JP2006016256A - Auto-oxidation internal heating type reforming apparatus and method - Google Patents

Auto-oxidation internal heating type reforming apparatus and method Download PDF

Info

Publication number
JP2006016256A
JP2006016256A JP2004195833A JP2004195833A JP2006016256A JP 2006016256 A JP2006016256 A JP 2006016256A JP 2004195833 A JP2004195833 A JP 2004195833A JP 2004195833 A JP2004195833 A JP 2004195833A JP 2006016256 A JP2006016256 A JP 2006016256A
Authority
JP
Japan
Prior art keywords
reforming
reaction
oxidation
catalyst
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004195833A
Other languages
Japanese (ja)
Other versions
JP4671632B2 (en
Inventor
Saburo Maruko
三郎 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Plant Consultant Co Ltd
Original Assignee
Nippon Chemical Plant Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Plant Consultant Co Ltd filed Critical Nippon Chemical Plant Consultant Co Ltd
Priority to JP2004195833A priority Critical patent/JP4671632B2/en
Publication of JP2006016256A publication Critical patent/JP2006016256A/en
Application granted granted Critical
Publication of JP4671632B2 publication Critical patent/JP4671632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxidation/reforming reaction combination type reforming apparatus small-sized to be fitted to domestic use and having high thermal efficiency. <P>SOLUTION: The oxidation/reforming reaction combination type reforming apparatus is constituted so as to provide a primary reaction part and a secondary reaction part successively from the inside in the radius direction in the outside of a cylindrical reforming vessel inner cylinder, to arrange the primary reaction parts concentrically side by side in the vertical direction and to arrange a CO removing part provided with a CO removing catalyst concentrically in the vertical direction in the inside of the reforming vessel inner cylinder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、炭化水素、脂肪族アルコール、ジメチルエーテル等の燃料から水素を生成する改質装置及び方法であって、特には、一般家庭用の小型で高効率の改質装置及び方法を提供しようとするものである。   The present invention relates to a reforming apparatus and method for generating hydrogen from fuels such as hydrocarbons, aliphatic alcohols, and dimethyl ether, and in particular, to provide a small and highly efficient reforming apparatus and method for general household use. To do.

燃料電池は、水の電気分解の逆反応で水素と酸素から起電力を得る発電システムであるが、このような燃料電池又は他の目的のための水素の効率的な発生装置である改質装置の提供は現在ますます重要な課題となっている。
前記のような燃料電池は、家庭使用のものではそのキャパシティは小さいので、改質装置もそれに合わせて小型のものが必要とされる。このような小型の改質装置では熱損失を小さくしなければ、改質効率が低下する傾向が強まるので、外気に接する面積を小さくしたり、又、原料燃料と蒸気との混合ガスを蒸気状で存在しうる最低の温度で供給して、排出される改質ガスとの温度差をできるだけ小さくする必要がある。即ち、小型の改質装置の性能は、熱交換の効率をいかに高くするかにかかっている。
A fuel cell is a power generation system that obtains an electromotive force from hydrogen and oxygen by the reverse reaction of water electrolysis, but a reformer that is an efficient generator of hydrogen for such a fuel cell or other purposes The provision of is now an increasingly important issue.
Since the capacity of the fuel cell as described above is small for household use, the reformer needs to be small in size accordingly. In such a small reformer, unless the heat loss is reduced, the reforming efficiency tends to decrease. Therefore, the area in contact with the outside air is reduced, or the mixed gas of the raw fuel and steam is vaporized. It is necessary to supply at the lowest temperature that can be present in order to make the temperature difference from the reformed gas discharged as small as possible. That is, the performance of a small reformer depends on how high the efficiency of heat exchange is.

改質装置による水素の生成方法には、原料燃料の典型例としてメタンを挙げると、次の三つの方法が知られている。
まず第1の方法は、原料燃料と水蒸気を利用して次の一般式を中心として水素を得るものである。
CH+2HO=CO+4H (1)
この反応は、高度に吸熱反応であるので、外部からの加熱が必要とされる。
第2の方法は、次の一般式を中心として水素を得るものである。
CH+O=CO+2H (2)
この反応は、発熱反応であるので、反応が始まると外部からの水蒸気や熱を必要としないものの、熱効率は第1の方法ほどではない。
第3の方法は、上記第1の方法と第2の方法を併用するものである。第2の方法によって熱を得て、第1の方法の熱源として使用するように、両反応が同時並行で起こるものである。この方法は、部分酸化内部加熱型と称される。
以上の3つの方法はあくまで一般式と称したように中心的な反応を示したにすぎず、実際には反応温度や触媒の種類によっては、中間反応生成物が生じていたり、温度依存の次の可逆性反応が共存したり、
CO+HO=CO+H (3)
あるいは更に酸素即ち空気を使用する反応においては、アンモニアの発生も生ずるものである。
The following three methods are known as a method for producing hydrogen by the reformer, if methane is given as a typical example of the raw material fuel.
First, the first method is to obtain hydrogen with the following general formula as the center using raw material fuel and water vapor.
CH 4 + 2H 2 O = CO 2 + 4H 2 (1)
Since this reaction is highly endothermic, heating from the outside is required.
The second method is to obtain hydrogen around the following general formula.
CH 4 + O 2 = CO 2 + 2H 2 (2)
Since this reaction is an exothermic reaction, it does not require water vapor or heat from the outside when the reaction starts, but the thermal efficiency is not as high as that of the first method.
The third method uses both the first method and the second method. Both reactions occur in parallel so that heat is obtained by the second method and used as a heat source for the first method. This method is referred to as a partially oxidized internal heating type.
The above three methods merely show a central reaction as referred to as a general formula. Actually, depending on the reaction temperature and the type of catalyst, an intermediate reaction product may be generated or the temperature-dependent Reversible reactions
CO + H 2 O = CO 2 + H 2 (3)
Alternatively, in the reaction using oxygen, that is, air, ammonia is also generated.

本出願人は前記第3の方法(酸化・改質併用方法)に属し、その反応の効率的立ち上げ法として特願2002−143512(特開2003−335504号公報)の発明を提案している。
これは、原料燃料と水蒸気に当初だけ少量の酸素を混入し、この混合ガスを、酸化触媒による着火温度以上に昇温させた後(これも当初だけの昇温である)、酸化触媒と改質触媒の混合物が充填された外筒に流入させて、原料燃料の1部を酸化発熱させて水素を発生させ、次にこの水素を内部に酸化触媒と改質触媒の混合されている内筒に酸素と共に流入させ(この酸素自体は定常運転段階に使用されるものを利用する)、燃焼させることによって発熱させ、外筒部段階では未改質の燃料を完全に改質すると共に、内筒及び外筒の温度の上昇を得、内筒及び外筒が所定の温度に達した時に、供給ガスの方に混合する酸素を停止し、内筒に供給する酸素を増量し、定常運転に入るものである。
特開2003−335504号公報
The present applicant belongs to the third method (combined oxidation and reforming method), and has proposed the invention of Japanese Patent Application No. 2002-143512 (Japanese Patent Laid-Open No. 2003-335504) as an efficient method for starting up the reaction. .
This is because a small amount of oxygen is mixed only in the raw material fuel and water vapor at the beginning, and the mixed gas is heated to a temperature higher than the ignition temperature by the oxidation catalyst (this is also a temperature increase only at the initial time), and then changed to the oxidation catalyst. Into the outer cylinder filled with the mixture of the catalyst, and a part of the raw material fuel is oxidized to generate heat to generate hydrogen, and this hydrogen is then mixed into the inner cylinder in which the oxidation catalyst and the reforming catalyst are mixed. The oxygen is allowed to flow in with oxygen (this oxygen itself is used in the steady operation stage) and is heated to generate heat. In the outer cylinder stage, the unreformed fuel is completely reformed, and the inner cylinder When the inner cylinder and the outer cylinder reach a predetermined temperature, the oxygen mixed into the supply gas is stopped, the oxygen supplied to the inner cylinder is increased, and the steady operation starts. Is.
JP 2003-335504 A

前記のような本出願人の先願発明は、第3の方法の立ち上げ方法としては優れたものであるが、その装置は基本的には一本の外筒内に二本の内筒を配備した形式であったため、外筒内の各部レベルで均一な温度を得るには、なお難かしい点があった。
又、この先願発明では、改質容器の中間要部を反応用の内筒及び外筒が占める構造であったため、熱交換効率を上げるために原料燃料や酸素を容器内の何らかの熱源で予熱しようとしても、そのような構造を配するためには改質容器の径の拡大が避けられなかった。
更に、この先願発明は、前記第1〜第3の方法を実施するための従来例と同様、改質後に存在する一酸化炭素を数ppmレベル以下まで減少するための触媒酸化器が改質器の外側に設置されていた。そのため、接続配管が必要であると共に、この配管や触媒酸化器等からの熱ロスが大きいと共に、改質装置全体の容積を大きいものにしていた。
Although the prior invention of the present applicant as described above is an excellent method for starting the third method, the apparatus basically has two inner cylinders in one outer cylinder. Since it was a deployed form, it was still difficult to obtain a uniform temperature at each level in the outer cylinder.
In the prior invention, the intermediate part of the reforming vessel occupies the inner cylinder and the outer cylinder for the reaction. Therefore, in order to increase the heat exchange efficiency, preheat the raw fuel and oxygen with some heat source in the container. However, in order to arrange such a structure, the diameter of the reforming vessel is inevitably increased.
Further, in the invention of the prior application, as in the conventional example for carrying out the first to third methods, a catalytic oxidizer for reducing the carbon monoxide existing after reforming to a level of several ppm or less is a reformer. It was installed outside. For this reason, connection piping is necessary, heat loss from the piping and the catalyst oxidizer is large, and the volume of the entire reformer is large.

以上に鑑み、本願発明の第1の目的は、前記第3の反応形式用の(本願では、自己酸化内部加熱型と言う)改質器用の外筒(本願では、一次反応部という)と、内筒(本願では二次反応部という)の配置構造において、両者が縦方向のみならず、円周方向にも等間隔であるため、二次反応部からの一次反応部への熱の伝達が一様である装置を提供することにある。
本願発明の第2の目的は、改質容器内に一酸化炭素を減少させるための触媒酸化器を配置できるような、一次反応部及び二次反応部の配置構造を提供することにある。
本願発明の第3の目的は、原料燃料及び/又は酸化反応用の酸素の予熱が有効になしえながら、改質容器の容積を格別拡大させることのない自己酸化内部加熱型の改質器を提供することにある。
In view of the above, the first object of the present invention is to provide an outer cylinder (referred to herein as a primary reaction section) for a reformer (referred to herein as a self-oxidation internal heating type) for the third reaction type, In the arrangement structure of the inner cylinder (referred to as the secondary reaction section in the present application), since both are equally spaced not only in the vertical direction but also in the circumferential direction, heat transfer from the secondary reaction section to the primary reaction section It is to provide a device that is uniform.
A second object of the present invention is to provide an arrangement structure of a primary reaction section and a secondary reaction section that can arrange a catalytic oxidizer for reducing carbon monoxide in a reforming vessel.
The third object of the present invention is to provide a self-oxidation internal heating type reformer that does not significantly increase the volume of the reforming vessel while effectively preheating the raw fuel and / or oxygen for the oxidation reaction. It is to provide.

請求項1記載の発明によれば、円筒状の改質容器内の外側には、半径方向内側より一次反応部、二次反応部、一次反応部を順次同心円状に縦方向に並設すると共に、改質容器の内側には、同心円状に縦方向に、脱CO触媒層を備えた改質ガスの脱CO部を配置したことを特徴とする自己酸化内部加熱型改質装置が提供される。   According to the first aspect of the present invention, the primary reaction unit, the secondary reaction unit, and the primary reaction unit are sequentially arranged in the longitudinal direction in a concentric manner from the inside in the radial direction outside the inside of the cylindrical reforming vessel. A self-oxidation internal heating type reforming device is provided in which a reforming gas de-CO part having a de-CO catalyst layer is arranged in a concentric longitudinal direction inside the reforming vessel. .

請求項2記載の発明によれば、改質ガスの脱CO部の半径方向内側に、同心円状に縦方向に、脱CO部を通った改質ガスの案内路、改質反応用の酸素混合ガス導入路を順次並設したことを特徴とする請求項1記載の改質装置が提供される。   According to the second aspect of the present invention, the reformed gas guide path that passes through the de-CO part in the radial direction inside the de-CO part of the reformed gas in the longitudinal direction, oxygen mixture for reforming reaction The reforming apparatus according to claim 1, wherein the gas introduction paths are sequentially arranged.

請求項3記載の発明によれば、改質ガスの脱CO装置の半径方向外側に、同心円状に縦方向に、脱CO装置を通った改質ガスの案内路、原料燃料の混合ガスの一次反応部への上昇案内路、を順次並設し、この上昇案内路と内側の一次反応部との間に、原料燃料の混合ガスの下降案内路を形成したことを特徴とする請求項1又は2記載の改質装置が提供される。   According to the third aspect of the present invention, the reformed gas guide path that has passed through the de-CO device, the concentric longitudinal direction outside the reformed gas de-CO device in the radial direction, and the primary gas mixture of the raw material fuel The ascending guide path to the reaction section is sequentially arranged in parallel, and a descending guide path for the mixed gas of the raw material fuel is formed between the ascending guide path and the inner primary reaction section. The reforming apparatus according to 2, is provided.

請求項4記載の発明によれば、定常運転時に、酸化・改質反応とシフト反応の熱の伝熱で高温が維持される伝熱粒子と改質触媒とによって部分改質された原料燃料と水蒸気の混合ガスを、改質容器内に配置された脱CO装置の定常運転時の熱で予熱された酸素混合ガスと混合し、これを、酸化触媒と改質触媒の混合触媒とシフト触媒を順次備えた筒内を流し、改質ガスを得ることを特徴とする自己酸化内部加熱型改質方法が提供される。   According to the fourth aspect of the present invention, the raw material fuel partially reformed by the heat transfer particles and the reforming catalyst, which are maintained at a high temperature by heat transfer of the oxidation / reforming reaction and the shift reaction, during the steady operation, The mixed gas of water vapor is mixed with the oxygen mixed gas preheated by the heat at the time of steady operation of the de-CO device arranged in the reforming vessel, and this is mixed with the mixed catalyst of the oxidation catalyst and the reforming catalyst and the shift catalyst. A self-oxidation internal heating type reforming method is provided, characterized in that the reformed gas is obtained by flowing through the cylinders sequentially provided.

請求項5記載の発明によれば、原料燃料と水蒸気の混合ガスを、脱CO装置の発生熱及び/又は伝熱粒子の伝達で予熱することを特徴とする請求項6記載の改質方法が提供される。   According to a fifth aspect of the invention, there is provided the reforming method according to the sixth aspect, wherein the mixed gas of the raw fuel and the steam is preheated by heat generated by the de-CO device and / or transmission of heat transfer particles. Provided.

請求項6記載の発明によれば、酸化触媒を充填してある、酸化反応用酸素導入路内に、酸化反応用酸素と原料燃料とを当初流し、原料燃料を酸化し温度の高い酸素を得、これを、通常運転時に一次反応部となる領域である伝熱粒子層及び改質触媒層を経由してきた原料燃料と水蒸気の混合ガスと共に、酸化触媒と改質触媒の混合触媒とシフト触媒を順次備えた通常運転時に二次反応部となる領域に流し、改質ガスを得つつ、反応部の温度上昇を得ることを特徴とする内部加熱型改質装置の立ち上げ方法が提供される。   According to the sixth aspect of the present invention, the oxidation reaction oxygen and the raw material fuel are initially flowed into the oxidation reaction oxygen introduction passage filled with the oxidation catalyst, and the raw material fuel is oxidized to obtain high-temperature oxygen. The mixed catalyst of the oxidation catalyst and the reforming catalyst and the shift catalyst are mixed with the mixed gas of the raw material fuel and the steam that has passed through the heat transfer particle layer and the reforming catalyst layer, which are the primary reaction part during normal operation. There is provided a method for starting up an internal heating type reformer characterized in that the temperature is raised in the reaction section while obtaining a reformed gas while flowing into a region that becomes a secondary reaction section during normal operation sequentially provided.

請求項1記載の発明によれば、円筒状の容器中に自己酸化内部加熱型改質装置の一次反応部と二次反応部が縦方向及び円周方向に等間隔に配置したので、反応部内の反応熱の一様な伝達が期待できる上、脱CO触媒層を有する改質ガスの脱CO装置が改質容器内にコンパクトに配置されるようになったため、改質装置関連の容積を減少できる上、脱CO装置を含めた反応熱のより有効な利用が図られることになる。   According to the first aspect of the present invention, the primary reaction section and the secondary reaction section of the auto-oxidation internal heating type reformer are arranged in the cylindrical container at equal intervals in the longitudinal direction and the circumferential direction. In addition to expecting a uniform transfer of reaction heat, the reformer gas de-CO device with a de-CO catalyst layer is now compactly placed in the reforming vessel, reducing the volume associated with the reformer In addition, the reaction heat including the de-CO device can be used more effectively.

請求項2の記載の発明によれば、酸化反応用の酸素混合ガスに、脱CO装置を通った改質ガスに含まれる熱量が有効に回収できる他、酸素混合ガスが、効率的に予熱されるので、改質反応の効率も高まることになる。   According to the second aspect of the present invention, the oxygen mixed gas for the oxidation reaction can be effectively recovered, and the oxygen mixed gas is efficiently preheated. Therefore, the efficiency of the reforming reaction is also increased.

請求項3記載の発明によれば、原料燃料の混合ガスに脱CO装置を通った改質ガスに含まれる熱量が有効に回収できる他、原料燃料の混合ガスが効率的に予熱されるので、改質反応の効率も高まることになる。   According to the third aspect of the invention, the amount of heat contained in the reformed gas that has passed through the de-CO device can be effectively recovered into the mixed gas of the raw material fuel, and the mixed gas of the raw material fuel is efficiently preheated. The efficiency of the reforming reaction will also increase.

請求項4記載の発明によれば、改質容器内に配置された脱CO装置の酸化熱を容器外部へ排出することを低減できる上、酸化反応用の酸素混合ガスが予熱されるので酸化反応が安定的になされる改質方法が提供される。   According to the fourth aspect of the present invention, it is possible to reduce the heat of oxidation of the de-CO device arranged in the reforming vessel to the outside of the vessel, and the oxygen mixed gas for the oxidation reaction is preheated, so that the oxidation reaction A reforming method is provided in which is stable.

請求項5記載の発明によれば、原料燃料と水蒸気の混合ガスが、脱CO装置の酸化熱と、伝熱粒子層の伝熱の双方によって予熱されるので改質効率が向上する改質方法が提供される。   According to the fifth aspect of the invention, the reforming method improves the reforming efficiency because the mixed gas of the raw material fuel and the steam is preheated by both the oxidation heat of the de-CO device and the heat transfer of the heat transfer particle layer. Is provided.

請求項6記載の発明によれば、温度が低下した状態の伝熱粒子層等を含む一次反応部を使用することなく、熱慣性の小さな酸化反応用酸素導入路を利用して、改質装置を立ち上げることができるので、立ち上げ時間を早くすることができる。   According to the invention of claim 6, the reformer is provided by utilizing the oxygen introduction path for the oxidation reaction having a small thermal inertia without using the primary reaction section including the heat transfer particle layer or the like in a state where the temperature is lowered. Can be launched, so the startup time can be shortened.

本願発明を典型的な実施例である図1及び図2に基づいて詳細に説明する。   The present invention will be described in detail with reference to FIGS. 1 and 2, which are typical embodiments.

改質装置の構造
本願発明の第一の実施例に係わる改質装置は、図1に示すように円筒状の改質容器1内に、半径方向外側より半径方向内側へ向って、1次反応部2、2次反応部3、1次反応部2、改質ガスの脱CO部4(なお、この脱CO部は、COのみならず反応により発生したその他の不必要なガス、例えばNHも酸化処理するものであるが、代表として脱COと表現することとする)、脱CO部を通った改質ガスの案内路5、酸化反応用の酸素導入路6、がそれぞれ適宜の環状壁等(必要な場合には断熱材も添設されて)で仕切られて縦方向に順次並設されている。即ち、本願発明では、反応室や案内路は全て同心円状に配置されていることを特徴とする。
なお、改質反応用の酸素混合ガス導入路6は改質容器1の円筒形状の中央に位置している。
1. Structure of reformer The reformer according to the first embodiment of the present invention comprises a primary reaction in a cylindrical reformer 1 as shown in FIG. 1 from the radially outer side toward the radially inner side. Part 2, secondary reaction part 3, primary reaction part 2, reformed gas de-CO part 4 (note that this de-CO part is not only CO but also other unnecessary gases generated by the reaction, such as NH 3. In this case, it is also expressed as de-CO.sub.2), but the reformed gas guide path 5 and the oxidation reaction oxygen introduction path 6 that pass through the de-CO section are respectively appropriate annular walls. Etc. (if necessary, a heat insulating material is also attached) and are arranged in parallel in the vertical direction. That is, the present invention is characterized in that the reaction chambers and guide paths are all arranged concentrically.
The oxygen-mixing gas introduction path 6 for reforming reaction is located at the center of the cylindrical shape of the reforming vessel 1.

改質容器1には、更に図1の下方左側に示されるように、原料燃料の混合ガス入口7、脱CO用空気入口8、図1の下方右側に示されるように、改質ガス出口9、酸化反応用酸素(空気)入口10がそれぞれ設けられている。
前記CO用空気入口8は改質容器1の下方内部において二次反応部3の下方からの改質ガスと合流して、脱CO部4の脱CO触媒18に供給されるようになっている。又、酸化反応用酸素(空気)の入口10は改質容器の内部下方で酸化反応用酸素導入路6に連絡され、この酸素導入路6は改質容器1内の上方で二次反応部3に吹き込みリング12で連通されている。更に脱CO部4を通った改質ガスの案内路5は改質容器1の中央下方で改質ガスの出口9に接続されている。
Further, the reforming vessel 1 has a mixed gas inlet 7 for raw material fuel, an air outlet for CO removal 8 as shown on the lower left side of FIG. 1, and a reformed gas outlet 9 as shown on the lower right side of FIG. In addition, an oxygen (air) inlet 10 for oxidation reaction is provided.
The CO air inlet 8 merges with the reformed gas from below the secondary reaction unit 3 inside the reforming vessel 1 and is supplied to the de-CO catalyst 18 of the de-CO unit 4. . Also, the oxidation reaction oxygen (air) inlet 10 communicates with the oxidation reaction oxygen introduction path 6 below the interior of the reforming vessel, and this oxygen introduction path 6 is located above the reforming vessel 1 in the secondary reaction section 3. The air is communicated with the blow ring 12. Further, the reformed gas guide path 5 that has passed through the de-CO 4 is connected to the reformed gas outlet 9 below the center of the reforming vessel 1.

一次反応部2には上方から、改質触媒層14、伝熱粒子層13が、二次反応部3には上方から、混合(改質・酸化)触媒層15、伝熱粒子層13、高温シフト触媒層16、低温シフト触媒層17、がそれぞれ格子、金網等適宜の手段によって支持されている。又、一次反応部2と二次反応部3との間の隔壁上部には、図1に示されるように断熱材19が配置されていて、混合触媒層15が上下に一様な温度に維持されるようになっている。
なお、前記伝熱粒子は定常運転時に原料燃料混合ガスの温度を上昇させ、その一部を改質触媒により吸熱反応で改質させるものであって、その材料としては、熱伝導率5Kcal/mhr℃、放射率0.7以上のSiC粒が使用される。しかしながら最近のより改良された熱伝導率(例えば、64.74Kcal/mhr℃)の材料も使用できる。なお、この伝熱粒子は空間率が0.4程度となる粒子径であって、熱放射率が大きいもの、例えば0.85が望ましい。このような伝熱粒子層は、図1のように一次反応部2の下方部に独立した伝熱粒子層13として配置するのみならず、上方部の改質触媒層14も伝熱粒子層との交互層として構成すると、伝熱効率が更に良くなる。
脱CO部4は、内部に断面ドーナツ状の脱CO触媒18が配置され、周囲内側と天井部は断熱材19が配置されている。なお、先述したように脱CO部4は、改質ガス中にあって不用のため酸化処理しなければならない気体の代表として記載したにすぎず、NHその他の発生した不用ガスを処理(酸化)する構造としえる。
From the upper side, the primary reaction unit 2 has the reforming catalyst layer 14 and the heat transfer particle layer 13, and from the upper side to the secondary reaction unit 3, the mixed (reforming / oxidation) catalyst layer 15, the heat transfer particle layer 13, the high temperature The shift catalyst layer 16 and the low temperature shift catalyst layer 17 are supported by appropriate means such as a lattice and a wire mesh, respectively. In addition, a heat insulating material 19 is disposed on the partition wall between the primary reaction section 2 and the secondary reaction section 3 as shown in FIG. 1, and the mixed catalyst layer 15 is maintained at a uniform temperature in the vertical direction. It has come to be.
The heat transfer particles increase the temperature of the raw material fuel mixed gas during steady operation, and a part thereof is reformed by an endothermic reaction using a reforming catalyst. The material has a thermal conductivity of 5 Kcal / mhr. SiC grains having an emissivity of 0.7 or higher are used. However, more recent materials with improved thermal conductivity (eg, 64.74 Kcal / mhr ° C.) can also be used. The heat transfer particles preferably have a particle diameter with a space ratio of about 0.4 and a large heat emissivity, for example, 0.85. Such a heat transfer particle layer is not only disposed as an independent heat transfer particle layer 13 in the lower part of the primary reaction unit 2 as shown in FIG. 1, but the upper reforming catalyst layer 14 is also a heat transfer particle layer. If the layers are configured as alternating layers, the heat transfer efficiency is further improved.
The CO removal unit 4 has a doughnut-shaped CO removal catalyst 18 disposed therein, and a heat insulating material 19 is disposed on the inner periphery and the ceiling. Note that, as described above, the de-CO unit 4 is merely described as a representative gas that is in the reformed gas and must be oxidized because it is unnecessary, and it treats NH 3 and other generated unnecessary gases (oxidation). ).

実施例1の改質装置の立ち上げから定常運転まで
改質装置の各部は低温のままであり、必要な熱交換ができない状態であるから、立ち上げ時は特別の反応方法を数分間続け、各部が必要な温度状態になったら定常運転に切り換える必要がある。
1.立ち上げ方法1(これは実質、本出願人の先願出願である特願2002−143512に実質上開示した方法である)
当初だけ昇温した原料燃料(先述したように、炭化水素、脂肪族アルコール又はジメチルエーテル等)、水蒸気及び少量の酸素の混合ガス(この少量の酸素は立ち上げ時のみ混合される)を改質容器1の左側下方の原料混合ガス入口7から導入する。この時、例えば図示はしていないが、一次反応部2の最下部に、立ち上げ用の酸化触媒を用意しておくことにより、原料燃料は酸化反応による発熱をしつつ上方に進む。上方には改質触媒層14が充填されているから、前記熱によって原料燃料の一部改質がなされる。一部改質がなされた原料燃料は、吹き込みリング12から吹きこまれる当初は若干量を押さえられた酸化反応用酸素と共に2次反応部3に導入される。
Since each part of the reforming apparatus remains at a low temperature from the start-up of the reforming apparatus of Example 1 to the steady operation and the necessary heat exchange cannot be performed, a special reaction method is continued for several minutes at the start-up, When each part reaches the required temperature, it is necessary to switch to steady operation.
1. Start-up method 1 (This is substantially the method disclosed in Japanese Patent Application No. 2002-143512, which is a prior application of the present applicant)
A reforming vessel containing raw material fuel that has been heated only at the beginning (as described above, hydrocarbon, aliphatic alcohol, dimethyl ether, etc.), water vapor and a small amount of mixed gas of oxygen (this small amount of oxygen is mixed only at startup) 1 is introduced from the raw material mixed gas inlet 7 on the lower left side. At this time, for example, although not shown, a starting oxidation catalyst is prepared at the lowermost portion of the primary reaction unit 2 so that the raw material fuel moves upward while generating heat due to the oxidation reaction. Since the reforming catalyst layer 14 is filled in the upper part, the raw material fuel is partially reformed by the heat. The partially reformed raw material fuel is introduced into the secondary reaction section 3 together with the oxygen for oxidation reaction, which is slightly suppressed at the beginning when it is blown from the blowing ring 12.

2次反応部3では、混合触媒層(改質触媒と酸化触媒からなる)、伝熱粒子層、高温シフト触媒層、低温シフト触媒層を通る過程で、自己酸化内部加熱型の改質とシフト反応が行われる。このシフト反応で発生された熱はその外側の一次反応部2に配置された伝熱粒子層13を迅速に加熱して行くことになる。
一方、2次反応部3の下方から流れた改質ガスは改質容器1中央側の脱CO部を上昇する過程で脱COされ、脱CO部4を通ったガスの案内路5を下降して改質ガス出口9に至る過程で、酸化反応用酸素を予熱することになる。従ってこのような立ち上がりの運転で各部の必要な温度が得られた後は定常運転に入る。
In the secondary reaction unit 3, self-oxidation internal heating type reforming and shifting are performed in the process of passing through the mixed catalyst layer (consisting of the reforming catalyst and the oxidation catalyst), the heat transfer particle layer, the high temperature shift catalyst layer, and the low temperature shift catalyst layer. Reaction takes place. The heat generated by this shift reaction rapidly heats the heat transfer particle layer 13 arranged in the primary reaction section 2 outside the heat.
On the other hand, the reformed gas flowing from the lower side of the secondary reaction unit 3 is de-CO in the process of ascending the de-CO unit at the center of the reforming vessel 1 and descends the gas guide path 5 passing through the de-CO unit 4. In the process leading to the reformed gas outlet 9, the oxygen for oxidation reaction is preheated. Accordingly, after the necessary temperature of each part is obtained by such a start-up operation, a steady operation is started.

2.立ち上げ方法2
立ち上げ方法としては次の方法も考えられる。
酸化反応用酸素導入路6内に酸化触媒を充填しておき、酸化反応用酸素入口10から、酸素と原料燃料混合物ガスを200℃以上に昇温したものを流す。すると、酸化触媒により原料燃料が酸化することにより高温となるので、これを吹き込みリング12から2次反応部3に導く際、1次反応部2経由の原料燃料と水蒸気の混合ガスと共に酸化触媒層と改質触媒層の混合触媒層に導入させ、酸化・改質反応をなすようにする。
これによって、改質装置の所要部が昇温した後は定常運転とする。
2. Startup method 2
The following methods are also conceivable as startup methods.
An oxidation catalyst is filled in the oxidation reaction oxygen introduction path 6, and the oxygen and raw fuel mixture gas heated to 200 ° C. or higher is allowed to flow from the oxidation reaction oxygen inlet 10. Then, since the raw material fuel is oxidized by the oxidation catalyst and becomes high temperature, when this is led from the blowing ring 12 to the secondary reaction unit 3, the oxidation catalyst layer together with the mixed gas of the raw material fuel and water vapor via the primary reaction unit 2 And the reforming catalyst layer are introduced into a mixed catalyst layer to cause an oxidation / reforming reaction.
Thus, after the temperature of the required part of the reformer rises, the steady operation is performed.

実施例1の装置の定常運転
定常運転は、原料燃料と水蒸気のみを、原料燃料混合ガス入口7から取り込み、1次反応部2を流し、伝熱粒子層13(定常運転時だから加熱された状態にある)で加熱され、その上方の改質触媒で一部改質したものを、2次反応部3に導く一方、定常運転時の脱CO装置の熱で予熱された、定常運転用の量の酸化混合ガスも2次反応部3に導き、2次反応部3の酸化触媒と改質触媒の混合触媒と、シフト触媒に順次流すことで改質ガスを得る。この改質ガスは脱CO装置を通され、脱CO処理された後、改質容器1外への取り出されるものである。
Steady operation of the apparatus of Example 1 In the steady operation, only the raw material fuel and water vapor are taken in from the raw material fuel mixed gas inlet 7 and flowed through the primary reaction section 2, and the heat transfer particle layer 13 (heated state because of steady operation). The amount for the normal operation, which is preheated by the heat of the de-CO device during the normal operation, is led to the secondary reaction unit 3 The oxidized mixed gas is also led to the secondary reaction unit 3, and the reformed gas is obtained by sequentially flowing the mixed catalyst of the oxidation catalyst and the reforming catalyst of the secondary reaction unit 3 and the shift catalyst. This reformed gas is passed through a de-CO device, de-CO-treated, and then taken out of the reforming vessel 1.

原料燃料が液体の場合は、つまり通常のように灯油を使用する場合は、二次反応部の反応温度を730〜750℃程度まで上昇した方が良い。その為には、一次反応部の改質触媒層(先述したように、この改質触媒層が伝熱触媒層との交互層とした場合はそれら交互層)を通して、灯油の主成分であるパラフィン、ナフテン及びアロマティックスをCHに変換するに当って、500〜550℃の温度で部分改質を行うことが望ましい。それは、二次反応部の改質ガスの顕熱と内部伝熱とで達成出来るが、改質ガスの顕熱を、伝熱粒子層と改質触媒層との交互層(改質触媒層のみでもやれるが、伝熱粒子層と交互層化した方が効率がよい)に流れる水蒸気と炭化水素の混合ガスに十分に伝熱する必要がある。
一方、シフト反応は、高温シフト反応部(反応温度400℃前後)と低温シフト反応部(反応温度200℃前後)で
CO+HO=CO+H
の反応により水素を得るものであるが現状のシフト反応触媒は170〜180℃程度以下では反応が進まないので、この程度の温度で取り出して、脱CO部4の脱CO触媒でCO及びNH等を酸化するのが好ましい。NHの触媒酸化に最適な温度は190℃程度であるので、二次反応部から脱CO部4に移動させる温度は、170〜180℃程度とし、このガスに、酸化に必要な酸素混合ガスを混合して脱CO部4の脱CO触媒18に供給することが望ましい。
When the raw material fuel is liquid, that is, when kerosene is used as usual, it is better to raise the reaction temperature of the secondary reaction section to about 730 to 750 ° C. For this purpose, the reforming catalyst layer of the primary reaction part (as described above, when this reforming catalyst layer is an alternate layer with the heat transfer catalyst layer, the alternate layer) is passed through paraffin which is the main component of kerosene. In converting naphthenes and aromatics to CH 4 , it is desirable to perform partial reforming at a temperature of 500 to 550 ° C. This can be achieved by the sensible heat and internal heat transfer of the reformed gas in the secondary reaction section. However, the sensible heat of the reformed gas is converted into alternating layers of the heat transfer particle layer and the reforming catalyst layer (only the reforming catalyst layer). However, it is necessary to transfer heat sufficiently to the mixed gas of water vapor and hydrocarbon flowing in the alternating layer with the heat transfer particle layer.
On the other hand, the shift reaction is carried out in a high temperature shift reaction part (reaction temperature around 400 ° C.) and a low temperature shift reaction part (reaction temperature around 200 ° C.) CO + H 2 O = CO 2 + H 2.
However, since the current shift reaction catalyst does not proceed at a temperature of about 170 to 180 ° C. or less, it is taken out at this temperature and CO and NH 3 are removed by the deCO catalyst of the deCO part 4. Etc. are preferably oxidized. Since the optimum temperature for catalytic oxidation of NH 3 is about 190 ° C., the temperature to be transferred from the secondary reaction section to the de-CO section 4 is about 170 to 180 ° C., and this gas is an oxygen mixed gas necessary for oxidation Is preferably mixed and supplied to the de-CO catalyst 18 of the de-CO part 4.

改質装置の構造
図2に示した実施例の改質装置では、脱CO部4を通った改質ガスが、脱CO部4の半径方向内側の案内路5のみならず、脱CO部4の外側の案内路20をも通るようにした点、及び更にその外側の案内路20の半径方向外側に順次環状の案内路21,22を並設して、原料燃料混合ガス入口7からの原料燃料混合ガスが、脱CO部4の半径方向外側の脱CO部4を通った改質ガスの案内路5の更に半径方向外側の案内路21を同心円状に上昇して熱交換を受けた後、再びその外側を案内路22によって同心円状に下降するように構成した以外は図1の実施例の構造と同じである。
Structure of the reformer In the reformer of the embodiment shown in FIG. 2, the reformed gas that has passed through the de-CO 4 is not only the guide path 5 on the radially inner side of the de-CO 4 but also the de-CO 4 The annular guide passages 21 and 22 are sequentially arranged in parallel to the outside of the guide passage 20 and the radially outer side of the guide passage 20 outside the guide passage 20, and the raw material from the raw fuel mixed gas inlet 7. After the fuel mixed gas rises concentrically in the radially outer guide path 21 of the reformed gas guide path 5 that has passed through the de-CO section 4 radially outside the de-CO section 4 and undergoes heat exchange. The structure is the same as that of the embodiment shown in FIG. 1 except that the outer side is again lowered concentrically by the guide path 22.

実施例2の改質装置の立ち上げ
改質装置の各部が所要温度に達していない時の装置の立ち上げ法は、実施例1の場合と同じであるので省略する。
実施例2の改質装置の定常運転
基本的な運転方法には実施例1の改質装置と差異はないが、実施例2の改質装置では、定常運転段階では、酸化反応用酸素のみならず、原料燃料混合ガスもその案内路21を昇る際、脱CO部4の外側の案内路20を下方向に通る改質ガスと熱交換し、改質容器外に出て行く改質ガスの温度を低くする。この場合、案内路22を下降する原料燃料混合ガスと、その半径方向外側に位置する改質触媒層14との温度差が大きいので、これらの間の環状壁に断熱層を配することが望ましい。このような実施例2の改質装置は、反応部での不必要なガスとしてのNHの発生が多い場合に特に適している。これは、NHを酸化により除去するには、通常のCOの酸化による除去よりも高い温度が要求されるので、最終的な排出改質ガスの温度も高くなってしまうから、これを防ぐために、脱CO部4(この場合は、脱NH部としてのウェートが増している)を通った改質ガスはより熱交換を受けることによって温度が低下されることが望ましいからである。従って実施例2の熱交換構造はその熱交換効率から見てNHの酸化処理が多い場合に特に適していると云える。
Start-up of the reforming apparatus of Example 2 The start-up method of the apparatus when each part of the reforming apparatus has not reached the required temperature is the same as that in Example 1, and is therefore omitted.
Steady operation of the reformer of the second embodiment The basic operation method is the same as that of the reformer of the first embodiment. However, in the reformer of the second embodiment, only the oxygen for oxidation reaction can be used in the steady operation stage. In addition, when the raw material fuel mixed gas ascends the guide path 21, heat exchange with the reformed gas passing downward through the guide path 20 outside the de-CO unit 4 and the reformed gas exiting the reforming vessel is performed. Reduce the temperature. In this case, since there is a large temperature difference between the raw fuel mixed gas descending the guide path 22 and the reforming catalyst layer 14 located on the outer side in the radial direction, it is desirable to dispose a heat insulating layer on the annular wall between them. . Such a reforming apparatus of Example 2 is particularly suitable when NH 3 is generated as an unnecessary gas in the reaction section. This is because in order to remove NH 3 by oxidation, a higher temperature is required than the usual removal by oxidation of CO. Therefore, the temperature of the final exhaust reformed gas also becomes higher. This is because it is desirable that the reformed gas that has passed through the de-CO unit 4 (in this case, the weight of the de-NH 3 unit is increased) is subjected to more heat exchange to lower the temperature. Therefore, it can be said that the heat exchange structure of Example 2 is particularly suitable when there is a lot of NH 3 oxidation treatment in view of its heat exchange efficiency.

本願発明の第1実施例に係る改質装置の縦方向断面図である。1 is a longitudinal sectional view of a reformer according to a first embodiment of the present invention. 本願発明の第2実施例に係る改質装置の縦方向断面図である。It is longitudinal direction sectional drawing of the reformer which concerns on 2nd Example of this invention.

符号の説明Explanation of symbols

1…改質容器
2…一次反応部
3…二次反応部
4…脱CO部
5…脱CO部4を通った改質ガスの案内路
6…酸化反応用酸素導入路
7…原料燃料混合ガス入口
8…脱CO用空気入口
9…改質ガス出口
10…酸化反応用酸素入口
12…(酸化反応用酸素)吹き込みリング
13…伝熱粒子層
14…改質触媒層
15…混合(酸化・改質)触媒層
16…高温シフト触媒層
17…低温シフト触媒層
18…脱CO触媒
19…断熱材
20…脱CO部4を通った改質ガスの(外側)案内路
21…原料燃料混合ガスの上昇案内路
22…原料燃料混合ガスの下降案内路
DESCRIPTION OF SYMBOLS 1 ... Reforming container 2 ... Primary reaction part 3 ... Secondary reaction part 4 ... De-CO part 5 ... Reformed gas guide way which passed through the de-CO part 4 6 ... Oxygen introduction passage for oxidation reaction 7 ... Raw material fuel mixed gas Inlet 8 ... De-CO air inlet 9 ... Reformed gas outlet 10 ... Oxidation reaction oxygen inlet 12 ... (Oxidation reaction oxygen) blowing ring 13 ... Heat transfer particle layer 14 ... Reforming catalyst layer 15 ... Mixing (oxidation and modification) Quality) catalyst layer 16 ... high temperature shift catalyst layer 17 ... low temperature shift catalyst layer 18 ... de-CO catalyst 19 ... heat insulating material 20 ... (outside) guide path of reformed gas through de-CO part 4 21 ... raw material fuel mixed gas Ascending guide path 22 ... Descent guiding path of the raw fuel mixed gas

Claims (6)

円筒状の改質容器内の外側に、半径方向内側より一次反応部、二次反応部、一次反応部、を順次同心円状に縦方向に並設すると共に、改質容器の内側には、同心円状に縦方向に、脱CO触媒層を備えた改質ガスの脱CO部を配置したことを特徴とする自己酸化内部加熱型改質装置。   A primary reaction part, a secondary reaction part, and a primary reaction part are sequentially arranged in a longitudinal direction in a concentric manner from the inside in the radial direction on the outer side of the cylindrical reforming vessel. A self-oxidation internal heating type reformer characterized in that a reformed gas de-CO part having a de-CO catalyst layer is arranged in the vertical direction. 改質ガスの脱CO部の半径方向内側に、同心円状に縦方向に、脱CO部を通った改質ガスの案内路、改質反応用の酸素混合ガス導入路を順次並設したことを特徴とする請求項1記載の改質装置。   The reformed gas guide path and the oxygen mixed gas introduction path for reforming reaction are arranged in parallel in the concentric longitudinal direction inside the reformed gas de-CO section in the radial direction. The reformer according to claim 1, wherein the reformer is characterized in that: 改質ガスの脱CO装置の半径方向外側に、同心円状に縦方向に、脱CO装置を通った改質ガスの案内路、原料燃料の混合ガスの一次反応部への上昇案内路、を順次並設し、この上昇案内路と内側の一次反応部との間に、原料燃料の混合ガスの下降案内路を形成したことを特徴とする請求項1又は2記載の改質装置。   The reformed gas guide passage through the de-CO device and the ascending guide passage to the primary reaction section of the mixed gas of the raw material fuel are sequentially arranged on the outer side in the radial direction of the reformed gas de-CO device in the longitudinal direction concentrically. The reforming apparatus according to claim 1 or 2, wherein the reforming apparatus is provided in parallel, and a descending guide path for the mixed gas of the raw material fuel is formed between the ascending guide path and the inner primary reaction section. 定常運転時に、酸化・改質反応とシフト反応の熱の伝熱で高温が維持される伝熱粒子と改質触媒とによって部分改質された原料燃料と水蒸気の混合ガスを、改質容器内に配置された脱CO装置の定常運転時の熱で予熱された酸素混合ガスと混合し、これを、酸化触媒と改質触媒の混合触媒とシフト触媒を順次備えた筒内を流し、改質ガスを得ることを特徴とする自己酸化内部加熱型改質方法。   During steady operation, the mixed gas of raw fuel and steam partially reformed by the heat transfer particles and the reforming catalyst, which is maintained at a high temperature by heat transfer of oxidation / reforming reaction and shift reaction, Is mixed with the oxygen mixed gas preheated by the heat at the time of steady operation of the de-CO device arranged in the cylinder, and this is passed through the cylinder equipped with the mixed catalyst of the oxidation catalyst and the reforming catalyst and the shift catalyst in order, and reformed A self-oxidation internal heating reforming method characterized in that a gas is obtained. 原料燃料と水蒸気の混合ガスを、脱CO装置の発生熱及び伝熱粒子の伝達で予熱することを特徴とする請求項6記載の改質方法。   The reforming method according to claim 6, wherein the mixed gas of the raw material fuel and water vapor is preheated by heat generated by the de-CO device and transmission of heat transfer particles. 酸化触媒を充填してある、酸化反応用酸素導入路内に、酸化反応用酸素と原料燃料とを当初流し、原料燃料を酸化し温度の高い酸素を得、これを、通常運転時に一次反応部となる領域である伝熱粒子層及び改質触媒層を経由してきた原料燃料と水蒸気の混合ガスと共に、酸化触媒と改質触媒の混合触媒とシフト触媒を順次備えた通常運転時に二次反応部となる領域に流し、改質ガスを得つつ、反応部の温度上昇を得ることを特徴とする内部加熱型改質装置の立ち上げ方法。


The oxidation reaction oxygen and the raw material fuel are initially flowed into the oxidation reaction oxygen introduction passage filled with the oxidation catalyst, and the raw material fuel is oxidized to obtain high-temperature oxygen. This is the primary reaction section during normal operation. Secondary reaction section during normal operation with a mixture of raw material fuel and water vapor that has passed through the heat transfer particle layer and the reforming catalyst layer, which are the regions to become, and a mixed catalyst of shift catalyst and oxidation catalyst in turn A method for starting up an internally heated reforming apparatus, wherein the temperature rise of the reaction section is obtained while obtaining the reformed gas through a region to be


JP2004195833A 2004-07-01 2004-07-01 Self-oxidation internal heating type reformer and method Expired - Fee Related JP4671632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195833A JP4671632B2 (en) 2004-07-01 2004-07-01 Self-oxidation internal heating type reformer and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195833A JP4671632B2 (en) 2004-07-01 2004-07-01 Self-oxidation internal heating type reformer and method

Publications (2)

Publication Number Publication Date
JP2006016256A true JP2006016256A (en) 2006-01-19
JP4671632B2 JP4671632B2 (en) 2011-04-20

Family

ID=35790839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195833A Expired - Fee Related JP4671632B2 (en) 2004-07-01 2004-07-01 Self-oxidation internal heating type reformer and method

Country Status (1)

Country Link
JP (1) JP4671632B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227237A (en) * 2006-02-24 2007-09-06 Japan Energy Corp Solid oxide fuel battery module
JP2007323908A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Fuel reforming system for solid oxide fuel cell
JP2007320796A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Oxidation autothermal reforming apparatus
JP2010235348A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP5586809B2 (en) * 2012-04-06 2014-09-10 パナソニック株式会社 Hydrogen purification apparatus, hydrogen generation apparatus, and fuel cell system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269301A (en) * 1988-07-22 1990-03-08 Imperial Chem Ind Plc <Ici> Hydrogen
JP2001229953A (en) * 2000-02-18 2001-08-24 Nissan Motor Co Ltd Fuel-cell system
JP2002187705A (en) * 2000-10-10 2002-07-05 Tokyo Gas Co Ltd Single tube cylindrical reformer
JP2003089502A (en) * 2001-09-12 2003-03-28 Suzuki Motor Corp Methanol reformer
JP2003531085A (en) * 2000-04-17 2003-10-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel processor
JP2003335504A (en) * 2002-05-17 2003-11-25 Nippon Chem Plant Consultant:Kk Self-oxidatively and internally heated type reforming process and apparatus
JP2004155650A (en) * 2002-10-17 2004-06-03 Toyo Radiator Co Ltd Autoxidation internal heating type steam reforming system
JP2004175582A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Auto-oxidative internal-heating steam reforming system and process for starting the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269301A (en) * 1988-07-22 1990-03-08 Imperial Chem Ind Plc <Ici> Hydrogen
JP2001229953A (en) * 2000-02-18 2001-08-24 Nissan Motor Co Ltd Fuel-cell system
JP2003531085A (en) * 2000-04-17 2003-10-21 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel processor
JP2002187705A (en) * 2000-10-10 2002-07-05 Tokyo Gas Co Ltd Single tube cylindrical reformer
JP2003089502A (en) * 2001-09-12 2003-03-28 Suzuki Motor Corp Methanol reformer
JP2003335504A (en) * 2002-05-17 2003-11-25 Nippon Chem Plant Consultant:Kk Self-oxidatively and internally heated type reforming process and apparatus
JP2004155650A (en) * 2002-10-17 2004-06-03 Toyo Radiator Co Ltd Autoxidation internal heating type steam reforming system
JP2004175582A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Auto-oxidative internal-heating steam reforming system and process for starting the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227237A (en) * 2006-02-24 2007-09-06 Japan Energy Corp Solid oxide fuel battery module
JP2007323908A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Fuel reforming system for solid oxide fuel cell
JP2007320796A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Oxidation autothermal reforming apparatus
JP2010235348A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP2010235346A (en) * 2009-03-30 2010-10-21 Japan Energy Corp Self-heated oxidation reforming apparatus and fuel cell system
JP5586809B2 (en) * 2012-04-06 2014-09-10 パナソニック株式会社 Hydrogen purification apparatus, hydrogen generation apparatus, and fuel cell system

Also Published As

Publication number Publication date
JP4671632B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP3625770B2 (en) Single tube cylindrical reformer and its operating method
JP4145785B2 (en) Cylindrical steam reformer
CA2357960C (en) Single-pipe cylinder type reformer
JP5693854B2 (en) Fuel reformer for polymer electrolyte fuel cell
JP4869696B2 (en) Small cylindrical reformer
RU2415073C2 (en) Compact reforming reactor
JP2002187705A (en) Single tube cylindrical reformer
CN101589275A (en) Heat transfer unit for steam generation and gas preheating
KR20040058180A (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP6944349B2 (en) Hydrogen generator
TW200837007A (en) Reformer, reforming unit and fuel cell system
JP2005015292A (en) Fuel reformer
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JP4671632B2 (en) Self-oxidation internal heating type reformer and method
JP2008120604A (en) Reformer, reforming method, reforming unit, and fuel cell system
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JP5329944B2 (en) Steam reformer for fuel cell
JP6436693B2 (en) Hydrogen production system for hydrogen station
JP2004123464A (en) Steam reformer
JP2004267884A (en) Membrane reaction apparatus and synthetic gas production method using the same
WO2002075832A2 (en) Chambered reactor for fuel processing
JP2010030801A (en) Reformer for fuel cell
JP2002293509A (en) Co remover
KR102563958B1 (en) High efficiency fuel processing device
KR102586411B1 (en) High-efficiency fuel processing device with durability that enables stable hydrogen production and carbon monoxide removal through heat exchange optimization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees