JP2006014532A - Three-level power converting device - Google Patents

Three-level power converting device Download PDF

Info

Publication number
JP2006014532A
JP2006014532A JP2004190261A JP2004190261A JP2006014532A JP 2006014532 A JP2006014532 A JP 2006014532A JP 2004190261 A JP2004190261 A JP 2004190261A JP 2004190261 A JP2004190261 A JP 2004190261A JP 2006014532 A JP2006014532 A JP 2006014532A
Authority
JP
Japan
Prior art keywords
voltage reference
phase
level power
power converter
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190261A
Other languages
Japanese (ja)
Inventor
Sei Miyazaki
聖 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2004190261A priority Critical patent/JP2006014532A/en
Publication of JP2006014532A publication Critical patent/JP2006014532A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-level power converting device that reduces device capacity reduction rate in a low frequency range. <P>SOLUTION: This device is provided with: a three-level power converter 3 that converts DC electric power to three-phase AC electric power, a main controlling means 72 for controlling a load; a voltage reference converting means 73 that converts a biaxial voltage reference outputted from the main controlling means into a three-phase output voltage reference; and a PWM modulating means 74 that compares the output voltage reference with a carrier to generate a gate signal of the three-level power converter. The voltage reference converting means is configured to comprise a coordinate transforming means that converts the biaxial voltage reference into the three-phase basic voltage reference based on a phase reference; a bias adding means that adds a bias value, switching the positive/negative polarity in prescribed cycles, to the three-phase basic voltage reference, and an output of the coordinate transforming means; and a trapezoidal wave modulating means that limits the amplitude of each phase of the three-phase basic voltage reference by a prescribed limit value, and that adds correction to other phases in such a way as not to cause distortion to line-to-line voltages. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は3レベル電力変換装置に係り、特に低周波領域の制御方式を改善したに3レベル電力変換装置に関する。   The present invention relates to a three-level power conversion device, and more particularly to a three-level power conversion device with an improved control method in a low frequency region.

従来、所謂PWM(パルス幅変調)制御方式によって出力電圧を制御する電力変換装置、例えばインバータ装置は、その主回路にIGBT等の自己消弧型素子を使用し、変調周期毎に所定期間だけオン状態となるパルス状の電圧を出力し、その平均電圧を制御している。インバータ装置が3レベルになると、正電圧、負電圧に加え、零電圧を出力するモードが加わり、2レベルのインバータ装置に比較して倍となる1アーム当り4個の自己消弧型素子のPWM制御を行う必要があるが、基本的な制御の考え方は変わらない。   2. Description of the Related Art Conventionally, a power converter that controls an output voltage by a so-called PWM (pulse width modulation) control system, for example, an inverter device, uses a self-extinguishing element such as an IGBT in its main circuit and is turned on for a predetermined period for each modulation period. A pulsed voltage that is in a state is output, and the average voltage is controlled. When the inverter device reaches the 3rd level, a mode for outputting a zero voltage is added in addition to the positive voltage and the negative voltage, and PWM of four self-extinguishing elements per arm which is doubled as compared with the 2 level inverter device. Although it is necessary to perform control, the basic concept of control remains the same.

3レベルインバータ装置において、その出力周波数が低く、従って出力電圧が低いとき、電圧基準と変調用キャリアとを比較してゲート制御用パルスを作る場合、そのパルスが自己消弧型素子の特性上許容できないパルス幅(以下最小オンパルス幅と言う。)以下となってしまうという問題があった。   In a three-level inverter device, when the output frequency is low and therefore the output voltage is low, when the voltage reference and the modulation carrier are compared to create a gate control pulse, the pulse is allowed due to the characteristics of the self-extinguishing element. There has been a problem that the pulse width cannot be reduced (hereinafter referred to as the minimum on-pulse width).

この問題を解決するために所謂矩形PWM方式が提案されている。この矩形PWM方式は、3相電圧基準に所定のバイアス値を加算して零電圧付近でのPWM変調を避け、3相電圧基準の極性を同一極性として制御し、この極性を所定の周期で切り替えるものである。(例えば特許文献1参照。)。
特開平5−268773号公報(第4−6頁、図1)
In order to solve this problem, a so-called rectangular PWM method has been proposed. In this rectangular PWM method, a predetermined bias value is added to the three-phase voltage reference to avoid PWM modulation near zero voltage, and the polarity of the three-phase voltage reference is controlled as the same polarity, and this polarity is switched at a predetermined cycle. Is. (For example, refer to Patent Document 1).
JP-A-5-268773 (page 4-6, FIG. 1)

特許文献1に示されている従来の方式は、所定のバイアス値、例えば3相電圧基準の最低値を加えるようにしているため、上記最小オンパルス幅以下の幅のパルスが生成されないようにし、且つこれを所定の周期で切換えて正側と負側の自己消弧型素子の通電率のバランスを計るようにしている。   In the conventional method shown in Patent Document 1, since a predetermined bias value, for example, the minimum value of the three-phase voltage reference is added, a pulse having a width less than the minimum on-pulse width is not generated, and This is switched at a predetermined cycle so as to balance the energization rates of the positive and negative self-extinguishing elements.

然しながら、3レベルインバータ装置の正側、負側の各アームを構成する直流母線に接続される外側の自己消弧型素子と、負荷に接続される内側の自己消弧型素子との通電バランスについては考慮されておらず、結果として低周波領域において正側及び負側の内側の2つの自己消弧型素子に電流が集中し、インバータ装置として低周波領域で十分な電流を流すことができず、装置容量の低減率を大きくせざるを得ないという問題があった。   However, the energization balance between the outer self-extinguishing element connected to the DC bus constituting the positive and negative arms of the three-level inverter device and the inner self-extinguishing element connected to the load. As a result, the current concentrates on the two self-extinguishing elements inside the positive side and the negative side in the low frequency region, and the inverter device cannot pass a sufficient current in the low frequency region. There was a problem that the reduction rate of the device capacity had to be increased.

本発明は、上記問題に鑑み為されたもので、低周波領域での装置容量低減率を小さくすることが可能な3レベル電力変換装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a three-level power conversion device that can reduce the device capacity reduction rate in the low frequency region.

上記目的を達成するために、本発明の3レベル電力変換装置は、直流電源から供給される直流電力を3相交流電力に変換して電動機等の負荷に供給する3レベル電力変換器と、
前記電動機の速度等を制御するための主制御手段と、この主制御手段から出力されるD軸電圧基準及びQ軸電圧基準を3相の出力電圧基準に変換する電圧基準変換手段と、前記出力電圧基準をキャリアと比較して前記3レベル電力変換器のゲート信号を生成するPWM変調手段とを備え、前記電圧基準変換手段は、前記D軸電圧基準及びQ軸電圧基準を位相基準に基づいて3相の基本電圧基準に変換する座標変換手段と、この座標変換回路の出力である3相基本電圧基準に所定の周期で正負の極性を切り替えながらバイアス値を加算するバイアス加算手段と、前記3相基本電圧基準の各相の振幅を所定のリミット値で制限し、線間電圧に歪を生じさせないように他の相に補正を加えるようにした台形波変調手段とを有することを特徴としている。
In order to achieve the above object, a three-level power converter of the present invention includes a three-level power converter that converts DC power supplied from a DC power source into three-phase AC power and supplies it to a load such as an electric motor,
Main control means for controlling the speed of the motor, voltage reference conversion means for converting the D-axis voltage reference and the Q-axis voltage reference output from the main control means into a three-phase output voltage reference, and the output PWM modulation means for generating a gate signal of the three-level power converter by comparing a voltage reference with a carrier, the voltage reference conversion means based on the phase reference based on the D-axis voltage reference and the Q-axis voltage reference A coordinate conversion means for converting to a three-phase basic voltage reference; a bias addition means for adding a bias value to the three-phase basic voltage reference, which is an output of the coordinate conversion circuit; And a trapezoidal wave modulation means for limiting the amplitude of each phase of the phase basic voltage reference with a predetermined limit value and correcting other phases so as not to cause distortion in the line voltage. .

本発明によれば、自己消弧型素子の通電バランスを考慮したPWM変調を行うので、低周波領域での装置容量低減率を小さくすることが可能な3レベル電力変換装置を提供することができる。   According to the present invention, since PWM modulation is performed in consideration of the current-carrying balance of the self-extinguishing element, it is possible to provide a three-level power converter that can reduce the device capacity reduction rate in the low frequency region. .

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明に係る3レベル電力変換装置の実施例1を図1乃至図4を参照して説明する。図1(a)は本発明の実施例1を示す回路構成図である。   A first embodiment of a three-level power converter according to the present invention will be described with reference to FIGS. FIG. 1A is a circuit configuration diagram showing Embodiment 1 of the present invention.

直流電源1は3レベルの直流電圧を供給し、正側平滑コンデンサ2A及び負側平滑コンデンサ2Bを介し直流電力を3レベル変換器3に供給する。3レベル変換器3はこの直流電力を3相交流電力に変換して電動機4を駆動する。電動機4にはその回転位相を検出する回転角検出器5が設けられており、また、入力電流検出のため電流検出器6が設けられている。尚、上記の回転角検出器5及び電流検出器6は省略することも可能である。   The DC power supply 1 supplies three levels of DC voltage, and supplies DC power to the three-level converter 3 via the positive-side smoothing capacitor 2A and the negative-side smoothing capacitor 2B. The three-level converter 3 converts this DC power into three-phase AC power and drives the motor 4. The electric motor 4 is provided with a rotation angle detector 5 for detecting the rotation phase thereof, and a current detector 6 for detecting an input current. The rotation angle detector 5 and the current detector 6 can be omitted.

3レベル変換器3を構成する自己消弧型素子は制御部7からのゲート信号によりPWM制御されている。以下制御部7の構成を説明する。   The self-extinguishing element constituting the three-level converter 3 is PWM-controlled by a gate signal from the control unit 7. The configuration of the control unit 7 will be described below.

回転角検出器5で検出された位相角は微分器71により回転速度ωrに変換され、与えられた速度基準ω*と主制御器である電動機制御器72で比較増幅されて電流基準となり、更にこの電流基準は、同様に電動機制御器72で電流検出器6の出力と比較増幅されてd軸及びq軸の電圧基準ED_R、EQ_Rを得る。これ等の2軸変換のために回転角検出器5で検出された位相角に基づく位相基準θ1が用いられる。d軸電圧基準ED_R及びq軸電圧基準EQ_Rは、電圧基準変換部73により、3相電圧基準VU_REF、VV_REF及びVW_REFに変換される。   The phase angle detected by the rotation angle detector 5 is converted into the rotation speed ωr by the differentiator 71, and is compared and amplified by the given speed reference ω * and the motor controller 72 which is the main controller, and further becomes a current reference. This current reference is similarly amplified and compared with the output of the current detector 6 by the motor controller 72 to obtain d-axis and q-axis voltage references ED_R and EQ_R. The phase reference θ1 based on the phase angle detected by the rotation angle detector 5 is used for these two-axis conversions. The d-axis voltage reference ED_R and the q-axis voltage reference EQ_R are converted into three-phase voltage references VU_REF, VV_REF, and VW_REF by the voltage reference converter 73.

電圧基準変換部73の詳細回路構成を図1(b)に示す。図1(b)に示した様にd軸電圧基準ED_R及びq軸電圧基準EQ_Rは、上記位相基準θ1を用いて座標変換回路731によってまず3相基本電圧基準EU_R、EV_R及びEW_Rに変換される。   A detailed circuit configuration of the voltage reference converter 73 is shown in FIG. As shown in FIG. 1B, the d-axis voltage reference ED_R and the q-axis voltage reference EQ_R are first converted into three-phase basic voltage references EU_R, EV_R, and EW_R by the coordinate conversion circuit 731 using the phase reference θ1. .

この3相基本電圧基準EU_R、EV_R及びEW_Rの夫々には、バイアス加算回路732によって得られるバイアス値が加算される。バイアス加算回路732は、基準バイアス値BIASをタイマによって一定の切り替え周期で正負に切換えたパルス状のバイアスを出力する。このようにして3相基本電圧基準EU_R、EV_R及びEW_Rの夫々にバイアスが加算された信号は台形波変調回路733により正弦波のピーク部分を一定値にカットするように変形されて、夫々3相出力電圧基準VU_REF、VV_REF及びVW_REFに変換される。   A bias value obtained by the bias addition circuit 732 is added to each of the three-phase basic voltage references EU_R, EV_R, and EW_R. The bias addition circuit 732 outputs a pulsed bias in which the reference bias value BIAS is switched between positive and negative at a constant switching cycle by a timer. In this way, the signal in which the bias is added to each of the three-phase basic voltage references EU_R, EV_R, and EW_R is transformed by the trapezoidal wave modulation circuit 733 so that the peak portion of the sine wave is cut to a constant value. Converted to output voltage references VU_REF, VV_REF and VW_REF.

台形波変調回路733は、3相夫々の入力部にリミット回路を持ち、各相のリミット回路出力から元の信号を減算した値と、他の2相分のリミット回路出力から各々の元の信号を減算した値とを加算した値に元の信号を加算するように構成されている。このようにして、ある相がリミット回路にかかったとき、他の2相は線間電圧が変化しないように補正を加えるようにしている。   The trapezoidal wave modulation circuit 733 has a limit circuit at the input part of each of the three phases, a value obtained by subtracting the original signal from the limit circuit output of each phase, and each original signal from the limit circuit output for the other two phases. The original signal is added to the value obtained by adding the value obtained by subtracting. In this way, when a certain phase is applied to the limit circuit, the other two phases are corrected so that the line voltage does not change.

以上のようにして得られた3相出力電圧基準VU_REF、VV_REFEF及びVW_REFは、キャリア発生回路75からのキャリアとPWM変調回路74で比較され、その結果として3レベル変換器3を構成する自己消弧型素子のゲート信号が得られる。   The three-phase output voltage references VU_REF, VV_REFEF, and VW_REF obtained as described above are compared with the carrier from the carrier generation circuit 75 by the PWM modulation circuit 74, and as a result, the self-extinguishing constituting the three-level converter 3 is performed. A gate signal of the mold element is obtained.

図2は3レベル変換器3の1アーム分を示す内部構成図である。   FIG. 2 is an internal configuration diagram showing one arm of the three-level converter 3.

図2に示したように1アームは自己消弧型素子Q1、Q2、Q3及びQ4を直列接続して構成される。自己消弧型素子Q1、Q2、Q3及びQ4には夫々フライホイールダイオードD1,D2、D3及びD4が逆並列に接続されている。また、自己消弧型素子Q1とQ2間の電位はクランプダイオードDpに、また自己消弧型素子Q3とQ4間の電位はクランプダイオードDnによって零電位にクランプされる構成となっている。   As shown in FIG. 2, one arm is formed by connecting self-extinguishing elements Q1, Q2, Q3 and Q4 in series. Flywheel diodes D1, D2, D3 and D4 are connected in antiparallel to the self-extinguishing elements Q1, Q2, Q3 and Q4, respectively. Further, the potential between the self-extinguishing elements Q1 and Q2 is clamped to the clamp diode Dp, and the potential between the self-extinguishing elements Q3 and Q4 is clamped to the zero potential by the clamp diode Dn.

上記の構成において、自己消弧型素子Q1及びQ2がオン、自己消弧型素子Q3及びQ4がオフのとき出力端子には直流電圧+Edが供給され、逆に自己消弧型素子Q1及びQ2がオフ、自己消弧型素子Q3及びQ4がオンのとき出力端子には直流電圧−Edが供給される。自己消弧型素子Q1及びQ4がオフ、自己消弧型素子Q2及びQ3がオンのとき出力端子電圧は零となる。   In the above configuration, when the self-extinguishing elements Q1 and Q2 are on and the self-extinguishing elements Q3 and Q4 are off, a DC voltage + Ed is supplied to the output terminal, and conversely, the self-extinguishing elements Q1 and Q2 are When the off and self-extinguishing elements Q3 and Q4 are on, a DC voltage -Ed is supplied to the output terminal. When the self-extinguishing elements Q1 and Q4 are off and the self-extinguishing elements Q2 and Q3 are on, the output terminal voltage is zero.

図3に本発明の3レベル電力変換装置によって得られる3相出力電圧基準の波形の一例を示す。図3の場合、バイアス値BIASはキャリア振幅の約50%であり、また台形波変調回路733のリミット値はキャリア振幅から所定値を減算した値となっており、波形のピークを抑えるとともに、線間電圧が変化しないように他相を補正して最小オンパルス幅を確保するようにしている。   FIG. 3 shows an example of a three-phase output voltage reference waveform obtained by the three-level power converter of the present invention. In the case of FIG. 3, the bias value BIAS is about 50% of the carrier amplitude, and the limit value of the trapezoidal wave modulation circuit 733 is a value obtained by subtracting a predetermined value from the carrier amplitude. The other phases are corrected so that the inter-voltage does not change to ensure the minimum on-pulse width.

図4は図3に示した3相出力電圧基準をキャリアと比較し、各素子のゲートパルスを作成するPWM変調例であり、図3における期間Tの時間スケール分を示している。3相出力電圧基準VV_REFは正側及び負側のキャリアと比較され、VV_REF>正側キャリアのとき自己消弧型素子Q1がオン、VV_REF<正側キャリアのとき自己消弧型素子Q1がオフとなり、自己消弧型素子Q3はその逆となる。同様に、VV_REF<負側キャリアのとき自己消弧型素子Q4がオン、VV_REF>負側キャリアのとき自己消弧型素子Q4がオフとなり、自己消弧型素子Q2はその逆となる。   FIG. 4 shows an example of PWM modulation in which the three-phase output voltage reference shown in FIG. 3 is compared with a carrier to create a gate pulse of each element, and shows the time scale of the period T in FIG. The three-phase output voltage reference VV_REF is compared with the positive and negative carriers, and when VV_REF> positive carrier, the self-extinguishing element Q1 is turned on, and when VV_REF <positive carrier, the self-extinguishing element Q1 is turned off. The self-extinguishing element Q3 is the opposite. Similarly, when VV_REF <negative carrier, the self-extinguishing element Q4 is turned on. When VV_REF> negative carrier, the self-extinguishing element Q4 is turned off, and the self-extinguishing element Q2 is reversed.

ここで、アームの外側の素子である自己消弧型素子Q1及びQ4とアームの内側の素子である自己消弧型素子Q2及びQ3の通電バランスについて考える。   Here, the energization balance between the self-extinguishing elements Q1 and Q4 which are elements outside the arm and the self-extinguishing elements Q2 and Q3 which are elements inside the arm will be considered.

図4から判るように、バイアス値BIASがキャリア振幅の50%程度であっても、自己消弧型素子Q2及びQ3の通電率は、自己消弧型素子Q1及びQ4の通電率に比べかなり高く、負担が大きいことが判る。ここで、バイアス値BIASを図4の状態から更に小さくした場合を考えると、正バイアスの期間における自己消弧型素子Q3の通電パルス幅及び負バイアス期間における自己消弧型素子Q2の通電パルス幅が更に増え、自己消弧型素子Q2及びQ3は常時通電に近い状態になることが判る。これは、基準電圧が小さいとき、自己消弧型素子Q2及びQ3の両者がオンし、零電圧を出力する期間が増えるからに他ならない。   As can be seen from FIG. 4, even when the bias value BIAS is about 50% of the carrier amplitude, the energization rates of the self-extinguishing elements Q2 and Q3 are considerably higher than the energization rates of the self-extinguishing elements Q1 and Q4. It turns out that the burden is large. Here, considering the case where the bias value BIAS is further reduced from the state of FIG. 4, the energization pulse width of the self-extinguishing element Q3 in the positive bias period and the energization pulse width of the self-extinguishing element Q2 in the negative bias period It can be seen that the self-extinguishing elements Q2 and Q3 are almost always energized. This is because the self-extinguishing elements Q2 and Q3 are both turned on when the reference voltage is small, and the period during which zero voltage is output increases.

逆に、図4の状態からバイアス値BIASを更に大きくした場合を考えると、正バイアス期間における自己消弧型素子Q3の通電パルス幅及び負バイアス期間における自己消弧型素子Q2の通電パルス幅は小さくなり、自己消弧型素子Q2及びQ3の通電率は自己消弧型素子Q1及びQ4の通流率に近づいてくる。   Conversely, when the bias value BIAS is further increased from the state of FIG. 4, the energization pulse width of the self-extinguishing element Q3 in the positive bias period and the energization pulse width of the self-extinguishing element Q2 in the negative bias period are As a result, the conduction rate of the self-extinguishing elements Q2 and Q3 approaches the conduction rate of the self-extinguishing elements Q1 and Q4.

以上説明したように矩形変調モードにおけるバイアス値を大きくしていけば、低周波、低電圧域における自己消弧型素子Q2及びQ3の通電率と自己消弧型素子Q1及びQ4の通流率はバランスしてくる。装置設計上インバータ容量の低減率即ち上記の通電率のアンバランスは10%程度に抑えることが好ましい。このためには上記バイアス値のキャリア振幅に対する比率を90%程度とすべきであるが、実用上は多少の通電率のアンバランスの増加を許容し、上記バイアス値のキャリア振幅に対する比率を80%以上としておけば良い。   As described above, if the bias value in the rectangular modulation mode is increased, the conduction ratio of the self-extinguishing elements Q2 and Q3 and the conduction ratio of the self-extinguishing elements Q1 and Q4 in the low frequency and low voltage range are Come to balance. In terms of device design, it is preferable to suppress the reduction rate of the inverter capacity, that is, the above-described imbalance of the current supply rate to about 10%. For this purpose, the ratio of the bias value to the carrier amplitude should be about 90%, but in practice, a slight increase in the current ratio is allowed, and the ratio of the bias value to the carrier amplitude is 80%. That's all you need to do.

図5は本発明の3レベル電力変換装置の実施例2を示す回路構成図である。この実施例2の各部について、図1(b)の実施例1に係る3レベル電力変換装置の電圧基準変換回路の各部と同一部分は同一符号で示し、その説明を省略する。この実施例2が実施例1と異なる点は、バイアス変更回路734を設け、回転速度ωrまたは速度基準ωr*の変化に従ってバイアス値が自動的に変更されるようにした点である。   FIG. 5 is a circuit configuration diagram showing Embodiment 2 of the three-level power converter of the present invention. In the second embodiment, the same parts as those of the voltage reference conversion circuit of the three-level power converter according to the first embodiment shown in FIG. 1B are denoted by the same reference numerals, and the description thereof is omitted. The second embodiment differs from the first embodiment in that a bias changing circuit 734 is provided so that the bias value is automatically changed according to the change in the rotational speed ωr or the speed reference ωr *.

前述の通り、自己消弧型素子Q2及びQ3の通電率と自己消弧型素子Q1及びQ4の通流率がアンバランスになるのは電圧が低い、即ち電動機4の回転速度ωrが低いときである。従ってバイアス値を大きくして上記通電率のバランスを図るのは、回転速度ωrが低いときに行うようにすれば良い。バイアス変更回路734の特性としては、回転速度ωrの低下に応じて滑らかにバイアス値を大きくしても良いし、段階的に切換えるようにしても良い。また、ある速度以下でバイアス値がキャリア振幅の80%以上になるように2段階で切換えるようにしても良い。尚、負荷が電動機でない場合の適用を考え、上記回転速度ωrに代えて、3レベル変換器3の出力周波数を使用しても良い。   As described above, the energization rate of the self-extinguishing elements Q2 and Q3 and the conduction rate of the self-extinguishing elements Q1 and Q4 are unbalanced when the voltage is low, that is, when the rotational speed ωr of the motor 4 is low. is there. Therefore, the bias value is increased to balance the power supply rate when the rotational speed ωr is low. As a characteristic of the bias changing circuit 734, the bias value may be increased smoothly according to the decrease in the rotational speed ωr, or may be switched stepwise. Further, it may be switched in two steps so that the bias value becomes 80% or more of the carrier amplitude at a certain speed or less. In consideration of application when the load is not an electric motor, the output frequency of the three-level converter 3 may be used instead of the rotational speed ωr.

この実施例2によれば、高速或いは中速域において、必要以上にバイアス値を大きくすることによる電流リップルの増加等を抑制することが可能となる。

According to the second embodiment, it is possible to suppress an increase in current ripple caused by increasing the bias value more than necessary in a high speed or medium speed range.

本発明による3レベル電力変換装置の実施例1を示す回路構成図。The circuit block diagram which shows Example 1 of the three-level power converter device by this invention. 本発明による3レベル電力変換装置に用いられる3レベル電力変換器の回路構成図。The circuit block diagram of the 3 level power converter used for the 3 level power converter by this invention. 本発明による3レベル電力変換装置の出力電圧基準の一例を示す波形図。The wave form diagram which shows an example of the output voltage reference | standard of the 3 level power converter device by this invention. 本発明による3レベル電力変換装置のPWM変調の一例を示す波形図。The wave form diagram which shows an example of the PWM modulation of the 3 level power converter device by this invention. 本発明による3レベル電力変換装置の実施例2を示す回路構成図。The circuit block diagram which shows Example 2 of the three-level power converter device by this invention.

符号の説明Explanation of symbols

1 直流電源
2A、2B 平滑コンデンサ
3 3レベル変換器
4 電動機
5 位相角検出器
6 電流検出器
7 制御部
71 微分器
72 電動機制御器
73 電圧基準変換部
74 PWM変調回路
75 キャリア発生回路
731 座標変換回路
732 バイアス加算回路
733 台形波変調回路
734 バイアス変更回路

DESCRIPTION OF SYMBOLS 1 DC power supply 2A, 2B Smoothing capacitor 3 3 level converter 4 Electric motor 5 Phase angle detector 6 Current detector 7 Control part 71 Differentiator 72 Electric motor controller 73 Voltage reference conversion part 74 PWM modulation circuit 75 Carrier generation circuit 731 Coordinate conversion Circuit 732 Bias addition circuit 733 Trapezoidal wave modulation circuit 734 Bias change circuit

Claims (3)

直流電源から供給される直流電力を3相交流電力に変換して電動機等の負荷に供給する3レベル電力変換器と、
前記電動機の速度等を制御するための主制御手段と、
この主制御手段から出力されるD軸電圧基準及びQ軸電圧基準を3相の出力電圧基準に変換する電圧基準変換手段と、
前記出力電圧基準をキャリアと比較して前記3レベル電力変換器のゲート信号を生成するPWM変調手段とを備え、
前記電圧基準変換手段は、
前記D軸電圧基準及びQ軸電圧基準を位相基準に基づいて3相の基本電圧基準に変換する
座標変換手段と、
この座標変換回路の出力である3相基本電圧基準に所定の周期で正負の極性を切り替えながらバイアス値を加算するバイアス加算手段と、
前記3相基本電圧基準の各相の振幅を所定のリミット値で制限し、線間電圧に歪を生じさせないように他の相に補正を加えるようにした台形波変調手段と
を有することを特徴とする3レベル電力変換装置。
A three-level power converter that converts DC power supplied from a DC power source into three-phase AC power and supplies it to a load such as an electric motor;
Main control means for controlling the speed and the like of the motor;
Voltage reference conversion means for converting the D-axis voltage reference and the Q-axis voltage reference output from the main control means into a three-phase output voltage reference;
PWM modulation means for comparing the output voltage reference with a carrier to generate a gate signal of the three-level power converter;
The voltage reference conversion means includes
Coordinate conversion means for converting the D-axis voltage reference and the Q-axis voltage reference into a three-phase basic voltage reference based on a phase reference;
Bias adding means for adding a bias value while switching positive and negative polarities with a predetermined period to a three-phase basic voltage reference that is an output of the coordinate conversion circuit;
Trapezoidal wave modulation means for limiting the amplitude of each phase of the three-phase basic voltage reference with a predetermined limit value and correcting other phases so as not to cause distortion in the line voltage. A three-level power converter.
前記バイアス値は前記キャリアの振幅の80%以上としたことを特徴とする請求項1に記載の3レベル電力変換装置。   The three-level power converter according to claim 1, wherein the bias value is 80% or more of the amplitude of the carrier. 前記バイアス値を前記3レベル電力変換器の出力周波数の低下に応じて増加させるようにしたことを特徴とする請求項1に記載の3レベル電力変換装置。

2. The three-level power converter according to claim 1, wherein the bias value is increased in accordance with a decrease in an output frequency of the three-level power converter.

JP2004190261A 2004-06-28 2004-06-28 Three-level power converting device Pending JP2006014532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190261A JP2006014532A (en) 2004-06-28 2004-06-28 Three-level power converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190261A JP2006014532A (en) 2004-06-28 2004-06-28 Three-level power converting device

Publications (1)

Publication Number Publication Date
JP2006014532A true JP2006014532A (en) 2006-01-12

Family

ID=35781089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190261A Pending JP2006014532A (en) 2004-06-28 2004-06-28 Three-level power converting device

Country Status (1)

Country Link
JP (1) JP2006014532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295181A (en) * 2007-05-24 2008-12-04 Toshiba Mitsubishi-Electric Industrial System Corp Pwm control method and power conversion device using the method
WO2014024321A1 (en) * 2012-08-10 2014-02-13 三菱電機株式会社 Three-level power conversion device
CN105829226A (en) * 2013-12-18 2016-08-03 奥的斯电梯公司 Pwm strategy for regenerative multilevel drive
JP2018057157A (en) * 2016-09-29 2018-04-05 三菱電機エンジニアリング株式会社 Electric power conversion system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746849A (en) * 1991-09-19 1995-02-14 Hitachi Ltd Inverter
JPH0984360A (en) * 1995-09-19 1997-03-28 Toshiba Corp Npc inverter device
JPH09247805A (en) * 1996-03-06 1997-09-19 Toshiba Corp Electric car controller
JPH09308252A (en) * 1996-05-10 1997-11-28 Toshiba Corp Power inverter
JP2001086766A (en) * 1999-09-16 2001-03-30 Hitachi Ltd Multiplex power converter and control method thereof
JP2002058256A (en) * 2000-08-08 2002-02-22 Fuji Electric Co Ltd Control apparatus for power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746849A (en) * 1991-09-19 1995-02-14 Hitachi Ltd Inverter
JPH0984360A (en) * 1995-09-19 1997-03-28 Toshiba Corp Npc inverter device
JPH09247805A (en) * 1996-03-06 1997-09-19 Toshiba Corp Electric car controller
JPH09308252A (en) * 1996-05-10 1997-11-28 Toshiba Corp Power inverter
JP2001086766A (en) * 1999-09-16 2001-03-30 Hitachi Ltd Multiplex power converter and control method thereof
JP2002058256A (en) * 2000-08-08 2002-02-22 Fuji Electric Co Ltd Control apparatus for power converter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295181A (en) * 2007-05-24 2008-12-04 Toshiba Mitsubishi-Electric Industrial System Corp Pwm control method and power conversion device using the method
WO2014024321A1 (en) * 2012-08-10 2014-02-13 三菱電機株式会社 Three-level power conversion device
CN105164908A (en) * 2012-08-10 2015-12-16 三菱电机株式会社 Three-level power conversion device
US9654026B2 (en) 2012-08-10 2017-05-16 Mitsubishi Electric Corporation Three-level power converting apparatus with reduced conduction loss
CN105164908B (en) * 2012-08-10 2018-06-12 三菱电机株式会社 Three-level power conversion device
CN105829226A (en) * 2013-12-18 2016-08-03 奥的斯电梯公司 Pwm strategy for regenerative multilevel drive
US10513413B2 (en) 2013-12-18 2019-12-24 Otis Elevator Company PWM strategy for regenerative multilevel drive
JP2018057157A (en) * 2016-09-29 2018-04-05 三菱電機エンジニアリング株式会社 Electric power conversion system

Similar Documents

Publication Publication Date Title
US9509229B2 (en) Power supply apparatus including power conversion circuit controlled by PWM control circuit
JP6240704B2 (en) Three-phase inverter offset voltage generator and three-phase inverter controller
JP2016208820A (en) Offset voltage generator of three-phase inverter and three-phase inverter control device
JP6585872B1 (en) Power converter
WO2020105133A1 (en) Electric power conversion device
JP5104083B2 (en) Power conversion device and power conversion method
JP3796881B2 (en) 3-level inverter control method and apparatus
JP6305363B2 (en) Inverter device and vehicle
JP3276135B2 (en) Power converter
JP2004304925A (en) Inverter device
JP2021027599A (en) Inverter device
JP2006014532A (en) Three-level power converting device
EP4220931A1 (en) Power conversion device
JP2005124305A (en) Two-phase modulation control type inverter device
JP5852544B2 (en) 3-level power converter
JP3182322B2 (en) PWM control device for NPC inverter
CN111034001B (en) Power conversion device and electric power steering device
WO2023175759A1 (en) Power conversion apparatus
JP4448294B2 (en) Power converter
WO2023032195A1 (en) Control unit for power converter, and power conversion apparatus
JP2005295625A (en) Power converter
JP2006141175A (en) Motor control device of ac-ac direct converter
JP2002209386A (en) Power conversion device and drive control method for polyphase load
CN110557078B (en) Motor control device, control method thereof, and computer-readable medium
JP6955221B2 (en) Inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100816