substrate layer that the easy-adhesion layer directly contacts.
 積層体が易接着層を二つ備える場合は、二つの易接着層のそれぞれは、積層体の最も外側に設けられ、積層体は、第一の易接着層と、基材層と、第二の易接着層とをこの順に備える。
 第一の易接着層と第二の易接着層とは、同一のシランカップリング剤(A)から形成されていてもよく、別種のシランカップリング剤(A)から形成されていてもよい。好ましくは、第一の易接着層と第二の易接着層とは、同一のシランカップリング剤(A)から形成されている。
When the laminate has two easy-adhesion layers, each of the two easy-adhesion layers is provided on the outermost side of the laminate, and the laminate has a first easy-adhesion layer, a base material layer, and a second easy-adhesion layer in this order.
The first and second easy-adhesion layers may be formed from the same silane coupling agent (A) or may be formed from different silane coupling agents (A). Preferably, the first and second easy-adhesion layers are formed from the same silane coupling agent (A).
 積層体の厚みは、積層体の用途に応じた厚みとしてよく、例えば、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、更に好ましくは50μm以下である。 The thickness of the laminate may be determined according to the application of the laminate, and is, for example, preferably 5 μm or more, more preferably 10 μm or more, even more preferably 20 μm or more, and is preferably 200 μm or less, more preferably 100 μm or less, even more preferably 50 μm or less.
 積層体は、長尺であってもよく、枚葉であってもよいが、長尺であることが好ましい。積層体が長尺であると、積層体に任意の層(例えば、後述する金属層)をロールトゥロール法により効率的に積層できる。 The laminate may be long or may be in the form of a sheet, but it is preferable that the laminate is long. If the laminate is long, any layer (for example, a metal layer, which will be described later) can be efficiently laminated onto the laminate by the roll-to-roll method.
[1.5.積層体の用途]
 本実施形態の積層体は、例えば、最も外側に設けられた易接着層上に、金属層を積層して金属積層体としうる。前記のとおり、本実施形態の積層体は、微細な配線を有する回路基板製造のために、好適に用いうる。また、回路基板製造のために、特に、高周波アンテナ回路基板製造のために、好適に用いうる。
[1.5. Uses of the laminate]
The laminate of this embodiment can be, for example, a metal laminate by laminating a metal layer on the outermost easy-adhesion layer. As described above, the laminate of this embodiment can be suitably used for manufacturing a circuit board having fine wiring. It can also be suitably used for manufacturing a circuit board, particularly for manufacturing a high-frequency antenna circuit board.
[1.6.積層体の製造方法]
 前記の積層体は、任意の方法により製造しうる。積層体は、例えば、下記工程(1)、(3)、及び(4a)を含む方法により製造しうる。工程(1)、(3)、及び(4a)は、通常この順に行われる。
 工程(1):結晶性を有する環状オレフィン重合体を含む基材層を用意する工程
 工程(3):前記基材層の少なくとも一方の主面に、コロナ処理、プラズマ処理、及び紫外線処理から選ばれる少なくとも一つの表面処理をする工程
 工程(4a):表面処理をされた前記基材層の主面上に、シランカップリング剤(A)を含む液状組成物を塗工して塗工層を形成し、前記塗工層を乾燥させて易接着層を形成する工程
[1.6. Manufacturing method of laminate]
The laminate can be produced by any method. For example, the laminate can be produced by a method including the following steps (1), (3), and (4a). Steps (1), (3), and (4a) are usually carried out in this order.
Step (1): preparing a substrate layer containing a crystalline cyclic olefin polymer; Step (3): subjecting at least one main surface of the substrate layer to at least one surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment; Step (4a): applying a liquid composition containing a silane coupling agent (A) to the surface-treated main surface of the substrate layer to form a coating layer, and drying the coating layer to form an easy-adhesion layer.
 工程(1)において用意する基材層は、積層体に含まれる基材層を形成する樹脂として前記した樹脂から形成されうる。基材層として、市販品を用いてもよい。基材層の厚みの範囲は、前記積層体に含まれる基材層の厚みの範囲と同様としうる。 The substrate layer prepared in step (1) may be formed from the resin described above as the resin forming the substrate layer contained in the laminate. A commercially available product may be used as the substrate layer. The thickness range of the substrate layer may be the same as the thickness range of the substrate layer contained in the laminate.
 工程(3)の表面処理として、コロナ処理を行うことが好ましい。工程(3)において行いうるコロナ処理の放電電力及び基材層の送り速度は、前記の好ましい範囲と同様としうる。 It is preferable to perform corona treatment as the surface treatment in step (3). The discharge power and feed speed of the base layer for the corona treatment that can be performed in step (3) can be in the same range as the above-mentioned preferred range.
 工程(4a)における「塗工」とは、別に断らない限り、液状物を用いて当該液状物の層を形成することを意味し、塗工には、噴霧も含まれる。 Unless otherwise specified, "coating" in step (4a) means using a liquid material to form a layer of the liquid material, and coating also includes spraying.
 工程(4a)に用いる液状組成物は、シランカップリング剤(A)を含み、更に、通常溶媒を含む。ここで、溶媒とは、シランカップリング剤(A)を溶解又は分散する媒体を意味する。
 溶媒は、シランカップリング剤(A)の少なくとも一部を溶解する溶媒であることが好ましい。
 液状組成物に含まれうる溶媒の例としては、水、ケトン溶媒(例、アセトン、メチルエチルケトン、メチルイソブチルケトン)、アルコール溶媒(例、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、sec-ブチルアルコール、tert-ブチルアルコール)、炭化水素系溶媒(例、ベンゼン、トルエン、キシレン、シクロヘキサン、エチルシクロヘキサン)、これらの二種以上の組み合わせが挙げられる。液状組成物は、水を含むことが好ましい。液状組成物が水を含むことにより、シランカップリング剤(A)が有する加水分解性基の加水分解が促進され、シランカップリング剤(A)の機能が効果的に発揮されうる。
The liquid composition used in step (4a) contains the silane coupling agent (A) and usually further contains a solvent. Here, the solvent means a medium that dissolves or disperses the silane coupling agent (A).
The solvent is preferably a solvent that dissolves at least a part of the silane coupling agent (A).
Examples of solvents that can be contained in the liquid composition include water, ketone solvents (e.g., acetone, methyl ethyl ketone, methyl isobutyl ketone), alcohol solvents (e.g., methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, sec-butyl alcohol, tert-butyl alcohol), hydrocarbon solvents (e.g., benzene, toluene, xylene, cyclohexane, ethylcyclohexane), and combinations of two or more of these. The liquid composition preferably contains water. When the liquid composition contains water, hydrolysis of the hydrolyzable group of the silane coupling agent (A) is promoted, and the function of the silane coupling agent (A) can be effectively exerted.
 液状組成物は、シランカップリング剤(A)及び溶媒に加えて、必要に応じて任意成分を含んでいてもよい。任意成分の例としては、酸、塩基、塩などのpH調整剤;増粘剤、消泡剤;浸透剤;硬化触媒;等が挙げられる。 The liquid composition may contain optional components as necessary in addition to the silane coupling agent (A) and the solvent. Examples of optional components include pH adjusters such as acids, bases, and salts; thickeners, defoamers; penetrating agents; curing catalysts; etc.
 液状組成物におけるシランカップリング剤(A)の含有割合は、液状組成物を100重量%として、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、更に好ましくは0.1重量%以上であり、好ましくは3重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下である。シランカップリング剤(A)の含有割合が前記範囲内にあると、易接着層の厚みを容易に所望の範囲とすることができる。 The content of the silane coupling agent (A) in the liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, even more preferably 0.1% by weight or more, and is preferably 3% by weight or less, more preferably 2% by weight or less, even more preferably 1% by weight or less, based on 100% by weight of the liquid composition. When the content of the silane coupling agent (A) is within the above range, the thickness of the easy-adhesion layer can be easily adjusted to the desired range.
 液状組成物の層である塗工層を、表面処理された基材層の主面上に形成する方法は特に限定されず、任意の方法を用いうる。塗工方法の例としては、カーテンコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、及びギャップコーティング法が挙げられる。 The method for forming the coating layer, which is a layer of the liquid composition, on the main surface of the surface-treated substrate layer is not particularly limited, and any method can be used. Examples of coating methods include curtain coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, die coating, and gap coating.
 液状組成物の塗工により形成される塗工層の厚みは、易接着層の厚みに応じて任意の厚みとすることができ、例えば、1μm以上又は2μm以上、例えば、100μm以下又は50μm以下であってよい。 The thickness of the coating layer formed by coating the liquid composition can be any thickness depending on the thickness of the easy-adhesion layer, and may be, for example, 1 μm or more or 2 μm or more, for example, 100 μm or less or 50 μm or less.
 塗工層を形成した後、任意の方法により塗工層を乾燥させて易接着層を形成する。
 乾燥方法の例としては、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥が挙げられ、塗工層に含まれるシランカップリング剤(A)の加水分解反応を促進させるために、加熱乾燥を含む方法が好ましい。
After the coating layer is formed, the coating layer is dried by any method to form an easy-adhesion layer.
Examples of the drying method include natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. In order to promote the hydrolysis reaction of the silane coupling agent (A) contained in the coating layer, a method including heat drying is preferred.
 加熱乾燥における温度は、好ましくは60℃以上、より好ましくは80℃以上、更に好ましくは100℃以上であり、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは150℃以下である。これにより、シランカップリング剤(A)の加水分解反応を促進させ、また基材層の変形を効果的に抑制しうる。 The temperature for heat drying is preferably 60°C or higher, more preferably 80°C or higher, even more preferably 100°C or higher, and is preferably 200°C or lower, more preferably 180°C or lower, even more preferably 150°C or lower. This promotes the hydrolysis reaction of the silane coupling agent (A) and can effectively suppress deformation of the substrate layer.
 塗工層の乾燥時間は、乾燥温度に応じて適宜設定しうる。乾燥時間は、例えば、好ましくは1分以上、より好ましくは3分以上であり、好ましくは30分以下、より好ましくは15分以下である。これにより、シランカップリング剤(A)の加水分解反応を促進させ、また基材層の変形を効果的に抑制しうる。 The drying time of the coating layer can be set appropriately depending on the drying temperature. For example, the drying time is preferably 1 minute or more, more preferably 3 minutes or more, and preferably 30 minutes or less, more preferably 15 minutes or less. This can promote the hydrolysis reaction of the silane coupling agent (A) and effectively suppress deformation of the substrate layer.
 工程(3)において、基材層の一方の主面に表面処理を行い、工程(4a)において、表面処理をされた基材層の一方の主面上に液状組成物を塗工して塗工層を形成し、塗工層を乾燥させて易接着層を形成することにより、易接着層及び基材層を備える積層体を得ることができる。 In step (3), one main surface of the substrate layer is surface-treated, and in step (4a), a liquid composition is applied onto one main surface of the substrate layer that has been surface-treated to form a coating layer, and the coating layer is dried to form an easy-adhesion layer, thereby obtaining a laminate comprising an easy-adhesion layer and a substrate layer.
 工程(3)において、基材層の両方の主面に表面処理を行い、工程(4a)において、表面処理をされた基材層の両方の主面上に液状組成物を塗工して塗工層を形成し、塗工層を乾燥させて易接着層を形成することにより、第一の易接着層、基材層、及び第二の易接着層をこの順で備える積層体を得ることができる。 In step (3), both main surfaces of the substrate layer are surface-treated, and in step (4a), a liquid composition is applied to both main surfaces of the substrate layer that have been surface-treated to form coating layers, and the coating layers are dried to form easy-adhesion layers, thereby obtaining a laminate having a first easy-adhesion layer, a substrate layer, and a second easy-adhesion layer in this order.
 積層体の製造方法は、前記の工程(1)、(3)、及び(4a)に加えて、任意の工程を含みうる。
 任意の工程の例としては、長尺の積層体を巻き取る工程、積層体を裁断する工程、積層体に保護フィルムをラミネートする工程、合紙を積層体に重ねて積層体と同時に巻き取る工程が挙げられる。
The method for producing the laminate may include any optional steps in addition to the above steps (1), (3), and (4a).
Examples of the optional steps include a step of winding up a long laminate, a step of cutting the laminate, a step of laminating a protective film onto the laminate, and a step of overlaying an interleaf paper on the laminate and winding it up together with the laminate.
[2.金属積層体]
 本発明の一実施形態に係る金属積層体は、前記の積層体と、前記積層体の前記易接着層に直接する金属層とを含む。前記金属層は、銅、金、銀、アルミニウム、ニッケル、及びクロムからなる群より選択される一種以上を含む金属の層又はステンレス鋼の層である。
 金属積層体の製造方法は、特に限定されない。金属積層体の好ましい製造方法については後述する。
[2. Metal laminate]
A metal laminate according to one embodiment of the present invention includes the laminate and a metal layer directly on the easy-adhesion layer of the laminate, the metal layer being a layer of metal containing at least one selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel.
The method for producing the metal laminate is not particularly limited, and a preferred method for producing the metal laminate will be described later.
[2.1.金属層]
 金属層の材料としては、銅、金、銀、アルミニウム、ニッケル、クロム、及びこれらの合金、並びにステンレス鋼が好ましく、化学的安定性、電気伝導度、価格、加工のしやすさ、剥離強度の高さ、表面粗さのバランスの観点から、銅がより好ましい。
 金属層として銅箔を用いる場合、銅箔の製造方法は任意である。銅箔は、電解銅箔であってもよく、圧延銅箔であってもよい。
 一実施形態において、優れた屈曲性、表面粗さの観点から、金属層は好ましくは圧延銅箔である。
 また別の実施形態において、剥離強度を特に効果的に高める観点から、金属層は好ましくは電解銅箔である。
[2.1. Metal layer]
The material for the metal layer is preferably copper, gold, silver, aluminum, nickel, chromium, or alloys thereof, or stainless steel, which have excellent chemical stability, electrical conductivity, cost, ease of processing, and peel strength. From the viewpoint of the balance between height and surface roughness, copper is more preferable.
When a copper foil is used as the metal layer, the method for producing the copper foil is arbitrary. The copper foil may be an electrolytic copper foil or a rolled copper foil.
In one embodiment, the metal layer is preferably a rolled copper foil in terms of excellent flexibility and surface roughness.
In another embodiment, from the viewpoint of particularly effectively increasing the peel strength, the metal layer is preferably an electrolytic copper foil.
 金属層の厚みは、好ましくは1μm以上、より好ましくは5μm以上、更に好ましくは10μm以上であり、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは30μm以下である。 The thickness of the metal layer is preferably 1 μm or more, more preferably 5 μm or more, even more preferably 10 μm or more, and is preferably 100 μm or less, more preferably 50 μm or less, even more preferably 30 μm or less.
 金属層の、易接着層と直接する側の主面における算術平均粗さRaは、好ましくは50nmより大きく、より好ましくは60nm以上であり、好ましくは200nm以下、より好ましくは150nm以下である。
 金属層の主面における算術平均粗さRaが前記下限値以上であることにより、金属層の剥離強度をより高めることができる。金属層の主面における算術平均粗さが前記上限値以下であることにより、金属積層体から形成された回路における高周波域の伝送損失をより低減しうる。
The arithmetic mean roughness Ra of the metal layer on the main surface directly contacting the adhesion layer is preferably greater than 50 nm, more preferably 60 nm or more, and is preferably 200 nm or less, more preferably 150 nm or less.
When the arithmetic mean roughness Ra of the main surface of the metal layer is equal to or greater than the lower limit, the peel strength of the metal layer can be further increased. When the arithmetic mean roughness of the main surface of the metal layer is equal to or less than the upper limit, the transmission loss in the high frequency range in the circuit formed from the metal laminate can be further reduced.
 金属層の算術平均粗さRaは、各種表面粗さ測定器によりJISB0601-2001に準拠して測定することができる、本願明細書における金属層の算術平均粗さRaは、小坂研究所製「ET4000A」を用い、JISB0601-2001に準拠して測定して得られる値である。 The arithmetic mean roughness Ra of the metal layer can be measured in accordance with JIS B0601-2001 using various surface roughness measuring instruments. The arithmetic mean roughness Ra of the metal layer in this specification is the value obtained by measuring in accordance with JIS B0601-2001 using an "ET4000A" manufactured by Kosaka Laboratory.
[2.2.積層体]
 金属積層体に含まれる積層体は、前記の積層体であり、結晶性を有する環状オレフィン重合体を含む基材層とシランカップリング剤(A)から形成された易接着層とを含む。
 金属積層体に含まれる基材層及び易接着層の例については、前記の例と同様の例が挙げられる。
[2.2. Laminate]
The laminate contained in the metal laminate is the above-mentioned laminate, and includes a base layer containing a cyclic olefin polymer having crystallinity and an easy-adhesion layer formed from a silane coupling agent (A).
Examples of the substrate layer and the easy-adhesion layer contained in the metal laminate include the same examples as those mentioned above.
[2.3.金属積層体の層構成例]
(金属積層体の実施形態1)
 本発明の実施形態1に係る金属積層体を、図を用いて説明する。図1は、本発明の実施形態1に係る金属積層体を模式的に示す断面図である。図1に示すように、金属積層体100は、積層体110と、金属層120とを備える。積層体110は、基材層111及び易接着層112を備える。金属積層体100は、基材層111、易接着層112、及び金属層120を、厚み方向にこの順に備える。
 易接着層112の主面112Dは、基材層111の主面111Uに直接しており、基材層111と易接着層112との間に、任意の層は介在していない。
 金属層120の主面120Dは、易接着層112の主面112Uに直接しており、金属層120と易接着層112との間に、任意の層は介在していない。
 基材層111、易接着層112、及び金属層120のそれぞれの例としては、前記の基材層、易接着層、及び金属層のそれぞれの例と同様の例が挙げられる。
[2.3. Layer structure example of metal laminate]
(Embodiment 1 of the metal laminate)
The metal laminate according to the first embodiment of the present invention will be described with reference to the drawings. Fig. 1 is a cross-sectional view that shows a schematic diagram of the metal laminate according to the first embodiment of the present invention. As shown in Fig. 1, the metal laminate 100 includes a laminate 110 and a metal layer 120. The laminate 110 includes a base layer 111 and an easy-adhesion layer 112. The metal laminate 100 includes the base layer 111, the easy-adhesion layer 112, and the metal layer 120 in this order in the thickness direction.
The main surface 112D of the easy-adhesion layer 112 is directly on the main surface 111U of the base material layer 111, and no layer is interposed between the base material layer 111 and the easy-adhesion layer 112.
The main surface 120D of the metal layer 120 is directly on the main surface 112U of the easy-adhesion layer 112, and no layer is interposed between the metal layer 120 and the easy-adhesion layer 112.
Examples of the base material layer 111, the easy-adhesion layer 112, and the metal layer 120 are the same as the examples of the base material layer, the easy-adhesion layer, and the metal layer described above.
(金属積層体の実施形態2)
 本発明の実施形態2に係る金属積層体を、図を用いて説明する。図2は、本発明の実施形態2に係る金属積層体を模式的に示す断面図である。図2に示すように、金属積層体200は、金属層220a、積層体210、及び金属層220bを、厚み方向にこの順で備える。積層体210は、易接着層212a、基材層211、及び易接着層212bを、厚み方向にこの順に備える。
 易接着層212aの主面212aUは、基材層211の主面211Dと直接しており、基材層211と易接着層212aとの間に、任意の層は介在していない。
 易接着層212bの主面212bDは、基材層211の主面211Uと直接しており、基材層211と易接着層212bとの間に、任意の層は介在していない。
 金属層220aの主面220aUは、易接着層212aの主面212aDに直接しており、金属層220aと易接着層212aとの間に、任意の層は介在していない。
 金属層220bの主面220bDは、易接着層212bの主面212bUに直接しており、金属層220bと易接着層212bとの間に、任意の層は介在していない。
 基材層211、易接着層212a,212b、金属層220a,220bのそれぞれの例としては、前記の基材層、易接着層、及び金属層のそれぞれの例と同様の例が挙げられる。
 本実施形態の金属積層体は、両面配線基板の作製のために好適に用いうる。
(Embodiment 2 of the metal laminate)
The metal laminate according to the second embodiment of the present invention will be described with reference to the drawings. Fig. 2 is a cross-sectional view showing a schematic diagram of the metal laminate according to the second embodiment of the present invention. As shown in Fig. 2, the metal laminate 200 includes a metal layer 220a, a laminate 210, and a metal layer 220b in this order in the thickness direction. The laminate 210 includes an easy-adhesion layer 212a, a base layer 211, and an easy-adhesion layer 212b in this order in the thickness direction.
A principal surface 212aU of the easy-adhesion layer 212a is directly in contact with a principal surface 211D of the base material layer 211, and no layer is interposed between the base material layer 211 and the easy-adhesion layer 212a.
A principal surface 212bD of the easy-adhesion layer 212b is directly in contact with a principal surface 211U of the base material layer 211, and no layer is interposed between the base material layer 211 and the easy-adhesion layer 212b.
The main surface 220aU of the metal layer 220a is directly in contact with the main surface 212aD of the easy-adhesion layer 212a, and no layer is interposed between the metal layer 220a and the easy-adhesion layer 212a.
A principal surface 220bD of the metal layer 220b is directly in contact with a principal surface 212bU of the easy-adhesion layer 212b, and no layer is interposed between the metal layer 220b and the easy-adhesion layer 212b.
Examples of the base material layer 211, the easy- adhesion layers 212a and 212b, and the metal layers 220a and 220b are the same as the examples of the base material layer, the easy-adhesion layers, and the metal layers described above.
The metal laminate of this embodiment can be suitably used for producing a double-sided wiring board.
[2.4.金属積層体の特性]
(金属積層体の総厚み)
 金属積層体の総厚みは、金属積層体の用途に応じて任意の範囲としうるが、例えば、好ましくは6μm以上、より好ましくは11μm以上、更に好ましくは21μm以上であり、好ましくは300μm以下、より好ましくは200μm以下、更に好ましくは150μm以下である。
[2.4. Characteristics of Metal Laminate]
(Total thickness of metal laminate)
The total thickness of the metal laminate may be within any range depending on the application of the metal laminate, but is, for example, preferably 6 μm or more, more preferably 11 μm or more, even more preferably 21 μm or more, and is preferably 300 μm or less, more preferably 200 μm or less, even more preferably 150 μm or less.
(金属層の剥離強度)
 本実施形態に係る金属積層体が備える金属層の剥離強度P1は、好ましくは0.05N/25mm以上、より好ましくは0.1N/25mm以上、更に好ましくは0.2N/25mm以上である。剥離強度P1は、大きいほど好ましいが、例えば、25N/25mm以下であってもよい。
 または、参照積層体の剥離強度P0を測定できる場合には、P1/P0の値は、通常1より大きく、好ましくは1.1以上、より好ましくは1.2以上、更に好ましくは1.3以上、更に好ましくは1.5以上であり、大きいほど好ましいが、例えば、20以下であってもよい。ここで、参照積層体とは、易接着層を備えていない以外は本実施形態に係る金属積層体と同様の構成を有する積層体である。
 基材層と金属層との剥離強度があまりに小さく、剥離強度P0を測定できない場合もある。
(Peel strength of metal layer)
The peel strength P1 of the metal layer of the metal laminate according to this embodiment is preferably 0.05 N/25 mm or more, more preferably 0.1 N/25 mm or more, and even more preferably 0.2 N/25 mm or more. The higher the peel strength P1, the better, but it may be, for example, 25 N/25 mm or less.
Alternatively, in cases where the peel strength P0 of the reference laminate can be measured, the value of P1/P0 is usually greater than 1, preferably 1.1 or more, more preferably 1.2 or more, even more preferably 1.3 or more, and even more preferably 1.5 or more, and the larger the value, the more preferable it is, but it may be, for example, equal to or less than 20. Here, the reference laminate is a laminate having the same configuration as the metal laminate according to this embodiment except that it does not have an easy-adhesion layer.
There are also cases where the peel strength between the substrate layer and the metal layer is so small that the peel strength P0 cannot be measured.
 金属層の剥離強度は、下記の方法により測定されうる。
 評価対象の金属積層体を、幅25mm×長さ100mmの寸法を有する矩形に打ち抜く。
 幅25mm×長さ100mmの寸法を有する矩形のガラス板を用意し、金属積層体が備える基材層の面と、ガラス板の面とを粘着剤を用いて貼り合わせて、金属層が露出している、剥離強度測定用のサンプル板を作製する。
 金属層の長手方向の端部を、株式会社イマダ製ロードセル5N(ZP-5N)、20N(ZP-20N)、又は50N(ZP-50N)により把持して、金属層をサンプル板の90°方向(法線方向)に、剥離スピードを100mm/minとして引っ張り、引っ張りの際の力を、金属積層体が備える金属層の、幅25mm当たりの剥離強度(単位:N/25mm)とする。
The peel strength of the metal layer can be measured by the following method.
The metal laminate to be evaluated is punched out into a rectangle having dimensions of 25 mm width by 100 mm length.
A rectangular glass plate having dimensions of 25 mm width x 100 mm length is prepared, and the surface of the substrate layer of the metal laminate is bonded to the surface of the glass plate using an adhesive to produce a sample plate for peel strength measurement with an exposed metal layer.
The longitudinal ends of the metal layer were gripped with a load cell of 5N (ZP-5N), 20N (ZP-20N), or 50N (ZP-50N) manufactured by Imada Co., Ltd., and the metal layer was pulled in the 90° direction (normal direction) of the sample plate at a peel speed of 100 mm/min. The pulling force was recorded as the peel strength per 25 mm width (unit: N/25 mm) of the metal layer in the metal laminate.
[2.5.金属積層体の用途]
 前記の金属積層体は、金属層の剥離強度が向上している。したがって、金属積層体を、微細な配線を有する回路基板製造のために、好適に用いうる。
 さらに、金属積層体は、低誘電率であり耐熱性を有する、結晶性を有する環状オレフィン重合体を含む基材層を備えている。そのため高周波数電気信号の伝送損失を低減することができ、高周波アンテナ回路基板製造のために、好適に用いうる。
[2.5. Uses of metal laminate]
The metal laminate has an improved peel strength of the metal layer, and can therefore be suitably used for producing circuit boards having fine wiring.
Furthermore, the metal laminate includes a substrate layer containing a crystalline cyclic olefin polymer having a low dielectric constant and heat resistance, and therefore can reduce transmission loss of high-frequency electrical signals, making it suitable for use in the manufacture of high-frequency antenna circuit boards.
[3.金属積層体の製造方法]
 前記の金属積層体は、任意の方法により製造することができ、例えば、下記の方法により製造できる。金属積層体の製造方法は、下記の方法における工程に加えて、任意の工程を含みうる。
[3. Manufacturing method of metal laminate]
The metal laminate can be produced by any method, for example, by the following method. The method for producing the metal laminate can include any steps in addition to the steps in the following method.
[3.1.実施形態A1]
 実施形態A1に係る、金属積層体の製造方法は、工程(1)、(2)、(3)、(4a)、及び(5a)を含む。
 工程(1)では、結晶性を有する環状オレフィン重合体を含む基材層を用意する。
 工程(3)では、前記基材層の少なくとも一方の主面に、コロナ処理、プラズマ処理、及び紫外線処理から選ばれる少なくとも一つの表面処理をする。
 工程(4a)では、表面処理をされた前記基材層の主面上に、シランカップリング剤(A)を含む液状組成物を塗工して塗工層を形成し、前記塗工層を乾燥させて易接着層を形成する。
 工程(1)、(3)、及び(4a)については、積層体の製造方法の項において説明した工程と同様である。工程(1)、(3)、及び(4a)は、通常この順に行われる。
[3.1. Embodiment A1]
The method for producing a metal laminate according to embodiment A1 includes steps (1), (2), (3), (4a), and (5a).
In the step (1), a substrate layer containing a crystalline cyclic olefin polymer is prepared.
In the step (3), at least one of the main surfaces of the substrate layer is subjected to at least one surface treatment selected from a corona treatment, a plasma treatment, and an ultraviolet treatment.
In step (4a), a liquid composition containing a silane coupling agent (A) is applied onto the main surface of the surface-treated base layer to form a coating layer, and the coating layer is dried to form an easy-adhesion layer.
Steps (1), (3), and (4a) are the same as those described in the section on the method for producing a laminate. Steps (1), (3), and (4a) are usually performed in this order.
 工程(2)では、銅、金、銀、アルミニウム、ニッケル、及びクロムからなる群より選択される一種以上を含む金属の層又はステンレス鋼の層である、金属層を用意する。工程(2)において用意する金属層は、前記金属積層体に含まれる金属層と同様のものとしうる。
 工程(5a)では、前記基材層の主面上に形成された前記易接着層と前記金属層とを直接するように配置して中間積層体を得て、前記中間積層体を熱圧着して金属積層体を得る。
 工程(2)、及び(5a)は、通常この順に行われる。工程(5a)は、通常、工程(1)、(2)、(3)、及び(4a)の後に行われる。工程(2)は、工程(1)、(3)、及び(4a)のそれぞれの前に行ってもよく、同時に行ってもよく、後に行ってもよい。
In step (2), a metal layer is prepared, which is a layer of metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel. The metal layer prepared in step (2) may be the same as the metal layer contained in the metal laminate.
In step (5a), the easy-adhesion layer formed on the main surface of the base layer and the metal layer are arranged so as to be directly in contact with each other to obtain an intermediate laminate, and the intermediate laminate is thermocompression-bonded to obtain a metal laminate.
Steps (2) and (5a) are usually carried out in this order. Step (5a) is usually carried out after steps (1), (2), (3), and (4a). Step (2) may be carried out before, simultaneously with, or after each of steps (1), (3), and (4a).
 工程(5a)における熱圧着の圧力は、例えば、好ましくは0.5MPa以上、より好ましくは1MPa以上、更に好ましくは2MPa以上であり、好ましくは20MPa以下、より好ましくは15MPa以下、更に好ましくは10MPa以下である。加圧を前記範囲内で行うことにより、金属積層体における金属層の剥離強度を効果的に高めうる。 The pressure of the thermocompression bonding in step (5a) is, for example, preferably 0.5 MPa or more, more preferably 1 MPa or more, even more preferably 2 MPa or more, and preferably 20 MPa or less, more preferably 15 MPa or less, even more preferably 10 MPa or less. By applying pressure within the above range, the peel strength of the metal layer in the metal laminate can be effectively increased.
 工程(5a)における熱圧着の温度は、例えば、好ましくは120℃以上、より好ましくは150℃以上、更に好ましくは200℃以上であり、好ましくは300℃以下、より好ましくは280℃以下、更に好ましくは250℃以下である。加熱を前記範囲内で行うことにより、金属積層体の特に基材層の熱変形を抑制しながら、金属積層体における金属層の剥離強度を効果的に高めうる。本実施形態に係る積層体は、耐熱性に優れているので、熱圧着をこのような温度範囲で行いうる。 The temperature of the thermocompression bonding in step (5a) is, for example, preferably 120°C or higher, more preferably 150°C or higher, even more preferably 200°C or higher, and preferably 300°C or lower, more preferably 280°C or lower, even more preferably 250°C or lower. By carrying out heating within the above range, the peel strength of the metal layers in the metal laminate can be effectively increased while suppressing thermal deformation of the metal laminate, particularly of the base layer. The laminate according to this embodiment has excellent heat resistance, so thermocompression bonding can be carried out within such a temperature range.
 工程(5a)における熱圧着の時間は、例えば、好ましくは0.1分以上、より好ましくは1分以上、更に好ましくは5分以上であり、好ましくは30分以下、より好ましくは20分以下、更に好ましくは10分以下である。熱圧着の時間を前記範囲内で行うことにより、金属積層体の熱変形を抑制しながら、金属積層体における金属層の剥離強度を効果的に高めうる。 The time for thermocompression bonding in step (5a) is, for example, preferably 0.1 minute or more, more preferably 1 minute or more, even more preferably 5 minutes or more, and preferably 30 minutes or less, more preferably 20 minutes or less, even more preferably 10 minutes or less. By performing the thermocompression bonding time within the above range, the peel strength of the metal layer in the metal laminate can be effectively increased while suppressing thermal deformation of the metal laminate.
 工程(3)において、基材層の一方の主面に表面処理を行い、工程(4a)において、表面処理をされた基材層の一方の主面上に液状組成物を塗工して塗工層を形成し、塗工層を乾燥させて易接着層を形成することにより、易接着層及び基材層を備える、二層構造を有する積層体を得ることができる。次いで、工程(5a)において、易接着層と金属層とを直接するように配置して中間積層体を得て、この中間積層体を熱圧着することにより、金属層、易接着層、及び基材層をこの順で備える金属積層体を得ることができる。 In step (3), one of the main surfaces of the substrate layer is surface-treated, and in step (4a), a liquid composition is applied onto one of the main surfaces of the substrate layer that has been surface-treated to form a coating layer, and the coating layer is dried to form an easy-adhesion layer, thereby obtaining a laminate having a two-layer structure including an easy-adhesion layer and a substrate layer. Next, in step (5a), the easy-adhesion layer and the metal layer are arranged so as to be directly connected to each other to obtain an intermediate laminate, and this intermediate laminate is heat-pressed to obtain a metal laminate including a metal layer, an easy-adhesion layer, and a substrate layer in this order.
 工程(2)において、第一の金属層及び第二の金属層を用意し、工程(3)において、基材層の両方の主面に表面処理を行い、工程(4a)において、表面処理をされた基材層の両方の主面上に液状組成物を塗工して塗工層を形成し、塗工層を乾燥させて易接着層を形成することにより、第一の易接着層、基材層、及び第二の易接着層をこの順で備える、三層構造を有する積層体を得ることができる。次いで、工程(5a)において、第一の易接着層と第一の金属層とを直接するように配置し、第二の易接着層と第二の金属層とを直接するように配置して、中間積層体を得て、この中間積層体を熱圧着することにより、第一の金属層、第一の易接着層、基材層、第二の易接着層、及び第二の金属層をこの順で備える金属積層体を得ることができる。 In step (2), a first metal layer and a second metal layer are prepared, in step (3), both main surfaces of the substrate layer are surface-treated, and in step (4a), a liquid composition is applied to both main surfaces of the substrate layer that have been surface-treated to form a coating layer, and the coating layer is dried to form an easy-adhesion layer, thereby obtaining a three-layer structure laminate having a first easy-adhesion layer, a substrate layer, and a second easy-adhesion layer in this order. Next, in step (5a), the first easy-adhesion layer and the first metal layer are arranged so as to be directly connected to each other, and the second easy-adhesion layer and the second metal layer are arranged so as to be directly connected to each other to obtain an intermediate laminate, and this intermediate laminate is heat-pressed to obtain a metal laminate having a first metal layer, a first easy-adhesion layer, a substrate layer, a second easy-adhesion layer, and a second metal layer in this order.
[3.2.実施形態A2]
 実施形態A2に係る、金属積層体の製造方法は、工程(1)、(2)、(3)、(4b)、及び(5b)を含む。
 工程(1)、(2)、及び(3)については、前記実施形態A1の工程(1)、(2)、及び(3)と同様である。
 工程(4b)では、金属層の片方の主面上に、シランカップリング剤(A)を含む液状組成物を塗工して塗工層を形成し、前記塗工層を乾燥させて易接着層を形成する。
 工程(5b)では、前記金属層の主面上に形成された易接着層と表面処理をされた前記基材層の主面とを直接するように配置して中間積層体を得て、前記中間積層体を熱圧着して金属積層体を得る。
[3.2. Embodiment A2]
The method for producing a metal laminate according to embodiment A2 includes steps (1), (2), (3), (4b), and (5b).
Steps (1), (2), and (3) are the same as steps (1), (2), and (3) in the embodiment A1.
In step (4b), a liquid composition containing a silane coupling agent (A) is applied onto one of the main surfaces of the metal layer to form a coating layer, and the coating layer is dried to form an easy-adhesion layer.
In step (5b), an intermediate laminate is obtained by arranging the easy-adhesion layer formed on the main surface of the metal layer so as to be directly in contact with the main surface of the surface-treated base layer, and the intermediate laminate is thermocompressed to obtain a metal laminate.
 工程(1)、(3)、及び(5b)は、通常この順に行われる。工程(2)、(4b)、及び(5b)は、通常この順に行われる。工程(1)及び工程(3)と、工程(2)及び(4b)とは、並行して行われてもよく、工程(1)及び工程(3)の前に、工程(2)及び工程(4b)が行われてもよく、工程(1)及び工程(3)の後に、工程(2)及び工程(4b)が行われてもよい。 Steps (1), (3), and (5b) are usually performed in this order. Steps (2), (4b), and (5b) are usually performed in this order. Steps (1) and (3) and steps (2) and (4b) may be performed in parallel, steps (2) and (4b) may be performed before steps (1) and (3), and steps (2) and (4b) may be performed after steps (1) and (3).
 工程(4b)において用いられる、シランカップリング剤(A)を含む液状組成物は、積層体の製造方法の項で説明した液状組成物と同様のものとしうる。
 工程(4b)における液状組成物の塗工方法は、積層体の製造方法の項で説明した工程(4a)における液状組成物の塗工方法と同様の方法としうる。
 工程(4b)における、塗工層の乾燥方法は、工程(4a)における乾燥方法と同様としうる。
The liquid composition containing the silane coupling agent (A) used in the step (4b) may be the same as the liquid composition described in the section on the method for producing the laminate.
The method for applying the liquid composition in step (4b) may be the same as the method for applying the liquid composition in step (4a) explained in the section on the method for producing the laminate.
The method for drying the coating layer in step (4b) may be the same as the method for drying in step (4a).
 工程(5b)における、熱圧着の条件は、実施形態A1の工程(5a)における熱圧着の条件と、同様の条件としうる。 The conditions for the thermocompression bonding in step (5b) may be the same as the conditions for the thermocompression bonding in step (5a) of embodiment A1.
 工程(3)において、基材層の一方の主面に表面処理を行い、工程(5b)において、易接着層と金属層とを直接するように配置して中間積層体を得て、この中間積層体を熱圧着することにより、金属層、易接着層、及び基材層をこの順で備える金属積層体を得ることができる。 In step (3), one of the main surfaces of the base layer is subjected to a surface treatment, and in step (5b), the easy-adhesion layer and the metal layer are arranged so as to be directly in contact with each other to obtain an intermediate laminate, which is then thermocompressed to obtain a metal laminate having a metal layer, an easy-adhesion layer, and a base layer in this order.
 工程(2)において、第一の金属層及び第二の金属層を用意し、工程(3)において、基材層の両方の主面に表面処理を行い、工程(4b)において、第一の金属層の片方の主面上に、第一の易接着層を形成し、第二の金属層の片方の主面上に、第二の易接着層を形成し、次いで、工程(5b)において、前記第一の金属層の片方の主面上に形成された第一の易接着層と前記基材層の第一の主面とを直接するように配置し、前記第二の金属層の片方の主面上に形成された第二の易接着層と前記基材層の第二の主面とを直接するように配置して、中間積層体を得て、この中間積層体を熱圧着することにより、第一の金属層、第一の易接着層、基材層、第二の易接着層、及び第二の金属層をこの順で備える金属積層体を得ることができる。 In step (2), a first metal layer and a second metal layer are prepared, in step (3), both main surfaces of the base layer are surface-treated, in step (4b), a first easy-adhesion layer is formed on one main surface of the first metal layer, and a second easy-adhesion layer is formed on one main surface of the second metal layer, and then in step (5b), the first easy-adhesion layer formed on one main surface of the first metal layer and the first main surface of the base layer are arranged so as to be directly in contact with each other, and the second easy-adhesion layer formed on one main surface of the second metal layer and the second main surface of the base layer are arranged so as to be directly in contact with each other, thereby obtaining an intermediate laminate, and by thermocompressing the intermediate laminate, a metal laminate having the first metal layer, the first easy-adhesion layer, the base layer, the second easy-adhesion layer, and the second metal layer in this order can be obtained.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples shown below, and can be modified as desired without departing from the scope of the claims of the present invention and the scope of equivalents thereto.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温(20℃±15℃)及び常圧(1atm)の条件において行った。 In the following explanation, the amounts in "%" and "parts" are by weight unless otherwise specified. Furthermore, the operations described below were carried out at room temperature (20°C ± 15°C) and normal pressure (1 atm) unless otherwise specified.
[評価方法]
 〔重合体の水素化率の測定方法〕
 重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定した。
[Evaluation method]
[Method for measuring hydrogenation rate of polymer]
The hydrogenation rate of the polymer was measured by 1 H-NMR measurement at 145° C. using orthodichlorobenzene- d4 as a solvent.
 〔重合体の重量平均分子量(Mw)及び数平均分子量(Mn)の測定方法〕
 重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃とした。
[Method of measuring weight average molecular weight (Mw) and number average molecular weight (Mn) of polymer]
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were measured as polystyrene equivalent values using a gel permeation chromatography (GPC) system ("HLC-8320" manufactured by Tosoh Corporation). In the measurement, an H-type column (manufactured by Tosoh Corporation) was used as the column, and tetrahydrofuran was used as the solvent. The temperature during the measurement was 40°C.
 〔重合体のラセモ・ダイアッドの割合の測定方法〕
 重合体のラセモ・ダイアッドの割合の測定は以下のようにして行った。
 オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行った。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
[Method for measuring the ratio of racemo-dyads in a polymer]
The ratio of racemo-dyads in the polymer was measured as follows.
The polymer was subjected to 13C -NMR measurement by applying the inverse-gated decoupling method at 200°C using orthodichlorobenzene- d4 as a solvent. In the results of this 13C -NMR measurement, a signal at 43.35 ppm derived from a meso dyad and a signal at 43.43 ppm derived from a racemo dyad were identified, with the peak at 127.5 ppm of orthodichlorobenzene- d4 being the reference shift. The proportion of the racemo dyad in the polymer was calculated based on the intensity ratio of these signals.
 〔重合体のガラス転移温度Tg及び融点Tmの測定方法〕
 重合体のガラス転移温度Tg及び融点Tmの測定は、以下のようにして行った。
 試料の重合体を、加熱によって融解させ、融解物をドライアイスで急冷した。続いて、この試料について、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、ガラス転移温度Tg、融点Tmを測定した。
[Method of measuring glass transition temperature Tg and melting point Tm of polymer]
The glass transition temperature Tg and melting point Tm of a polymer were measured as follows.
The polymer sample was melted by heating and the melt was quenched with dry ice. The glass transition temperature Tg and melting point Tm of the sample were then measured using a differential scanning calorimeter (DSC) at a heating rate of 10° C./min (heating mode).
 〔重合体の結晶化度の測定方法〕
 重合体の結晶化度(%)は、X線回折法によって測定した。
[Method for measuring the crystallinity of a polymer]
The crystallinity (%) of the polymer was measured by X-ray diffraction method.
 〔金属層の算術平均粗さRaの測定方法〕
 算術平均粗さRaは、小坂研究所製「ET4000A」を用い、JIS B0601-2001に準拠して測定した。
[Method of measuring arithmetic mean roughness Ra of metal layer]
The arithmetic mean roughness Ra was measured using "ET4000A" manufactured by Kosaka Laboratory in accordance with JIS B0601-2001.
 〔金属積層体が備える金属層の剥離強度〕
 金属層の剥離強度を、下記の方法により測定した。
 評価対象の金属積層体を、幅25mm×長さ100mmの寸法を有する矩形に打ち抜いた。幅25mm×長さ100mmの寸法を有する矩形のガラス板を用意し、金属積層体が備える基材層の面と、ガラス板の面とを粘着剤を用いて貼り合わせて、金属層が露出している、剥離強度測定用のサンプル板を作製した。
 金属層の長手方向の端部を、株式会社イマダ製ロードセル5N(ZP-5N)により把持して、金属層をサンプル板の90°方向(法線方向)に、剥離スピードを100mm/minとして引っ張り、引っ張りの際の力を、金属積層体が備える金属層の、幅25mm当たりの剥離強度(単位:N/25mm)とした。
[Peel strength of metal layer in metal laminate]
The peel strength of the metal layer was measured by the following method.
The metal laminate to be evaluated was punched out into a rectangle having dimensions of 25 mm width × 100 mm length. A rectangular glass plate having dimensions of 25 mm width × 100 mm length was prepared, and the surface of the base layer of the metal laminate and the surface of the glass plate were bonded together using an adhesive to prepare a sample plate for measuring peel strength in which the metal layer was exposed.
The longitudinal end of the metal layer was gripped by a 5N load cell (ZP-5N) manufactured by Imada Co., Ltd., and the metal layer was pulled in the 90° direction (normal direction) of the sample plate at a peel speed of 100 mm/min. The pulling force was recorded as the peel strength per 25 mm width (unit: N/25 mm) of the metal layer in the metal laminate.
[製造例1.基材層の製造]
 (P1-1.結晶性樹脂Aの製造)
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.8部を加え、53℃に加温した。
[Production Example 1. Production of base layer]
(P1-1. Production of crystalline resin A)
A metallic pressure-resistant reactor was thoroughly dried and then purged with nitrogen. 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (endo isomer content of 99% or more) (30 parts as the amount of dicyclopentadiene), and 1.8 parts of 1-hexene were added to the pressure-resistant reactor and heated to 53°C.
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解した溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。この触媒溶液を前記の耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。 0.061 parts of a 19% diethylaluminum ethoxide/n-hexane solution was added to a solution of 0.014 parts of tetrachlorotungsten phenylimide (tetrahydrofuran) complex dissolved in 0.70 parts of toluene, and the mixture was stirred for 10 minutes to prepare a catalyst solution. This catalyst solution was added to the pressure-resistant reactor to initiate the ring-opening polymerization reaction. The reaction was then continued for 4 hours while maintaining the temperature at 53°C, yielding a solution of a ring-opening polymer of dicyclopentadiene.
 得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,830及び29,800であり、これらから求められる分子量分布(Mw/Mn)は3.37であった。 The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opened polymer of dicyclopentadiene were 8,830 and 29,800, respectively, and the molecular weight distribution (Mw/Mn) calculated from these was 3.37.
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液とを濾別した。 0.037 parts of 1,2-ethanediol was added as a terminator to 200 parts of the resulting solution of ring-opened dicyclopentadiene polymer, and the mixture was heated to 60°C and stirred for 1 hour to terminate the polymerization reaction. One part of a hydrotalcite-like compound (Kyowa Chemical Industry Co., Ltd.'s "Kyoward (registered trademark) 2000") was added to the mixture, which was heated to 60°C and stirred for 1 hour. After that, 0.4 parts of a filter aid (Showa Chemical Industry Co., Ltd.'s "Radiolite (registered trademark) #1500") was added, and the adsorbent and the solution were filtered using a PP pleated cartridge filter (Advantec Toyo Co., Ltd.'s "TCP-HX").
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行った。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物の析出によりスラリー溶液となっていた。 100 parts of cyclohexane were added to 200 parts of the filtered ring-opened polymer solution (polymer amount: 30 parts), and 0.0043 parts of chlorohydridocarbonyltris(triphenylphosphine)ruthenium was added, followed by a hydrogenation reaction at 6 MPa hydrogen pressure and 180°C for 4 hours. This produced a reaction liquid containing a hydride of the ring-opened polymer of dicyclopentadiene. This reaction liquid had become a slurry solution due to precipitation of the hydride.
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有する、ジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上であることが確認され、ガラス転移温度Tgは97℃、融点Tmは266℃、ラセモ・ダイアッドの割合は89%であった。 The hydride and the solution contained in the reaction liquid were separated using a centrifuge and dried under reduced pressure at 60°C for 24 hours to obtain 28.5 parts of a crystalline hydride of a ring-opening polymer of dicyclopentadiene. The hydrogenation rate of this hydride was confirmed to be 99% or more, with a glass transition temperature Tg of 97°C, a melting point Tm of 266°C, and a racemo-dyad ratio of 89%.
 次に、得られたジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合し、内径3mmΦのダイ穴を4つ備えた二軸押出機(東芝機械社製「TEM-37B」)に投入した。前記の二軸押出機によって、樹脂を熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、結晶性樹脂Aのペレットを得た。前記の二軸押出機の運転条件を、以下に示す。
 ・バレル設定温度:270℃~280℃
 ・ダイ設定温度:250℃
 ・スクリュー回転数:145rpm
Next, 100 parts of the obtained hydrogenated product of the ring-opening polymer of dicyclopentadiene was mixed with 1.1 parts of an antioxidant (tetrakis[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane;"Irganox (registered trademark) 1010" manufactured by BASF Japan Ltd.), and the mixture was fed into a twin-screw extruder ("TEM-37B" manufactured by Toshiba Machine Co., Ltd.) equipped with four die holes having an inner diameter of 3 mm. The resin was molded into a strand-shaped molded product by hot melt extrusion molding using the twin-screw extruder. The molded product was chopped with a strand cutter to obtain pellets of crystalline resin A. The operating conditions of the twin-screw extruder are shown below.
・Barrel temperature setting: 270℃~280℃
Die setting temperature: 250°C
Screw rotation speed: 145 rpm
 (P1-2.結晶性樹脂Aの成形)
 前記(P1-1)で得た結晶性樹脂Aのペレットを、Tダイを備える熱溶融押出しフィルム成形機に供給した。このフィルム成形機を用いて、結晶性樹脂AをTダイから押し出し、8m/分の速度でロールに巻き取って、結晶性環状オレフィン重合体を含む結晶性樹脂Aで形成された、長尺の原反フィルム(幅1340mm)を製造した。前記のフィルム成形機の運転条件を、以下に示す。
 ・バレル温度設定:280℃~290℃
 ・ダイ温度:270℃
 得られた原反フィルムの厚みは50μmであった。
 得られた原反フィルムを、クリップを備えるテンター延伸機に供給した。フィルムの幅方向の両端を、テンター延伸機のクリップで把持し、引っ張って、延伸温度125℃、延伸倍率1.33倍の条件でフィルム幅方向に延伸した。その後、引き続きクリップの幅を固定したまま、フィルムを170℃のオーブンを30秒間で通過させて、結晶化処理を行った。その後、フィルムの幅方向の両端を裁断した。これにより、幅1300mm、厚み38μmの樹脂フィルムを得た。得られた樹脂フィルムを試料として結晶化度を測定したところ、42%であった。
(P1-2. Molding of crystalline resin A)
The pellets of crystalline resin A obtained in (P1-1) were fed to a hot melt extrusion film molding machine equipped with a T-die. Using this film molding machine, crystalline resin A was extruded from the T-die and wound on a roll at a speed of 8 m/min to produce a long raw film (width 1340 mm) formed of crystalline resin A containing a crystalline cyclic olefin polymer. The operating conditions of the film molding machine are shown below.
・Barrel temperature setting: 280℃~290℃
Die temperature: 270°C
The thickness of the obtained raw film was 50 μm.
The obtained raw film was fed to a tenter stretching machine equipped with clips. Both ends of the film in the width direction were gripped with clips of the tenter stretching machine, pulled, and stretched in the film width direction under the conditions of a stretching temperature of 125 ° C and a stretching ratio of 1.33 times. Then, while continuing to fix the width of the clip, the film was passed through an oven at 170 ° C for 30 seconds to perform a crystallization treatment. Then, both ends of the film in the width direction were cut. As a result, a resin film with a width of 1300 mm and a thickness of 38 μm was obtained. The crystallinity of the obtained resin film was measured as a sample, and it was 42%.
[実施例及び比較例で用いた材料]
 実施例及び比較例で用いた材料は、下記のとおりである。
[Materials used in the Examples and Comparative Examples]
The materials used in the examples and comparative examples are as follows.
 〔基材層〕
 基材層として、製造例1で製造された樹脂フィルムを用いた。
[Base layer]
As the substrate layer, the resin film produced in Production Example 1 was used.
 〔金属層〕
 金属層として、下記の銅箔を用いた。
 (圧延銅箔)
 厚み20μm、表面の算術平均粗さRa:64nm
 (電解銅箔)
 厚み18μm、表面の算術平均粗さRa:179nm
[Metal Layer]
The following copper foil was used as the metal layer.
(Rolled copper foil)
Thickness: 20 μm, arithmetic mean surface roughness Ra: 64 nm
(Electrolytic copper foil)
Thickness: 18 μm, arithmetic mean surface roughness Ra: 179 nm
 〔シランカップリング剤〕
 シランカップリング剤として、下記の製品を用いた。
 KBM603(アミノ基を含むシランカップリング剤、水溶性):N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業社製
 KBM1003(ビニル基を含むシランカップリング剤):ビニルトリメトキシシラン、信越化学工業社製
 KBM5103(アクリロイルオキシ基を含むシランカップリング剤):3-アクリロイルオキシプロピルトリメトキシシラン、信越化学工業社製
 KBM803(メルカプト基を含むシランカップリング剤):3-メルカプトプロピルトリメトキシシラン、信越化学工業社製
〔Silane coupling agent〕
The following product was used as the silane coupling agent.
KBM603 (silane coupling agent containing amino group, water-soluble): N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd. KBM1003 (silane coupling agent containing vinyl group): vinyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd. KBM5103 (silane coupling agent containing acryloyloxy group): 3-acryloyloxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd. KBM803 (silane coupling agent containing mercapto group): 3-mercaptopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
<実施例A群>
[実施例A1~A8]
 (1-1.基材層の用意)
 基材層として、製造例1で製造された樹脂フィルムを用意した。
<Example Group A>
[Examples A1 to A8]
(1-1. Preparation of Base Layer)
As the substrate layer, the resin film produced in Production Example 1 was prepared.
 (1-2.基材層の表面処理)
 次いで、樹脂フィルムの片方の表面を、放電電力300W、樹脂フィルムの送り速度27mm/秒の条件でコロナ処理して、表面処理された樹脂フィルムを得た。
(1-2. Surface treatment of substrate layer)
Next, one surface of the resin film was subjected to a corona treatment under conditions of a discharge power of 300 W and a resin film feed speed of 27 mm/sec to obtain a surface-treated resin film.
 (1-3.塗工層の形成と乾燥)
 次いで、シランカップリング剤(A)として表に示す製品を表に示す溶媒で薄めて、0.2重量%のシランカップリング剤(A)を含む、液状組成物としての、シランカップリング剤溶液を作製した。次いで、シランカップリング剤溶液を、前記樹脂フィルムのコロナ処理をした面に、バーコーターで塗工して塗工層を形成した。塗工層の厚みは、乾燥後の層(易接着層)が表に示す厚みとなるように設定した。塗工層の厚みの調整は、塗工条件の調整により行った。
 次いで、塗工層が形成された樹脂フィルムを、100℃のオーブンで5分間加熱することによって、塗工層の乾燥処理を行い、基材層としての樹脂フィルムと、この樹脂フィルムの主面に直接する易接着層とを備える、積層体を得た。
(1-3. Formation and drying of coating layer)
Next, the product shown in the table as the silane coupling agent (A) was diluted with the solvent shown in the table to prepare a silane coupling agent solution as a liquid composition containing 0.2% by weight of the silane coupling agent (A). Next, the silane coupling agent solution was applied to the corona-treated surface of the resin film with a bar coater to form a coating layer. The thickness of the coating layer was set so that the layer (easy adhesion layer) after drying had the thickness shown in the table. The thickness of the coating layer was adjusted by adjusting the coating conditions.
Next, the resin film on which the coating layer was formed was heated in an oven at 100°C for 5 minutes to dry the coating layer, thereby obtaining a laminate comprising a resin film as a base layer and an easy-adhesion layer directly on the main surface of the resin film.
 (1-4.金属積層体の作製)
 この積層体を、25mm×100mm角に打ち抜いた。また、算術平均粗さRaが64nm、厚みが20umである、金属層としての圧延銅箔を、樹脂フィルムと同じく25mm×100mm角に打ち抜いた。打ち抜いた積層体及び圧延銅箔を、積層体が備える易接着層と圧延銅箔とが直接するように重ねて、中間積層体を得た。この中間積層体を、圧力4MPa、温度240℃の条件で10分間熱圧着して、金属積層体を作製した。実施例A1~A8の金属積層体においては、いずれのシランカップリング剤(A)と溶媒との組み合わせの液状組成物を用いていても、シワや端部での樹脂フィルムのはみだしなどの樹脂フィルムの変形は観察されなかった。
 得られた金属積層体について、前記の方法により、金属層の剥離強度を測定した。
(1-4. Preparation of Metal Laminate)
This laminate was punched out to a square of 25 mm x 100 mm. In addition, rolled copper foil as a metal layer having an arithmetic mean roughness Ra of 64 nm and a thickness of 20 um was punched out to a square of 25 mm x 100 mm like the resin film. The punched laminate and the rolled copper foil were stacked so that the easy-adhesion layer of the laminate and the rolled copper foil were directly in contact with each other to obtain an intermediate laminate. This intermediate laminate was thermocompressed for 10 minutes under conditions of a pressure of 4 MPa and a temperature of 240 ° C. to produce a metal laminate. In the metal laminates of Examples A1 to A8, no deformation of the resin film such as wrinkles or protrusion of the resin film at the end was observed, regardless of which liquid composition of the combination of the silane coupling agent (A) and the solvent was used.
For the obtained metal laminate, the peel strength of the metal layer was measured by the above-mentioned method.
[比較例A1]
 前記(1-1)~(1-2)と同様に操作して、表面処理された樹脂フィルムを得た。
 下記事項以外は、前記(1-4)と同様に操作して、金属積層体を得た。
 ・得られた樹脂フィルムを積層体の代わりに用いた。
 ・樹脂フィルムのコロナ処理された面と圧延銅箔とが直接するように重ねて、中間積層体を得た。
 得られた金属積層体は、金属層が樹脂フィルムに密着せずにすぐに剥がれ、前記の方法により剥離強度を測定することができなかった。
[Comparative Example A1]
A surface-treated resin film was obtained by the same procedures as in (1-1) and (1-2) above.
A metal laminate was obtained in the same manner as in (1-4) above, except for the following points.
The obtained resin film was used in place of a laminate.
The corona-treated surface of the resin film was placed directly on the rolled copper foil to obtain an intermediate laminate.
In the obtained metal laminate, the metal layer did not adhere to the resin film and peeled off immediately, so that the peel strength could not be measured by the above-mentioned method.
[比較例A2]
 下記事項以外は、比較例A1と同様に操作して、金属積層体を得た。
 ・表面処理された樹脂フィルムの代わりに、製造例1で製造された樹脂フィルムを用いた。
 ・樹脂フィルムの一方の面と圧延銅箔とが直接するように重ねて、中間積層体を得た。
 得られた金属積層体は、金属層が樹脂フィルムに密着せずにすぐに剥がれ、前記の方法により剥離強度を測定することができなかった。
[Comparative Example A2]
A metal laminate was obtained in the same manner as in Comparative Example A1, except for the following points.
Instead of the surface-treated resin film, the resin film produced in Production Example 1 was used.
One surface of the resin film was directly connected to the rolled copper foil to obtain an intermediate laminate.
In the obtained metal laminate, the metal layer did not adhere to the resin film and peeled off immediately, so that the peel strength could not be measured by the above-mentioned method.
[実施例A1~A8、比較例A1~A2の結果]
 実施例A1~A8、比較例A1~A2の結果を下表に示す。
 下表において、略号は、下記の意味を表す。
「MEK」:メチルエチルケトン
[Results of Examples A1 to A8 and Comparative Examples A1 to A2]
The results of Examples A1 to A8 and Comparative Examples A1 to A2 are shown in the table below.
In the table below, the abbreviations have the following meanings.
"MEK": methyl ethyl ketone
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 易接着層を備えていない比較例A1、A2に係る金属積層体は、剥離強度が測定不可能であるほど金属層と基材層との密着性が小さい。一方、基材層と、基材層に直接する易接着層と、易接着層に直接する金属層とを備える実施例A1~A8に係る金属積層体は、比較例A1、A2に係る金属積層体と比較して、顕著に金属層の剥離強度が向上している。 The metal laminates of Comparative Examples A1 and A2, which do not have an easy-adhesion layer, have such low adhesion between the metal layer and the base layer that the peel strength is impossible to measure. On the other hand, the metal laminates of Examples A1 to A8, which have a base layer, an easy-adhesion layer directly attached to the base layer, and a metal layer directly attached to the easy-adhesion layer, have a significantly improved peel strength of the metal layer compared to the metal laminates of Comparative Examples A1 and A2.
<実施例B群>
[実施例B1]
 前記(1-4)において、圧延銅箔の代わりに、電解銅箔を用いた。
 以上の事項以外は実施例A1と同様に操作して、金属積層体を得た。得られた金属積層体について、前記の方法により金属層の剥離強度を測定したところ、1.01N/25mmであり、後述する比較例B1の金属積層体における剥離強度の4.6倍(1.01/0.22)であった。シワや端部での樹脂フィルムのはみだしなどの樹脂フィルムの変形は観察されなかった。
<Example Group B>
[Example B1]
In the above (1-4), electrolytic copper foil was used instead of rolled copper foil.
A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 1.01 N/25 mm, which was 4.6 times (1.01/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
[実施例B2]
 前記(1-3)において、易接着層の厚みが10nmとなるように、塗工条件を調整した。
 前記(1-4)において、圧延銅箔の代わりに、電解銅箔を用いた。
 以上の事項以外は実施例A1と同様に操作して、金属積層体を得た。得られた金属積層体について、前記の方法により金属層の剥離強度を測定したところ、2.39N/25mmであり、後述する比較例B1の金属積層体における剥離強度の10.9倍(2.39/0.22)であった。シワや端部での樹脂フィルムのはみだしなどの樹脂フィルムの変形は観察されなかった。
[Example B2]
In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 10 nm.
In the above (1-4), electrolytic copper foil was used instead of rolled copper foil.
A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 2.39 N/25 mm, which was 10.9 times (2.39/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
[実施例B3]
 前記(1-3)において、易接着層の厚みが14nmとなるように、塗工条件を調整した。
 前記(1-4)において、圧延銅箔の代わりに、電解銅箔を用いた。
 以上の事項以外は実施例A1と同様に操作して、金属積層体を得た。得られた金属積層体について、前記の方法により金属層の剥離強度を測定したところ、2.92N/25mmであり、後述する比較例B1の金属積層体における剥離強度の13.3倍(2.92/0.22)であった。シワや端部での樹脂フィルムのはみだしなどの樹脂フィルムの変形は観察されなかった。
[Example B3]
In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 14 nm.
In the above (1-4), electrolytic copper foil was used instead of rolled copper foil.
A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 2.92 N/25 mm, which was 13.3 times (2.92/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
[実施例B4]
 前記(1-3)において、易接着層の厚みが24nmとなるように、塗工条件を調整した。
 前記(1-4)において、圧延銅箔の代わりに、電解銅箔を用いた。
 以上の事項以外は実施例A1と同様に操作して、金属積層体を得た。得られた金属積層体について、前記の方法により金属層の剥離強度を測定したところ、2.94N/25mmであり、後述する比較例B1の金属積層体における剥離強度の13.4倍(2.94/0.22)であった。シワや端部での樹脂フィルムのはみだしなどの樹脂フィルムの変形は観察されなかった。
[Example B4]
In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 24 nm.
In the above (1-4), electrolytic copper foil was used instead of rolled copper foil.
A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 2.94 N/25 mm, which was 13.4 times (2.94/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
[実施例B5]
 前記(1-3)において、易接着層の厚みが50nmとなるように、塗工条件を調整した。
 前記(1-4)において、圧延銅箔の代わりに、電解銅箔を用いた。
 以上の事項以外は実施例A1と同様に操作して、金属積層体を得た。得られた金属積層体について、前記の方法により金属層の剥離強度を測定したところ、3.18N/25mmであり、後述する比較例B1の金属積層体における剥離強度の14.5倍(3.18/0.22)であった。シワや端部での樹脂フィルムのはみだしなどの樹脂フィルムの変形は観察されなかった。
[Example B5]
In the above (1-3), the coating conditions were adjusted so that the thickness of the easy-adhesion layer was 50 nm.
In the above (1-4), electrolytic copper foil was used instead of rolled copper foil.
A metal laminate was obtained in the same manner as in Example A1, except for the above. The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method, and was 3.18 N/25 mm, which was 14.5 times (3.18/0.22) the peel strength of the metal laminate of Comparative Example B1 described later. No deformation of the resin film, such as wrinkles or protrusion of the resin film at the edge, was observed.
[比較例B1]
 前記(1-1)~(1-2)と同様に操作して、表面処理された樹脂フィルムを得た。
 下記事項以外は、前記(1-4)と同様に操作して、金属積層体を得た。
 ・得られた樹脂フィルムを積層体の代わりに用いた。
 ・圧延銅箔の代わりに、電解銅箔を用いた。
 ・樹脂フィルムのコロナ処理された面と電解銅箔とが直接するように重ねて、中間積層体を得た。
 得られた金属積層体について、前記の方法により金属層の剥離強度を測定したところ、0.22N/25mmであった。
[Comparative Example B1]
A surface-treated resin film was obtained by the same procedures as in (1-1) and (1-2) above.
A metal laminate was obtained in the same manner as in (1-4) above, except for the following points.
The obtained resin film was used in place of a laminate.
Electrolytic copper foil was used instead of rolled copper foil.
The corona-treated surface of the resin film was placed directly on the electrolytic copper foil to obtain an intermediate laminate.
The peel strength of the metal layer of the obtained metal laminate was measured by the above-mentioned method and was found to be 0.22 N/25 mm.
[比較例B2]
 下記事項以外は、比較例B1と同様に操作して、金属積層体を得た。
 ・表面処理された樹脂フィルムの代わりに、製造例1で製造された樹脂フィルムを用いた。
 ・樹脂フィルムの一方の面と電解銅箔とが直接するように重ねて、中間積層体を得た。
 得られた金属積層体は、金属層が樹脂フィルムに密着せずにすぐに剥がれ、前記の方法により剥離強度を測定することができなかった。
[Comparative Example B2]
A metal laminate was obtained in the same manner as in Comparative Example B1, except for the following points.
Instead of the surface-treated resin film, the resin film produced in Production Example 1 was used.
One side of the resin film was directly laminated onto the electrolytic copper foil to obtain an intermediate laminate.
In the obtained metal laminate, the metal layer did not adhere to the resin film and peeled off immediately, so that the peel strength could not be measured by the above-mentioned method.
 基材層と、基材層に直接する易接着層と、易接着層に直接する金属層とを備える実施例B1~B5に係る金属積層体は、比較例B1、B2に係る金属積層体と比較して、顕著に金属層の剥離強度が向上している。 The metal laminates of Examples B1 to B5, which have a base layer, an easy-adhesion layer directly attached to the base layer, and a metal layer directly attached to the easy-adhesion layer, have a significantly improved peel strength of the metal layer compared to the metal laminates of Comparative Examples B1 and B2.
 100 金属積層体
 110 積層体
 111 基材層
 111U 主面
 112 易接着層
 112D 主面
 112U 主面
 120 金属層
 120D 主面
 200 金属積層体
 210 積層体
 211 基材層
 211U 主面
 211D 主面
 212a,212b 易接着層
 212aU 主面
 212aD 主面
 212bU 主面
 212bD 主面
 220a,220b 金属層
 220aU 主面
 220bD 主面
REFERENCE SIGNS LIST 100 Metal laminate 110 Laminate 111 Base layer 111U Main surface 112 Easy-adhesion layer 112D Main surface 112U Main surface 120 Metal layer 120D Main surface 200 Metal laminate 210 Laminate 211 Base layer 211U Main surface 211D Main surface 212a, 212b Easy-adhesion layer 212aU Main surface 212aD Main surface 212bU Main surface 212bD Main surface 220a, 220b Metal layer 220aU Main surface 220bD Main surface

Claims (8)

  1.  基材層と、前記基材層の少なくとも一方の主面に直接する易接着層とを含む積層体であって、
     前記基材層は、結晶性を有する環状オレフィン重合体を含み、
     前記易接着層は、前記積層体の最も外側に設けられシランカップリング剤(A)から形成された、積層体。
    A laminate comprising a base layer and an easy-adhesion layer directly on at least one main surface of the base layer,
    The substrate layer contains a crystalline cyclic olefin polymer,
    The easy-adhesion layer is provided on the outermost side of the laminate and is formed from a silane coupling agent (A).
  2.  前記易接着層の厚みが、5nm以上200nm以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the thickness of the easy-adhesion layer is 5 nm or more and 200 nm or less.
  3.  前記基材層の前記少なくとも一方の主面は、コロナ処理、プラズマ処理、及び紫外線処理から選ばれる少なくとも一つの表面処理がされている、請求項1に記載の積層体。 The laminate according to claim 1, wherein at least one of the main surfaces of the substrate layer has been subjected to at least one surface treatment selected from corona treatment, plasma treatment, and ultraviolet treatment.
  4.  前記シランカップリング剤(A)が、水溶性である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the silane coupling agent (A) is water-soluble.
  5.  前記シランカップリング剤(A)が、アミノ基、(メタ)アクリロイルオキシ基、メルカプト基、及びビニル基からなる群から選択される一種以上を含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the silane coupling agent (A) contains one or more selected from the group consisting of an amino group, a (meth)acryloyloxy group, a mercapto group, and a vinyl group.
  6.  請求項1~5のいずれか一項に記載の積層体と、前記積層体の前記易接着層に直接する金属層とを含む、金属積層体であって、
     前記金属層は、銅、金、銀、アルミニウム、ニッケル、及びクロムからなる群より選択される一種以上を含む金属の層又はステンレス鋼の層である、金属積層体。
    A metal laminate comprising the laminate according to any one of claims 1 to 5 and a metal layer directly on the easy-adhesion layer of the laminate,
    The metal layer is a layer of a metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel.
  7.  前記金属層の算術平均粗さRaが、50nmより大きい、請求項6に記載の金属積層体。 The metal laminate of claim 6, wherein the arithmetic mean roughness Ra of the metal layer is greater than 50 nm.
  8.  請求項6に記載の金属積層体の製造方法であって、
     下記工程(1)、(2)、(3)、(4a)、及び(5a)を含むか、又は
     下記工程(1)、(2)、(3)、(4b)、及び(5b)を含む、金属積層体の製造方法。
     工程(1):結晶性を有する環状オレフィン重合体を含む基材層を用意する工程、
     工程(2):銅、金、銀、アルミニウム、ニッケル、及びクロムからなる群より選択される一種以上を含む金属の層又はステンレス鋼の層である、金属層を用意する工程、
     工程(3):前記基材層の少なくとも一方の主面に、コロナ処理、プラズマ処理、及び紫外線処理から選ばれる少なくとも一つの表面処理をする工程、
     工程(4a):表面処理をされた前記基材層の主面上に、シランカップリング剤(A)を含む液状組成物を塗工して塗工層を形成し、前記塗工層を乾燥させて易接着層を形成する工程、
     工程(4b):前記金属層の片方の主面上に、シランカップリング剤(A)を含む液状組成物を塗工して塗工層を形成し、前記塗工層を乾燥させて易接着層を形成する工程、
     工程(5a):前記基材層の主面上に形成された前記易接着層と前記金属層とを直接するように配置して中間積層体を得て、前記中間積層体を熱圧着して金属積層体を得る工程、
     工程(5b):前記金属層の主面上に形成された前記易接着層と表面処理をされた前記基材層の主面とを直接するように配置して中間積層体を得て、前記中間積層体を熱圧着して金属積層体を得る工程。
    A method for producing a metal laminate according to claim 6, comprising the steps of:
    A method for producing a metal laminate, comprising the following steps (1), (2), (3), (4a), and (5a), or comprising the following steps (1), (2), (3), (4b), and (5b).
    Step (1): preparing a substrate layer containing a crystalline cyclic olefin polymer;
    Step (2): preparing a metal layer, which is a layer of metal containing one or more selected from the group consisting of copper, gold, silver, aluminum, nickel, and chromium, or a layer of stainless steel;
    Step (3): subjecting at least one of the main surfaces of the substrate layer to at least one surface treatment selected from a corona treatment, a plasma treatment, and an ultraviolet treatment;
    Step (4a): A step of applying a liquid composition containing a silane coupling agent (A) to the main surface of the surface-treated base layer to form a coating layer, and drying the coating layer to form an easy-adhesion layer;
    Step (4b): A step of applying a liquid composition containing a silane coupling agent (A) to one main surface of the metal layer to form a coating layer, and drying the coating layer to form an easy-adhesion layer;
    Step (5a): A step of arranging the easy-adhesion layer formed on the main surface of the base layer and the metal layer so as to be directly connected to each other to obtain an intermediate laminate, and thermocompressing the intermediate laminate to obtain a metal laminate;
    Step (5b): A step of directly contacting the easy-adhesion layer formed on the main surface of the metal layer with the main surface of the surface-treated base layer to obtain an intermediate laminate, and then thermocompressing the intermediate laminate to obtain a metal laminate.
PCT/JP2023/036628 2022-10-25 2023-10-06 Laminate, and metal-clad laminate and production method therefor WO2024090185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-170375 2022-10-25
JP2022170375 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024090185A1 true WO2024090185A1 (en) 2024-05-02

Family

ID=90830537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036628 WO2024090185A1 (en) 2022-10-25 2023-10-06 Laminate, and metal-clad laminate and production method therefor

Country Status (1)

Country Link
WO (1) WO2024090185A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255380A (en) * 2008-04-16 2009-11-05 Rimtec Kk Composite mold
JP2010168489A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Substrate, and composite material using the same
JP2016008283A (en) * 2014-06-26 2016-01-18 日本ゼオン株式会社 Method for producing surface-modified film, method for modifying resin layer, laminate, flexible printed substrate and method for producing laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255380A (en) * 2008-04-16 2009-11-05 Rimtec Kk Composite mold
JP2010168489A (en) * 2009-01-23 2010-08-05 Nippon Zeon Co Ltd Substrate, and composite material using the same
JP2016008283A (en) * 2014-06-26 2016-01-18 日本ゼオン株式会社 Method for producing surface-modified film, method for modifying resin layer, laminate, flexible printed substrate and method for producing laminate

Similar Documents

Publication Publication Date Title
TWI660021B (en) Low-dielectric adhesive composition
JP5750530B2 (en) Adhesive and adhesive sheet containing ladder-type polysilsesquioxane
JP6941308B2 (en) Low Dielectric Adhesive Composition
JP6759873B2 (en) Manufacturing method of flexible copper-clad laminate and flexible copper-clad laminate
JP6590113B2 (en) Metal-clad laminate, circuit board, and multilayer circuit board
US9334356B2 (en) Film made of polyaryleetherketone
TW201829176A (en) Laminate containing low dielectric constant adhesive layer
JP5609891B2 (en) Method for producing polyimide film and polyimide film
WO2024090185A1 (en) Laminate, and metal-clad laminate and production method therefor
WO2006067964A1 (en) Polyester release film for hot-press molding
CN116981744A (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board each comprising same
JP4790582B2 (en) Method for producing highly flexible flexible copper clad laminate
JP2018109136A (en) Adhesive composition and flexible laminate
JP4529565B2 (en) Circuit board manufacturing method
JP7287544B2 (en) Low dielectric adhesive composition
JP7287545B2 (en) Low dielectric adhesive composition
JP7127757B1 (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
JP7287543B2 (en) Low dielectric adhesive composition
WO2024014432A1 (en) Curable resin composition, curable film, and laminated film
JP7287542B2 (en) Low dielectric adhesive composition
JPS61238846A (en) Crosslinkable composition
JP4823884B2 (en) Method for producing flexible copper-clad laminate
JP7334476B2 (en) Laminate manufacturing method
KR101052123B1 (en) Hot Melt Adhesive Composition and Laminates Using the Adhesive Layer
WO2024014435A1 (en) Curable resin composition, curable film, and laminated film