JP2006014501A - Controller for voltage-type inverter - Google Patents

Controller for voltage-type inverter Download PDF

Info

Publication number
JP2006014501A
JP2006014501A JP2004188574A JP2004188574A JP2006014501A JP 2006014501 A JP2006014501 A JP 2006014501A JP 2004188574 A JP2004188574 A JP 2004188574A JP 2004188574 A JP2004188574 A JP 2004188574A JP 2006014501 A JP2006014501 A JP 2006014501A
Authority
JP
Japan
Prior art keywords
value
voltage
phase
axis
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004188574A
Other languages
Japanese (ja)
Other versions
JP4581508B2 (en
Inventor
Shinichi Higuchi
新一 樋口
Tetsuo Hori
哲郎 堀
Koichi Tajima
宏一 田島
Shinichi Ishii
新一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2004188574A priority Critical patent/JP4581508B2/en
Publication of JP2006014501A publication Critical patent/JP2006014501A/en
Application granted granted Critical
Publication of JP4581508B2 publication Critical patent/JP4581508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dead time compensating circuit suitable for a voltage-type inverter which outputs a three-phase AC current having a modulated controlled pulse width to supply it to a load, based on a three-phase AC voltage command value generated by a given frequency command value and a voltage command value. <P>SOLUTION: The voltage-type inverter is formed of a power converter 1 and a controller 10. The controller 10 is provided with a command value generating means 3, a integrator 4, a coordinate transformation device 5, a command value computing unit 6, a current detector 7, a coordinate transformation device 9, a filter circuit 11, a time constant instruction unit 12, a coordinate transformation device 13, a compensation voltage computing unit 14, an amplitude value computing unit 15, a filter circuit 16 and a voltage limiter 17. The controller 10 acquires the compensation voltage value for the voltage drop amount due to a dead time, based on a current detected value with ripples removed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、所定の周波数指令値と電圧指令値とから生成される3相交流電圧指令値に基づいて、パルス幅変調制御された3相交流電圧を出力して電動機などの負荷に供給する電圧形インバータの制御装置に関わり、特に、そのデッドタイムによる電圧降下分の補償に関する。   The present invention provides a voltage supplied to a load such as an electric motor by outputting a three-phase AC voltage subjected to pulse width modulation control based on a three-phase AC voltage command value generated from a predetermined frequency command value and a voltage command value. In particular, the present invention relates to compensation for a voltage drop due to the dead time.

図16は、この種の電圧形インバータの従来例を示す回路構成図であり、この電圧形インバータは整流電源などから得られる直流電圧を自己消弧形素子とダイオードの逆並列回路を3相ブリッジ接続してなるインバータ主回路にて、外部からの3相交流電圧指令値をパルス幅変調制御しつつ所望の周波数,振幅の交流電圧に変換する電力変換装置1と制御装置2とからなり、変換された交流電圧を負荷としての電動機100に供給している。   FIG. 16 is a circuit configuration diagram showing a conventional example of this type of voltage source inverter. In this voltage source inverter, a DC voltage obtained from a rectifying power source or the like is converted into a three-phase bridge by an antiparallel circuit of a self-extinguishing element and a diode. The inverter main circuit is composed of a power converter 1 and a controller 2 for converting an external three-phase AC voltage command value into an AC voltage having a desired frequency and amplitude while performing pulse width modulation control. The AC voltage thus supplied is supplied to the electric motor 100 as a load.

この制御装置2には、例えば電動機100をベクトル制御するための一次周波数指令値(ω1 *)と回転座標系のd軸,q軸成分電圧指令値(v1d * ,v1q * )とを生成する指令値生成手段3と、前記ω1 *を時間積分した位相角指令値(θ* )を生成する積分器4と、この位相角指令値θ* に基づいて前記電圧指令値(v1d * ,v1q * )を静止座標系の3相電圧指令値(vU *,vV *,vW *)に変換する座標変換器5と、この3相電圧指令値(vU *,vV *,vW *)と後述の3相補償電圧値(vUC,vVC,vWC)とを加算演算し新たな3相電圧指令値として電力変換装置1へ出力する指令値演算器6と、電力変換装置1から電動機100に流れる3相交流電流を3相交流電流検出値(iU ,iV ,iW )として出力する電流検出器7と、この3相交流電流検出値(iU ,iV ,iW )から電力変換装置1におけるパルス幅変調制御の際のデッドタイムによる電圧降下分を補償するためにそれぞれの前記検出値の極性検出を行い、得られた極性に基づく前記3相補償電圧値(vUC,vVC,vWC)を出力する補償電圧演算器8と、上述の電動機100をベクトル制御する際などに使用するために前記位相角指令値(θ* )に基づいて前記3相交流電流検出値(iU ,iV ,iW )を回転座標系のd軸,q軸電流検出値(i1d,i1q)に変換する座標変換器9とから構成されている。なお、これらの構成要素は周知の技術により形成されている。
特開2004−112879号公報 (第3頁,第1図)
The control device 2 includes, for example, a primary frequency command value (ω 1 * ) for vector control of the electric motor 100 and d-axis and q-axis component voltage command values (v 1d * , v 1q * ) of the rotating coordinate system. A command value generating means 3 for generating, an integrator 4 for generating a phase angle command value (θ * ) obtained by time integration of the ω 1 * , and the voltage command value (v 1d) based on the phase angle command value θ *. * , V 1q * ) is converted into a three-phase voltage command value (v U * , v V * , v W * ) in the stationary coordinate system, and this three-phase voltage command value (v U * , v V *, v W *) and 3-phase compensating voltage value (v UC later, v VC, v WC) and command value calculator outputs to the power converter 1 as an addition operation and a new 3-phase voltage command value 6 A current detector 7 for outputting the three-phase alternating current flowing from the power converter 1 to the electric motor 100 as a three-phase alternating current detection value (i U , i V , i W ), In order to compensate for the voltage drop due to dead time in the pulse width modulation control in the power conversion device 1 from the detected three-phase AC current values (i U , i V , i W ), the polarity detection of each detected value is performed. And the compensation voltage calculator 8 for outputting the three-phase compensation voltage values (v UC , v VC , v WC ) based on the obtained polarity, and the above-described motor for use in vector control of the motor 100 described above. Based on the phase angle command value (θ * ), the three-phase AC current detection values (i U , i V , i W ) are converted into d-axis and q-axis current detection values (i 1d , i 1q ) in the rotating coordinate system. The coordinate converter 9 is configured. These components are formed by a known technique.
Japanese Patent Laid-Open No. 2004-112879 (page 3, FIG. 1)

図16に示した従来の電圧形インバータにおいては、電流検出器7から得られる3相交流電流検出値(iU ,iV ,iW )から電力変換装置1におけるパルス幅変調制御の際のデッドタイムによる電圧降下分を補償するために、それぞれの前記検出値の極性検出を行い、得られた極性に基づく前記3相補償電圧値(vUC,vVC,vWC)と前記3相電圧指令値(vU *,vV *,vW *)とを加算演算した値を新たな3相電圧指令値として電力変換装置1へ入力しているが、前記極性検出の際に電流波形に含まれる零クロス歪みに起因して、電動機100の低速域での回転ムラが増大し、また、電動機100のトルク電流制御の安定性が損なわれるという問題点があり、例えば上記特許文献1に記載されている対策方法では、前記電流検出値とその電流指令値それぞれの極性値とから前記3相補償電圧値を得るようにしている。 In the conventional voltage source inverter shown in FIG. 16, the dead in the pulse width modulation control in the power converter 1 from the three-phase alternating current detection values (i U , i V , i W ) obtained from the current detector 7. In order to compensate for the voltage drop due to time, the polarity of each of the detected values is detected, the three-phase compensation voltage values (v UC , v VC , v WC ) and the three-phase voltage command based on the obtained polarities. The value obtained by adding the values (v U * , v V * , v W * ) is input to the power converter 1 as a new three-phase voltage command value, but is included in the current waveform when the polarity is detected. Due to the zero cross distortion that occurs, there is a problem that the rotational unevenness of the motor 100 in the low speed region increases and the stability of the torque current control of the motor 100 is impaired. In the countermeasure method, the current detection value and And current command value each polarity values from the so as to obtain the 3-phase compensating voltage value.

この発明の目的は上記問題点を解消するとともに、前記電動機の始動時や加減速時,負荷変動時にも好適な前記3相補償電圧値を得ることができる電圧形インバータの制御装置を提供することにある。   An object of the present invention is to provide a control apparatus for a voltage source inverter that can solve the above-mentioned problems and can obtain a suitable three-phase compensation voltage value even when the motor is started, accelerated or decelerated, and when the load fluctuates. It is in.

この第1の発明は、所定の周波数指令値と電圧指令値とから生成される3相交流電圧指令値に基づいて、パルス幅変調制御された3相交流電圧を出力して負荷に供給する電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する3相補償電圧値を演算する第2補償電圧演算器と、前記演算された3相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする。
According to the first aspect of the present invention, a voltage supplied to a load by outputting a three-phase AC voltage subjected to pulse width modulation control based on a three-phase AC voltage command value generated from a predetermined frequency command value and a voltage command value. In the control device of the inverter,
A current detector for detecting a three-phase alternating current flowing in the load, and a first coordinate for converting the detected first three-phase alternating current detection value into a two-axis component (d-axis, q-axis) of a rotating coordinate system A converter; a first filter circuit for removing ripples of the converted first d-axis and q-axis current detection values; and a second d-axis and q-axis current detection value from which the ripples have been removed. On the basis of the second three-phase alternating current detection value and the second three-phase alternating current detection value in the stationary coordinate system, and a voltage due to dead time in the pulse width modulation control based on the second three-phase alternating current detection value A second compensation voltage calculator that calculates a three-phase compensation voltage value that compensates for a drop, an addition calculation of the calculated three-phase compensation voltage value and the three-phase AC voltage command value, and the added value is newly calculated. And a command value calculator for outputting as a three-phase AC voltage command value.

第2の発明は前記電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、前記第1の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第1の3相補償電圧値を演算する第1補償電圧演算器と、前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第2の3相補償電圧値を演算する第2補償電圧演算器と、前記第1の3相交流電流検出値と対応する前記第2の3相交流電流検出値との位相差に基づいて選択指令を出力する第1位相差判別器と、前記選択指令に基づいて、前記第1又は第2の3相補償電圧値の何れか1組を選択し第3の3相補償電圧値として出力する補償電圧切替器と、前記第3の3相相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする。
A second aspect of the invention is a control device for the voltage source inverter,
A current detector for detecting a three-phase alternating current flowing in the load, and a first coordinate for converting the detected first three-phase alternating current detection value into a two-axis component (d-axis, q-axis) of a rotating coordinate system A converter; a first filter circuit for removing ripples of the converted first d-axis and q-axis current detection values; and a second d-axis and q-axis current detection value from which the ripples have been removed. On the basis of the second three-phase alternating current detection value of the stationary coordinate system and the first three-phase alternating current detection value, the voltage due to the dead time in the pulse width modulation control Based on the first compensation voltage calculator for calculating the first three-phase compensation voltage value for compensating for the drop and the second three-phase alternating current detection value, the voltage due to the dead time in the pulse width modulation control A second compensation voltage calculator for calculating a second three-phase compensation voltage value for compensating for the drop; A first phase difference discriminator that outputs a selection command based on a phase difference between the detected first three-phase AC current value and the corresponding second three-phase AC current detection value; and A compensation voltage switch that selects either one of the first and second three-phase compensation voltage values and outputs the selected three-phase compensation voltage value; and the third three-phase compensation voltage value and the three-phase alternating current A command value calculator is provided that adds and calculates the voltage command value and outputs the added value as a new three-phase AC voltage command value.

第3の発明は前記電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、前記第1の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第1の3相補償電圧値を演算する第1補償電圧演算器と、前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第2の3相補償電圧値を演算する第2補償電圧演算器と、前記第1のd軸,q軸電流検出値と対応する前記第2のd軸,q軸電流検出値との位相差に基づいて選択指令を出力する第2位相差判別器と、前記選択指令に基づいて、前記第1の3相補償電圧値または前記第2の補償電圧値の何れか1組を選択し第3の3相補償電圧値として出力する補償電圧切替器と、前記第3の3相相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする。
A third aspect of the invention is a control device for the voltage source inverter,
A current detector for detecting a three-phase alternating current flowing in the load, and a first coordinate for converting the detected first three-phase alternating current detection value into a two-axis component (d-axis, q-axis) of a rotating coordinate system A converter; a first filter circuit for removing ripples of the converted first d-axis and q-axis current detection values; and a second d-axis and q-axis current detection value from which the ripples have been removed. On the basis of the second three-phase alternating current detection value of the stationary coordinate system and the first three-phase alternating current detection value, the voltage due to the dead time in the pulse width modulation control Based on the first compensation voltage calculator for calculating the first three-phase compensation voltage value for compensating for the drop and the second three-phase alternating current detection value, the voltage due to the dead time in the pulse width modulation control A second compensation voltage calculator for calculating a second three-phase compensation voltage value for compensating for the drop; A second phase difference discriminator that outputs a selection command based on a phase difference between the corresponding d-axis and q-axis current detection values of 1 and the corresponding second d-axis and q-axis current detection values; and based on the selection commands A compensation voltage switch that selects one of the first three-phase compensation voltage value or the second compensation voltage value and outputs the selected one as the third three-phase compensation voltage value; and the third three-phase compensation voltage value And a command value calculator for adding and calculating a phase compensation voltage value and the three-phase AC voltage command value and outputting the added value as a new three-phase AC voltage command value.

第4の発明は前記電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、前記選出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、前記第1の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第1の3相補償電圧値を演算する第1補償電圧演算器と、前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第2の3相補償電圧値を演算する第2補償電圧演算器と、前記第1の3相補償電圧値と対応する前記第2の3相補償電圧値とに対して、所定の重み付けをした配分値を設定する重み配分設定器と、前記重み配分されたそれぞれの3相補償電圧値を加算演算する補償値演算器と、前記加算演算された第4の3相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする。
4th invention is the control apparatus of the said voltage source inverter,
A current detector for detecting a three-phase alternating current flowing through the load, and a first coordinate for converting the selected first three-phase alternating current detection value into a two-axis component (d-axis, q-axis) of a rotating coordinate system; A converter; a first filter circuit for removing ripples of the converted first d-axis and q-axis current detection values; and a second d-axis and q-axis current detection value from which the ripples have been removed. On the basis of the second three-phase alternating current detection value of the stationary coordinate system and the first three-phase alternating current detection value, the voltage due to the dead time in the pulse width modulation control Based on the first compensation voltage calculator for calculating the first three-phase compensation voltage value for compensating for the drop and the second three-phase alternating current detection value, the voltage due to the dead time in the pulse width modulation control A second compensation voltage calculator for calculating a second three-phase compensation voltage value for compensating for the drop; A weight distribution setter for setting a distribution value obtained by weighting a predetermined three-phase compensation voltage value and the corresponding second three-phase compensation voltage value, and each of the three-phase compensation weight distribution Compensation value calculator for adding and calculating the voltage value, and adding and calculating the added and calculated fourth three-phase compensation voltage value and the three-phase AC voltage command value, and adding the added value to a new three-phase AC voltage A command value calculator for outputting the command value is provided.

第5の発明は前記電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、前記第1のd軸,q軸電流検出値と対応する前記リプル分が除去された第2のd軸,q軸電流検出値とに対して、所定の重み付けをした配分値を設定する重み配分設定器と、前記重み配分されたそれぞれのd軸,q軸電流検出値を加算演算する加算演算器と、前記加算された第3のd軸、q軸電流検出値を静止座標系の第3の3相交流電流検出値に変換する第3座標変換器と、前記第3の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する3相補償電圧値を演算する第3補償電圧演算器と、前記演算された3相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする。
5th invention is the control apparatus of the said voltage source inverter,
A current detector for detecting a three-phase alternating current flowing in the load, and a first coordinate for converting the detected first three-phase alternating current detection value into a two-axis component (d-axis, q-axis) of a rotating coordinate system A converter; a first filter circuit that removes ripples of the converted first d-axis and q-axis current detection values; and the ripple components corresponding to the first d-axis and q-axis current detection values. A weight distribution setter for setting a distribution value with a predetermined weight applied to the second d-axis and q-axis current detection values from which the weight has been removed, and the respective weight-distributed d-axis and q-axis current detections An addition calculator for adding and calculating values; a third coordinate converter for converting the added third d-axis and q-axis current detection values to a third three-phase alternating current detection value in a stationary coordinate system; and Based on the detected value of the third three-phase alternating current, the voltage drop due to the dead time in the pulse width modulation control. A third compensation voltage calculator for calculating a three-phase compensation voltage value for compensating for the minute, and adding the calculated three-phase compensation voltage value and the three-phase AC voltage command value. A command value calculator for outputting as a three-phase AC voltage command value is provided.

第6の発明は前記第4の発明の電圧形インバータの制御装置において、
前記重み配分設定器は、前記第1の3相交流電流検出値それぞれの瞬時値に基づいて前記配分値を設定することを特徴とする。
A sixth aspect of the invention is a voltage source inverter control device according to the fourth aspect of the invention,
The weight distribution setter sets the distribution value based on an instantaneous value of each of the first three-phase alternating current detection values.

第7の発明は前記第5の発明の電圧形インバータの制御装置において、
前記重み配分設定器は、前記第1のd軸,q軸電流検出値から得られる振幅値にフィルタを介した値に基づいて前記配分値を設定することを特徴とする。
A seventh aspect of the invention is the voltage source inverter control device of the fifth aspect of the invention,
The weight distribution setting unit is characterized in that the distribution value is set based on a value obtained through a filter to an amplitude value obtained from the first d-axis and q-axis current detection values.

第8の発明は前記第4,第5の発明の電圧形インバータの制御装置において、
前記重み配分設定器は、前記周波数指令値に基づいて前記配分値を設定することを特徴とする。
The eighth invention is the control apparatus for the voltage source inverter of the fourth and fifth inventions,
The weight distribution setter sets the distribution value based on the frequency command value.

第9の発明は前記第4,第5の発明の電圧形インバータの制御装置において、
前記重み配分設定器は、前記電圧指令値の振幅値に基づいて前記配分値を設定することを特徴とする。
A ninth aspect of the present invention is the voltage source inverter control device of the fourth or fifth aspect,
The weight distribution setter sets the distribution value based on an amplitude value of the voltage command value.

第10の発明は前記第1〜第9の発明の電圧形インバータの制御装置において、
前記制御装置に、前記第1フィルタ回路のフィルタ時定数を前記周波数指令値の逆数値に対応して変化させる時定数指令器を付加したことを特徴とする。
A tenth aspect of the present invention is the voltage source inverter control apparatus of the first to ninth aspects of the invention,
A time constant command device for changing a filter time constant of the first filter circuit in accordance with an inverse value of the frequency command value is added to the control device.

第11の発明は前記第1〜第9の発明の電圧形インバータの制御装置において、
前記第1フィルタ回路に、該フィルタの初期出力値を前記電圧指令値に基づいて設定する機能を付加したことを特徴とする。
An eleventh aspect of the invention is the voltage source inverter control apparatus of the first to ninth aspects of the invention,
The first filter circuit is provided with a function of setting an initial output value of the filter based on the voltage command value.

第12の発明は前記第1〜第9の発明の電圧形インバータの制御装置において、
前記制御装置に、前記第1のd軸,q軸電流検出値からその振幅値を得る振幅値演算器と、得られた振幅値を通過させる第2フィルタ回路と、このフィルタを介した振幅値に基づいて前記指令値演算器に入力される前記3相補償電圧それぞれの振幅を制限する電圧制限器とを付加したことを特徴とする。
A 12th aspect of the invention is the control apparatus for a voltage source inverter according to the 1st to 9th aspects of the invention,
An amplitude value calculator for obtaining the amplitude value from the first d-axis and q-axis current detection values, a second filter circuit for allowing the obtained amplitude value to pass, and an amplitude value via this filter And a voltage limiter for limiting the amplitude of each of the three-phase compensation voltages input to the command value calculator.

第13の発明は前記第12の発明の電圧形インバータの制御装置において、
前記第2フィルタ回路に、該フィルタの初期出力値を前記3相補償電圧の振幅制限値に基づいて設定する機能を付加したことを特徴とする。
A thirteenth aspect of the present invention is the voltage source inverter control apparatus of the twelfth aspect of the present invention,
The second filter circuit is provided with a function of setting an initial output value of the filter based on an amplitude limit value of the three-phase compensation voltage.

この発明によれば、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する3相補償電圧値を電流検出器から得られる3相交流電流検出値にフィルタを介した3相交流電流検出値から導出することにより、電流波形の零クロス歪みを低減することができるので前記負荷としての電動機の回転ムラなどが軽減され、また、前記電流検出器により得られる3相交流電流検出値から直接導出した3相補償電圧値と前記フィルタを介した3相交流電流検出値から得られる3相補償電圧値の両者を切替えまたは併用することにより、さらに前記フィルタの時定数を可変にすることにより、前記電動機の始動時や加減速時,負荷変動時にも好適な制御を行うことができる。   According to the present invention, a three-phase AC voltage value that compensates for a voltage drop due to dead time in the pulse width modulation control is converted into a three-phase AC current value obtained from a current detector via a filter. By deriving from the detected value, zero cross distortion of the current waveform can be reduced, so that rotation unevenness of the electric motor as the load is reduced, and from the three-phase AC current detected value obtained by the current detector. By switching or using both the directly derived three-phase compensation voltage value and the three-phase compensation voltage value obtained from the three-phase alternating current detection value via the filter, the time constant of the filter is made variable. Favorable control can be performed even when the motor is started, accelerated or decelerated, and when the load fluctuates.

図1は、この発明の第1の実施例を示す電圧形インバータの回路構成図であり、図16に示した従来例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 1 is a circuit configuration diagram of a voltage source inverter showing a first embodiment of the present invention. Components having the same functions as those in the configuration of the conventional example shown in FIG. Description is omitted.

すなわち、図1に示した電圧形インバータは電力変換装置1と制御装置10とから形成され、この制御装置10には指令値生成手段3,積分器4,座標変換器5,指令値演算器6,電流検出器7,座標変換器9の他に、フィルタ回路11と時定数指令器12と座標変換器13と補償電圧演算器14と振幅値演算器15とフィルタ回路16と電圧制限器17とを備えている。   That is, the voltage source inverter shown in FIG. 1 is formed by the power conversion device 1 and the control device 10, and the control device 10 includes a command value generating means 3, an integrator 4, a coordinate converter 5, and a command value calculator 6. , Current detector 7, coordinate converter 9, filter circuit 11, time constant commander 12, coordinate converter 13, compensation voltage calculator 14, amplitude value calculator 15, filter circuit 16, and voltage limiter 17 It has.

以下に、フィルタ回路11,時定数指令器12,座標変換器13,補償電圧演算器14,振幅値演算器15,フィルタ回路16,電圧制限器17それぞれの動作を中心に、図1に示した制御装置10の動作を説明する。   In the following, the operations of the filter circuit 11, the time constant command unit 12, the coordinate converter 13, the compensation voltage calculator 14, the amplitude value calculator 15, the filter circuit 16, and the voltage limiter 17 are mainly shown in FIG. The operation of the control device 10 will be described.

電力変換装置1におけるパルス幅変調制御の際のデッドタイムによる電圧降下分を補償するために、先ず、電流検出器7からの第1の3相電流検出値(iU ,iV ,iW )に対して、座標変換器9により座標変換した第1のd軸,q軸電流検出値(i1d,i1q)を導出するとともに、それぞれの検出値に対して、例えば一次遅れ回路形式のフィルタ回路11を構成するそれぞれのフィルタを通過させることにより、前記d軸,q軸電流検出値(i1d,i1q)リプル分が除去された第2のd軸,q軸電流検出値(i1dF ,i1qF )を得ている。ここで、時定数指令器12では指令値生成手段3から出力される前記一次周波数指令値(ω1 *)の逆数値に対応した値を出力し、この値に基づいて前記フィルタ回路11のそれぞれのフィルタ時定数を変えることにより、前記第2のd軸,q軸電流検出値(i1dF ,i1qF )の波形の零クロス歪みを、電動機100のトルク電流制御特性を損なうこと無く、軽減することができる。 In order to compensate for the voltage drop due to dead time in the pulse width modulation control in the power converter 1, first, the first three-phase current detection values (i U , i V , i W ) from the current detector 7 are used. In response to the first d-axis and q-axis current detection values (i 1d , i 1q ) coordinate-converted by the coordinate converter 9, a filter of, for example, a first-order lag circuit format is applied to each detection value. The second d-axis and q-axis current detection values (i 1dF ) from which the ripples of the d-axis and q-axis current detection values (i 1d , i 1q ) are removed by passing through the respective filters constituting the circuit 11. , I 1qF ). Here, the time constant command device 12 outputs a value corresponding to the inverse value of the primary frequency command value (ω 1 * ) output from the command value generating means 3, and each of the filter circuits 11 is based on this value. By changing the filter time constant, the zero cross distortion of the waveform of the second d-axis and q-axis current detection values (i 1dF , i 1qF ) is reduced without impairing the torque current control characteristics of the electric motor 100. be able to.

次に、前記第2のd軸,q軸電流検出値(i1dF ,i1qF )に対して、座標変換器13により、先述の位相角指令値θ* に基づいて静止座標系の第2の3相交流電流検出値(iUF,iVF,iWF)に変換し、この3相交流電流検出値(iUF,iVF,iWF)に対して、補償電圧演算器14ではそれぞれの検出値の極性検出を行い、得られた極性に基づき、前記インバータ主回路の入力直流電圧と前記パルス幅変調制御の際のキャリア周波数と前記デッドタイムとに対応した3相補償電圧値(vUC2 ,vVC2 ,vWC2 )を出力している。このとき、前記第1のd軸,q軸電流検出値(i1d,i1q)の振幅値を振幅値演算器15で求め、求めた振幅値をフィルタ時定数400mS程度の、例えば一次遅れ回路形式のフィルタ回路16を通過させることにより、前記振幅値に含まれるノイズ分を除去し、このノイズ分を除去した振幅値に対応して指令値演算器6に入力される前記3相補償電圧値(vUC2 ,vVC2 ,vWC2 )それぞれの振幅を制限する電圧制限器17を介することにより、電力変換装置1から電動機100への3相交流電流の小さい領域、例えば、定格電流の20%以下の領域では、図1に示した如き値以下に前記3相補償電圧値の振幅を制限することで、前記3相交流電流の小さい領域での電流波形に含まれる零クロス歪みによる悪影響をより軽減でき、その結果、電動機100のトルク電流制御を、全電流領域に渡って、より安定に行うことができる。 Next, with respect to the second d-axis and q-axis current detection values (i 1dF , i 1qF ), the coordinate converter 13 uses the second angle of the stationary coordinate system based on the phase angle command value θ * described above. 3-phase alternating current detected value (i UF, i VF, i WF) was converted, this 3-phase alternating current detected value (i UF, i VF, i WF) with respect to the compensation voltage calculation unit 14 in each detection The polarity detection of the value is performed, and based on the obtained polarity, a three-phase compensation voltage value (v UC2 ,) corresponding to the input DC voltage of the inverter main circuit, the carrier frequency in the pulse width modulation control, and the dead time v VC2 , v WC2 ) are output. At this time, the amplitude value calculator 15 obtains the amplitude values of the first d-axis and q-axis current detection values (i 1d , i 1q ), and the obtained amplitude value is a filter time constant of about 400 mS, for example, a first-order lag circuit. The noise component included in the amplitude value is removed by passing the filter circuit 16 in the form, and the three-phase compensation voltage value input to the command value calculator 6 corresponding to the amplitude value from which the noise component has been removed. (V UC2 , v VC2 , v WC2 ) By passing through the voltage limiter 17 that limits the respective amplitudes, a region where the three-phase AC current from the power converter 1 to the motor 100 is small, for example, 20% or less of the rated current In this region, by limiting the amplitude of the three-phase compensation voltage value to the value shown in FIG. 1 or less, the adverse effect due to zero cross distortion included in the current waveform in the region where the three-phase alternating current is small is further reduced. And the result The torque current control of the motor 100, over the entire current region, can be performed more stably.

なお、図1に示した電圧形インバータの制御装置10の回路構成図において、電動機100の始動時に、フィルタ回路11を形成するそれぞれのフィルタの初期出力値をこの始動時の前記d軸,q軸電圧指令値(v1d * ,v1q * )に対応した値とし、また、フィルタ回路16の初期出力値を電圧制限器17の図示の一定制限値の値にすることにより、電動機100を滑らかに始動させることができる。 In the circuit configuration diagram of the voltage source inverter control device 10 shown in FIG. 1, when the motor 100 is started, the initial output values of the filters forming the filter circuit 11 are the d axis and q axis at the start. The electric motor 100 is made smooth by setting the value corresponding to the voltage command value (v 1d * , v 1q * ), and setting the initial output value of the filter circuit 16 to the constant limit value shown in the figure of the voltage limiter 17. Can be started.

図2は、この発明の第2の実施例を示す電圧形インバータの回路構成図であり、図1に示した第1の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 2 is a circuit configuration diagram of a voltage source inverter showing a second embodiment of the present invention. Components having the same functions as those of the first embodiment shown in FIG. The description is omitted here.

すなわち、図2に示した電圧形インバータは電力変換装置1と制御装置20とから形成され、この制御装置20には指令値生成手段3,積分器4,座標変換器5,指令値演算器6,電流検出器7,座標変換器9,フィルタ回路11,時定数指令器12,座標変換器13,補償電圧演算器14,振幅値演算器15,フィルタ回路16,電圧制限器17の他に補償電圧演算器21と位相差判別器22と補償電圧切替器23とを備えている。   That is, the voltage source inverter shown in FIG. 2 is formed by the power conversion device 1 and the control device 20, and the control device 20 includes a command value generation means 3, an integrator 4, a coordinate converter 5, and a command value calculator 6. , Current detector 7, coordinate converter 9, filter circuit 11, time constant command device 12, coordinate converter 13, compensation voltage calculator 14, amplitude value calculator 15, filter circuit 16, and voltage limiter 17. A voltage calculator 21, a phase difference discriminator 22, and a compensation voltage switch 23 are provided.

この補償電圧演算器21では、前記3相交流電流検出値(iU ,iV ,iW )に対して、それぞれの検出値の極性検出を行い、得られた極性に基づき、前記インバータ主回路の入力直流電圧と前記パルス幅変調制御の際のキャリア周波数と前記デッドタイムとに対応した前記3相補償電圧値(vUC1 ,vVC1 ,vWC1 )を出力している。また、位相差判別器22では前記3相交流電流検出値(iU ,iV ,iW )と対応する前記3相交流電流検出値(iUF,iVF,iWF)それぞれとの位相差を監視し、これらの位相が、例えば電気角で3°以上になったときに指令値演算器6へ出力する3相補償電圧値を前記3相補償電圧値(vUC2 ,vVC2 ,vWC2 )から前記3相補償電圧値(vUC1 ,vVC1 ,vWC1 )へ切り替える選択指令を補償電圧切替器23に送出している。その結果、電動機100の動作が定常状態では、リプル分が除去された前記3相交流電流検出値(iUF,iVF,iWF)に基づく3相補償電圧値(vUC2 ,vVC2 ,vWC2 )を用いることにより、電動機100のトルク電流制御におけるリプルをより少なくでき、また、電動機100の加減速時,負荷変動時など電力変換装置1から電動機100への3相交流電流が急変するときには、前記3相交流電流検出値(iU ,iV ,iW )に基づく3相補償電圧値(vUC1 ,vVC1 ,vWC1 )を用いることにより、前記デッドタイムによる電圧降下分の補償を遅延無く行うことができる。 The compensation voltage calculator 21 detects the polarity of each detected value with respect to the detected three-phase AC current values (i U , i V , i W ), and based on the obtained polarity, the inverter main circuit The three-phase compensation voltage values (v UC1 , v VC1 , v WC1 ) corresponding to the input DC voltage, the carrier frequency in the pulse width modulation control, and the dead time are output. Further, the phase difference discriminator 22 has a phase difference between the detected three-phase alternating current values (i U , i V , i W ) and the corresponding three-phase alternating current detected values (i UF , i VF , i WF ). The three-phase compensation voltage values (v UC2 , v VC2 , v WC2) to be output to the command value calculator 6 when these phases become 3 ° or more in electrical angle, for example, are monitored. ) To the compensation voltage switch 23 is sent to the compensation voltage switch 23 to switch to the three-phase compensation voltage values (v UC1 , v VC1 , v WC1 ). As a result, when the operation of the electric motor 100 is in a steady state, the three-phase compensation voltage values (v UC2 , v VC2 , v) based on the three-phase AC current detection values (i UF , i VF , i WF ) from which ripples have been removed. By using WC2 ), the ripple in the torque current control of the electric motor 100 can be reduced, and when the three-phase alternating current from the power conversion device 1 to the electric motor 100 changes suddenly, such as during acceleration / deceleration of the electric motor 100 or during load fluctuations. By using the three-phase compensation voltage values (v UC1 , v VC1 , v WC1 ) based on the three-phase AC current detection values (i U , i V , i W ), compensation for the voltage drop due to the dead time is performed. Can be done without delay.

図3は、この発明の第3の実施例を示す電圧形インバータの回路構成図であり、図2に示した第2の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 3 is a circuit configuration diagram of a voltage source inverter showing a third embodiment of the present invention. Components having the same functions as those of the second embodiment shown in FIG. The description is omitted here.

すなわち、図3に示した電圧形インバータは電力変換装置1と制御装置30とから形成され、この制御装置30が図2に示した制御装置20と異なる箇所は、位相差判別器22に代えて、位相差判別器31を備えていることである。   That is, the voltage source inverter shown in FIG. 3 is formed of the power conversion device 1 and the control device 30, and the control device 30 is different from the control device 20 shown in FIG. The phase difference discriminator 31 is provided.

この位相差判別器31では前記d軸,q軸電流検出値(i1d,i1q)と対応する前記d軸,q軸電流検出値(i1dF ,i1qF )それぞれとの位相差を監視し、これらの位相が、例えば電気角で3°以上になったときに、指令値演算器6へ出力する3相補償電圧値を前記第2の3相補償電圧値(vUC2 ,vVC2 ,vWC2 )から前記第1の3相補償電圧値(vUC1 ,vVC1 ,vWC1 )へ切り替える選択指令を補償電圧切替器23に送出している。その結果、電動機100の動作が定常状態では、リプル分が除去された前記3相交流電流検出値(iUF,iVF,iWF)に基づく3相補償電圧値(vUC2 ,vVC2 ,vWC2 )を用いることにより、電動機100のトルク電流制御におけるリプルをより少なくでき、また、電動機100の加減速時,負荷変動時など電力変換装置1から電動機100への3相交流電流が急変するときには、前記3相交流電流検出値(iU ,iV ,iW )に基づく3相補償電圧値(vUC1 ,vVC1 ,vWC1 )を用いることにより、前記デッドタイムによる電圧降下分の補償を遅延無く行うことができる。 The phase difference discriminator 31 monitors the phase difference between the d-axis and q-axis current detection values (i 1d , i 1q ) and the corresponding d-axis and q-axis current detection values (i 1dF , i 1qF ). When these phases become 3 ° or more in electrical angle, for example, the three-phase compensation voltage value output to the command value calculator 6 is changed to the second three-phase compensation voltage value (v UC2 , v VC2 , v A selection command for switching from WC2 ) to the first three-phase compensation voltage values (v UC1 , v VC1 , v WC1 ) is sent to the compensation voltage switch 23. As a result, when the operation of the electric motor 100 is in a steady state, the three-phase compensation voltage values (v UC2 , v VC2 , v) based on the three-phase AC current detection values (i UF , i VF , i WF ) from which ripples have been removed. By using WC2 ), the ripple in the torque current control of the electric motor 100 can be reduced, and when the three-phase alternating current from the power conversion device 1 to the electric motor 100 changes suddenly, such as during acceleration / deceleration of the electric motor 100 or during load fluctuations. By using the three-phase compensation voltage values (v UC1 , v VC1 , v WC1 ) based on the three-phase AC current detection values (i U , i V , i W ), compensation for the voltage drop due to the dead time is performed. Can be done without delay.

なお、図2,図3に示した実施例回路において、位相差判別器22及び位相差判別器31で判別する位相差が上述の如く電気角で3°以下のときには、その電流ベクトルの差が5%(すなわち、sin3°≒0.05)以下となり、フィルタ回路11による遅延がない状態と判断することができる。   2 and 3, when the phase difference determined by the phase difference discriminator 22 and the phase difference discriminator 31 is 3 ° or less in electrical angle as described above, the difference between the current vectors is 5% (ie, sin 3 ° ≈0.05) or less, and it can be determined that there is no delay by the filter circuit 11.

図4は、この発明の第4の実施例を示す電圧形インバータの回路構成図であり、図2に示した第2の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 4 is a circuit configuration diagram of a voltage source inverter showing a fourth embodiment of the present invention. Components having the same functions as those of the second embodiment shown in FIG. The description is omitted here.

すなわち、図4に示した電圧形インバータは電力変換装置1と制御装置40とから形成され、この制御装置40が図2に示した制御装置20と異なる箇所は位相差判別器22,補償電圧切替器23に代えて、重み配分設定器41と補償値演算器42とを備えていることである。   That is, the voltage source inverter shown in FIG. 4 is formed of the power conversion device 1 and the control device 40. The control device 40 is different from the control device 20 shown in FIG. In this case, a weight distribution setting unit 41 and a compensation value calculator 42 are provided instead of the unit 23.

この重み配分設定器41は配分値演算部41aと6組の乗算演算部とから形成され、図5は配分値演算部41aの詳細回路構成図であり、この配分値演算部41aでは前記3相交流電流検出値(iU ,iV ,iW )それぞれの瞬時値に対応して、前記iU において、例えばその定格電流値に対する6〜7%以下の瞬時値の領域では、対応するそれぞれの前記乗算演算部に加重平均に対応する値を出力するようにしている。 The weight distribution setting unit 41 is formed of a distribution value calculation unit 41a and six sets of multiplication calculation units. FIG. 5 is a detailed circuit configuration diagram of the distribution value calculation unit 41a. Corresponding to the respective instantaneous values of the AC current detection values (i U , i V , i W ), in the i U , for example, in the region of the instantaneous value of 6 to 7% or less with respect to the rated current value, the corresponding respective values. A value corresponding to the weighted average is output to the multiplication operation unit.

すなわち、前記それぞれの瞬時値が6〜7%を越えた領域では前記補償電圧値(vUC1 ,vVC1 ,vWC1 )が補償値演算器42から出力され、また、前記それぞれの瞬時値が零に近づくに従って前記3相補償電圧値(vUC1F,vVC1F,vWC1F)が補償値演算器42から出力される割合が多くなり、その結果、電力変換装置1から電動機100への3相交流電流が小さい領域では、リプル分が除去された前記第2の3相交流電流検出値(iUF,iVF,iWF)に基づく3相補償電圧値(vUC2 ,vVC2 ,vWC2 )を用いることにより、電動機100のトルク電流制御におけるリプルをより少なくでき、また、電動機100の加減速時,負荷変動時など電力変換装置1から電動機100への3相交流電流が大きく且つ急変するときには、前記3相交流電流検出値(iU ,iV ,iW )に基づく3相補償電圧値(vUC1 ,vVC1 ,vWC1 )を用いることにより、前記デッドタイムによる電圧降下分の補償を遅延無く行うことができる。 That is, in the region where the respective instantaneous values exceed 6 to 7%, the compensation voltage values (v UC1 , v VC1 , v WC1 ) are output from the compensation value calculator 42, and the respective instantaneous values are zero. As the value approaches, the proportion of the three-phase compensation voltage values (v UC1F , v VC1F , v WC1F ) that is output from the compensation value calculator 42 increases. As a result, the three-phase AC current from the power converter 1 to the motor 100 is increased. In a region where the ripple is small, the three-phase compensation voltage values (v UC2 , v VC2 , v WC2 ) based on the second three-phase alternating current detection values (i UF , i VF , i WF ) from which ripples have been removed are used. Thus, the ripple in the torque current control of the electric motor 100 can be reduced, and when the three-phase alternating current from the power conversion device 1 to the electric motor 100 is large and suddenly changed, such as during acceleration / deceleration of the electric motor 100 or when the load fluctuates, Three-phase exchange Flow detection value (i U, i V, i W) by using a 3-phase compensation voltage value based on the (v UC1, v VC1, v WC1), be carried out without delay compensation of voltage drop due to the dead time it can.

図6は、この発明の第5の実施例を示す電圧形インバータの回路構成図であり、図4に示した第4の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 6 is a circuit configuration diagram of a voltage source inverter showing a fifth embodiment of the present invention. Components having the same functions as those of the fourth embodiment shown in FIG. The description is omitted here.

すなわち、図6に示した電圧形インバータは電力変換装置1と制御装置50とから形成され、この制御装置50が図4に示した制御装置40と異なる箇所は、重み配分設定器41に代えて重み配分設定器51を備えていることである。   That is, the voltage source inverter shown in FIG. 6 is formed of the power conversion device 1 and the control device 50. The control device 50 is different from the control device 40 shown in FIG. The weight distribution setting unit 51 is provided.

この重み配分設定器51は配分値演算部51aと6組の乗算演算部とから形成され、図7は配分値演算部51aの詳細回路構成図であり、この配分値演算部51aでは前記一次周波数指令値(ω1 *)に対応して、例えば、その定格周波数値に対する20%以下の領域では前記3相補償電圧値(vUC2 ,vVC2 ,vWC2 )側に対応する前記乗算演算部に「1.0」を出力し、また、前記20〜40%の領域では対応するそれぞれの前記乗算演算部に加重平均に対応する値を出力し、さらに、前記40%を越える領域では前記3相補償電圧値(vUC1 ,vVC1 ,vWC1 )側に対応する前記乗算演算部に「1.0」を出力するようにしている。 The weight distribution setting unit 51 is formed of a distribution value calculation unit 51a and six sets of multiplication calculation units. FIG. 7 is a detailed circuit configuration diagram of the distribution value calculation unit 51a. The distribution value calculation unit 51a includes the primary frequency. Corresponding to the command value (ω 1 * ), for example, in the region of 20% or less with respect to the rated frequency value, the multiplication operation unit corresponding to the three-phase compensation voltage value (v UC2 , v VC2 , v WC2 ) side “1.0” is output, and a value corresponding to the weighted average is output to each of the corresponding multiplication operation units in the 20 to 40% region, and in the region exceeding 40%, the three phases are output. “1.0” is output to the multiplication operation unit corresponding to the compensation voltage value (v UC1 , v VC1 , v WC1 ) side.

その結果、前記一次周波数指令値(ω1 *)が比較的小さい領域、すなわち、電動機100の回転速度が小さい領域では、リプル分が除去された前記3相交流電流検出値(iUF,iVF,iWF)に基づく3相補償電圧値(vUC2 ,vVC2 ,vWC2 )を用いることにより、電動機100の回転ムラをより少なくできる。 As a result, in the region where the primary frequency command value (ω 1 * ) is relatively small, that is, in the region where the rotation speed of the electric motor 100 is small, the three-phase alternating current detection values (i UF , i VF) from which ripples have been removed. , I WF ), by using the three-phase compensation voltage values (v UC2 , v VC2 , v WC2 ), the rotation unevenness of the electric motor 100 can be reduced.

図8は、この発明の第6の実施例を示す電圧形インバータの回路構成図であり、図4に示した第4の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 8 is a circuit configuration diagram of a voltage source inverter showing a sixth embodiment of the present invention. Components having the same functions as those of the fourth embodiment shown in FIG. The description is omitted here.

すなわち、図8に示した電圧形インバータは電力変換装置1と制御装置60とから形成され、この制御装置60が図4に示した制御装置40と異なる箇所は、重み配分設定器41に代えて重み配分設定器61を備えていることである。   In other words, the voltage source inverter shown in FIG. 8 is formed of the power conversion device 1 and the control device 60. The difference between the control device 60 and the control device 40 shown in FIG. The weight distribution setting unit 61 is provided.

この重み配分設定器61は配分値演算部61aと6組の乗算演算部とから形成され、図9は配分値演算部61aの詳細回路構成図であり、この配分値演算部61aでは、先ず、前記d軸,q軸成分電圧指令値(v1d * ,v1q * )から電動機100の一次電圧の振幅値を求め、次に、求めた振幅値に対応して、例えば、その定格電圧値に対する20%以下の領域では前記3相補償電圧値(vUC2 ,vVC2 ,vWC2 )側に対応する前記乗算演算部に「1.0」を出力し、また、前記20〜40%の領域では対応するそれぞれの前記乗算演算部に加重平均に対応する値を出力し、さらに、前記40%を越える領域では前記3相補償電圧値(vUC1 ,vVC1 ,vWC1 )側に対応する前記乗算演算部に「1.0」を出力するようにしている。 The weight distribution setter 61 is formed of a distribution value calculation unit 61a and six sets of multiplication calculation units. FIG. 9 is a detailed circuit configuration diagram of the distribution value calculation unit 61a. In the distribution value calculation unit 61a, first, The amplitude value of the primary voltage of the electric motor 100 is obtained from the d-axis and q-axis component voltage command values (v 1d * , v 1q * ), and then, for example, for the rated voltage value corresponding to the obtained amplitude value. In the region of 20% or less, “1.0” is output to the multiplication operation unit corresponding to the three-phase compensation voltage value (v UC2 , v VC2 , v WC2 ) side, and in the region of 20 to 40% A value corresponding to the weighted average is output to each corresponding multiplication operation unit, and the multiplication corresponding to the three-phase compensation voltage value (v UC1 , v VC1 , v WC1 ) side in the region exceeding 40%. “1.0” is output to the calculation unit.

その結果、前記一次電圧の振幅値が比較的小さい領域、すなわち、電動機100の回転速度が小さい領域では、リプル分が除去された前記3相交流電流検出値(iUF,iVF,iWF)に基づく3相補償電圧値(vUC2 ,vVC2 ,vWC2 )を用いることにより、電動機100の回転ムラをより少なくできる。 As a result, in the region where the amplitude value of the primary voltage is relatively small, that is, in the region where the rotation speed of the electric motor 100 is small, the three-phase alternating current detection values (i UF , i VF , i WF ) from which ripples have been removed. By using the three-phase compensation voltage values (v UC2 , v VC2 , v WC2 ) based on the above, rotation unevenness of the electric motor 100 can be reduced.

図10は、この発明の第7の実施例を示す電圧形インバータの回路構成図であり、図1に示した第1の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 10 is a circuit configuration diagram of a voltage source inverter showing a seventh embodiment of the present invention. Components having the same functions as those of the first embodiment shown in FIG. The description is omitted here.

すなわち、図10に示した電圧形インバータは電力変換装置1と制御装置70とから形成され、この制御装置70が図1に示した制御装置10と異なる箇所は座標変換器13,補償電圧演算器14に代えて、重み配分設定器71と加算演算器72と座標座標変換器73と補償電圧演算器74とを備えていることである。   That is, the voltage source inverter shown in FIG. 10 is formed of the power conversion device 1 and the control device 70. The control device 70 is different from the control device 10 shown in FIG. 14, a weight distribution setter 71, an addition calculator 72, a coordinate coordinate converter 73, and a compensation voltage calculator 74 are provided.

この重み配分設定器71は配分値演算部71aと4組の乗算演算部とから形成され、図11は配分値演算部71aの詳細回路構成図であり、この配分値演算部71aでは、前記d軸,q軸電流検出値(i1d,i1q)に振幅値演算器15とフィルタ回路16とを介することにより導出された電動機100への3相交流電流のノイズ分を除去した振幅値に対応して、例えば、その定格電流値に対する20%以下の領域では前記d軸,q軸電流検出値(i1dF ,i1qF )側に対応する前記乗算演算部に「1.0」を出力し、また、前記20〜40%の領域では対応するそれぞれの前記乗算演算部に加重平均に対応する値を出力し、さらに、前記40%を越える領域では、前記d軸,q軸電流検出値(i1d,v1q)側に対応する前記乗算演算部に「1.0」を出力するようにしている。 The weight distribution setter 71 is formed of a distribution value calculation unit 71a and four sets of multiplication calculation units. FIG. 11 is a detailed circuit configuration diagram of the distribution value calculation unit 71a. In the distribution value calculation unit 71a, the d Corresponds to the amplitude value obtained by removing the noise component of the three-phase AC current to the motor 100 derived from the axis and q-axis current detection values (i 1d , i 1q ) through the amplitude value calculator 15 and the filter circuit 16. For example, in an area of 20% or less with respect to the rated current value, “1.0” is output to the multiplication operation unit corresponding to the d-axis and q-axis current detection values (i 1dF , i 1qF ) side, Further, in the 20 to 40% region, a value corresponding to the weighted average is output to each of the corresponding multiplication operation units, and in the region exceeding 40%, the d-axis and q-axis current detection values (i 1d, the multiplication unit corresponding to v 1q) side " And to output the .0 ".

従って、加算演算器72で得られる上述の重み配分された第3のd軸,q軸電流検出値が入力される座標変換器73では、前記位相角指令値(θ* )に基づいて静止座標系の第3の3相交流電流検出値に変換し、電圧補償値演算器74では前記第3の3相交流電流検出値それぞれの検出値の極性検出を行い、得られた極性に基づき、前記インバータ主回路の入力直流電圧と前記パルス幅変調制御の際のキャリア周波数と前記デッドタイムとに対応した3相補償電圧値(vUC4 ,vVC4 ,vWC4 )を出力している。 Therefore, in the coordinate converter 73 to which the above-described weighted and distributed third d-axis and q-axis current detection values obtained by the addition calculator 72 are input, the stationary coordinates are based on the phase angle command value (θ * ). Converted into a third three-phase alternating current detection value of the system, and the voltage compensation value calculator 74 detects the polarity of the detection value of each of the third three-phase alternating current detection values, and based on the obtained polarity, Three-phase compensation voltage values (v UC4 , v VC4 , v WC4 ) corresponding to the input DC voltage of the inverter main circuit, the carrier frequency in the pulse width modulation control, and the dead time are output.

その結果、電力変換装置1から電動機100への3相交流電流が小さい領域では、リプル分が除去された前記第3の3相交流電流検出値に基づく3相補償電圧値を用いることにより、電動機100のトルク電流制御におけるリプルをより少なくでき、また、電動機100の加減速時,負荷変動時など電力変換装置1から電動機100への3相交流電流が大きく且つ急変するときには、電流検出器7からの3相交流電流検出値(iU ,iV ,iW )に直接対応した3相補償電圧値を用いることになり、前記デッドタイムによる電圧降下分の補償を遅延無く行うことができる。 As a result, in a region where the three-phase alternating current from the power converter 1 to the electric motor 100 is small, by using the three-phase compensation voltage value based on the third three-phase alternating current detection value from which the ripple has been removed, When the three-phase AC current from the power converter 1 to the motor 100 is large and suddenly changes, such as during acceleration / deceleration of the motor 100 or during load fluctuations, the current detector 7 Thus, a three-phase compensation voltage value directly corresponding to the three-phase AC current detection values (i U , i V , i W ) is used, and the voltage drop due to the dead time can be compensated without delay.

図12は、この発明の第8の実施例を示す電圧形インバータの回路構成図であり、図10に示した第7の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 12 is a circuit configuration diagram of a voltage source inverter showing an eighth embodiment of the present invention. Components having the same functions as those of the seventh embodiment shown in FIG. The description is omitted here.

すなわち、図12に示した電圧形インバータは電力変換装置1と制御装置80とから形成され、この制御装置80が図10に示した制御装置70と異なる箇所は、重み配分設定器71に代えて重み配分設定器81を備えていることである。   That is, the voltage source inverter shown in FIG. 12 is formed of the power conversion device 1 and the control device 80. The control device 80 is different from the control device 70 shown in FIG. A weight distribution setting unit 81 is provided.

この重み配分設定器81は配分値演算部81aと4組の乗算演算部とから形成され、図13は配分値演算部81aの詳細回路構成図であり、この配分値演算部81aでは前記一次周波数指令値(ω1 *)に対応して、例えば、その定格周波数値に対する20%以下の領域では前記d軸,q軸電流検出値(i1dF ,i1qF )側に対応する前記乗算演算部に「1.0」を出力し、また、前記20〜40%の領域では対応するそれぞれの前記乗算演算部に加重平均に対応する値を出力し、さらに、前記40%を越える領域では前記d軸,q軸電流検出値(i1d,i1q)側に対応する前記乗算演算部に「1.0」を出力するようにしている。 The weight distribution setter 81 is formed of a distribution value calculation unit 81a and four sets of multiplication calculation units. FIG. 13 is a detailed circuit configuration diagram of the distribution value calculation unit 81a. The distribution value calculation unit 81a includes the primary frequency. Corresponding to the command value (ω 1 * ), for example, in the region of 20% or less with respect to the rated frequency value, the multiplication operation unit corresponding to the d-axis and q-axis current detection values (i 1dF , i 1qF ) side “1.0” is output, and a value corresponding to the weighted average is output to each of the corresponding multiplication operation units in the region of 20 to 40%. Further, in the region exceeding 40%, the d-axis is output. , Q-axis current detection value (i 1d , i 1q ) “1.0” is output to the multiplication operation unit corresponding to the side.

その結果、前記一次周波数指令値(ω1 *)が比較的小さい領域、すなわち、電動機100の回転速度が小さい領域では、リプル分が除去された前記第3の3相交流電流検出値に基づく3相補償電圧値を用いることにより、該電動機の回転ムラをより少なくできる。 As a result, in a region where the primary frequency command value (ω 1 * ) is relatively small, that is, a region where the rotational speed of the electric motor 100 is small, 3 based on the third three-phase alternating current detection value from which the ripple has been removed. By using the phase compensation voltage value, the rotation unevenness of the electric motor can be reduced.

図14は、この発明の第9の実施例を示す電圧形インバータの回路構成図であり、図10に示した第7の実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 14 is a circuit configuration diagram of a voltage source inverter showing a ninth embodiment of the present invention. Components having the same functions as those of the seventh embodiment shown in FIG. The description is omitted here.

すなわち、図14に示した電圧形インバータは電力変換装置1と制御装置90とから形成され、この制御装置90が図10に示した制御装置70と異なる箇所は、重み配分設定器71に代えて重み配分設定器91を備えていることである。   That is, the voltage source inverter shown in FIG. 14 is formed of the power conversion device 1 and the control device 90. The control device 90 is different from the control device 70 shown in FIG. A weight distribution setting unit 91 is provided.

この重み配分設定器91は配分値演算部91aと4組の乗算演算部とから形成され、図15は配分値演算部91aの詳細回路構成図であり、この配分値演算部91aでは、先ず、前記d軸,q軸成分電圧指令値(v1d * ,v1q * )から電動機100の一次電圧の振幅値を求め、次に、求めた振幅値に対応して、例えば、その定格電圧値に対する20%以下の領域では前記d軸,q軸電流検出値(i1dF ,i1qF )側に対応する前記乗算演算部に「1.0」を出力し、また、前記20〜40%の領域では対応するそれぞれの前記乗算演算部に加重平均に対応する値を出力し、さらに、前記40%を越える領域では前記d軸,q軸電流検出値(i1d,i1q)側に対応する前記乗算演算部に「1.0」を出力するようにしている。 The weight distribution setting unit 91 is formed of a distribution value calculation unit 91a and four sets of multiplication calculation units. FIG. 15 is a detailed circuit configuration diagram of the distribution value calculation unit 91a. In the distribution value calculation unit 91a, first, The amplitude value of the primary voltage of the electric motor 100 is obtained from the d-axis and q-axis component voltage command values (v 1d * , v 1q * ), and then, for example, for the rated voltage value corresponding to the obtained amplitude value. In the region of 20% or less, “1.0” is output to the multiplication operation unit corresponding to the d-axis and q-axis current detection values (i 1dF , i 1qF ) side, and in the region of 20 to 40% A value corresponding to the weighted average is output to each of the corresponding multiplication operation units, and the multiplication corresponding to the d-axis and q-axis current detection values (i 1d , i 1q ) side in the region exceeding 40%. “1.0” is output to the calculation unit.

その結果、前記一次電圧の振幅値が比較的小さい領域、すなわち、電動機100の回転速度が小さい領域では、リプル分が除去された前記第3の交流電流検出値に基づく3相補償電圧値を用いることにより、電動機100の回転ムラをより少なくできる。   As a result, in a region where the amplitude value of the primary voltage is relatively small, that is, a region where the rotation speed of the electric motor 100 is small, a three-phase compensation voltage value based on the third AC current detection value from which the ripple is removed is used. Thereby, the rotation nonuniformity of the electric motor 100 can be reduced more.

この発明の第1の実施例を示す電圧形インバータの回路構成図1 is a circuit configuration diagram of a voltage source inverter showing a first embodiment of the present invention. この発明の第2の実施例を示す電圧形インバータの回路構成図Circuit configuration diagram of a voltage source inverter showing a second embodiment of the present invention この発明の第3の実施例を示す電圧形インバータの回路構成図Circuit configuration diagram of voltage source inverter showing third embodiment of this invention この発明の第4の実施例を示す電圧形インバータの回路構成図Circuit configuration diagram of a voltage source inverter showing a fourth embodiment of the present invention 図4の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第5の実施例を示す電圧形インバータの回路構成図Circuit configuration diagram of a voltage source inverter showing a fifth embodiment of the present invention 図6の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第6の実施例を示す電圧形インバータの回路構成図Circuit configuration diagram of voltage source inverter showing sixth embodiment of the present invention 図8の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第7の実施例を示す電圧形インバータの回路構成図Circuit configuration diagram of voltage source inverter showing seventh embodiment of the present invention 図10の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第8の実施例を示す電圧形インバータの回路構成図Circuit diagram of a voltage source inverter showing an eighth embodiment of the present invention 図12の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第9の実施例を示す電圧形インバータの回路構成図Circuit diagram of a voltage source inverter showing the ninth embodiment of the invention 図14の部分詳細回路構成図FIG. 14 is a partial detailed circuit configuration diagram. 従来例を示す電圧形インバータの回路構成図Circuit diagram of voltage source inverter showing conventional example

符号の説明Explanation of symbols

1…電力変換装置、2…制御装置、3…指令値生成手段、4…積分器、5…座標変換器、6…指令値演算器、7…電流検出器、8…補償電圧演算器、9…座標変換器、10…制御装置、11…フィルタ回路、12…時定数指令器、13…座標変換器、14…補償電圧演算器、15…振幅値演算器、16…フィルタ回路、17…電圧制限器、20…制御装置、21…補償電圧演算器、22…位相差判別器、23…補償電圧切替器、30…制御装置、31…位相差判別器、40…制御装置、41…重み配分設定器、42…補償値演算器、50…制御装置、51…重み配分設定器、60…制御装置、61…重み配分設定器、70…制御装置、71…重み配分設定器、72…加算演算器、73…座標変換器、74…補償電圧演算器、80…制御装置、81…重み配分設定器、90…制御装置、91…重み配分設定器、100…電動機。   DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Control apparatus, 3 ... Command value production | generation means, 4 ... Integrator, 5 ... Coordinate converter, 6 ... Command value calculator, 7 ... Current detector, 8 ... Compensation voltage calculator, 9 DESCRIPTION OF SYMBOLS ... Coordinate converter, 10 ... Control apparatus, 11 ... Filter circuit, 12 ... Time constant command device, 13 ... Coordinate converter, 14 ... Compensation voltage calculator, 15 ... Amplitude value calculator, 16 ... Filter circuit, 17 ... Voltage Limiter, 20 ... control device, 21 ... compensation voltage calculator, 22 ... phase difference discriminator, 23 ... compensation voltage switch, 30 ... control device, 31 ... phase difference discriminator, 40 ... control device, 41 ... weight distribution Setter, 42 ... compensation value calculator, 50 ... control device, 51 ... weight distribution setter, 60 ... control device, 61 ... weight distribution setter, 70 ... control device, 71 ... weight distribution setter, 72 ... addition calculation , 73 ... coordinate converter, 74 ... compensation voltage calculator, 80 ... control device, 1 ... weight distribution setter, 90 ... controller, 91 ... weight distribution setter, 100 ... electric motor.

Claims (13)

所定の周波数指令値と電圧指令値とから生成される3相交流電圧指令値に基づいて、パルス幅変調制御された3相交流電圧を出力して負荷に供給する電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、
前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、
前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、
前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、
前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する3相補償電圧値を演算する第2補償電圧演算器と、
前記演算された3相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする電圧形インバータの制御装置。
In a control apparatus for a voltage source inverter that outputs a three-phase AC voltage subjected to pulse width modulation control based on a three-phase AC voltage command value generated from a predetermined frequency command value and a voltage command value and supplies the load to a load.
A current detector for detecting a three-phase alternating current flowing through the load;
A first coordinate converter for converting the detected first three-phase alternating current detection value into a biaxial component (d axis, q axis) of a rotating coordinate system;
A first filter circuit for removing ripples of each of the converted first d-axis and q-axis current detection values;
A second coordinate converter that converts the second d-axis and q-axis current detection values from which the ripples have been removed to a second three-phase AC current detection value in a stationary coordinate system;
A second compensation voltage calculator that calculates a three-phase compensation voltage value that compensates for a voltage drop due to a dead time during the pulse width modulation control based on the second three-phase alternating current detection value;
And a command value calculator for adding and calculating the calculated three-phase compensation voltage value and the three-phase AC voltage command value and outputting the added value as a new three-phase AC voltage command value. Control device for voltage source inverter.
所定の周波数指令値と電圧指令値とから生成される3相交流電圧指令値に基づいて、パルス幅変調制御された3相交流電圧を出力して負荷に供給する電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、
前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、
前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、
前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、
前記第1の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第1の3相補償電圧値を演算する第1補償電圧演算器と、
前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第2の3相補償電圧値を演算する第2補償電圧演算器と、
前記第1の3相交流電流検出値と対応する前記第2の3相交流電流検出値との位相差に基づいて選択指令を出力する第1位相差判別器と、
前記選択指令に基づいて、前記第1又は第2の3相補償電圧値の何れか1組を選択し第3の3相補償電圧値として出力する補償電圧切替器と、
前記第3の3相相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする電圧形インバータの制御装置。
In a control apparatus for a voltage source inverter that outputs a three-phase AC voltage subjected to pulse width modulation control based on a three-phase AC voltage command value generated from a predetermined frequency command value and a voltage command value and supplies the load to a load.
A current detector for detecting a three-phase alternating current flowing through the load;
A first coordinate converter for converting the detected first three-phase alternating current detection value into a biaxial component (d axis, q axis) of a rotating coordinate system;
A first filter circuit for removing ripples of each of the converted first d-axis and q-axis current detection values;
A second coordinate converter that converts the second d-axis and q-axis current detection values from which the ripples have been removed to a second three-phase AC current detection value in a stationary coordinate system;
A first compensation voltage calculator that calculates a first three-phase compensation voltage value that compensates for a voltage drop due to dead time in the pulse width modulation control based on the first three-phase alternating current detection value;
A second compensation voltage calculator for calculating a second three-phase compensation voltage value for compensating for a voltage drop due to a dead time in the pulse width modulation control based on the second three-phase alternating current detection value;
A first phase difference discriminator that outputs a selection command based on a phase difference between the first three-phase alternating current detection value and the corresponding second three-phase alternating current detection value;
A compensation voltage switch that selects one of the first or second three-phase compensation voltage values based on the selection command and outputs the selected three-phase compensation voltage value;
A command value calculator for adding and calculating the third three-phase compensation voltage value and the three-phase AC voltage command value and outputting the added value as a new three-phase AC voltage command value; A voltage-type inverter control device.
所定の周波数指令値と電圧指令値とから生成される3相交流電圧指令値に基づいて、パルス幅変調制御された3相交流電圧を出力して負荷に供給する電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、
前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、
前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、
前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、
前記第1の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第1の3相補償電圧値を演算する第1補償電圧演算器と、
前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第2の3相補償電圧値を演算する第2補償電圧演算器と、
前記第1のd軸,q軸電流検出値と対応する前記第2のd軸,q軸電流検出値との位相差に基づいて選択指令を出力する第2位相差判別器と、
前記選択指令に基づいて、前記第1の3相補償電圧値または前記第2の補償電圧値の何れか1組を選択し第3の3相補償電圧値として出力する補償電圧切替器と、
前記第3の3相相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする電圧形インバータの制御装置。
In a control apparatus for a voltage source inverter that outputs a three-phase AC voltage subjected to pulse width modulation control to a load based on a three-phase AC voltage command value generated from a predetermined frequency command value and a voltage command value.
A current detector for detecting a three-phase alternating current flowing through the load;
A first coordinate converter for converting the detected first three-phase alternating current detection value into a biaxial component (d axis, q axis) of a rotating coordinate system;
A first filter circuit for removing ripples of each of the converted first d-axis and q-axis current detection values;
A second coordinate converter that converts the second d-axis and q-axis current detection values from which the ripples have been removed to a second three-phase AC current detection value in a stationary coordinate system;
A first compensation voltage calculator that calculates a first three-phase compensation voltage value that compensates for a voltage drop due to dead time in the pulse width modulation control based on the first three-phase alternating current detection value;
A second compensation voltage calculator for calculating a second three-phase compensation voltage value for compensating for a voltage drop due to a dead time in the pulse width modulation control based on the second three-phase alternating current detection value;
A second phase difference discriminator that outputs a selection command based on a phase difference between the first d-axis and q-axis current detection values and the corresponding second d-axis and q-axis current detection values;
A compensation voltage switch that selects either one of the first three-phase compensation voltage value or the second compensation voltage value based on the selection command and outputs the selected one as the third three-phase compensation voltage value;
A command value calculator for adding and calculating the third three-phase compensation voltage value and the three-phase AC voltage command value and outputting the added value as a new three-phase AC voltage command value; A voltage-type inverter control device.
所定の周波数指令値と電圧指令値とから生成される3相交流電圧指令値に基づいて、パルス幅変調制御された3相交流電圧を出力して負荷に供給する電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、
前記選出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、
前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、
前記リプル分が除去された第2のd軸,q軸電流検出値を静止座標系の第2の3相交流電流検出値に変換する第2座標変換器と、
前記第1の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第1の3相補償電圧値を演算する第1補償電圧演算器と、
前記第2の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する第2の3相補償電圧値を演算する第2補償電圧演算器と、
前記第1の3相補償電圧値と対応する前記第2の3相補償電圧値とに対して、所定の重み付けをした配分値を設定する重み配分設定器と、
前記重み配分されたそれぞれの3相補償電圧値を加算演算する補償値演算器と、
前記加算演算された第4の3相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする電圧形インバータの制御装置。
In a control apparatus for a voltage source inverter that outputs a three-phase AC voltage subjected to pulse width modulation control based on a three-phase AC voltage command value generated from a predetermined frequency command value and a voltage command value and supplies the load to a load.
A current detector for detecting a three-phase alternating current flowing through the load;
A first coordinate converter that converts the selected first three-phase alternating current detection value into a biaxial component (d-axis, q-axis) of a rotating coordinate system;
A first filter circuit for removing ripples of each of the converted first d-axis and q-axis current detection values;
A second coordinate converter that converts the second d-axis and q-axis current detection values from which the ripples have been removed to a second three-phase AC current detection value in a stationary coordinate system;
A first compensation voltage calculator that calculates a first three-phase compensation voltage value that compensates for a voltage drop due to dead time in the pulse width modulation control based on the first three-phase alternating current detection value;
A second compensation voltage calculator for calculating a second three-phase compensation voltage value for compensating for a voltage drop due to a dead time in the pulse width modulation control based on the second three-phase alternating current detection value;
A weight distribution setter for setting a distribution value obtained by weighting the first three-phase compensation voltage value and the second three-phase compensation voltage value corresponding to the first three-phase compensation voltage value;
A compensation value calculator for adding and calculating the respective three-phase compensation voltage values to which the weights are distributed;
A command value calculator for adding and calculating the added fourth three-phase compensation voltage value and the three-phase AC voltage command value and outputting the added value as a new three-phase AC voltage command value; A voltage-type inverter control device characterized by the above.
所定の周波数指令値と電圧指令値とから生成される3相交流電圧指令値に基づいて、パルス幅変調制御された3相交流電圧を出力して負荷に供給する電圧形インバータの制御装置において、
前記負荷に流れる3相交流電流を検出する電流検出器と、
前記検出された第1の3相交流電流検出値を回転座標系の2軸成分(d軸,q軸)に変換する第1座標変換器と、
前記変換された第1のd軸,q軸電流検出値それぞれのリプル分を除去する第1フィルタ回路と、
前記第1のd軸,q軸電流検出値と対応する前記リプル分が除去された第2のd軸,q軸電流検出値とに対して、所定の重み付けをした配分値を設定する重み配分設定器と、
前記重み配分されたそれぞれのd軸,q軸電流検出値を加算演算する加算演算器と、
前記加算された第3のd軸、q軸電流検出値を静止座標系の第3の3相交流電流検出値に変換する第3座標変換器と、
前記第3の3相交流電流検出値を基に、前記パルス幅変調制御の際のデッドタイムによる電圧降下分を補償する3相補償電圧値を演算する第3補償電圧演算器と、
前記演算された3相補償電圧値と前記3相交流電圧指令値とを加算演算し、この加算した値を新たな3相交流電圧指令値として出力する指令値演算器とを備えたことを特徴とする電圧形インバータの制御装置。
In a control apparatus for a voltage source inverter that outputs a three-phase AC voltage subjected to pulse width modulation control based on a three-phase AC voltage command value generated from a predetermined frequency command value and a voltage command value and supplies the load to a load.
A current detector for detecting a three-phase alternating current flowing through the load;
A first coordinate converter for converting the detected first three-phase alternating current detection value into a biaxial component (d axis, q axis) of a rotating coordinate system;
A first filter circuit for removing ripples of each of the converted first d-axis and q-axis current detection values;
Weight distribution for setting distribution values with predetermined weights for the first d-axis and q-axis current detection values and the corresponding second d-axis and q-axis current detection values from which the ripples have been removed A setting device;
An adder for adding and calculating the respective weighted d-axis and q-axis current detection values;
A third coordinate converter for converting the added third d-axis and q-axis current detection values to a third three-phase alternating current detection value in a stationary coordinate system;
A third compensation voltage calculator that calculates a three-phase compensation voltage value that compensates for a voltage drop due to a dead time during the pulse width modulation control based on the third three-phase alternating current detection value;
And a command value calculator for adding and calculating the calculated three-phase compensation voltage value and the three-phase AC voltage command value and outputting the added value as a new three-phase AC voltage command value. Control device for voltage source inverter.
請求項4に記載の電圧形インバータの制御装置において、
前記重み配分設定器は、前記第1の3相交流電流検出値それぞれの瞬時値に基づいて前記配分値を設定することを特徴とする電圧形インバータの制御装置。
In the control apparatus of the voltage source inverter according to claim 4,
The weight distribution setting device sets the distribution value based on the instantaneous value of each of the first three-phase AC current detection values.
請求項5に記載の電圧形インバータの制御装置において、
前記重み配分設定器は、前記第1のd軸,q軸電流検出値から得られる振幅値にフィルタを介した値に基づいて前記配分値を設定することを特徴とする電圧形インバータの制御装置。
The control apparatus for a voltage source inverter according to claim 5,
The weight distribution setting device sets the distribution value based on a value obtained through a filter to an amplitude value obtained from the first d-axis and q-axis current detection values. .
請求項4又は請求項5に記載の電圧形インバータの制御装置において、
前記重み配分設定器は、前記周波数指令値に基づいて前記配分値を設定することを特徴とする電圧形インバータの制御装置。
In the control apparatus of the voltage type inverter of Claim 4 or Claim 5,
The weight distribution setting device sets the distribution value based on the frequency command value, and controls the voltage source inverter.
請求項4又は請求項5に記載の電圧形インバータの制御装置において、
前記重み配分設定器は、前記電圧指令値の振幅値に基づいて前記配分値を設定することを特徴とする電圧形インバータの制御装置。
In the control apparatus of the voltage type inverter of Claim 4 or Claim 5,
The weight distribution setting device sets the distribution value based on the amplitude value of the voltage command value, and controls the voltage source inverter.
請求項1乃至請求項9の何れかに記載の電圧形インバータの制御装置において、
前記制御装置に、前記第1フィルタ回路のフィルタ時定数を前記周波数指令値の逆数値に対応して変化させる時定数指令器を付加したことを特徴とする電圧形インバータの制御装置。
In the control apparatus of the voltage type inverter in any one of Claims 1 thru | or 9,
A control device for a voltage source inverter, wherein a time constant command device for changing a filter time constant of the first filter circuit in accordance with an inverse value of the frequency command value is added to the control device.
請求項1乃至請求項9の何れかに記載の電圧形インバータの制御装置において、
前記第1フィルタ回路に、該フィルタの初期出力値を前記電圧指令値に基づいて設定する機能を付加したことを特徴とする電圧形インバータの制御装置。
In the control apparatus of the voltage type inverter in any one of Claims 1 thru | or 9,
A control apparatus for a voltage source inverter, wherein a function of setting an initial output value of the filter based on the voltage command value is added to the first filter circuit.
請求項1乃至請求項9の何れかに記載の電圧形インバータの制御装置において、
前記制御装置に、前記第1のd軸,q軸電流検出値からその振幅値を得る振幅値演算器と、得られた振幅値を通過させる第2フィルタ回路と、このフィルタを介した振幅値に基づいて前記指令値演算器に入力される前記3相補償電圧それぞれの振幅を制限する電圧制限器とを付加したことを特徴とする電圧形インバータの制御装置。
In the control apparatus of the voltage type inverter in any one of Claims 1 thru | or 9,
An amplitude value calculator for obtaining the amplitude value from the first d-axis and q-axis current detection values, a second filter circuit for allowing the obtained amplitude value to pass, and an amplitude value via this filter And a voltage limiter for limiting the amplitude of each of the three-phase compensation voltages input to the command value calculator based on the control value.
請求項12に記載の電圧形インバータの制御装置において、
前記第2フィルタ回路に、該フィルタの初期出力値を前記3相補償電圧の振幅制限値に基づいて設定する機能を付加したことを特徴とする電圧形インバータの制御装置。
The control apparatus for a voltage source inverter according to claim 12,
A control device for a voltage source inverter, wherein a function of setting an initial output value of the filter based on an amplitude limit value of the three-phase compensation voltage is added to the second filter circuit.
JP2004188574A 2004-06-25 2004-06-25 Control device for voltage source inverter Expired - Fee Related JP4581508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188574A JP4581508B2 (en) 2004-06-25 2004-06-25 Control device for voltage source inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188574A JP4581508B2 (en) 2004-06-25 2004-06-25 Control device for voltage source inverter

Publications (2)

Publication Number Publication Date
JP2006014501A true JP2006014501A (en) 2006-01-12
JP4581508B2 JP4581508B2 (en) 2010-11-17

Family

ID=35781061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188574A Expired - Fee Related JP4581508B2 (en) 2004-06-25 2004-06-25 Control device for voltage source inverter

Country Status (1)

Country Link
JP (1) JP4581508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261066A (en) * 2008-04-14 2009-11-05 Jtekt Corp Motor controller and electric power steering device
CN110932584A (en) * 2019-12-05 2020-03-27 深圳市汇川技术股份有限公司 Inverter nonlinear compensation method, system, device and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253550B (en) * 2014-10-13 2017-01-25 中国矿业大学 Dead-time compensation method for NPC-based three-level SVPMW (space vector pulse width modulation) rectifier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103685A (en) * 1986-10-16 1988-05-09 Fuji Electric Co Ltd Current detector for induction motor
JPH10178742A (en) * 1996-12-18 1998-06-30 Fuji Electric Co Ltd Circuit for controlling transfer of effective power of serial inverter
JP2000175461A (en) * 1998-12-02 2000-06-23 Honda Motor Co Ltd Power converter system
JP2002095262A (en) * 2000-09-13 2002-03-29 Fuji Electric Co Ltd Dead time compensating method for voltage type pwm
JP2002247860A (en) * 2001-02-22 2002-08-30 Fuji Electric Co Ltd Controlling method for voltage-type converter
JP2002272182A (en) * 2001-03-15 2002-09-20 Yaskawa Electric Corp Ac motor driving apparatus
JP2003189634A (en) * 2001-12-20 2003-07-04 Fuji Electric Co Ltd Controller of voltage type pwm inverter
JP2004112879A (en) * 2002-09-17 2004-04-08 Yaskawa Electric Corp Ac motor driver

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103685A (en) * 1986-10-16 1988-05-09 Fuji Electric Co Ltd Current detector for induction motor
JPH10178742A (en) * 1996-12-18 1998-06-30 Fuji Electric Co Ltd Circuit for controlling transfer of effective power of serial inverter
JP2000175461A (en) * 1998-12-02 2000-06-23 Honda Motor Co Ltd Power converter system
JP2002095262A (en) * 2000-09-13 2002-03-29 Fuji Electric Co Ltd Dead time compensating method for voltage type pwm
JP2002247860A (en) * 2001-02-22 2002-08-30 Fuji Electric Co Ltd Controlling method for voltage-type converter
JP2002272182A (en) * 2001-03-15 2002-09-20 Yaskawa Electric Corp Ac motor driving apparatus
JP2003189634A (en) * 2001-12-20 2003-07-04 Fuji Electric Co Ltd Controller of voltage type pwm inverter
JP2004112879A (en) * 2002-09-17 2004-04-08 Yaskawa Electric Corp Ac motor driver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261066A (en) * 2008-04-14 2009-11-05 Jtekt Corp Motor controller and electric power steering device
CN110932584A (en) * 2019-12-05 2020-03-27 深圳市汇川技术股份有限公司 Inverter nonlinear compensation method, system, device and storage medium
CN110932584B (en) * 2019-12-05 2021-11-19 深圳市汇川技术股份有限公司 Inverter nonlinear compensation method, system, device and storage medium

Also Published As

Publication number Publication date
JP4581508B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US9257931B2 (en) Power conversion apparatus
AU2012208179B2 (en) Power conversion apparatus
JP4433099B1 (en) Power converter
EP2020740B1 (en) Power converter
US9853559B2 (en) Power conversion device with reduced current deviation
JP2001145398A (en) Inverter control method and inverter control apparatus
JPWO2008139518A1 (en) Power converter
EP1444773A1 (en) Current ripple reduction by harmonic current regulation
WO2018061546A1 (en) Control device for power converter
EP2273661A1 (en) Converter control method
JP5813934B2 (en) Power converter
JP6984399B2 (en) Power converter controller
JP5351390B2 (en) Power converter
JP4581508B2 (en) Control device for voltage source inverter
JP4401724B2 (en) Power converter
JP4219362B2 (en) Rotating machine control device
JP4661197B2 (en) Control method of voltage source inverter
JP2946106B2 (en) AC motor control method and device
JPH1189250A (en) Power converter
JP2021058045A (en) Power conversion device and control method thereof
WO2021112108A1 (en) Pwm inverter control device and control method
JP2011172387A (en) Power conversion controller, converter control circuit, power conversion control method, power conversion control program and recording medium
WO1998042067A1 (en) Power converter, ac motor controller and their control method
JPH10191640A (en) Controller for converter
Ahmane et al. Direct Power Control based on Super Twisting Sliding Mode Control for Three Phase PWM Rectifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4581508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees