JP2006021079A - Contaminant removal method using electro-osmosis stream and contaminant removal apparatus - Google Patents

Contaminant removal method using electro-osmosis stream and contaminant removal apparatus Download PDF

Info

Publication number
JP2006021079A
JP2006021079A JP2004199301A JP2004199301A JP2006021079A JP 2006021079 A JP2006021079 A JP 2006021079A JP 2004199301 A JP2004199301 A JP 2004199301A JP 2004199301 A JP2004199301 A JP 2004199301A JP 2006021079 A JP2006021079 A JP 2006021079A
Authority
JP
Japan
Prior art keywords
voltage
particles
soil
treated
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004199301A
Other languages
Japanese (ja)
Other versions
JP4362587B2 (en
Inventor
Seiji Nakatani
清治 中谷
Tomoji Kurosawa
友二 黒澤
Hiroshi Kakizaki
洋 蛎崎
Naomichi Furukawa
尚道 古川
Makoto Furukawa
真 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2004199301A priority Critical patent/JP4362587B2/en
Publication of JP2006021079A publication Critical patent/JP2006021079A/en
Application granted granted Critical
Publication of JP4362587B2 publication Critical patent/JP4362587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve removal efficiency or recovery efficiency of a contaminant. <P>SOLUTION: AC voltage is superposedly applied, in addition to DC voltage, to treating objects, e.g., polluted soil, sludge or incineration ash containing harmful contaminants 5, such as heavy metals like lead, mercury, cadmium, arsenic, chromium, zinc, manganese or beryllium, harmful organic compounds like PCB (polychlorobiphenyls) or dioxins, or organic metal compounds, to cause vibration on solid phase particles 1 in the treating objects. Thus, while preventing the solid phase particles 1 from changing into a dense condition, moisture in the treating objects is moved by electro-osmosis stream Y, to efficiently remove and recover the contaminants 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気浸透流を用いた汚染物質回収技術に関する。より詳しくは、電気浸透流の形成段階において、直流電圧に交流電圧を重畳印加することにより汚染物質の回収効率を向上させる技術に関する。   The present invention relates to a contaminant recovery technique using an electroosmotic flow. More specifically, the present invention relates to a technique for improving the recovery efficiency of pollutants by applying an alternating voltage to a direct current voltage in the electroosmotic flow formation stage.

近年、工場跡地などの再開発を進めるにあたって、クロム、鉛、水銀その他の重金属、PCB、ダイオキシン類その他の有機化合物、有機金属化合物などの有害汚染物質による土壌汚染の問題が発生している。また、汚泥、ヘドロ、焼却灰などに含まれる前記有害汚染物質の有効な回収処理技術の開発が、強く要請されている。   In recent years, there has been a problem of soil contamination due to harmful pollutants such as chromium, lead, mercury and other heavy metals, PCB, dioxins and other organic compounds, and organometallic compounds when redeveloping the factory site. In addition, there is a strong demand for the development of an effective recovery treatment technique for the harmful pollutants contained in sludge, sludge, incineration ash, and the like.

土壌浄化技術を一例とすると、土壌酸化法、バイオレメディエーション、ファイトレメディエーション、エレクトロレメディエーションなどの技術が提案されているが、これらの技術は、二次汚染の発生、コスト高、処理が長時間に及ぶ、土壌の種類によって浄化能に差が発生する、などの問題を抱えている。   Taking soil purification technology as an example, technologies such as soil oxidation, bioremediation, phytoremediation, and electroremediation have been proposed. However, these technologies are associated with the occurrence of secondary contamination, high costs, and long treatment times. And there are problems such as differences in purification capacity depending on the type of soil.

また、土壌浄化技術として、電気浸透現象を利用する方法が提案されている。即ち、土壌に直流電圧を印加して土中水を、電気浸透流によって一方向に移動させることにより、その中に含まれる汚染物質を回収する技術である。この技術の利点は、有害物質を溶液の状態で回収できること、低コストであること、原位置での浄化処理が可能であること、処理土壌の再利用が可能であること、などである。   As a soil purification technique, a method using an electroosmosis phenomenon has been proposed. That is, it is a technique for recovering contaminants contained in soil by applying a DC voltage to the soil and moving soil water in one direction by electroosmotic flow. Advantages of this technology are that harmful substances can be recovered in a solution state, low cost, in-situ purification can be performed, and treated soil can be reused.

例えば、特許文献1には、汚染された土壌や汚泥等を陽極と陰極の間に介在させ、これに液体を存在させて直流電圧を印加し、電気浸透等により有害物質を液体とともに移動させて回収し、次いで回収液を電気分解する技術が開示されている。   For example, in Patent Document 1, contaminated soil or sludge is interposed between an anode and a cathode, a liquid is present in the anode, a DC voltage is applied, and harmful substances are moved together with the liquid by electroosmosis or the like. A technique for recovering and then electrolyzing the recovered liquid is disclosed.

特許文献2には、直流電圧によって電気浸透現象を発生させ、汚染土壌中の汚染された土中水及び洗浄用水を陽極側から陰極側へ移動させて、陰極側の電極部材の被覆材をさせて汚染物質を吸着させて中空管に汚染水を集めて汲み上げる技術が開示されている。   In Patent Document 2, an electroosmosis phenomenon is generated by a DC voltage, and contaminated soil water and cleaning water in the contaminated soil are moved from the anode side to the cathode side to cover the electrode member on the cathode side. A technique is disclosed in which contaminants are adsorbed and contaminated water is collected and pumped into a hollow tube.

特許文献3には、直流電圧を印加することで得られる電気浸透現象を用いた脱水装置において、正電極から負電極に移動した汚染物質を含む溶媒を被処理物質(土)から除去洗浄する技術が開示されている。   In Patent Document 3, in a dehydration apparatus using an electroosmosis phenomenon obtained by applying a DC voltage, a technique for removing and cleaning a solvent containing contaminants transferred from a positive electrode to a negative electrode from a material to be treated (soil). Is disclosed.

特許文献4には、汚染土壌を収納する容器の上下に配置した面状の正負電極に直流電圧を印加することによって、汚染土壌に広く均一に電気浸透の効果を与える技術が開示されている。   Patent Document 4 discloses a technique for imparting an electroosmotic effect to a contaminated soil widely and uniformly by applying a DC voltage to planar positive and negative electrodes arranged above and below a container for storing the contaminated soil.

特許文献5には、中心電極とこれを囲む複数の周辺電極を用いて、各電極間に直流電圧を並列的に印加して電気浸透により土壌の脱水を行い、次いで、印加電圧の極性を反転して処理域のpH値を回復させることにより、二次汚染を防止する技術が開示されている。
特開平08−281247号公報。 特開平08−155429号公報。 特開平06−287933号公報。 特開2002−035736号公報。 特開平06−226300号公報。
In Patent Document 5, using a center electrode and a plurality of peripheral electrodes surrounding the center electrode, a DC voltage is applied in parallel between the electrodes to dehydrate the soil by electroosmosis, and then the polarity of the applied voltage is reversed. Thus, a technique for preventing secondary contamination by restoring the pH value of the treatment area is disclosed.
Japanese Patent Application Laid-Open No. 08-281247. Japanese Patent Application Laid-Open No. 08-155429. Japanese Patent Laid-Open No. 06-287933. JP 2002-035736 A. Japanese Patent Laid-Open No. 06-226300.

従来の電気浸透現象を利用する土壌浄化技術は、土壌の性質の違いによって汚染物質の除去効率に差異が生ずるという問題等があるので、普及が進んでいない。この問題は、土壌が持つ様々なパラメータに起因していると考えられる。   Conventional soil remediation techniques using electroosmosis have not been widely used because of the problem of differences in the removal efficiency of pollutants due to differences in soil properties. This problem is thought to be due to various parameters of the soil.

例えば、土壌に対する汚染物質の吸着は、電気浸透流(Electroosmosis Flow:EOF)による汚染物質の移動を困難にしてしまう。また、直流電圧を印加して電気浸透流を起こすと、電気泳動による影響や電気浸透流によって一方向に移動する微粒子がより大きな粒子の間隙に入り込むことで、溶液(土中水)の移動が妨げられるため、汚染物質の除去又は回収効率が、著しく低下するという技術的課題を抱えている。   For example, the adsorption of pollutants to soil makes it difficult to move pollutants by electroosmosis flow (EOF). In addition, when an osmotic flow is caused by applying a DC voltage, the movement of the solution (water in the soil) is caused by the influence of electrophoresis and the fine particles that move in one direction due to the electroosmotic flow enter the gap between larger particles. This hinders the technical problem that the removal or recovery efficiency of pollutants is significantly reduced.

そこで、本発明は、土壌等に含まれる汚染物質の除去又は回収効率を著しく向上させることができる、電気浸透流を用いた汚染物質回収方法及び汚染物質回収装置を提供することを主な目的とする。   Accordingly, the main object of the present invention is to provide a pollutant recovery method and pollutant recovery apparatus using electroosmotic flow that can significantly improve the removal or recovery efficiency of pollutants contained in soil and the like. To do.

まず、本発明者らは、長年にわたる鋭意研究の末、電気浸透流を形成するために用いる直流電圧に対して、交流電圧を重畳させて印加すると、該交流電圧が粒子に振動(バイブレーション)を与えることによって、土壌粒子などの被処理物の粒子が、電気浸透流による移動過程で密な状態になってしまうという現象を有効に防止でき、これにより、電気浸透流を均一化し、汚染物質の除去又は回収効率を著しく向上させることができることを新規に見出した。   First, after many years of diligent research, the present inventors applied an AC voltage superimposed on a DC voltage used to form an electroosmotic flow, and this AC voltage caused vibration (vibration) to particles. By providing this, it is possible to effectively prevent the phenomenon that the particles of the object to be treated such as soil particles become dense during the movement process due to the electroosmotic flow. It has been newly found that the removal or recovery efficiency can be significantly improved.

そこで、本発明では、第一に、汚染物質を含有する被処理物に直流電圧を印加して、該被処理物中の水分を電気浸透流で移動させることにより、前記被処理物から汚染物質を除去する方法であって、前記電気浸透流の形成段階で、前記直流電圧に交流電圧を重畳させる汚染物質除去方法を提供する。即ち、この方法は、被処理物粒子(例えば、土壌粒子)に振動を与えながら、電気浸透流の採用で被処理物中の汚染物質含有水分を電極側へ移動させることを特徴とする。   Therefore, in the present invention, firstly, a DC voltage is applied to an object to be treated containing a contaminant, and moisture in the object to be treated is moved by an electroosmotic flow to thereby remove the contaminant from the object to be treated. And a contaminant removal method for superimposing an AC voltage on the DC voltage in the step of forming the electroosmotic flow. That is, this method is characterized in that the contaminant-containing water in the object to be processed is moved to the electrode side by employing an electroosmotic flow while applying vibration to the object particles (for example, soil particles).

ここで、前記被処理物は、特に限定されないが、例えば、土壌、ヘドロ、汚泥、焼却灰(飛灰を含む。)の中から選択される一つ又はこれの組み合わせである場合において本発明は特に好適である。また、本発明において、直流電圧に重畳印加される交流電圧は、低周波交流電圧が好適である。   Here, although the said to-be-processed object is not specifically limited, For example, in the case where it is one selected from soil, sludge, sludge, incineration ash (including fly ash), or this combination, this invention is Particularly preferred. In the present invention, the AC voltage superimposed on the DC voltage is preferably a low-frequency AC voltage.

また、前記交流電圧の印加は、直流電圧が印加される全時間にわたって並行印加する方法でもよいが、これに限定されることなく、電気浸透流の均一化を確実に達成できる、印加時間、印加回数、あるいは印加タイミングを、被処理物の種類などの条件に応じて、適宜選択すればよい。   Further, the application of the AC voltage may be a method in which the DC voltage is applied in parallel over the entire time during which the DC voltage is applied, but is not limited thereto, and it is possible to reliably achieve uniform electroosmotic flow. The number of times or the application timing may be appropriately selected according to conditions such as the type of the object to be processed.

例えば、(1)直流電圧を印加開始して所定時間経過時点から電圧印加終了に至るまで、(2)直流電圧を印加開始後、断続的に、(3)直流電圧の印加開始から終了までの間の所定時間内、などのタイミングで交流電圧を印加すると、電気エネルギーを節約できる。本方法の実施範囲が広域化し、あるいは本方法を実施する装置の規模が大型化すればする程、この電気エネルギーの節約効果は大きくなる。   For example, (1) from the start of DC voltage application until the end of voltage application until the end of voltage application, (2) intermittently after application of DC voltage, and (3) from application start to end of DC voltage application When an AC voltage is applied at a timing such as within a predetermined time, electric energy can be saved. As the scope of implementation of the method becomes wider or the scale of the apparatus for carrying out the method increases, the saving effect of electric energy increases.

次に、本発明では、第二に、汚染物質を含有する被処理物に対して交流電圧と直流電圧を重畳印加可能な手段によって前記被処理物中の水分を電気浸透流で移動させて、前記被処理物から前記汚染物質を除去することを特徴とする汚染物質除去装置を提供する。   Next, in the present invention, secondly, the moisture in the workpiece is moved by electroosmotic flow by means capable of applying an alternating voltage and a direct current voltage to the workpiece containing the pollutant, Provided is a pollutant removing device that removes the pollutant from the object to be treated.

本装置は、低コストで有害汚染物質を溶液の状態で確実に回収でき、原位置での浄化処理も可能である。また、浄化処理した土壌などの被処理物から有害汚染物質を確実に除去できるので、処理物の再利用が可能である。   This device can reliably collect harmful pollutants in a solution at a low cost, and can be purified in situ. Further, since harmful pollutants can be reliably removed from the treated object such as the soil subjected to the purification treatment, the treated object can be reused.

本発明によれば、電気浸透流を形成するために用いる直流電圧に交流電圧を重畳させて印加し、該交流電圧による粒子の振動作用(バイブレーション作用)によって、土壌粒子などの被処理物の粒子が密な状態になるのを有効に防止できる。この結果、電気浸透流を均一に発生させ、汚染物質の除去又は回収効率を著しく向上させることができる。   According to the present invention, particles of an object to be treated, such as soil particles, are applied by superimposing an AC voltage on a DC voltage used to form an electroosmotic flow, and vibrating the particles (vibration action) by the AC voltage. Can be effectively prevented from becoming dense. As a result, the electroosmotic flow can be generated uniformly, and the contaminant removal or recovery efficiency can be significantly improved.

以下、本発明を実施するための好適な形態について、添付図面を参照しながら説明する。なお、添付図面に示された各実施形態は、本発明に係わる物や方法の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the accompanying drawings. Each embodiment shown in the attached drawings shows an example of a typical embodiment of the thing and method concerning the present invention, and, thereby, the scope of the present invention is not interpreted narrowly.

まず、図1は、本発明に係る汚染物質除去方法を実施するための装置の基本構成の概念図(粒子のゼータ電位がプラスの値の場合)、図2は、同装置の別の基本構成の概念図(粒子のゼータ電位がマイナスの値の場合)である。   First, FIG. 1 is a conceptual diagram of the basic configuration of an apparatus for carrying out the pollutant removal method according to the present invention (when the zeta potential of particles is a positive value), and FIG. 2 is another basic configuration of the apparatus. Is a conceptual diagram (when the zeta potential of the particle is a negative value).

固相粒子1と液相2が存在する系に電圧を印加すると、固相粒子1と液相2の界面には電荷の分離が生じ、電気二重層3と呼ばれる層が形成される。このとき、固相粒子1のゼータ電位がプラスの値を示す場合では(図1参照)、液相2に対して直流電圧を印加すると、固相粒子1の近傍の溶媒4は、弱い逆電荷(この場合、負電荷)を持つ。反対に、固相粒子1のゼータ電位がマイナスの値を示す場合では(図2参照)、液相2に対して直流電圧を印加すると、固相粒子1の近傍の溶媒4は、弱い逆電荷(この場合、正電荷)を持つ。   When a voltage is applied to a system in which the solid phase particle 1 and the liquid phase 2 exist, charge separation occurs at the interface between the solid phase particle 1 and the liquid phase 2, and a layer called an electric double layer 3 is formed. At this time, when the zeta potential of the solid phase particle 1 shows a positive value (see FIG. 1), when a DC voltage is applied to the liquid phase 2, the solvent 4 in the vicinity of the solid phase particle 1 has a weak reverse charge. (In this case, it has a negative charge). On the other hand, when the zeta potential of the solid phase particle 1 shows a negative value (see FIG. 2), when a DC voltage is applied to the liquid phase 2, the solvent 4 in the vicinity of the solid phase particle 1 has a weak reverse charge. (In this case, it has a positive charge).

図1、図2に示す符号5は、液相2に存在する重金属や有害有機化合物からなる有害汚染物質を示している。重金属は、例えば、鉛、水銀、カドミウム、ヒ素、クロム、亜鉛、マンガン、ベリリウムなどであり、有害有機化合物は、PCB(ポリ塩化ビフェニル)、ポリ塩化ジベンゾパラジオキシン(PCDDs)、ポリ塩化ジベンゾフラン(PCDF)等のダイオキシン類、トリクロロエチレンやテトラクロロエチレン等の有機塩素系溶剤などを少なくとも含む。   Reference numeral 5 shown in FIGS. 1 and 2 indicates harmful pollutants made of heavy metals and harmful organic compounds present in the liquid phase 2. Heavy metals are, for example, lead, mercury, cadmium, arsenic, chromium, zinc, manganese, beryllium and the like, and harmful organic compounds are PCB (polychlorinated biphenyls), polychlorinated dibenzoparadoxins (PCDDs), polychlorinated dibenzofurans (PCDF). ) And other organic chlorinated solvents such as trichlorethylene and tetrachloroethylene.

有害汚染物質5が存在する液相2に対して直流電圧を印加すると、電気二重層3付近で(電気泳動の方向(X)と反対方向に)電気浸透流Yが形成される。この電気浸透流Yの電気力学的作用によって、液相2(例えば、土中水)に陽極又は陰極側へ向く流れを生じさせることにより、該液相2中に含まれる有害汚染物質5を、陽極又は陰極側へ移動させ、回収することが可能となる。   When a DC voltage is applied to the liquid phase 2 in which the harmful pollutant 5 exists, an electroosmotic flow Y is formed in the vicinity of the electric double layer 3 (in the direction opposite to the electrophoresis direction (X)). By causing the liquid phase 2 (for example, water in the soil) to flow toward the anode or the cathode side by the electrodynamic action of the electroosmotic flow Y, the harmful pollutant 5 contained in the liquid phase 2 is obtained. It can be moved to the anode or cathode side and recovered.

しかし、図1、図2に示すように、電気浸透流Yの向きと微細な固相粒子1aの電気泳動Xの向きが逆であるので、これが電気浸透流Yによる電気力学的作用に影響を及ぼしてしまう。さらには、直流電圧をかけると固相粒子が徐々に密状態となって、液相2の流れを阻害するようになる。これらの原因により、電気浸透流Yによる汚染物質5の除去効果(回収効果)は、低下してしまう。   However, as shown in FIGS. 1 and 2, the direction of the electroosmotic flow Y and the direction of the electrophoretic X of the fine solid phase particle 1a are opposite, which affects the electrodynamic action of the electroosmotic flow Y. Will affect. Furthermore, when a DC voltage is applied, the solid phase particles gradually become dense, and the flow of the liquid phase 2 is inhibited. For these reasons, the removal effect (recovery effect) of the pollutant 5 by the electroosmotic flow Y is reduced.

なお、固相粒子1が徐々に密状態となる変化を、例えば、図1、図2のモデルを用いて説明すると、固相粒子1、1間に、さらにより微細な固相粒子1aが多数入り込んで、液相2の領域を徐々に狭めていく状態と考えることができる。固相粒子1が正電荷を帯びているときは、陰極側で固相粒子1aが密となり詰まった状態となり、固相粒子1が負電荷を帯びているときは、陽極側で固相粒子1aが密となり詰まった状態となる。   The change in which the solid phase particles 1 gradually become dense will be described using, for example, the models shown in FIGS. 1 and 2. For example, there are many finer solid phase particles 1a between the solid phase particles 1 and 1. It can be considered that the liquid phase 2 is gradually narrowed by entering. When the solid phase particle 1 is positively charged, the solid phase particle 1a becomes dense and clogged on the cathode side, and when the solid phase particle 1 is negatively charged, the solid phase particle 1a is on the anode side. Becomes dense and clogged.

そこで、直流電圧に対して交流電圧を重畳するように印加することに工夫すると、該交流電圧は、微細な固相粒子1aを振動させ、固相粒子1aが徐々に密状態となる変化を有効に防止できる。即ち、電気浸透流Yを液相2に均一に形成できるようになる。   Therefore, if the AC voltage is applied so as to be superimposed on the DC voltage, the AC voltage vibrates the fine solid-phase particles 1a and effectively changes the solid-phase particles 1a in a dense state. Can be prevented. That is, the electroosmotic flow Y can be uniformly formed in the liquid phase 2.

次に、図3は、本発明に係る汚染物質除去装置の好適な実施形態を簡略に示す図である。   Next, FIG. 3 is a diagram schematically showing a preferred embodiment of the contaminant removal apparatus according to the present invention.

図3中の符号10は、汚染物質除去装置(以下「装置」と略称。)を示している。この装置10は、被処理物6を収容するための収容部11と、該収容部11に洗浄水Wを供給するための洗浄水供給部12と、電気浸透流Yによって移動してきた汚染水Wを一次貯留するための汚染水回収部13と、を備える。 Reference numeral 10 in FIG. 3 indicates a contaminant removal apparatus (hereinafter abbreviated as “apparatus”). The apparatus 10 includes a storage unit 11 for storing the workpiece 6, a cleaning water supply unit 12 for supplying the cleaning water W 1 to the storage unit 11, and contaminated water moved by the electroosmotic flow Y. A contaminated water recovery unit 13 for primary storage of W 2 .

前記収容部11の両端には、溶液を通過させることができるメッシュ状の対向電極E−Eが配設されている。この対向電極E−Eは、直流電源Gに接続されており、スイッチSのオン/オフ操作によって、収容部11に流入してきた洗浄水Wに直流電圧を印加可能な構成が採用されている。なお、図1中の符号Aは、電流計を表している。 At both ends of the accommodating portion 11, the mesh-like counter electrodes E 1 -E 2 capable of passing a solution is provided. The counter electrodes E 1 -E 2 are connected to a DC power supply G, and can adopt a configuration in which a DC voltage can be applied to the washing water W 1 flowing into the storage portion 11 by an on / off operation of the switch S 1. Has been. In addition, the code | symbol A in FIG. 1 represents the ammeter.

直流電源Gには、交流発振器14がスイッチSを介して接続されており、即ち、スイッチSのオン/オフ操作によって、直流電圧に交流電圧を所定タイミングで自在に重畳印加できる構成となっている。この構成でなくても、直流電圧に交流電圧を重ね合わすことができる回路であれば、採用可能である。 The DC power supply G, AC oscillator 14 is connected via a switch S 2, i.e., the on / off operation switch S 2, a configuration capable of freely superimposed application at a predetermined timing an AC voltage on a DC voltage ing. Even if it is not this structure, if it is a circuit which can superimpose an alternating voltage on a direct voltage, it is employable.

ここで、交流電圧の周波数、アンプリチュードの最適条件は、固相粒子のサイズ分布やゼータ電位等の因子により決定できる。例えば、被処理物6の種類や性状によって、前記最適条件を見出し、設定すればよい。   Here, the frequency of the alternating voltage and the optimum conditions for the amplitude can be determined by factors such as the size distribution of the solid phase particles and the zeta potential. For example, the optimum condition may be found and set according to the type and properties of the workpiece 6.

ここで、図4は、電圧印加の手順の代表例を示すタイミング図である。   Here, FIG. 4 is a timing chart showing a typical example of the voltage application procedure.

本発明では、直流電圧(DC)に対して交流電圧(AC)を重畳印加することを特徴とするが、その電圧印加の好適な手順例として、まず、図4の(I)に示されているように、電圧印加工程の全過程にわたって、直流電圧に対して交流電圧を絶えず重畳印加する手順を採用することができる。   The present invention is characterized in that the alternating voltage (AC) is superimposed and applied to the direct voltage (DC). As a suitable procedure example of the voltage application, first, as shown in FIG. As described above, it is possible to adopt a procedure in which an alternating voltage is continuously applied to a direct current voltage over the entire process of the voltage application process.

次に、図4の(II)に示されているように、電圧印加工程の後半段階から直流電圧に対して交流電圧を重畳印加する手順を採用することができる。交流電圧の印加開始時期は、固相粒子1(1a)が密状態となる変化が顕著に現れる前が望ましい。   Next, as shown in FIG. 4 (II), a procedure of applying an AC voltage superimposed on a DC voltage from the latter half of the voltage application process can be employed. The AC voltage application start timing is preferably before the change in which the solid phase particle 1 (1a) becomes dense appears.

さらに、図4の(III)に示されているように、直流電圧に対して断続的に交流電圧を重畳印加する手順、あるいは図4の(IV)に示されているように、直流電圧印加工程の途中の所定時間内に限定して交流電圧を重畳印加するようにしてもよい。   Further, as shown in FIG. 4 (III), a procedure for intermittently applying an AC voltage to a DC voltage, or as shown in FIG. 4 (IV), applying a DC voltage. The AC voltage may be superimposed and applied only within a predetermined time during the process.

いずれの電圧印加手順を採用するかは、例えば、被処理物6の種類や性状によって適宜選択すればよいが、(I)の電圧印加手順と比較すれば、(II)から(IV)の電圧印加手順の方が、消費電力を節約できるという点では、有利である。   Which voltage application procedure is adopted may be appropriately selected depending on, for example, the type and properties of the object 6 to be processed. However, when compared with the voltage application procedure (I), the voltage from (II) to (IV) The application procedure is advantageous in that power consumption can be saved.

本発明者らは、本発明の効果を検証することを主な目的として、直流電圧のみを印加した試験(比較例)と、直流電圧に低周波交流電圧を重畳印加した試験(実施例1〜4)を実施した。即ち、実施例1〜4の結果を比較例の結果と比較対照することによって、本発明の効果を検証した。   The inventors of the present invention have a main purpose of verifying the effects of the present invention, a test in which only a DC voltage is applied (comparative example), and a test in which a low-frequency AC voltage is superimposed on a DC voltage (Examples 1 to 1). 4) was carried out. That is, the effects of the present invention were verified by comparing and comparing the results of Examples 1 to 4 with the results of Comparative Examples.

加えて、ゼータ電位がプラスであるアルミナ粒子を土壌粒子に想定した実施例1〜3のうち、「実施例1」(アルミナ粒子:平均粒径3.3μm(粒径1〜6μm)、「実施例2」(アルミナ粒子:平均粒径3.8μm(粒径1〜9μm))では、交流電圧の周波数の好適条件を検証し、「実施例3」は、交流電圧のアンプリチュード(Amplitude、振幅)の好適条件を検証した。「実施例4」は、実施例1〜3とゼータ電位が反対であるカオリン粒子を土壌粒子に想定した試験である。   In addition, among Examples 1 to 3 in which alumina particles having a positive zeta potential are assumed as soil particles, “Example 1” (alumina particles: average particle size 3.3 μm (particle size 1 to 6 μm), “implementation” In “Example 2” (alumina particles: average particle size 3.8 μm (particle size 1 to 9 μm)), suitable conditions for the frequency of the AC voltage were verified, and “Example 3” shows the amplitude of the AC voltage (Amplitude, amplitude). “Example 4” is a test in which kaolin particles having a zeta potential opposite to those in Examples 1 to 3 are assumed as soil particles.

一連の試験は、図5に示されたような構成の模擬電圧印加装置20を用いて行った。本装置20は、内径1.0cm、長さ5.0cmのガラス製円筒セル21を備えている。該円筒セル21に酢酸/酢酸ナトリウム(緩衝溶液)でpH5にした硝酸銅溶液(0.1mol/L)を含む含水率19.4%のアルミナ(酸化アルミニウム、キシダ化学製特級試薬、平均粒径3.3μm(粒径1〜6μm)(「実施例2」は平均粒径3.8μm(粒径1〜9μm)を充填し、一定電位を印加できるように四電極(参照電極22a,22b:Ag/AgCl、対向電極23a,23b:メッシュ状白金)を用いて、汚染物質としての銅の除去実験を行った。また、円筒セルから粒子が漏れないよう、メンブランフィルター(ミリポア製、細孔径:0.1μm)で円筒セルの両端を被った。電解溶液にはpH5の酢酸/酢酸ナトリウム溶液を用いた。なお、アルミナ粒子は、ゼータ電位がプラスの値を示す土壌粒子等を想定したものである。   A series of tests were performed using a simulated voltage application device 20 having a configuration as shown in FIG. The apparatus 20 includes a glass cylindrical cell 21 having an inner diameter of 1.0 cm and a length of 5.0 cm. The cylindrical cell 21 contains alumina nitrate (aluminum oxide, Kishida Chemical special grade reagent, average particle size) containing copper nitrate solution (0.1 mol / L) adjusted to pH 5 with acetic acid / sodium acetate (buffer solution). 3.3 μm (particle size 1 to 6 μm) (“Example 2” is filled with an average particle size of 3.8 μm (particle size 1 to 9 μm), and four electrodes (reference electrodes 22a and 22b: An experiment of removing copper as a pollutant was performed using Ag / AgCl, counter electrodes 23a and 23b: mesh platinum, and a membrane filter (Millipore, pore size: 0.1 μm) and covered both ends of the cylindrical cell.Acetic acid / sodium acetate solution of pH 5 was used as the electrolytic solution, and alumina particles were assumed to be soil particles having a positive zeta potential. It is.

円筒セル21の外側の電解溶液中の各々の電極に、図示しないポテンショスタット(北斗電工(株)製4電極ポテンショスタットHV-501)を接続し、四電極法により一定電位を印加できるようにした。なお、この「四電極法」は、対向電極23a−23b間に印加されている電圧を、試料の両端に置いた参照電極22a−22bにより電位制御を行ない、正確な一定電位を試料中に印加可能にするために採用し、直流電源の代わりに用いた。即ち、この実験では、4本の電極を介して、ポテンショスタットで電圧を印加することによって、正確な電圧、電流値を得ている。   A non-illustrated potentiostat (4-electrode potentiostat HV-501 manufactured by Hokuto Denko Co., Ltd.) was connected to each electrode in the electrolyte solution outside the cylindrical cell 21 so that a constant potential could be applied by the four-electrode method. . In this "four-electrode method", the voltage applied between the counter electrodes 23a-23b is controlled by reference electrodes 22a-22b placed at both ends of the sample, and an accurate constant potential is applied to the sample. Adopted to make it possible and used instead of DC power supply. That is, in this experiment, an accurate voltage and current value are obtained by applying a voltage with a potentiostat through four electrodes.

図示しない交流発振器(Stanford Research Systems製・ロックインアンプSR830の内蔵発振器のみ使用)をポテンショスタットに接続することで、直流電圧に交流電圧を重畳印加できるようにした。なお、交流電圧の印加状況は、オシロスコープで確認した。
(比較例)
直流電圧を5V(1.0V/cm)に設定し、該電圧条件で6時間電解した(交流電圧の重畳印加なし)。また、円筒セル21内の溶液は、酢酸/酢酸ナトリウム緩衝溶液を使用することによって、pHを5にした。銅の定量は、プラズマ発光分光分析装置(ジャーレルアッシュ製ICAP−757)を用いて行った。以下の結果においては、円筒セル中の粒子への銅の添加量に対して、陽極または陰極側の容器に移動した銅の量を、回収率(%)=(銅の移動率/銅の添加量)×100として示す。
By connecting an AC oscillator (not shown) (manufactured by Stanford Research Systems, using only the built-in oscillator of the lock-in amplifier SR830) to the potentiostat, an AC voltage can be superimposed and applied to the DC voltage. In addition, the application condition of alternating voltage was confirmed with the oscilloscope.
(Comparative example)
The DC voltage was set to 5 V (1.0 V / cm), and electrolysis was performed for 6 hours under the voltage conditions (without applying an AC voltage superimposed). The solution in the cylindrical cell 21 was adjusted to pH 5 by using an acetic acid / sodium acetate buffer solution. Copper was quantified by using a plasma emission spectroscopic analyzer (JCAP-757 ICAP-757). In the following results, with respect to the amount of copper added to the particles in the cylindrical cell, the amount of copper transferred to the anode or cathode side container was expressed as recovery rate (%) = (copper transfer rate / copper addition). Amount) x100.

この結果を次の「表1」に示す。なお、本試験においても、土壌粒子のモデルとして想定した粒子は、後述する実施例1、実施例3と同様の粒径のアルミナ粒子である。   The results are shown in the following “Table 1”. In this test as well, the particles assumed as a model of soil particles are alumina particles having the same particle size as those of Example 1 and Example 3 described later.

Figure 2006021079
Figure 2006021079

前掲の「表1」に示されているように、交流電圧を印加しない場合(直流電圧のみの場合)の電気浸透現象では、汚染物質として想定した銅イオンの回収は、非常に低かった。即ち、陽極側溶液に回収された銅の割合は、1.0%にとどまった(「表1」参照)。   As shown in the above-mentioned “Table 1”, in the electroosmosis phenomenon when no AC voltage is applied (in the case of only DC voltage), the recovery of copper ions assumed as a contaminant is very low. That is, the proportion of copper recovered in the anode side solution was only 1.0% (see “Table 1”).

アルミナ粒子のゼータ電位は、プラスの値であるので、銅イオン(二価陽イオン)は、電気浸透現象の原理によって、陽極側に移動するはずであるが(図1参照)、本比較例の結果は、その逆であった。   Since the zeta potential of alumina particles is a positive value, copper ions (divalent cations) should move to the anode side according to the principle of electroosmosis (see FIG. 1). The result was the opposite.

これは、アルミナにおける電気浸透流Yの向きと銅イオンの泳動の向き(微細固相粒子の電気泳動と同じ方向)が逆であるため、銅イオンの除去効果(回収効果)を低下させていると推定できる。   This is because the direction of electroosmotic flow Y in alumina is opposite to the direction of migration of copper ions (the same direction as the electrophoresis of fine solid phase particles), thus reducing the copper ion removal effect (recovery effect). Can be estimated.

また、本比較例試験の終了後における、陰極側のアルミナ粒子は、密状態となり、セル内に硬く詰まっていることを確認した。この結果から、電気泳動によって粒子が密になり、目詰まりを起こすことにより溶液の移動が起こらなくなったことも、電気浸透流による銅の回収効果を低下させている大きな因子であると推定できた。   Further, it was confirmed that the alumina particles on the cathode side after the end of this comparative example test were in a dense state and were tightly packed in the cell. From this result, it was estimated that the fact that the particles became dense by electrophoresis and the movement of the solution did not occur due to clogging was also a major factor that reduced the copper recovery effect by electroosmotic flow. .

(実施例1)
次に、直流電圧に低周波交流電圧を重畳印加したときの銅の回収効果、並びに交流電圧の周波数と汚染物質に想定した銅の回収率との関係を調べるための試験を行なった。
Example 1
Next, a test was conducted to investigate the copper recovery effect when a low-frequency AC voltage was superimposed on the DC voltage, and the relationship between the AC voltage frequency and the copper recovery rate assumed for the contaminant.

より具体的には、交流電圧の周波数条件を、0Hz(即ち直流電圧のみ:対照区)、2Hz、5Hz、10Hzの各条件に設定し、アンプリチュードを0.283V(0.056V/cm)に設定して試験を行なった。直流電圧は5V(1.0V/cm)に設定し、交流電圧の重畳印加条件で6時間電解した。   More specifically, the frequency condition of the AC voltage is set to 0 Hz (that is, only the DC voltage: the control section), 2 Hz, 5 Hz, and 10 Hz, and the amplitude is set to 0.283 V (0.056 V / cm). The test was conducted with setting. The DC voltage was set to 5 V (1.0 V / cm), and electrolysis was performed for 6 hours under the superimposed application condition of AC voltage.

本試験の結果を次の「表2」に示す。この「表2」は、陽極側溶液と陰極側溶液それぞれの銅イオン濃度を周波数条件毎に示している。   The results of this test are shown in “Table 2” below. This "Table 2" shows the copper ion concentration of each of the anode side solution and the cathode side solution for each frequency condition.

Figure 2006021079
Figure 2006021079

前掲の「表2」に示されているように、ゼータ電位がプラスであるアルミナ粒子の存在下での銅の回収においては、周波数の最適条件は5Hzであった。電気浸透流によって銅を回収できる効率は、交流電圧を印加していない場合(比較例、「表1」参照)と比較して、約17倍(17.4/1.0)高くなった。   As shown in the above-mentioned “Table 2”, in the recovery of copper in the presence of alumina particles having a positive zeta potential, the optimum frequency condition was 5 Hz. The efficiency with which copper can be recovered by electroosmotic flow was about 17 times (17.4 / 1.0) higher than when no AC voltage was applied (see Comparative Example, “Table 1”).

(実施例2)
次に、実施例1よりも粒径が大きいアルミナ粒子を用いて、実施例1と同様の実験を行った。交流電圧の周波数は、0.5Hz、5Hz、20Hz、30Hzとした。なお、本試験では、直流電圧のみを印加した「対照区」を準備して、その結果を交流電圧印加の場合の結果と比較した。本試験の結果を、次の「表3」に示す。
(Example 2)
Next, an experiment similar to that of Example 1 was performed using alumina particles having a larger particle diameter than that of Example 1. The frequency of the alternating voltage was 0.5 Hz, 5 Hz, 20 Hz, and 30 Hz. In this test, a “control group” to which only a DC voltage was applied was prepared, and the result was compared with the result in the case of applying an AC voltage. The results of this test are shown in the following “Table 3”.

Figure 2006021079
Figure 2006021079

前掲の「表3」に示されているように、アルミナ粒子の平均粒径が大きい系の場合でも、直流電圧に交流電圧を重畳印加することによって、陽極側溶液中での銅イオン濃度が高まったことから、銅イオンの除去又は回収効率を向上できることがわかった。   As shown in the above-mentioned “Table 3”, even in the case of a system in which the average particle diameter of alumina particles is large, the concentration of copper ions in the anode-side solution is increased by applying an alternating voltage to the direct current voltage. Thus, it was found that the removal or recovery efficiency of copper ions can be improved.

上記した「実施例1」の結果と同様に、周波数5Hzの時が陽極側溶液中での銅イオン濃度が最も高かった。また、0.5Hz程度の周波数においても陽極側溶液中での銅の回収率の高まりが見られ、さらに、20Hz、30Hzの周波数域でも、陽極側溶液中での銅の回収率の高まりが見られた。   Similar to the result of “Example 1” described above, the copper ion concentration in the anode side solution was highest when the frequency was 5 Hz. Further, an increase in the copper recovery rate in the anode side solution was observed even at a frequency of about 0.5 Hz, and an increase in the copper recovery rate in the anode side solution was also observed in the frequency range of 20 Hz and 30 Hz. It was.

また、「実施例2」の結果と「実施例1」の結果を比較すると、アルミナ粒子の平均粒径が大きい系である実施例2の方が、銅イオンの除去又は回収効率が良かった。例えば、周波数5Hz時の陽極側溶液の銅回収率は、実施例1では17.4%だったのに対して、実施例2では、23.6%であった。これは、アルミナ粒子の平均粒径が大きい系の方が、アルミナ粒子の密状態への変化が起こり難いからではないかと考えられる。   Further, when the results of “Example 2” and the results of “Example 1” were compared, Example 2 which is a system in which the average particle diameter of the alumina particles is large showed better copper ion removal or recovery efficiency. For example, the copper recovery rate of the anode side solution at a frequency of 5 Hz was 17.4% in Example 1, whereas it was 23.6% in Example 2. This is thought to be because the system in which the average particle diameter of the alumina particles is larger is less likely to cause the alumina particles to change to a dense state.

以上の「実施例1」と「実施例2」の結果は、土壌粒子として想定できるアルミナ粒子を、重畳印加した低周波交流電圧によって小さく強制振動させることによって、電場形成によるアルミナ粒子の密状態への変化が防止され、試料中の溶液を効率よく移動させることができたからと推定できる。   As a result of the above “Example 1” and “Example 2”, alumina particles that can be assumed as soil particles are forcibly vibrated by a low-frequency alternating voltage applied in a superimposed manner, thereby bringing the alumina particles into a dense state due to electric field formation. It can be presumed that this change was prevented and the solution in the sample could be moved efficiently.

(実施例3)
次に、アンプリチュードの最適条件を検討するために、交流電圧の周波数を5Hzに設定して、本試験を行なった。アンプリチュードの条件は、0.071V、0.141V、0.283V、0.566Vとした。なお、使用したアルミナ粒子は、実施例1と共通である。その結果を次の「表4」に示す。この「表4」は、陽極側溶液と陰極側溶液それぞれの銅回収率を周波数条件毎に示している。
Example 3
Next, in order to examine the optimum condition of the amplitude, the test was performed by setting the frequency of the AC voltage to 5 Hz. The amplitude conditions were 0.071V, 0.141V, 0.283V, and 0.566V. The alumina particles used are the same as those in Example 1. The results are shown in the following “Table 4”. This "Table 4" shows the copper recovery rate of each of the anode side solution and the cathode side solution for each frequency condition.

Figure 2006021079
Figure 2006021079

前掲の「表4」に示されているように、アンプリチュード0.141Vの条件で、最も高い回収率を示し、陽極側溶液における銅回収率は、約22%であり、これは、アンプリチュード0.071Vの条件の約6倍強に相当する。   As shown in the above-mentioned “Table 4”, the highest recovery rate was obtained under the condition of an amplitude of 0.141 V, and the copper recovery rate in the anode side solution was about 22%. This corresponds to about 6 times the 0.071V condition.

(実施例4)
次に、土壌モデルとしてよく用いられるカオリン(はくとう土、和光純薬製化学用試薬、平均粒径6.9μm(粒径1〜12μm)(ゼータ電位は、アルミナと反対のマイナス)について、含水率31%の条件で、実施例1〜3と同様の実験を行なった。なお、この試験は、上記した図2に示すモデルに相当する。
Example 4
Next, about kaolin often used as a soil model (high-grade soil, chemical reagent manufactured by Wako Pure Chemical Industries, average particle size 6.9 μm (particle size 1 to 12 μm) (zeta potential is minus opposite to alumina), An experiment similar to Examples 1 to 3 was performed under the condition of a moisture content of 31%, which corresponds to the model shown in FIG.

その結果、交流電圧印加なしの条件(対照区)では、銅回収率が陰極側溶液で、13.5%(陽極側溶液で0.96%)であったのに対して、周波数5Hz、アンプリチュード0.141Vの条件の交流電圧を直流電圧に重畳印加したところ、銅回収率が陰極側で29.7%(陽極側には0.58%)という結果が得られた。なお、この結果を、次の「表5」にまとめた。   As a result, in the condition without AC voltage application (control group), the copper recovery rate was 13.5% for the cathode side solution (0.96% for the anode side solution), whereas the frequency was 5 Hz. When an alternating voltage with a condition of 0.141 V was superimposed on the direct voltage, a copper recovery rate of 29.7% on the cathode side (0.58% on the anode side) was obtained. The results are summarized in the following “Table 5”.

Figure 2006021079
Figure 2006021079

この「実施例4」の結果から、ゼータ電位がマイナスの粒子が存在した条件においても、交流電圧によって銅の除去効率(回収効率)を向上させることができることを検証できた。   From the result of “Example 4”, it was verified that the removal efficiency (recovery efficiency) of copper can be improved by the AC voltage even under the condition where particles having a negative zeta potential exist.

以上の試験の結果から、直流電圧に交流電圧を重畳印加することによって、銅の回収率が大幅に向上することがわかった。さらに周波数、アンプリチュードの観点から最適条件を求めることによって、さらに除去効率(回収効率)を向上させることが可能となることも検証できた。   From the results of the above tests, it was found that the copper recovery rate was greatly improved by applying an alternating voltage to the direct voltage. It was also verified that the removal efficiency (recovery efficiency) can be further improved by obtaining the optimum conditions from the viewpoint of frequency and amplitude.

したがって、本発明は、汚染土壌などを対象とした汚染物質除去方法として全く新しい手法と評価することができ、また、汚染土壌だけでなく、小さな粒子が含まれる系における溶質の分離にも応用できると考えられる。   Therefore, the present invention can be evaluated as a completely new method as a contaminant removal method for contaminated soil and the like, and can be applied not only to contaminated soil but also to separation of solutes in a system containing small particles. it is conceivable that.

さらに、ゼータ電位が異なるアルミナ粒子(プラス)とカオリン粒子(マイナス)が存在する両方の系において、銅イオンの回収効率を向上できることが明らかになったことから、様々の性状の汚染土壌などの被処理物の浄化技術として、本発明は有用であると考えられる。   Furthermore, it has been clarified that the recovery efficiency of copper ions can be improved in both systems where alumina particles (plus) and kaolin particles (minus) with different zeta potentials exist. The present invention is considered to be useful as a purification technique for processed products.

本発明に係る方法又は装置は、鉛、水銀、カドミウム、ヒ素、クロム、亜鉛、マンガン、ベリリウムなどの重金属、PCBやダイオキシン類などの有害有機化合物、有機金属化合物などの有害汚染物質を含む土壌、ヘドロ、汚泥、焼却灰などの汚染物質除去回収技術として利用できる。   A method or apparatus according to the present invention includes a heavy metal such as lead, mercury, cadmium, arsenic, chromium, zinc, manganese, and beryllium, a harmful organic compound such as PCB and dioxins, and a soil containing a harmful pollutant such as an organometallic compound, It can be used as a technology for removing and collecting contaminants such as sludge, sludge, and incinerated ash.

本発明に係る汚染物質除去方法を実施するための装置の基本モデルの概念図(粒子のゼータ電位がプラスの値の場合)である。It is a conceptual diagram (when the zeta potential of particles is a positive value) of a basic model of an apparatus for carrying out the pollutant removal method according to the present invention. 同装置の別の基本モデルの概念図(粒子のゼータ電位がマイナスの値の場合)である。It is a conceptual diagram (when the zeta potential of particles is a negative value) of another basic model of the device. 同装置の好適な実施形態を簡略に示す図である。It is a figure showing simply a suitable embodiment of the device. 電圧印加の手順の代表例を示すタイミング図である。It is a timing diagram which shows the typical example of the procedure of a voltage application. 実施例及び比較例に係わる試験で採用した電解装置の概略構成を示す図である。It is a figure which shows schematic structure of the electrolyzer employ | adopted by the test concerning an Example and a comparative example.

符号の説明Explanation of symbols

1 固相粒子 (1a 微細な固相粒子)
2 液相
3 電気二重層
5 有害汚染物質
Y 電気浸透流
1 Solid phase particles (1a Fine solid phase particles)
2 Liquid phase 3 Electric double layer 5 Hazardous pollutant Y Electroosmotic flow

Claims (5)

汚染物質を含有する被処理物に直流電圧を印加して、該被処理物中の水分を電気浸透流で移動させることにより、前記被処理物から汚染物質を除去する方法であって、前記電気浸透流の形成する段階で、前記直流電圧に交流電圧を重畳させることを特徴とする汚染物質除去方法。   A method for removing contaminants from the object to be treated by applying a DC voltage to the object to be treated containing a contaminant and moving moisture in the object to be treated by electroosmotic flow. A pollutant removal method, wherein an alternating voltage is superimposed on the direct current voltage in the step of forming an osmotic flow. 前記被処理物は、土壌、ヘドロ、汚泥、焼却灰の中から選択される一つ又はこれらの組み合わせであることを特徴とする請求項1記載の汚染物質除去方法。   The pollutant removal method according to claim 1, wherein the object to be treated is one selected from soil, sludge, sludge, and incinerated ash, or a combination thereof. 前記交流電圧は、低周波交流電圧であることを特徴とする請求項1記載の汚染物質除去方法。   2. The pollutant removal method according to claim 1, wherein the AC voltage is a low-frequency AC voltage. 前記交流電圧の印加を、次の(1)〜(3)のいずれかのタイミングで行うことを特徴とする請求項1記載の汚染物質除去方法。
(1)直流電圧を印加開始して所定時間経過時点から電圧印加終了に至るまで。
(2)直流電圧を印加開始後、断続的に。
(3)直流電圧の印加開始から終了までの間の所定時間内。
2. The contaminant removal method according to claim 1, wherein the application of the AC voltage is performed at any one of the following timings (1) to (3).
(1) From the start of application of a DC voltage until the end of voltage application from the lapse of a predetermined time.
(2) After applying DC voltage, intermittently.
(3) Within a predetermined time from the start to the end of application of DC voltage.
汚染物質を含有する被処理物に対して交流電圧と直流電圧を重畳印加可能な手段によって前記被処理物中の水分を電気浸透流で移動させて、前記被処理物から前記汚染物質を除去することを特徴とする汚染物質除去装置。   The contaminants are removed from the object to be treated by moving the moisture in the object to be treated by means of an electroosmotic flow by means capable of applying an alternating voltage and a direct current voltage to the object to be treated containing the contaminants. A pollutant removing device characterized by that.
JP2004199301A 2004-07-06 2004-07-06 Pollutant removal method and contaminant removal apparatus using electroosmotic flow Active JP4362587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199301A JP4362587B2 (en) 2004-07-06 2004-07-06 Pollutant removal method and contaminant removal apparatus using electroosmotic flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199301A JP4362587B2 (en) 2004-07-06 2004-07-06 Pollutant removal method and contaminant removal apparatus using electroosmotic flow

Publications (2)

Publication Number Publication Date
JP2006021079A true JP2006021079A (en) 2006-01-26
JP4362587B2 JP4362587B2 (en) 2009-11-11

Family

ID=35794739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199301A Active JP4362587B2 (en) 2004-07-06 2004-07-06 Pollutant removal method and contaminant removal apparatus using electroosmotic flow

Country Status (1)

Country Link
JP (1) JP4362587B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220419A (en) * 2012-04-19 2013-10-28 Sangyo Kaihatsu Kiko:Kk Detoxification treatment method of contaminant by electro-osmosis repair method
US8992122B2 (en) 2011-10-12 2015-03-31 Empire Technology Development Llc Electro-remediation
JP5891320B1 (en) * 2015-02-12 2016-03-22 秋田県 Processing method using zeta potential control method
CN106583409A (en) * 2016-11-23 2017-04-26 昆明理工大学 Method for removing Pb and Cr in mine tailings by using saturated mine tailing solution-reinforced electrokinetic remediation technology
CN109908527A (en) * 2019-04-15 2019-06-21 武汉轻工大学 A kind of garbage flying ash processing unit and the method for handling garbage flying ash

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992122B2 (en) 2011-10-12 2015-03-31 Empire Technology Development Llc Electro-remediation
JP2013220419A (en) * 2012-04-19 2013-10-28 Sangyo Kaihatsu Kiko:Kk Detoxification treatment method of contaminant by electro-osmosis repair method
JP5891320B1 (en) * 2015-02-12 2016-03-22 秋田県 Processing method using zeta potential control method
JP2016147348A (en) * 2015-02-12 2016-08-18 秋田県 Processing method using zeta potential control method
CN106583409A (en) * 2016-11-23 2017-04-26 昆明理工大学 Method for removing Pb and Cr in mine tailings by using saturated mine tailing solution-reinforced electrokinetic remediation technology
CN106583409B (en) * 2016-11-23 2018-10-23 昆明理工大学 A kind of method that tailing saturated solution enhancing electric repairing technique removes Pb and Cr in tailing
CN109908527A (en) * 2019-04-15 2019-06-21 武汉轻工大学 A kind of garbage flying ash processing unit and the method for handling garbage flying ash

Also Published As

Publication number Publication date
JP4362587B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
Reddy Technical challenges to in-situ remediation of polluted sites
JP2013220419A (en) Detoxification treatment method of contaminant by electro-osmosis repair method
JP4362587B2 (en) Pollutant removal method and contaminant removal apparatus using electroosmotic flow
JP2000140819A (en) Method for cleaning heavy metal-contaminated soil
US20080135413A1 (en) Method of delivering a treatment substance to a target substance in a treatment zone
Shin et al. Electrokinetic removal of As from soil washing residue
KR101619944B1 (en) Method for remediating contaminated soils by electrokinetic technology
JP6570692B1 (en) Waste water treatment method and waste water treatment system using electric double layer
KR100767339B1 (en) Electrokinetic remediation of fluorine-contaminated soil
JP4458320B2 (en) Waste treatment method and equipment
KR100427692B1 (en) system of Electrokinetic soil remediation
KR100928065B1 (en) Remediation technique to remove heavy metals from soil using soil washing combined with electrokinetics
KR20030066901A (en) Development of electrode compartment for enhanced electrokinetic remediation and post-treatment of waste water
US6521810B2 (en) Contaminant treatment method
KR100519909B1 (en) Apparatus of electrode compartment for enhanced electrokinetic remediation and post-treatment of waste water
Hosseini et al. Chelate agents enhanced electrokinetic remediation for removal of lead and zinc from a calcareous soil
JP2004283678A (en) Method and apparatus for treatment of solid matter contaminated with heavy metals
KR100856909B1 (en) Remediation of tph-contaminated soil by combination of soil washing and electrokinetic technique
JP2019174393A (en) Contaminated soil decontamination method
JP2003290760A (en) Method and apparatus for decontaminating contaminated soil
LT5494B (en) Device for soil restoration
JP2002035736A (en) Treatment device for contaminated soil and method therefor
RU2016133851A (en) METHOD FOR OPTIMIZING EXIT OF THE PROCESS OF ELECTRIC SUPPLY OF HEAVY METALS FROM AQUEOUS SOLUTION WITH HIGH CONCENTRATION OF SALTS AND DEVICE FOR ITS IMPLEMENTATION
KR100414771B1 (en) Chemical oxidation method of petroleum-contaminated soil using electro-osmosis and apparatus thereof
JPH11253924A (en) Purification of soil polluted with heavy metal and electrolytic bath for purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150