JP2006015266A - Hydrogen separation membrane structure - Google Patents

Hydrogen separation membrane structure Download PDF

Info

Publication number
JP2006015266A
JP2006015266A JP2004196586A JP2004196586A JP2006015266A JP 2006015266 A JP2006015266 A JP 2006015266A JP 2004196586 A JP2004196586 A JP 2004196586A JP 2004196586 A JP2004196586 A JP 2004196586A JP 2006015266 A JP2006015266 A JP 2006015266A
Authority
JP
Japan
Prior art keywords
separation membrane
hydrogen separation
metal substrate
membrane structure
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004196586A
Other languages
Japanese (ja)
Inventor
Katsuya Kobayashi
克也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004196586A priority Critical patent/JP2006015266A/en
Publication of JP2006015266A publication Critical patent/JP2006015266A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen separation membrane structure having intensive bonding strength of a metallic substrate with a hydrogen separation membrane, and having high reliability. <P>SOLUTION: This hydrogen separation membrane structure has a lot of through-holes 12a formed on the metallic substrate 12, and the hydrogen separation membrane 13 covering one face of the metallic substrate. Recessed parts 12b are formed on the covered side of the metallic substrate surface with the hydrogen separation membrane, and ceramic particles 14 are filled in the through-holes and recessed parts to form the structure. This structure creates sufficient anchoring effect between the ceramic particles in the metallic substrate and the hydrogen separation membrane to cause little peeling of the hydrogen separation membrane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素分離膜構造体の改良に関する。   The present invention relates to an improvement of a hydrogen separation membrane structure.

水素分離膜構造体として特許文献1に示したようなものが知られている。これはステンレス等の板状の金属支持体にエッチングで細孔を形成し、一方の面にパラジウムおよび銀からなる合金膜を被膜形成したものである。
特開平5−317662号公報
A hydrogen separation membrane structure as shown in Patent Document 1 is known. In this example, pores are formed by etching on a plate-like metal support such as stainless steel, and an alloy film made of palladium and silver is formed on one surface.
Japanese Patent Laid-Open No. 5-317662

前記水素分離膜構造体において合金膜は平滑な金属平面上に形成されているため、被膜と支持体間にいわゆるアンカー効果による接合力が働かず、合金膜と支持体金属間の熱膨張差や金属平板側からガス圧が作用した場合に剥がれやすいという問題がある。   In the hydrogen separation membrane structure, since the alloy membrane is formed on a smooth metal plane, the bonding force due to the so-called anchor effect does not work between the coating and the support, and the difference in thermal expansion between the alloy membrane and the support metal There is a problem that it is easy to peel off when gas pressure is applied from the metal flat plate side.

本発明は、水素分離膜の支持体となる金属基板に多数の貫通孔を設けると共に、前記金属基板の一方の面に水素分離膜を被覆形成した水素分離膜構造体において、前記水素分離膜を被覆する側の金属基板表面に凹部を形成し、前記貫通孔と凹部とにセラミック粒子を充填した構造を持たせる。   The present invention provides a hydrogen separation membrane structure in which a plurality of through-holes are provided in a metal substrate serving as a support for a hydrogen separation membrane, and one surface of the metal substrate is coated with a hydrogen separation membrane. A recess is formed on the surface of the metal substrate to be coated, and the through hole and the recess are filled with ceramic particles.

本発明によれば、金属基板上に設けた貫通孔と凹部にセラミック粒子を充填する構成としたため、セラミック粒子と水素分離膜との間に十分なアンカー効果が生じて水素分離膜が剥がれにくくなるという効果が得られる。   According to the present invention, since the ceramic particles are filled in the through holes and the recesses provided on the metal substrate, a sufficient anchor effect is generated between the ceramic particles and the hydrogen separation membrane, and the hydrogen separation membrane is difficult to peel off. The effect is obtained.

以下、本発明の実施形態を図面に基づいて説明する。図1(図1−1〜図1−3)は、本発明の第1の実施形態を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 (FIGS. 1-1 to 1-3) shows a first embodiment of the present invention.

図において、11は水素分離膜構造体を、12と13は前記水素分離膜構造体を形成する金属基板と水素分離膜をそれぞれ示している。金属基板12は薄板円盤状に形成してあり、材質としては例えばステンレス合金材を適用する。水素分離膜13は水素分離機能を有するPd等の合金材をめっき、真空蒸着、スパッタリング等により金属基板12の一方の面に被覆してある。   In the figure, 11 is a hydrogen separation membrane structure, and 12 and 13 are a metal substrate and a hydrogen separation membrane forming the hydrogen separation membrane structure, respectively. The metal substrate 12 is formed in a thin disk shape, and as a material, for example, a stainless alloy material is applied. The hydrogen separation membrane 13 is formed by coating one surface of the metal substrate 12 with an alloy material such as Pd having a hydrogen separation function by plating, vacuum deposition, sputtering, or the like.

前記金属基板12には該基板の表裏を貫通するように多数の貫通孔12aを形成すると共に、前記水素分離膜13を被覆する側の面のみに多数の凹部12bを形成する。前記凹部12bは、この場合金属基板12の中央部と、外周域とに形成してある。外周域の凹部12bは、前記貫通孔12aを包囲するように多数のものを等間隔で環状に配置してある。なお図示した金属基板12および水素分離膜13の厚さ、貫通孔12aおよび凹部12bの個数は、説明の便宜上実際のものとは異なる(以下の各図について同様)。   A large number of through holes 12 a are formed in the metal substrate 12 so as to penetrate the front and back surfaces of the substrate, and a large number of recesses 12 b are formed only on the surface that covers the hydrogen separation membrane 13. In this case, the recess 12b is formed in the central portion of the metal substrate 12 and the outer peripheral region. A large number of recesses 12b in the outer peripheral area are annularly arranged at equal intervals so as to surround the through hole 12a. The thicknesses of the metal substrate 12 and the hydrogen separation membrane 13 and the numbers of the through holes 12a and the recesses 12b are different from actual ones for convenience of explanation (the same applies to the following drawings).

前記貫通孔12aおよび凹部12bは、金属基板12にエッチング、ドリル、レーザ加工等の加工法により形成する。凹部12bについては、言うまでもなく金属基板12を貫通しないように所要の深さに形成する。   The through holes 12a and the recesses 12b are formed in the metal substrate 12 by a processing method such as etching, drilling, or laser processing. Needless to say, the recess 12b is formed to a required depth so as not to penetrate the metal substrate 12.

前記金属基板12の貫通孔12aおよび凹部12bには、水素分離膜13を形成する前にセラミック粒子14を充填して乾燥および焼結してある。セラミック粒子14の材質としては例えばアルミナ、シリカ等が適用可能である。   The through holes 12a and the recesses 12b of the metal substrate 12 are filled with ceramic particles 14 and dried and sintered before the hydrogen separation membrane 13 is formed. As a material of the ceramic particles 14, for example, alumina, silica or the like can be applied.

前記水素分離膜構造体11においては、金属基板12の貫通孔12aに充填したセラミクス粒子14による多孔質構造部分および水素分離膜13を通して水素ガスが通過する。この実施形態では、前記金属基板12上の貫通孔12aのみならず凹部12bにもセラミック粒子14を充填し、その上から水素分離膜13を被覆してある。このため水素分離膜13とセラミック粒子14とがアンカー効果によって強固に結合され、金属基板12と水素分離膜13の熱膨張差や金属基板12側からガス圧が作用した場合に水素分離膜13が金属基板12から剥がれるおそれが減少する。   In the hydrogen separation membrane structure 11, hydrogen gas passes through the porous structure portion formed by the ceramic particles 14 filled in the through holes 12 a of the metal substrate 12 and the hydrogen separation membrane 13. In this embodiment, not only the through-holes 12a on the metal substrate 12 but also the recesses 12b are filled with the ceramic particles 14, and the hydrogen separation membrane 13 is coated thereon. For this reason, the hydrogen separation membrane 13 and the ceramic particles 14 are firmly bonded by the anchor effect, and when the difference in thermal expansion between the metal substrate 12 and the hydrogen separation membrane 13 or the gas pressure acts from the metal substrate 12 side, the hydrogen separation membrane 13 The possibility of peeling from the metal substrate 12 is reduced.

図2(図2−1〜図2−2)は、本発明の第2の実施形態を示している。この実施形態では、金属基板12の外周域に、凹部として基板外形に沿った環状溝12cを形成し、その内側域に円形の凹部領域15を前記環状溝12cまたは金属基板12に対して同心円状に形成してある。前記凹部領域15にはガス透過のための多数の貫通孔12aを形成してある。この場合、セラミック粒子14を前記環状溝12cと凹部領域15とに充填した上で焼結してある。なお水素分離膜形成は図示省略してあるが、前記環状溝12cおよび凹部領域15を形成した側の面に被覆する点は図1と同様である。   FIG. 2 (FIGS. 2-1 to 2-2) shows a second embodiment of the present invention. In this embodiment, an annular groove 12 c is formed as a recess along the outer periphery of the metal substrate 12, and a circular recess region 15 is formed concentrically with the annular groove 12 c or the metal substrate 12 in the inner area. Is formed. A large number of through holes 12 a for gas permeation are formed in the recessed area 15. In this case, the ceramic particles 14 are filled in the annular groove 12c and the recessed region 15 and then sintered. Although formation of the hydrogen separation membrane is omitted in the drawing, it is the same as in FIG. 1 in that the surface on the side where the annular groove 12c and the recessed region 15 are formed is covered.

この実施形態は、水素分離膜を形成する側の金属基板面を平滑に研磨する際に、凹部領域15を形成した領域においてセラミック粒子14の層内に金属基板12の金属部分が介在しないので加工がしやすく、より精度の高い平滑面が得られるという利点がある。   In this embodiment, when the metal substrate surface on the side where the hydrogen separation membrane is formed is polished smoothly, the metal portion of the metal substrate 12 is not interposed in the layer of the ceramic particles 14 in the region where the recessed region 15 is formed. There is an advantage that a smooth surface with higher accuracy can be obtained.

図3(図3−1〜図3−2)は、本発明の第3の実施形態を示している。金属基板12の形状は図1と同様である。ただし貫通孔12aに充填するセラミック粒子14の粒径を凹部12bに充填するものよりも小さくした点で異なる。水素分離膜は図示省略してある。   FIG. 3 (FIGS. 3-1 to 3-2) shows a third embodiment of the present invention. The shape of the metal substrate 12 is the same as in FIG. However, the difference is that the particle size of the ceramic particles 14 filled in the through holes 12a is smaller than that of the ceramic particles 14 filled in the recesses 12b. The hydrogen separation membrane is not shown.

貫通孔12a上の膜部分にピンホールがあると水素以外のガスが漏れてくるという問題を生じるが、この実施形態のように貫通孔12aに充填するセラミック粒子14の粒径を細かくすることにより、均一でピンホールを生じにくい水素分離膜を形成することができる。一方、凹部12bには水素が透過しないのでピンホールは問題にならず、むしろセラミック粒子14の粒径を大きくすることで強いアンカー効果を生じるようにしている。これによりセラミック粒子〜水素分離膜間に強固な密着力を得ることができる。   If there is a pinhole in the film portion on the through-hole 12a, there arises a problem that gas other than hydrogen leaks. However, by reducing the particle size of the ceramic particles 14 filled in the through-hole 12a as in this embodiment. A hydrogen separation membrane that is uniform and hardly generates pinholes can be formed. On the other hand, since hydrogen does not permeate into the recess 12b, pinholes do not become a problem. Rather, a strong anchor effect is generated by increasing the particle size of the ceramic particles 14. Thereby, it is possible to obtain a strong adhesion between the ceramic particles and the hydrogen separation membrane.

図4(図4−1〜図4−3)は、本発明の第4の実施形態を示している。この実施形態では、図1に示したものと比較すると、金属基板12の外周域に環状溝12cを基板外径に沿って環状に形成した点で異なる。金属基板12の貫通孔12aおよび環状溝12cにセラミック粒子14を充填し、乾燥および焼結したのち該環状溝12cを形成した側の基板表面に水素分離膜13を被覆する。   FIG. 4 (FIGS. 4-1 to 4-3) shows a fourth embodiment of the present invention. This embodiment is different from that shown in FIG. 1 in that an annular groove 12c is formed in an annular shape along the outer diameter of the substrate in the outer peripheral region of the metal substrate 12. The through holes 12a and the annular grooves 12c of the metal substrate 12 are filled with ceramic particles 14, dried and sintered, and then the hydrogen separation membrane 13 is coated on the substrate surface on the side where the annular grooves 12c are formed.

この実施形態によれば、水素分離膜13の外周部を環状溝12cに充填したセラミック粒子14のアンカー効果により保持するので、水素分離膜13の縁部Aが剥がれても環状溝12cよりも内側域にまで剥がれが及びにくくなり、所要の水素分離機能を維持することができる。   According to this embodiment, the outer peripheral portion of the hydrogen separation membrane 13 is held by the anchor effect of the ceramic particles 14 filled in the annular groove 12c, so that even if the edge A of the hydrogen separation membrane 13 is peeled off, the inner side of the annular groove 12c. It becomes difficult to peel to the region, and the required hydrogen separation function can be maintained.

また、貫通孔12aを環状溝12cの内側域に設けたため、貫通孔12aに面した水素分離膜が剥がれにくくなると共に、水素以外の不純物ガスが漏れるおそれをより確実に防止することができる。   In addition, since the through hole 12a is provided in the inner region of the annular groove 12c, the hydrogen separation membrane facing the through hole 12a is hardly peeled off, and the risk of impurity gases other than hydrogen leaking can be more reliably prevented.

図5は、本発明の第5の実施形態を示している。この実施形態では、金属基板12を円筒状に形成し、該円筒状基板12の両端部付近に円筒外周に沿って環状溝12cを形成し、その内側に貫通孔12aを形成してある。環状溝12cおよび貫通孔12aにはセラミック粒子14を充填し、乾燥および焼結したうえで、環状溝12cおよび貫通孔12aを覆うように、基板外周面に水素分離膜(図示せず)を被覆する。   FIG. 5 shows a fifth embodiment of the present invention. In this embodiment, the metal substrate 12 is formed in a cylindrical shape, annular grooves 12c are formed in the vicinity of both ends of the cylindrical substrate 12 along the outer periphery of the cylinder, and a through hole 12a is formed inside thereof. The annular groove 12c and the through hole 12a are filled with ceramic particles 14, dried and sintered, and then coated with a hydrogen separation membrane (not shown) on the outer peripheral surface of the substrate so as to cover the annular groove 12c and the through hole 12a. To do.

この実施形態においても、円筒状金属基板12の両端に環状溝12cを形成してあるので、図4のものと同様に水素分離膜の剥がれを起こしにくい信頼性の高い水素分離膜構造体が得られる。   Also in this embodiment, since the annular groove 12c is formed at both ends of the cylindrical metal substrate 12, a highly reliable hydrogen separation membrane structure that is unlikely to cause the separation of the hydrogen separation membrane is obtained as in FIG. It is done.

図6は、本発明の第6の実施形態を示している。この実施形態では、図4に示したのと同様に外周域に環状溝12cを形成した金属基板12において、水素分離膜13をその輪郭が前記環状溝12cの溝幅内に収まるように形成してある。   FIG. 6 shows a sixth embodiment of the present invention. In this embodiment, in the same manner as shown in FIG. 4, in the metal substrate 12 in which the annular groove 12c is formed in the outer peripheral region, the hydrogen separation membrane 13 is formed so that its contour is within the groove width of the annular groove 12c. It is.

この実施形態によれば、水素分離膜13の縁部Aが、環状溝12cに充填したセラミック粒子14により強固に密着されるので、縁部からの剥がれがなくなり、水素分離膜構造体としての信頼性をより高めることができる。   According to this embodiment, since the edge A of the hydrogen separation membrane 13 is firmly adhered by the ceramic particles 14 filled in the annular groove 12c, the separation from the edge is eliminated, and the hydrogen separation membrane structure is reliable. The sex can be increased.

図7は、本発明の第7の実施形態を示している。この実施形態は、図示したように中央部に形成した凹部12bおよび外周域に形成した環状溝12cの断面形状を、それぞれ開口端部側の幅よりも底部側の幅が大となるように形成した点を特徴としている。   FIG. 7 shows a seventh embodiment of the present invention. In this embodiment, as shown in the drawing, the cross-sectional shape of the recess 12b formed in the central portion and the annular groove 12c formed in the outer peripheral region is formed so that the width on the bottom side is larger than the width on the opening end side. It is characterized by that.

この実施形態によれば、凹部12bまたは環状溝12cに充填したセラミック粒子14が脱落し難くなり、表面に被覆する水素分離膜(図示せず)に対する保持強度をより高めることができる。   According to this embodiment, the ceramic particles 14 filled in the recesses 12b or the annular grooves 12c are difficult to drop off, and the holding strength for the hydrogen separation membrane (not shown) coated on the surface can be further increased.

図8は、本発明に係る水素分離膜構造体11の製造方法の一例を示している。これは前記第3の実施形態として説明した水素分離膜構造体、すなわちセラミクス粒子14として小径のものを貫通孔12aに、大径のものを凹部12bにそれぞれ充填した構造のものについての製造工程例である。以下、工程に従って製造方法を説明する。
工程1
金属基板12にエッチング等により貫通孔12aおよび凹部12b、環状溝12cを形成する。
工程2
金属基板12の上面に貫通孔12aのみを覆うようにマスキング16を施したうえで、凹部12bおよび環状溝12cに粒径の大きなセラミックスラリ14’を充填し、乾燥させる。
工程3
貫通孔12aのマスキング16を除去し、凹部12bと環状溝12cを覆うようにマスキング17を施したうえで、貫通孔12aに粒径の小さなセラミックスラリ14’を充填し、乾燥させる。
工程4
マスキング17を除去し、セラミックスラリ14’を焼成して固化させる。
工程5
金属基板12の凹部12bを形成した側の表面略全域に真空蒸着法等により水素分離膜13を被覆する。これにより本発明に係る水素分離膜構造体11が得られる。
FIG. 8 shows an example of a method for producing the hydrogen separation membrane structure 11 according to the present invention. This is an example of a manufacturing process for the hydrogen separation membrane structure described as the third embodiment, that is, the ceramic particle 14 having a structure in which a small diameter is filled in the through hole 12a and a large diameter is filled in the recess 12b. It is. Hereinafter, a manufacturing method is demonstrated according to a process.
Process 1
Through holes 12a, recesses 12b, and annular grooves 12c are formed in the metal substrate 12 by etching or the like.
Process 2
After masking 16 is performed on the upper surface of the metal substrate 12 so as to cover only the through holes 12a, the concave portions 12b and the annular grooves 12c are filled with a ceramic slurry 14 'having a large particle size and dried.
Process 3
The masking 16 of the through-hole 12a is removed, and the masking 17 is applied so as to cover the recess 12b and the annular groove 12c, and then the through-hole 12a is filled with a ceramic slurry 14 'having a small particle diameter and dried.
Process 4
The masking 17 is removed, and the ceramic slurry 14 'is fired and solidified.
Process 5
The hydrogen separation membrane 13 is covered over substantially the entire surface of the metal substrate 12 on the side where the concave portion 12b is formed by vacuum deposition or the like. Thereby, the hydrogen separation membrane structure 11 according to the present invention is obtained.

本発明の第1の実施形態に係る水素分離膜構造体の金属基板の平面図。The top view of the metal substrate of the hydrogen separation membrane structure which concerns on the 1st Embodiment of this invention. 図1−1の縦断面図。The longitudinal cross-sectional view of FIGS. 第1の実施形態において水素分離膜を形成した状態を示す縦断面図。The longitudinal cross-sectional view which shows the state in which the hydrogen separation membrane was formed in 1st Embodiment. 本発明の第2の実施形態に係る水素分離膜構造体の金属基板の平面図。The top view of the metal substrate of the hydrogen separation membrane structure which concerns on the 2nd Embodiment of this invention. 図2−1の縦断面図。The longitudinal cross-sectional view of FIGS. 本発明の第3の実施形態に係る水素分離膜構造体の金属基板の平面図。The top view of the metal substrate of the hydrogen separation membrane structure which concerns on the 3rd Embodiment of this invention. 図3−1の縦断面図。The longitudinal cross-sectional view of FIGS. 本発明の第4の実施形態に係る水素分離膜構造体の金属基板の平面図。The top view of the metal substrate of the hydrogen separation membrane structure which concerns on the 4th Embodiment of this invention. 図4−1の縦断面図。FIG. 4 is a longitudinal sectional view of FIG. 第4の実施形態において水素分離膜を形成した状態を示す縦断面図。The longitudinal cross-sectional view which shows the state in which the hydrogen separation membrane was formed in 4th Embodiment. 本発明の第5の実施形態に係る水素分離膜構造体の金属基板の外観斜視図。The external appearance perspective view of the metal substrate of the hydrogen separation membrane structure which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る水素分離膜構造体の縦断面図。The longitudinal cross-sectional view of the hydrogen separation membrane structure which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る水素分離膜構造体の金属基板の縦断面図。The longitudinal cross-sectional view of the metal substrate of the hydrogen separation membrane structure which concerns on the 7th Embodiment of this invention. 本発明に係る水素分離膜構造体の製造工程例を示す説明図。Explanatory drawing which shows the example of a manufacturing process of the hydrogen separation membrane structure which concerns on this invention.

符号の説明Explanation of symbols

11 水素分離膜構造体
12 金属基板
12a 貫通孔
12b 凹部
12c 凹部(環状溝)
13 水素分離膜
14 セラミック粒子
15 凹部領域
11 Hydrogen separation membrane structure 12 Metal substrate 12a Through hole 12b Recess 12c Recess (annular groove)
13 Hydrogen separation membrane 14 Ceramic particles 15 Recessed area

Claims (7)

水素分離膜の支持体となる金属基板に多数の貫通孔を設けると共に、前記金属基板の一方の面に水素分離膜を被覆形成した水素分離膜構造体において、
前記水素分離膜を被覆する側の金属基板表面に凹部を形成し、
前記貫通孔と凹部とにセラミック粒子を充填した構造を有することを特徴とする
水素分離膜構造体。
In the hydrogen separation membrane structure in which a large number of through holes are provided in a metal substrate that is a support for the hydrogen separation membrane, and one surface of the metal substrate is coated with a hydrogen separation membrane.
Forming a recess in the metal substrate surface on the side covering the hydrogen separation membrane,
A hydrogen separation membrane structure having a structure in which the through holes and the recesses are filled with ceramic particles.
前記貫通孔に充填するセラミック粒子は、前記凹部に充填するセラミック粒子よりも粒径が小である請求項1に記載の水素分離膜構造体。   2. The hydrogen separation membrane structure according to claim 1, wherein the ceramic particles filled in the through holes have a smaller particle diameter than the ceramic particles filled in the recesses. 前記凹部として、前記金属基板の外形に沿って環状溝を形成した請求項1に記載の水素分離膜構造体。   The hydrogen separation membrane structure according to claim 1, wherein an annular groove is formed as the recess along the outer shape of the metal substrate. 前記貫通孔は、金属板の前記環状溝よりも内側の領域に形成されている請求項3に記載の水素分離膜構造体。   The hydrogen separation membrane structure according to claim 3, wherein the through hole is formed in a region inside the annular groove of the metal plate. 前記水素分離膜は、その輪郭が前記環状溝の溝幅内に収まるように形成されている請求項3に記載の水素分離膜構造体。   The hydrogen separation membrane structure according to claim 3, wherein the hydrogen separation membrane is formed so that a contour thereof falls within a groove width of the annular groove. 前記金属基板は、前記環状溝よりも内側域に多数の貫通孔を形成した凹部領域を備え、該凹部領域にセラミック粒子を充填した構造を有する請求項3に記載の水素分離膜構造体。   4. The hydrogen separation membrane structure according to claim 3, wherein the metal substrate includes a recessed region in which a large number of through holes are formed in an inner region of the annular groove, and the recessed region is filled with ceramic particles. 前記凹部は、その断面形状を、開口端部側の幅よりも底部側の幅が大となるように形成してある請求項1に記載の水素分離膜構造体。   2. The hydrogen separation membrane structure according to claim 1, wherein the recess has a cross-sectional shape formed so that a width on a bottom side is larger than a width on an opening end side.
JP2004196586A 2004-07-02 2004-07-02 Hydrogen separation membrane structure Pending JP2006015266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196586A JP2006015266A (en) 2004-07-02 2004-07-02 Hydrogen separation membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196586A JP2006015266A (en) 2004-07-02 2004-07-02 Hydrogen separation membrane structure

Publications (1)

Publication Number Publication Date
JP2006015266A true JP2006015266A (en) 2006-01-19

Family

ID=35789977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196586A Pending JP2006015266A (en) 2004-07-02 2004-07-02 Hydrogen separation membrane structure

Country Status (1)

Country Link
JP (1) JP2006015266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155992A1 (en) * 2007-06-20 2008-12-24 Nissan Motor Co., Ltd. Hydrogen separation apparatus and process for manufacturing the same
JP2009095749A (en) * 2007-10-16 2009-05-07 Dainippon Printing Co Ltd Hydrogen-permeable membrane, fuel cell, and hydrogen modification receptacle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155992A1 (en) * 2007-06-20 2008-12-24 Nissan Motor Co., Ltd. Hydrogen separation apparatus and process for manufacturing the same
JP2009022946A (en) * 2007-06-20 2009-02-05 Nissan Motor Co Ltd Hydrogen separation apparatus and process for manufacturing the same
US8834612B2 (en) 2007-06-20 2014-09-16 Nissan Motor Co., Ltd. Hydrogen separation apparatus and process for manufacturing the same
JP2009095749A (en) * 2007-10-16 2009-05-07 Dainippon Printing Co Ltd Hydrogen-permeable membrane, fuel cell, and hydrogen modification receptacle

Similar Documents

Publication Publication Date Title
JP4250525B2 (en) Separation diffusion metal membrane and manufacturing method thereof
US20050199973A1 (en) Differential pressure sensor
US10211115B2 (en) Method of making a ceramic combo lid with selective and edge metallizations
WO2009092506A3 (en) A method of fabricating a composite structure with a stable bonding layer of oxide
EP1096026A3 (en) Method of manufacturing thin metal alloy foils
KR20070102584A (en) Method for production of a thin-layer structure
KR20170126899A (en) Temporarily bonded wafer carrier
JP2006015266A (en) Hydrogen separation membrane structure
JP2019000978A (en) Grinding tool and manufacturing method of the same
JP2008044178A (en) Drilling method for plate material
KR940007736B1 (en) Catalyst carrier foil
US11229968B2 (en) Semiconductor substrate support with multiple electrodes and method for making same
JP4231978B2 (en) Gasket for fuel cell
TW200518249A (en) Bonding structure with buffer layer and method of forming the same
JP2009269255A (en) Decorative body holding sheet for transfer and method of manufacturing holding sheet for transfer, and method of transferring decorative body
JP2010253631A (en) Cmp conditioner and manufacturing method for the same
TWI790412B (en) Hole structure and manufacturing method thereof, and different material joint structure and manufacturing method thereof
JP2006210489A (en) Semiconductor device lead frame and its manufacturing method
JP3409153B2 (en) Method of forming fine holes smaller than the plate thickness by etching means
JP5149123B2 (en) Electrostatic chuck
JP2623640B2 (en) Heat-resistant composite Ni-plated member
KR101113934B1 (en) Method of forming hole in difficult-to-work material and difficult-to-work material having hole formed by the method
JP2005224755A (en) Hydrogen separation device
US20170229361A1 (en) Cover lid with selective and edge metallization
CN110650788B (en) Method for producing a membrane carrier component and membrane carrier component for separating hydrogen