JP2006021152A - Oily water separating method and apparatus therefor - Google Patents

Oily water separating method and apparatus therefor Download PDF

Info

Publication number
JP2006021152A
JP2006021152A JP2004202584A JP2004202584A JP2006021152A JP 2006021152 A JP2006021152 A JP 2006021152A JP 2004202584 A JP2004202584 A JP 2004202584A JP 2004202584 A JP2004202584 A JP 2004202584A JP 2006021152 A JP2006021152 A JP 2006021152A
Authority
JP
Japan
Prior art keywords
liquid
oil
treated
separation
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004202584A
Other languages
Japanese (ja)
Other versions
JP4088609B2 (en
Inventor
Kimio Saito
公男 齋藤
Satoshi Tsukahara
聰 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2004202584A priority Critical patent/JP4088609B2/en
Publication of JP2006021152A publication Critical patent/JP2006021152A/en
Application granted granted Critical
Publication of JP4088609B2 publication Critical patent/JP4088609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for separating oil from water by an electrolytic flotation method using electrolysis, in which scum formed by combining an eluted metal with oil in the liquid to be treated is recovered by floating the scum in the upper part of the liquid to be treated without precipitating the scum at the bottom of the liquid to be treated so that the stable performance of this apparatus can be kept while keeping the oil concentration in the treated liquid to be discharged below a preset value even if a treatment tank is not cleaned. <P>SOLUTION: When oily water separation is performed by electrolyzing the liquid which is to be treated and is housed in a separation tank 13 by using at least a pair of positive/negative electrodes 15, minute air bubbles are supplied slowly to each of electrodes from a nozzle 33 from the lateral side of each of electrodes 15 so that minute air bubbles surround each of electrodes when the liquid to be treated is electrolyzed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は油水分離方法とその装置に係わり、特に、処理槽に貯留した被処理液を電気分解することによって被処理液に含まれる油分を浮上させ、水と油分とを分離させる油水分離方法とその装置に関するものである。   The present invention relates to an oil-water separation method and an apparatus therefor, and in particular, an oil-water separation method in which oil contained in a liquid to be treated is levitated by electrolyzing a liquid to be treated stored in a treatment tank, and water and oil are separated. It relates to the device.

従来、油水分離技術として、下記特許文献1に記載されたような電気分解(以下、電解と略記する)を用いた電解浮上法がある。   Conventionally, as an oil-water separation technique, there is an electrolytic levitation method using electrolysis (hereinafter abbreviated as electrolysis) as described in Patent Document 1 below.

この電解浮上法は、処理槽において被処理液の電解を行なうものであり、電解により電極の金属分が被処理液中に溶出し、この溶出物と被処理液中の油分が結びついてスカムとなり、水より比重の小さなスカムが被処理液上部に浮上し、電解で発生する気泡はスカムの浮上を助け、またこれとは逆に、水より比重が大きいスカムは処理槽の底に沈殿し、被処理液中の水と油を分離するものである。   In this electrolytic levitation method, the liquid to be treated is electrolyzed in the treatment tank, and the metal content of the electrode is eluted into the liquid to be treated by electrolysis, and this eluate and the oil in the liquid to be treated are combined to form a scum. The scum having a specific gravity smaller than that of the water floats on the top of the liquid to be treated, and bubbles generated by electrolysis help the scum rise, and conversely, the scum having a specific gravity larger than that of the water settles on the bottom of the treatment tank, Water and oil in the liquid to be treated are separated.

そして、油水分離後の被処理液、即ち、処理済液は適宜に処理槽から排出させている。   And the to-be-processed liquid after oil-water separation, ie, the processed liquid, is suitably discharged from the processing tank.

特開2001−300542号公報Japanese Patent Laid-Open No. 2001-300542

上記従来技術において、浮上したスカムは掻き取り装置等で回収できるが、沈殿したスカムは処理槽に投入した液ごと抜き取ることなどをしなければ回収することができなかった。   In the above prior art, the floating scum can be collected by a scraping device or the like, but the precipitated scum could not be collected unless the liquid put into the treatment tank is removed.

また、沈殿したスカムは水との比重差がわずかであるために流動性が良く、沈殿量が増加すると、処理済液中に混じりやすくなり、排出される処理済液の油分濃度が設定値以上となってしまうために、短期間毎の定期的な処理槽内の清掃が必要であった。   Precipitated scum has good fluidity due to a slight difference in specific gravity with water, and when the amount of precipitation increases, it becomes easier to mix in the treated liquid, and the concentration of oil in the treated liquid that is discharged exceeds the set value. Therefore, it is necessary to periodically clean the inside of the treatment tank every short period.

それゆえ本発明の目的は、電気分解を用いた電解浮上法での油水分離装置においても、被処理液の油分と結びついた金属溶出物であるスカムを被処理液の底に沈殿させることなく被処理液上部に浮上させて回収でき、処理槽を清掃しなくても、排出される処理済液の油分濃度を設定値以下に保ち、安定した性能を維持できる油水分離装置を提供することにある。   Therefore, an object of the present invention is to provide a scum that is a metal eluate associated with the oil content of the liquid to be treated without precipitating on the bottom of the liquid to be treated, even in an oil / water separator using electrolytic levitation using electrolysis. An object of the present invention is to provide an oil / water separator that can be recovered by floating on the upper part of the processing liquid, and can maintain a stable performance by keeping the oil concentration of the discharged processed liquid below a set value without cleaning the processing tank. .

上記目的を達成する本発明油水分離方法の特徴とするところは、処理槽に収容した被処理液を少なくても1対の正負各電極で電気分解を行なう油水分離方法において、電気分解を行なうときに該各電極の横側から微細な気泡を各電極を包囲するようにゆるやかに供給することにある。
また、上記目的を達成する本発明油水分離装置の特徴とするところは、被処理液を収容するとともに該被処理液の電気分解を行なう少なくても1対の正負各電極を配置した処理槽と電気分解の過程で発生し浮上したスカムを回収する浮上油受け部を備えた油水分離装置において、該処理槽の側壁部に空気を溶解させた被処理液を該処理槽内の被処理液に噴射するノズルを設けたことにある。
The oil-water separation method of the present invention that achieves the above object is characterized in that in the oil-water separation method in which electrolysis is performed with at least one pair of positive and negative electrodes, the liquid to be treated contained in the treatment tank is electrolyzed. In addition, fine bubbles are gently supplied from the side of each electrode so as to surround each electrode.
In addition, the oil / water separator according to the present invention that achieves the above object is characterized in that a treatment tank that accommodates a liquid to be treated and electrolyzes the liquid to be treated is provided with at least a pair of positive and negative electrodes. In an oil / water separator having a floating oil receiver that collects scum generated and floated in the process of electrolysis, a liquid to be treated in which air is dissolved in a side wall of the treatment tank is used as a liquid to be treated in the treatment tank. A nozzle for spraying is provided.

ノズルの処理槽における側壁部への配置は、噴射した被処理液が対向した1対の正負各電極の電極面と平行に進むような配置とすることが良い。   The arrangement of the nozzles on the side walls in the treatment tank is preferably such that the sprayed liquid to be treated proceeds in parallel with the electrode surfaces of the pair of positive and negative electrodes facing each other.

また、処理槽における側壁部へのノズルの設置にあたり、ノズルからの被処理液噴射速度を減速する減速部を設けておくと良い。   Moreover, it is good to provide the deceleration part which decelerates the to-be-processed liquid injection speed from a nozzle in installation of the nozzle to the side wall part in a processing tank.

さらに、微細気泡が電極を包囲するようにするために、処理槽における正負各電極の最下部はノズルからの被処理液噴射流の中にあることが良い。   Further, in order for the fine bubbles to surround the electrodes, the lowermost part of each of the positive and negative electrodes in the processing tank is preferably in the liquid to be processed from the nozzle.

本発明によれば、処理槽における被処理液に対し水平方向にゆっくり流れるノズルからの被処理液噴射流を形成できる。ノズルから被処理液を噴射すると減圧して溶解させてある空気が微細な気泡となって、水平方向に流れる被処理液噴射流とともに微細気泡で電極を包囲するようにゆっくり移動してきて横方向移動が止まるような状態になる。   ADVANTAGE OF THE INVENTION According to this invention, the to-be-processed liquid jet flow from the nozzle which flows slowly in a horizontal direction with respect to the to-be-processed liquid in a processing tank can be formed. When the liquid to be treated is ejected from the nozzle, the air that has been decompressed and dissolved becomes fine bubbles, and slowly moves so as to surround the electrode with the fine bubbles together with the liquid to be treated that flows in the horizontal direction. Will stop.

一方、油分と金属溶出物が結びついたスカムは、電極周辺に位置して浮上や沈降を開始するかしないかの状態にあると、殆ど運動エネルギーを持っていない。   On the other hand, the scum in which the oil component and the metal eluate are combined has almost no kinetic energy when it is located in the vicinity of the electrode and is in the state of whether or not to start flying or sinking.

微細気泡が横方向移動を停止しあるいは浮上を開始するような状態において殆ど運動エネルギーを持っていないスカムが存在すれば、スカムと気泡は互いに静止状態に近いために合体し易い。   If there is a scum that has almost no kinetic energy in a state in which the fine bubbles stop moving in the lateral direction or start to rise, the scum and the bubbles are likely to merge because they are close to each other.

それで、殆どのスカムは気泡と一緒になって上昇し、浮上油受け部から回収することができる。沈殿するスカムが無ければ、処理槽の清掃は殆どしなくて済むだけでなく、処理済液に混って排出されるスカムも無くなり、排出される処理済液の油分濃度を設定値以下に保って、高性能に油水分離ができる。   Thus, most scum rises with the bubbles and can be recovered from the floating oil receiver. If there is no scum that settles, not only will the cleaning of the treatment tank be almost eliminated, but there will also be no scum discharged in the treated liquid, and the oil concentration of the treated liquid to be discharged will be kept below the set value. High performance oil / water separation.

以下、図1に示した本発明の一実施形態になる油水分離装置について説明する。   The oil / water separator according to the embodiment of the present invention shown in FIG. 1 will be described below.

図1に示した油水分離装置は、一例として空気圧縮機から排出されるドレンを処理するものとして使用する。   The oil-water separator shown in FIG. 1 is used as an example for treating drain discharged from an air compressor.

図1において、処理槽11には、槽内を被処理液を貯留し油水分離を行う分離処理槽(分離部)13とこの分離部13で浮上分離した油分を回収する浮上油受け部14とを区画する遮蔽板12を設けてあり、更に分離部13内部には複数対の正負各電極15を配置している。   In FIG. 1, a treatment tank 11 includes a separation treatment tank (separation part) 13 for storing a liquid to be treated and separating oil and water in the tank, and a floating oil receiving part 14 for recovering the oil component floating and separated by the separation part 13. , And a plurality of pairs of positive and negative electrodes 15 are arranged inside the separating portion 13.

処理槽11における分離部13の底に取り付けた配管30はバルブ36を介して循環ポンプ31と接続し、循環ポンプ31の出口側配管37はノズル33に接続してある。   A pipe 30 attached to the bottom of the separation unit 13 in the processing tank 11 is connected to a circulation pump 31 via a valve 36, and an outlet side pipe 37 of the circulation pump 31 is connected to a nozzle 33.

ノズル33は減速管38を介し分離部13における側壁下部に接続されており、ノズル33の吐出口は分離部13内に向けて横向きに開口しており、配管30から循環ポンプ31を経てノズル33に至る経路は槽外循環をなす被処理液の循環配管系を構成している。   The nozzle 33 is connected to the lower part of the side wall of the separation unit 13 via a speed reduction pipe 38, and the discharge port of the nozzle 33 opens laterally into the separation unit 13, passing through the circulation pump 31 from the pipe 30 and the nozzle 33. The path leading to (1) constitutes a circulation piping system for the liquid to be treated that circulates outside the tank.

循環ポンプ31の一例としては渦流ポンプを使用しており、図示していないが、循環ポンプ31の出口には被処理液の圧力(水圧)を測定するゲージを設けてある。   As an example of the circulation pump 31, a vortex pump is used. Although not shown, a gauge for measuring the pressure (water pressure) of the liquid to be treated is provided at the outlet of the circulation pump 31.

各電極15は、分離部13の底部から見たときの下部の高さL2が減速管38の下部の高さL1よりも高く(L1<L2)、更にノズル33から分離部13内に噴出する被処理液の流れの方向が各電極15の面と平行になるように設けている。   Each electrode 15 has a lower height L2 when viewed from the bottom of the separation portion 13 is higher than a lower height L1 of the speed reduction tube 38 (L1 <L2), and is further ejected from the nozzle 33 into the separation portion 13. The flow direction of the liquid to be processed is provided so as to be parallel to the surface of each electrode 15.

配管30には、バルブ34を介して空気を供給する空気供給管35と、供給ポンプ21およびバルブ22を有し未処理な被処理液の供給配管系を構成する供給管23を接続してある。   An air supply pipe 35 that supplies air via a valve 34 and a supply pipe 23 that has a supply pump 21 and a valve 22 and constitutes a supply pipe system for untreated liquid are connected to the pipe 30. .

分離部13の上部には分離部13から処理済の被処理液を排出する排出管41を設けてあり、排出管41は分離部13の側壁との接続部(管座)から持上げ、その下流を分離部13との接続部よりも低い位置まで配管してあり、その途中にバルブ42を有している。排出管41の最高位は、分離部13の遮蔽板12の最高位より低くして位置差D1を持たせてある。   A discharge pipe 41 that discharges the processed liquid from the separation section 13 is provided above the separation section 13, and the discharge pipe 41 is lifted from a connection portion (tube seat) with the side wall of the separation section 13 and downstream thereof. Is piped to a position lower than the connecting portion with the separating portion 13 and has a valve 42 in the middle thereof. The highest position of the discharge pipe 41 is set lower than the highest position of the shielding plate 12 of the separating portion 13 to have a positional difference D1.

従って、分離部13内に被処理液を供給し貯留させる場合、バルブ42を開放してあれば、被処理液は排出管41から流出して、分離部13における被処理液面H1は排出管41の最高位で規制され、バルブ42を閉止し分離部13内に被処理液を供給していけば、被処理液面H1は排出管41の最高位よりも上昇していくので、排出管41はバルブ42の開閉で被処理液を排出し水位を調整する機能を備えていることになる。なお、被処理液面H1の上部には油水分離で上昇した浮上油(スカム)の浮上油液面H2が形成される。   Therefore, when supplying and storing the liquid to be processed in the separation unit 13, if the valve 42 is opened, the liquid to be processed flows out from the discharge pipe 41, and the liquid surface H 1 to be processed in the separation unit 13 is discharged from the discharge pipe. If the valve 42 is closed and the liquid to be processed is supplied into the separation unit 13, the liquid surface H 1 to be processed rises above the highest level of the discharge pipe 41. 41 has a function of discharging the liquid to be treated and adjusting the water level by opening and closing the valve 42. A floating oil liquid surface H2 of floating oil (scum) that has been raised by oil-water separation is formed above the liquid surface H1 to be treated.

排出管41の管座部では、分離部13から排出管41へ流入する処理済みの被処理液に分離部13を上昇中の微細気泡,金属溶出物および油粒子(油分)が混入することを防止する仕切板16を設け、ポケット状吸入部17を形成している。   In the tube seat portion of the discharge pipe 41, the processing target liquid flowing into the discharge pipe 41 from the separation section 13 is mixed with fine bubbles, metal eluate, and oil particles (oil) that are rising in the separation section 13. A partition plate 16 to prevent is provided, and a pocket-like suction portion 17 is formed.

仕切板16の最高位は、排出管41の最高位より低くして位置差D2を持たせてあり、また、排出管41の管座部より高くして位置差D3を持たせている。排出管41における被処理液の流出量とポケット状吸入部17の入口面積で決まるポケット状吸入部17での被処理液の下降速度が分離部13での気泡の上昇速度より遅ければ、分離部13を上昇中の微細気泡,金属溶出物および油粒子(油分)がポケット状吸入部17に流入して排出管41に混入することはない。   The highest position of the partition plate 16 is lower than the highest position of the discharge pipe 41 to have a positional difference D2, and is higher than the pipe seat portion of the discharge pipe 41 to have a positional difference D3. If the lowering speed of the liquid to be treated in the pocket-like suction part 17 determined by the outflow amount of the liquid to be treated in the discharge pipe 41 and the inlet area of the pocket-like suction part 17 is slower than the rising speed of the bubbles in the separation part 13, the separation part. Fine bubbles, metal eluate and oil particles (oil) rising up 13 do not flow into the pocket-like suction part 17 and enter the discharge pipe 41.

浮上油受け部14の底部には、スカムSの形で油分を排出する油分排出管51を設けてある。   An oil discharge pipe 51 for discharging oil in the form of a scum S is provided at the bottom of the floating oil receiver 14.

図示しないが、分離槽13の底部に外部に通じる配管を設け、その途中にバルブを設けてあり、分離部13内部の液体を排出する必要がある場合にこれらを用いる。   Although not shown in the drawing, piping that leads to the outside is provided at the bottom of the separation tank 13 and a valve is provided in the middle thereof, and these are used when it is necessary to discharge the liquid inside the separation unit 13.

また、供給管23を分離部13の下部に接続して、未処理の被処理液を分離部13に供給してもよい。   Alternatively, the supply pipe 23 may be connected to the lower part of the separation unit 13 to supply the untreated liquid to the separation unit 13.

分離部13には温度測定器61を設けてあり、分離部13の液温度を測定できるようにしている。図示しないが、配管30から循環ポンプ31を経由しノズル33までの配管37中に温度測定器を設置して、分離部13の液温度を測定してもよい。   The separation unit 13 is provided with a temperature measuring device 61 so that the liquid temperature of the separation unit 13 can be measured. Although not shown, a temperature measuring device may be installed in the pipe 37 from the pipe 30 to the nozzle 33 via the circulation pump 31 to measure the liquid temperature of the separation unit 13.

次にその動作を説明する。
先ず、絶対湿度の高い時期に行う連続処理運転について説明する。
Next, the operation will be described.
First, the continuous processing operation performed at a time when the absolute humidity is high will be described.

準備として、バルブ42は開放して分離部13を清水または処理済の被処理液液を充填し、被処理液面H1が排出管41の最高位に一致したら、循環ポンプ31を運転させる。この時、バルブ22は閉止し、供給ポンプ21は停止している。   As a preparation, the valve 42 is opened to fill the separation unit 13 with clean water or a treated liquid to be treated. When the liquid surface H1 to be treated is at the highest level of the discharge pipe 41, the circulation pump 31 is operated. At this time, the valve 22 is closed and the supply pump 21 is stopped.

バルブ34、36は開放状態としてあり、清水または処理済の被処理液が配管30を流れることによって、空気供給管35側が負圧となり、溶解用空気が空気供給管35から流入する。循環ポンプ31は流入した空気と循環する被処理液を充分攪拌し加圧することで、流入した空気は循環する被処理液中に溶解する。循環ポンプ31で加圧された被処理液と溶解した空気はノズル33から減速管38の被処理液中に吐出することで減圧され、水に溶解していた空気は気泡となる。この気泡は、減速管38内で減速され分離部13に送られる。   The valves 34 and 36 are in an open state, and fresh water or processed liquid to be processed flows through the pipe 30, whereby the air supply pipe 35 side becomes negative pressure, and dissolution air flows from the air supply pipe 35. The circulation pump 31 sufficiently agitates and pressurizes the inflowing air and the circulating liquid to be processed, so that the inflowing air is dissolved in the circulating liquid to be processed. The liquid to be processed and the dissolved air pressurized by the circulation pump 31 are decompressed by being discharged from the nozzle 33 into the liquid to be processed in the speed reduction pipe 38, and the air dissolved in the water becomes bubbles. The bubbles are decelerated in the decelerating tube 38 and sent to the separation unit 13.

循環ポンプ31による加圧で被処理液に溶解する空気量は加圧下ではヘンリー(Henry)の法則に従ったものとなり、配管30を流れる清水または処理済の被処理液にかかる圧力、及び配管30を流れる流量に比例して溶解する空気量は多くなる。また配管30を流れる清水または処理済の被処理液の温度が低い程、溶解する空気量は多くなる。実際の運転では圧力、流量を設定値一定となるように運転する。このように運転すると循環ポンプ31の動力が熱となり配管30を流れる清水または処理済の被処理液に伝わり、液温が上昇し、溶解する空気量は減少する。   The amount of air dissolved in the liquid to be processed by pressurization by the circulation pump 31 follows the Henry's law under pressure, and the pressure applied to the fresh water or the liquid to be processed flowing through the pipe 30 and the pipe 30. The amount of dissolved air increases in proportion to the flow rate flowing through the. Further, the lower the temperature of the fresh water flowing through the pipe 30 or the processed liquid to be processed, the more air is dissolved. In actual operation, the operation is performed so that the pressure and flow rate are constant. When operated in this manner, the power of the circulation pump 31 becomes heat and is transmitted to the fresh water or the liquid to be processed flowing through the pipe 30, the liquid temperature rises, and the amount of dissolved air decreases.

このため、予め配管30、37における被処理液の流量、被処理液の液温度、循環ポンプ31による加圧量と溶解空気量の関係を求めておき、温度測定器61で求めた液温度により空気供給管35から流入させる溶解用空気量を処理槽11内を気泡がほぼ揃って浮上する量になるようにバルブ34で調節し、運転する。   For this reason, the relationship between the flow rate of the liquid to be processed in the pipes 30 and 37, the liquid temperature of the liquid to be processed, the amount of pressurization by the circulation pump 31 and the amount of dissolved air is obtained in advance. The operation is performed by adjusting the amount of dissolving air flowing in from the air supply pipe 35 with the valve 34 so that the amount of air bubbles in the processing tank 11 rises almost uniformly.

上記したように被処理液に溶解していた空気はノズル33から減速管38を介して吐出することで減圧され気泡となって分離部13内を浮上するが、分離部13内をほぼ揃って順次浮上するような微細気泡がノズル33から吐出するように溶解する空気量をバルブ34で調節しておく。   As described above, the air dissolved in the liquid to be treated is decompressed by being discharged from the nozzle 33 through the speed reduction pipe 38 and becomes bubbles, and floats in the separation unit 13. The amount of air dissolved is adjusted by the valve 34 so that fine bubbles that rise sequentially are discharged from the nozzle 33.

径の大きな気泡の大気泡は浮力が大きく働くから微細気泡よりも早く浮上する。大きな気泡の大気泡は浮上速度が速くエネルギーが大きいために被処理液の油粒子と結びついた電極からの金属溶出物に衝突した場合、油と金属溶出物を引き離してしまい油水分離性能を低下させる。大気泡の発生原因は循環ポンプ31の加圧によっても被処理液に溶解しなかった空気が存在することにあるとみることができるので、空気供給管35から取り込む溶解用空気量をバルブ34で調節して、余分な空気が入らないようにして、連続して大気泡が浮上しないようにしておく。また、減速管38を設けていることにより、微細気泡が分離部13にゆるやかな速度で送られる。このように送る速度をゆるやかにすることで分離部13内の微細気泡の上昇が揃って順次上昇するようになる。   A large bubble having a large diameter rises faster than a fine bubble because buoyancy works greatly. Large bubbles have a high ascent speed and high energy, so if they collide with the metal eluate from the electrode connected to the oil particles of the liquid to be treated, the oil and metal eluate are separated, reducing the oil-water separation performance. . Since it can be considered that the large bubbles are caused by the presence of air that has not been dissolved in the liquid to be treated even by pressurization of the circulation pump 31, the amount of dissolving air taken in from the air supply pipe 35 is controlled by the valve 34. Adjust so that excess air does not get in and keep large bubbles from rising continuously. Further, by providing the reduction pipe 38, the fine bubbles are sent to the separation unit 13 at a moderate speed. By slowing the feeding speed in this way, the fine bubbles in the separation unit 13 rise together and sequentially rise.

さらに、図2(a)に示すように減速管38からの分離部13内への流れ方向が微細気泡の上昇速度に影響を与えないように流れの方向と電極15の面は平行となるように配置されている。そして、電極15と減速管38を図2(a)において矢印の方向に見た図2(b)に示すように減速管38の側壁位置よりも電極15の位置が間隔D4だけ内側になるようにしている。   Further, as shown in FIG. 2A, the flow direction and the surface of the electrode 15 are parallel so that the flow direction from the speed reduction pipe 38 into the separation portion 13 does not affect the rising speed of the fine bubbles. Is arranged. Then, as shown in FIG. 2 (b), the electrode 15 and the speed reduction tube 38 are viewed in the direction of the arrow in FIG. 2 (a), so that the position of the electrode 15 is inward by a distance D4 from the side wall position of the speed reduction tube 38. I have to.

図2(a)に示すようにノズル33を電極15の一方側に配置した場合は、微細気泡が電極15の他方側にまで行き渡るような流れを形成するようにする。   When the nozzle 33 is arranged on one side of the electrode 15 as shown in FIG. 2A, a flow is formed so that fine bubbles spread to the other side of the electrode 15.

図3に示すようにノズル33を電極15の両側に配置した場合は、各ノズル33から噴出される微細気泡が電極15の中央にまで届くような流れとすればよい。   As shown in FIG. 3, when the nozzles 33 are arranged on both sides of the electrode 15, the flow may be such that fine bubbles ejected from each nozzle 33 reach the center of the electrode 15.

このように配置しているため、分離部13内では流れに乱れが起こり難くなり、電極15は微細気泡で包囲され、微細気泡は横方向の移動速度を失うと、均一に揃ってゆっくり上昇するようになる。   Because of this arrangement, the flow is less likely to be turbulent in the separation section 13, and the electrode 15 is surrounded by fine bubbles, and the fine bubbles rise uniformly and slowly when they lose their lateral movement speed. It becomes like this.

この運転状態を保ちながら、バルブ22を開放し供給ポンプ21を駆動して被処理液の供給系統を運転し、被処理液の循環系統を循環している清水または処理済の被処理液に未処理状態の被処理液を混合させ、電極13にあらかじめ設定した電流となるように通電する。   While maintaining this operating state, the valve 22 is opened and the supply pump 21 is driven to operate the supply system of the liquid to be processed, and the fresh water or the processed liquid to be processed is not circulated through the circulation system of the liquid to be processed. The liquid to be processed in the processing state is mixed, and the electrode 13 is energized so as to have a preset current.

すると、ノズル33から微細気泡と共に油粒子が噴射され、電極15から金属溶出物が溶出する。電極15の周囲では、微細気泡と油粒子は水平方向の移動速度が僅かであり、金属溶出物の下降速度も僅かであるため、油粒子と金属溶出物は合体してスカムとなり、油粒子単体よりも金属溶出物が付着した分だけ表面積が大きくなる。表面積が大きくなったため油粒子と金属溶出物が結びついたスカムは微細気泡に付着し易くなり、微細気泡に付着し、スカムが被処理液面上部に浮上する。   Then, oil particles are ejected from the nozzle 33 together with the fine bubbles, and the metal eluate is eluted from the electrode 15. Around the electrode 15, the fine bubbles and the oil particles have a slight horizontal movement speed, and the metal eluate descends at a low speed. The surface area is increased by the amount of the metal eluate attached. Since the surface area is increased, the scum in which the oil particles and the metal eluate are combined easily adheres to the fine bubbles, adheres to the fine bubbles, and the scum rises above the liquid surface to be treated.

電極15の下部を減速管38の下部よりも高くしてあり(L2>L1)、ノズル33から分離部13を流れる方向と電極15の面とが平行となるようにしているうえに、減速管38から被処理液が水平にゆっくり噴出されるので、ゆるやかな上向きの層流れが形成されるようになり、分離部13内では対流の発生が抑えられて乱流は起こり難く、減速管38から流れ出た油粒子や微細気泡が電極間をゆっくり通過し金属溶出物と付着して均一に揃って上昇するようになる。スカムは微細気泡と確実に合体して浮上するので、小型の電極でも充分こと足りる。   The lower part of the electrode 15 is made higher than the lower part of the decelerating pipe 38 (L2> L1), the direction in which the separation part 13 flows from the nozzle 33 and the surface of the electrode 15 are parallel, and the decelerating pipe Since the liquid to be treated is slowly ejected horizontally from 38, a gentle upward laminar flow is formed, and the generation of convection is suppressed in the separation unit 13 and turbulence hardly occurs. The oil particles and fine bubbles that flow out slowly pass between the electrodes, adhere to the metal eluate, and rise uniformly. Since the scum surely coalesces with the fine bubbles and floats, a small electrode is sufficient.

ノズル33から微細気泡と共に油粒子が噴射される際に供給ポンプ21や循環ポンプ31の動力が熱となり、混合された被処理液に伝わり温度が上がり、溶解可能な空気の量は減少する。減少することで溶解できない余剰気泡(大気泡)が発生するようになる。   When oil particles are jetted together with fine bubbles from the nozzle 33, the power of the supply pump 21 and the circulation pump 31 becomes heat, which is transferred to the mixed liquid to be processed, and the temperature rises, so that the amount of air that can be dissolved decreases. By decreasing, excess bubbles (large bubbles) that cannot be dissolved are generated.

前述したように、余剰気泡は気泡径が大きく上昇速度は早く、槽内に流れの乱れを起こし、油に付着した微細気泡を引き離したりして、油水分離を妨げる。   As described above, surplus bubbles have a large bubble diameter and a high ascending speed, and flow turbulence occurs in the tank, and fine bubbles adhering to oil are separated to prevent oil-water separation.

そこで、前述したように、予め液温度と溶解空気量の関係を求めておき、温度測定器61で求めた液温度により空気供給管35から流入させる溶解用空気量を処理槽11内を気泡がほぼ揃って浮上する量になるようにバルブ34で再調節し、運転するため、余剰空気は発生せず油水分離性能を低下させることはない。また、未処理状態の被処理液を混合することによる液温度の下降を予測して、予め溶解用空気量を下降分だけ減少させた温度での流量に固定して運転するようにしてもよいし、循環流量を少なくしてもよい。大気泡を除去する手段を配管37や減速管38に設けてもよい。   Therefore, as described above, the relationship between the liquid temperature and the amount of dissolved air is obtained in advance, and the amount of dissolving air that flows in from the air supply pipe 35 at the liquid temperature obtained by the temperature measuring device 61 is generated in the processing tank 11 by bubbles. Since the valve 34 is readjusted so that the amount of the air will rise almost uniformly, operation is not performed, so surplus air is not generated and the oil / water separation performance is not deteriorated. In addition, a decrease in the liquid temperature due to mixing of the untreated liquid to be processed may be predicted, and the operation may be performed by fixing the flow rate at a temperature in which the amount of dissolution air is reduced in advance by the amount of decrease. However, the circulating flow rate may be reduced. A means for removing large bubbles may be provided in the pipe 37 or the speed reduction pipe 38.

排出管41からは、配管23から供給された未処理状態の被処理液相当分の処理済の被処理液をスカムに付着した微細気泡の上昇速度よりも遅い速度で吸込んで排出する。   From the discharge pipe 41, the processed liquid to be processed corresponding to the unprocessed liquid supplied from the pipe 23 is sucked and discharged at a speed slower than the rising speed of the fine bubbles adhering to the scum.

循環ポンプ31出口での圧力は、所要動力を少なくすることと微細気泡の直径を小さくすることを考慮すると0.3〜0.8MPa程度が好ましい。溶解空気量が圧力に比例することを考慮すると、循環水流量は被処理液供給系統から供給された未処理状態の被処理液量の30〜100倍で、未処理状態の被処理液は循環水によって30〜100倍に希釈されるので、分離部13に供給される被処理液の油分は低濃度である。   The pressure at the outlet of the circulation pump 31 is preferably about 0.3 to 0.8 MPa in consideration of reducing the required power and reducing the diameter of the fine bubbles. Considering that the amount of dissolved air is proportional to the pressure, the circulating water flow rate is 30 to 100 times the amount of untreated liquid to be treated supplied from the untreated liquid supply system, and the untreated liquid is circulated. Since it is diluted 30 to 100 times with water, the oil content of the liquid to be treated supplied to the separation unit 13 has a low concentration.

分離部13上部に溜まる浮上油(スカムと微細気泡の合体物)は連続運転中に排出管41の途中に設けたバルブ42を一時的に閉じると、分離部13内部の被処理液面H1および浮上油液面H2が上昇し、浮上油液面H2が遮蔽板12の高さを超えると浮上油がオーバフローして浮上油受け部83へ流下する。   The floating oil (a combination of scum and fine bubbles) accumulated on the upper part of the separation unit 13 temporarily closes the valve 42 provided in the middle of the discharge pipe 41 during continuous operation, and the liquid surface H1 to be treated inside the separation unit 13 and When the floating oil liquid level H2 rises and the floating oil liquid level H2 exceeds the height of the shielding plate 12, the floating oil overflows and flows down to the floating oil receiving portion 83.

分離部13での浮上油が減ったら、バルブ42をゆっくり開けて、排出管41から被処理液を排出して被処理液面H1を下げて連続処理を継続する。   When the floating oil in the separation unit 13 decreases, the valve 42 is opened slowly, the liquid to be processed is discharged from the discharge pipe 41, the liquid level H1 to be processed is lowered, and the continuous processing is continued.

なお、電解中に正負各電極から水素や酸素が気泡となって発生するが、気泡径は大きくて上昇速度が速くスカムを充分捕集するものではなく、結局のところ沈殿する多量のスカムが発生する。   In addition, hydrogen and oxygen are generated as bubbles from the positive and negative electrodes during electrolysis, but the bubble diameter is large and the rising speed is fast, so that scum is not collected sufficiently. To do.

また、微細気泡を被処理液とともに分離部の底部から供給すると、その供給口を中心として速い上昇流が形成されることに伴って、周囲に早い下降流が発生し、スカムが気泡と合体し難いだけでなく、スカムは対流に乗って沈殿と上昇を繰り返し、排出が困難である。横向き(ほぼ水平)に微細気泡をゆっくり供給することにより、分離部での対流を抑えらることができて、スカムを気泡と満遍無く合体させ殆どを浮上油として排出することができた。   In addition, when fine bubbles are supplied together with the liquid to be processed from the bottom of the separation unit, a fast upward flow is formed around the supply port, and an early downward flow is generated around the scum. Not only is it difficult, but scum rides in convection and repeats settling and rising, making it difficult to discharge. By supplying fine bubbles slowly in the horizontal direction (substantially horizontal), convection at the separation part could be suppressed, and the scum was united with the bubbles evenly and most of the scum was discharged as floating oil.

さらに、対流の発生を抑えるために、分離部13の底部への配管30の取り付け部(管座)に大口径の減速管を設けて、分離部13における被処理液の汲み出し速度を低下させるようにするとよい。   Furthermore, in order to suppress the occurrence of convection, a large-diameter reduction pipe is provided in the attachment portion (tube seat) of the pipe 30 to the bottom of the separation portion 13 so as to reduce the pumping speed of the liquid to be treated in the separation portion 13. It is good to.

次に、絶対湿度の低い冬期などに行う間歇処理運転について説明する。
先ず、準備として連続処理運転と同様に、分離部13に清水または処理済の被処理液を充満させた状態で循環ポンプ31を運転する。バルブ22は閉じてあるが、バルブ34、バルブ36は開放してあり、溶解用空気が空気供給管35から流入する。
Next, the intermittent treatment operation performed in winter when the absolute humidity is low will be described.
First, as a preparation, the circulating pump 31 is operated in a state in which the separation unit 13 is filled with fresh water or a processed liquid to be processed, as in the continuous processing operation. Although the valve 22 is closed, the valve 34 and the valve 36 are open, and the dissolving air flows from the air supply pipe 35.

循環ポンプ31の動力が熱となり配管30を流れる被処理液に伝わり、分離部13における被処理液の温度を上昇させるため、被処理液の密度は小さくなる。尚、被処理液の密度を小さくするためには分離部13において被処理液の温度を上昇させるための加熱手段を配置してもよい。   The power of the circulation pump 31 becomes heat and is transmitted to the liquid to be processed flowing through the pipe 30 to increase the temperature of the liquid to be processed in the separation unit 13, so that the density of the liquid to be processed is reduced. In order to reduce the density of the liquid to be processed, a heating unit for increasing the temperature of the liquid to be processed may be disposed in the separation unit 13.

被処理液が予定した温度まで上昇したら、循環系統における循環ポンプ31の運転を停止し、バルブ34を閉じ、被処理液供給系統のバルブ22を開放状態にして供給ポンプ21を運転して、未処理状態の被処理液を供給する。被処理液は、配管30から直接および配管37,ノズル33から減速管38を介し分離部13に流入する。   When the liquid to be processed rises to a predetermined temperature, the operation of the circulation pump 31 in the circulation system is stopped, the valve 34 is closed, the valve 22 of the liquid supply system to be processed is opened, and the supply pump 21 is operated. A liquid to be processed in a processing state is supplied. The liquid to be treated flows into the separation unit 13 directly from the pipe 30 and from the pipe 37 and the nozzle 33 through the speed reduction pipe 38.

被処理液は分離部13内の清水または処理済の被処理液よりも温度が低く密度が大きいために分離部13の底部に溜って行き、暖かく密度が小さい処理済の油分濃度の低い被処理液は分離部13の上部に押し上げられた形となって、排出管41からバルブ42を経由して排出される。例えば、遮蔽板12の上端から分離部13の底部までにおける容積が40L、清水または処理済の被処理液温度が320K、未処理状態の被処理液温度が283K、未処理状態の被処理液の供給を20L/hで行うと、処理済の被処理液のみを30L以上排出可能である。   Since the liquid to be treated has a lower temperature and a higher density than the fresh water in the separation unit 13 or the processed liquid to be treated, the liquid to be treated accumulates at the bottom of the separation unit 13 and is treated with a low concentration of processed oil having a low temperature and a low density. The liquid is pushed up to the top of the separation unit 13 and discharged from the discharge pipe 41 via the valve 42. For example, the volume from the upper end of the shielding plate 12 to the bottom of the separation unit 13 is 40 L, the temperature of fresh water or treated liquid to be treated is 320 K, the temperature of untreated liquid to be treated is 283 K, and the liquid to be treated is untreated. When the supply is performed at 20 L / h, only the processed liquid to be processed can be discharged by 30 L or more.

処理済の被処理液のみの排出が済んだら、バルブ22とバルブ42を閉状態にして未処理状態の被処理液の供給を止めて、循環ポンプ31による槽外循環を行ない、設定した電流を電極13に通電する。バルブ34、バルブ36は開放状態として、溶解用空気が空気供給管35から流入するようにする。   When only the treated liquid to be treated is discharged, the valve 22 and the valve 42 are closed to stop the supply of the untreated liquid to be treated, and the circulation pump 31 performs circulation outside the tank, and the set current is supplied. The electrode 13 is energized. The valve 34 and the valve 36 are opened so that the dissolving air flows from the air supply pipe 35.

連続処理と同様に、圧力,流量が設定値一定となるように運転する。この場合も循環ポンプ31の動力が熱となり配管30を流れる被処理液に伝わり、液温が上昇し、溶解する空気量は減少する。このため、予め液温度と溶解空気量の関係を求めておき、温度測定器61で求めた液温度により空気供給管35から流入させる溶解用空気量を処理槽11内を気泡がほぼ揃って浮上する量になるようにバルブ34で調節し、運転する。このため、余剰空気による大気泡は連続して発生せず、油水分離性能を低下させることはない。   As with continuous processing, the system is operated so that the pressure and flow rate are constant. Also in this case, the power of the circulation pump 31 becomes heat and is transmitted to the liquid to be processed flowing through the pipe 30, the liquid temperature rises, and the amount of dissolved air decreases. For this reason, the relationship between the liquid temperature and the amount of dissolved air is obtained in advance, and the amount of dissolving air to be introduced from the air supply pipe 35 at the liquid temperature obtained by the temperature measuring device 61 rises almost uniformly in the processing tank 11. The operation is adjusted by the valve 34 so that the amount is adjusted. For this reason, large bubbles due to excess air are not continuously generated, and the oil / water separation performance is not deteriorated.

バルブ42は閉止してあり、分離部13の被処理液中に微細気泡が存在することになり、被処理液面H1は排出管41の最高位置よりも高くなる。この状態で分離部13内部の被処理液面H1の上側に油分と電極からの金属溶出物であるスカムが微細気泡を結合し浮上油となって溜まるが、浮上油液面H2よりも遮蔽板12の上端位置を高くしてあり(図1の浮上油液面H2は連続処理運転時のものであり、間歇処理運転ではもう少し低い位置が浮上油液面H2となっている)、被処理液の循環中に浮上油が浮上油受け部14へ遮蔽板12からオーバフローすることはない。   The valve 42 is closed, and fine bubbles are present in the liquid to be processed in the separation unit 13, and the liquid surface H 1 to be processed is higher than the highest position of the discharge pipe 41. In this state, the scum, which is a metal eluate from the oil and the electrode, is combined with fine bubbles on the upper side of the liquid surface H1 to be treated inside the separation unit 13 and accumulates as floating oil, but the shielding plate is more than the floating oil liquid level H2. 12 is raised (the floating oil liquid level H2 in FIG. 1 is the one during continuous processing operation, and in the intermittent treatment operation, the slightly lower position is the floating oil liquid surface H2). During the circulation, the floating oil does not overflow from the shielding plate 12 to the floating oil receiving portion 14.

分離部13の下方の油分は、槽外循環により分離部13に微細気泡とともに噴出され、電極15からの金属溶出物と結びついてスカムとなり、連続運転と同様に微細気泡が付着して上昇し、油水分離する。   The oil below the separation unit 13 is ejected together with the fine bubbles to the separation unit 13 by circulation outside the tank, and is combined with the metal eluate from the electrode 15 to form a scum. Separate oil and water.

分離部13における被処理液が目標とする油分濃度に低下し処理済液が得られたら、循環ポンプ31を停止し、バルブ34を閉じてバルブ22とバルブ42を開放させ、電極15への通電を止め、供給ポンプ21を運転して未処理状態の被処理液を分離部13の底部から供給する。この期間中に分離部13上部の処理済の被処理液は、新たに供給した未処理状態の被処理液と同量だけ排出管41から流出する。   When the liquid to be treated in the separation unit 13 is reduced to the target oil concentration and a treated liquid is obtained, the circulation pump 31 is stopped, the valve 34 is closed, the valve 22 and the valve 42 are opened, and the electrode 15 is energized. And the supply pump 21 is operated to supply the untreated liquid to be treated from the bottom of the separation unit 13. During this period, the processed liquid to be processed in the upper part of the separation unit 13 flows out from the discharge pipe 41 by the same amount as the newly supplied unprocessed liquid to be processed.

以上説明した被処理液の供給と循環のために供給ポンプ21、循環ポンプ31の運転と停止を交互に繰り返し、浮上油液面H2と被処理液面H1との差が大きくなったら、即ち、分離部13の上部に浮上油が溜まったら、供給ポンプ21の運転中に排出管41のバルブ42を閉止状態にし、被処理液面H1が遮蔽板12と同一高さになることによって浮上油を遮蔽板12の上端からオーバフローさせ、浮上油受け部14へ排出する。   When the supply pump 21 and the circulation pump 31 are alternately operated and stopped for supplying and circulating the liquid to be treated as described above, and the difference between the floating oil liquid level H2 and the liquid surface H1 is increased, When the floating oil has accumulated on the upper part of the separation unit 13, the valve 42 of the discharge pipe 41 is closed during operation of the supply pump 21, and the liquid surface H 1 to be processed is flush with the shielding plate 12. It overflows from the upper end of the shielding plate 12 and is discharged to the floating oil receiver 14.

以上説明したように本発明によれば、電気分解を用いた電解浮上法での油水分離装置においても、被処理液の油分と結びついた金属溶出物であるスカムを被処理液の底に沈殿させることなく被処理液上部に浮上させ回収でき、処理槽内の清掃がなくても性能の高い油水分離をすることができる。   As described above, according to the present invention, even in an oil / water separator using electrolytic levitation using electrolysis, scum, which is a metal eluate associated with the oil content of the liquid to be treated, is precipitated on the bottom of the liquid to be treated. It is possible to float on the upper part of the liquid to be treated and collect the oil and water with high performance without cleaning the inside of the treatment tank.

本発明の一実施形態になる油水分離装置を示す図である。It is a figure which shows the oil-water separator which becomes one Embodiment of this invention. 図1に示す油水分離装置の減速管と電極の配置関係を説明する図である。It is a figure explaining the arrangement | positioning relationship of the deceleration pipe and electrode of the oil-water separator shown in FIG. 油水分離装置における減速管と電極の他の配置関係を説明する図である。It is a figure explaining the other arrangement | positioning relationship of the reduction pipe and an electrode in an oil-water separator.

符号の説明Explanation of symbols

11…処理槽
12…遮蔽板
13…分離処理槽(分離部)
14…浮上油受け部
15…正負各電極
16…仕切板
17…ポケット状吸入部
21…供給ポンプ
22,34,36,42…バルブ
23,30,35,37,41,51…配管
31…循環ポンプ
33…ノズル
38…減速管
61…温度測定器
11 ... Processing tank
12 ... Shield plate
13 ... Separation processing tank (separation part)
14 ... Floating oil receiver
15: Positive and negative electrodes
16 ... Partition plate
17 ... Pocket-shaped suction part
21 ... Supply pump
22, 34, 36, 42 ... valve
23, 30, 35, 37, 41, 51 ... piping
31 ... circulation pump
33 ... Nozzle
38 ... Deceleration pipe
61 ... Temperature measuring instrument

Claims (6)

分離処理槽に収容した被処理液を少なくても1対の正負各電極で電気分解を行なう油水分離方法において、
電気分解を行なうときに該各電極の横側から微細な気泡を各電極を包囲するようにゆるやかに供給することを特徴とする油水分離方法。
In the oil-water separation method in which electrolysis is performed with at least one pair of positive and negative electrodes for the liquid to be treated contained in the separation treatment tank,
An oil-water separation method characterized in that fine bubbles are gently supplied from the side of each electrode so as to surround each electrode when electrolysis is performed.
上記請求項1に記載の油水分離方法において、微細な気泡は各電極の面と平行に移動するように横から供給することを特徴とする油水分離方法。 2. The oil / water separation method according to claim 1, wherein fine bubbles are supplied from the side so as to move in parallel with the surface of each electrode. 上記請求項1に記載の油水分離方法において、微細な気泡は分離処理槽から汲み出し空気を溶解させた被処理液をノズルから噴射させるときに生じるものであることを特徴とする油水分離方法。 2. The oil / water separation method according to claim 1, wherein the fine bubbles are generated when the liquid to be treated which is pumped out of the separation treatment tank and in which the air is dissolved is ejected from the nozzle. 被処理液を収容するとともに該被処理液の電気分解を行なう少なくても1対の正負各電極を配置した分離処理槽と電気分解の過程で発生し浮上したスカムを回収する浮上油受け部を備えた油水分離装置において、
該分離処理槽の側壁部に空気を溶解させた被処理液を該分離部内の被処理液に噴射するノズルを設けたことを特徴とする油水分離装置。
A separation treatment tank in which at least a pair of positive and negative electrodes are arranged for containing the liquid to be processed and electrolyzing the liquid to be processed, and a floating oil receiving portion for collecting the scum generated and floated during the electrolysis In the provided oil-water separator,
An oil-water separator characterized in that a nozzle for injecting a liquid to be treated in which air is dissolved into the side wall of the separation treatment tank to the liquid to be treated in the separation part is provided.
上記請求項4に記載の油水分離装置において、該分離処理槽から汲み出した被処理液に空気供給手段で空気を溶解させて該分離処理槽に設けたノズルから噴射して被処理液を該分離処理槽に戻す循環配管系と、未処理状態の被処理液を該分離処理槽に供給する供給配管系を有することを特徴とする油水分離装置。 5. The oil / water separator according to claim 4, wherein air to be treated is pumped out of the separation processing tank by air supply means and sprayed from a nozzle provided in the separation processing tank to separate the processing liquid. An oil-water separator having a circulation piping system that returns to a treatment tank and a supply piping system that supplies an untreated liquid to be treated to the separation treatment tank. 上記請求項4に記載の油水分離装置において、該空気供給手段は被処理液の圧力,流量,温度に対応した空気供給量とするようになされていることを特徴とする油水分離装置。
5. The oil / water separator according to claim 4, wherein the air supply means has an air supply amount corresponding to the pressure, flow rate and temperature of the liquid to be treated.
JP2004202584A 2004-07-09 2004-07-09 Oil-water separation method and apparatus Expired - Fee Related JP4088609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202584A JP4088609B2 (en) 2004-07-09 2004-07-09 Oil-water separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202584A JP4088609B2 (en) 2004-07-09 2004-07-09 Oil-water separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2006021152A true JP2006021152A (en) 2006-01-26
JP4088609B2 JP4088609B2 (en) 2008-05-21

Family

ID=35794808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202584A Expired - Fee Related JP4088609B2 (en) 2004-07-09 2004-07-09 Oil-water separation method and apparatus

Country Status (1)

Country Link
JP (1) JP4088609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955271A (en) * 2010-09-25 2011-01-26 中国石油大学(北京) Multistage tower-type flotation device for treating oily sewage
CN102001806A (en) * 2010-12-22 2011-04-06 朱同德 Method and device for treating oily sludge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955271A (en) * 2010-09-25 2011-01-26 中国石油大学(北京) Multistage tower-type flotation device for treating oily sewage
CN101955271B (en) * 2010-09-25 2012-03-14 中国石油大学(北京) Multistage tower-type flotation device for treating oily sewage
CN102001806A (en) * 2010-12-22 2011-04-06 朱同德 Method and device for treating oily sludge

Also Published As

Publication number Publication date
JP4088609B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP2011020025A (en) Oil-water separator
KR100919367B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
WO2010064401A1 (en) Oil-water separation device
CN202131147U (en) Air-lifting spraying bubble removing device for aeration tank
KR20100120946A (en) Hydrogen gas separator of the electrolytic water for electrolysis ballast water treatment equipment
KR102240832B1 (en) Wastewater treatment device and wastewater treatment method
KR101356546B1 (en) Membrane filtration bioreactor include improved floatting gas collector
CN208716890U (en) A kind of air bearing precipitating integrated device
JP2007014867A (en) Washing water treatment apparatus and washing machine having the same
JP4088609B2 (en) Oil-water separation method and apparatus
JP6930767B1 (en) Floating oil recovery processing equipment
KR101715564B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
JP4215548B2 (en) Oil / water separator
JP2011240339A (en) Oil-water separation method and oil-water separator
JP4038365B2 (en) Oil / water separator
JP4072356B2 (en) Oil / water separator and oil / water separator
JP4194469B2 (en) Oil / water separator
US5714054A (en) Process for cleaning the electrolyte of an electrochemical machining process
KR101154316B1 (en) Recycling system for absorption liquid
CN209322532U (en) A kind of purification assembly of sewage treatment
CN208218448U (en) A kind of spraying waste water air-floating processing apparatus
JP4072507B2 (en) Oil / water separator
KR101607762B1 (en) Micro-bubble floating type fluid cleaning apparatus
KR101639072B1 (en) Apparatus for removing pollutant in water using charged micro bubbles
JP4961294B2 (en) Liquid processing apparatus and liquid processing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A711 Notification of change in applicant

Effective date: 20060823

Free format text: JAPANESE INTERMEDIATE CODE: A712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A977 Report on retrieval

Effective date: 20080208

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120229

LAPS Cancellation because of no payment of annual fees