JP2004112879A - Ac motor driver - Google Patents

Ac motor driver Download PDF

Info

Publication number
JP2004112879A
JP2004112879A JP2002269336A JP2002269336A JP2004112879A JP 2004112879 A JP2004112879 A JP 2004112879A JP 2002269336 A JP2002269336 A JP 2002269336A JP 2002269336 A JP2002269336 A JP 2002269336A JP 2004112879 A JP2004112879 A JP 2004112879A
Authority
JP
Japan
Prior art keywords
current
polarity
command
voltage
current polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002269336A
Other languages
Japanese (ja)
Inventor
Sumitoshi Sonoda
園田 澄利
Yasuo Kin
金 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002269336A priority Critical patent/JP2004112879A/en
Publication of JP2004112879A publication Critical patent/JP2004112879A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an AC motor driver that has a dead time compensating means which is capable of minimizing the speed and current distortion by getting a polarity judging current enabling the reduction of chattering phenomena in the vicinity of zero cross. <P>SOLUTION: The AC motor driver which is equipped with a PWM (pulse width modulation) power converter, is characterized in that the dead time compensating means has a command polarity judging means 102 which judges command current polarity from a command current, a detected current polarity judging means 101 which judges the detected current polarity from a detected current, and a final current polarity judging means 103 which judges the final current polarity from the information about the command current polarity and the detected current polarity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ACモータ駆動装置に関し、特にPWMインバータのデッドタイム補償に関するものである。
【0002】
【従来の技術】
従来の電圧形インバータでは、上下スイッチング素子の同時導通による電流短絡事故を防止するためにデッドタイムを設けている。PWMインバータはスイッチング回数に伴って電流制御性能が高い反面、デッドタイムの影響を多く受けやすい。特に、低速と軽負荷の運転時における電流制御への影響は大きく、電流歪みとトルク脈動の一因ともなる。
こうしたインバータ装置のデッドタイム設定で生じる損失電圧を補償するには、先ず、デッドタイム設定による正確な損失電圧絶対値ABSVlossの把握が必要であり、式(1)で計算できる(特開平11−98899号公報)。又、この損失電圧絶対値はデッドタイム補償電圧絶対値ABSVcompとして扱える。
ABSVloss=ABSVcomp=td×fc×Vdc=(td/tc)×Vdc   (1)
ここで、tdはデッドタイム(オンディレイ時間)、
fcはスイッチングキャリア周波数(=1/tc)、
tcはスイッチングキャリア周期時間、
Vdcは直流電圧
である。
【0003】
デッドタイム補償法は、単純に電流の極性値(正、又は負)とデッドタイムの補償電圧絶対値ABSVcompとの情報から補償を行うことが出来るが、二つの情報の中で電流極性の判断はデッドタイム補償法のアルゴリズムにおいてもっとも重要な処理であり、正確な極性判断が必要である。電流極性の従来判断方式においては、検出電流がよく用いられている。
図3は従来のデッドタイム補償法の全体ブロック図である。図において、2はデッドタイム補償手段、11はACモータ、12は位置センサであるエンコーダ、13は電流センサである電流検出手段、14は速度演算手段、15は電流偏差演算手段、16はPI制御部である電流制御部、17はPWM電力変換装置、18は直流電圧、201は電流極性判断手段、204は補償電圧絶対値、205は電圧加算演算手段である。
【0004】
次に図3の動作を説明する。電流検出手段13はACモータ11へ流れる電流をサンプリング区間毎に検出し、偏差電流演算手段15は、指令電流I*から検出電流Ifbを差し引いて偏差電流ΔIを計算し、電流制御部16では偏差電流ΔIにゲインを掛け算して指令電圧V*の演算を行う。また、電流極性判断手段201では検出電流Ifbを用いて電流極性の判断を行った後、その電流極性値PorM(+1又は−1の値)を補償電圧絶対値であるABSVcompに掛け算してデッドタイム補償電圧Vcompの演算を行う。最後に、電圧加算演算手段205でデッドタイム補償電圧Vcompを指令電圧V*に加えて最終指令電圧Vf*を計算し、PWM電力変換装置17に入力し、ACモータ11を駆動するようになっている。
【0005】
【特許文献1】
特開平11−98899号公報(2頁、(1)式)
【特許文献2】
特開2000−175491号公報
【0006】
【発明が解決しようとする課題】
ところが、従来技術では、極性判断電流として検出電流が用いられている。その極性判断電流の検出電流は、スイッチングノイズを含んでいるためゼロクロス付近でチャタリング現象が生じ、電流極性の判断ミスが起きやすい。従って、上記の極性判断電流を利用すると、電流極性の判断が正しく行われず、デッドタイム補償を行わなかった場合よりも更に速度と電流特性に悪影響(歪の増加)を与えるという問題がある。
そこで、本発明は、ゼロクロス付近でのチャタリング現象が低減出来る極性判断電流を求め、速度及び電流ひずみの最小化が出来るようなデッドタイム補償手段を持つACモータ駆動装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記問題を解決するため本発明は、ACモータへ流れる電流を検出する電流検出手段と、指令電流と検出電流とから偏差電流を計算する偏差電流演算手段と、前記偏差電流から指令電圧の演算を行う電流制御部と、電流極性を決める電流極性判断手段を有し、デッドタイム補償電圧を出力するデッドタイム補償手段と、前記電流制御部から計算された指令電圧に前記デッドタイム補償電圧を加えて最終指令電圧を演算する電圧加算演算手段と、前記電圧加算演算手段により得られた最終指令電圧の情報を用い直流電圧から交流電圧への変換を行うPWM電力変換装置と、を備えたACモータ駆動装置において、
前記デッドタイム補償手段は、指令電流から指令電流極性を判断する指令電流極性判断手段と、検出電流から検出電流極性を判断する検出電流極性判断手段と、前記指令電流極性と前記検出電流極性との情報から最終電流極性を判断する最終電流極性判断手段とを有することを特徴とする。
また、前記最終電流極性判断手段では、前記指令電流極性と前記検出電流極性が同一である場合は最終電流極性としてそのまま確定することと、異なる場合は前記指令電流と前記検出電流とを加算して新しい電流を演算し、その電流から最終電流極性を判断することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。図1は本発明の実施の形態に係るデッドタイム補償法に関する全体ブロック図である。図2は本発明の実施の形態に係るデッドタイム補償手段に関する詳細ブロック図である。従来と同一名称にはできるだけ同一符号を付け重複説明を省略する。図1が従来と異なる部分は、デッドタイム補償手段1を備える部分である。
図1の全体ブロック図において、電流検出手段13はACモータ11へ流れる電流をサンプリング区間毎に検出し、偏差電流演算手段15は指令電流I*から検出電流Ifbを差し引いて偏差電流ΔIを計算し、電流制御部16は偏差電流ΔIにゲインを掛け算して指令電圧V*の計算を行う。
【0009】
デッドタイム補償手段1は電圧加算演算手段105、補償電圧絶対値を演算する補償電圧絶対値手段104、最終電流極性判断手段103、指令電流極性判断手段102、検出電流極性判断手段101から構成される。図2の詳細ブロック図においては、指令電流極性判断手段102は指令電流から指令電流極性を判断し、検出電流極性判断手段101は検出電流から検出電流極性を判断する。そして指令電流極性判断手段102と検出電流極性判断手段101の判断結果は、最終電流極性判断手段103へ入力される。
【0010】
【表1】

Figure 2004112879
【0011】
最終電流極性判断手段103では、表1のように前記指令電流極性と前記検出電流極性が同一である場合(表1の条件1と条件4)は最終電流極性PorMとしてそのまま確定する。
しかし、前記指令電流極性と前記検出電流極性が異なる場合(表1の条件2と条件3)は指令電流と検出電流とを加算して新しい電流を演算し、その電流から最終電流極性PorMを判断する。
その電流極性値PorM(正の場合は+1、負の場合は−1)を補償電圧絶対値ABSVcompに掛け算してデッドタイム補償電圧Vcompを計算する。最後に電流制御部16で求めた指令電圧V*にデッドタイム補償電圧Vcompを加えてPWM電力変換装置へ入力する最終指令電圧Vf*を計算する。
【0012】
【発明の効果】
以上述べたように、本発明によれば、ACモータへ流れる電流を検出する電流検出手段と、指令電流と検出電流とから偏差電流を計算する偏差電流演算手段と、前記偏差電流から指令電圧の演算を行う電流制御部と、電流極性を決める電流極性判断手段を有し、デッドタイム補償電圧を出力するデッドタイム補償手段と、前記電流制御部から計算された指令電圧に前記デッドタイム補償電圧を加えて最終指令電圧を演算する電圧加算演算手段と、前記電圧加算演算手段により得られた最終指令電圧の情報を用い直流電圧から交流電圧への変換を行うPWM電力変換装置と、を備えたACモータ駆動装置において、前記デッドタイム補償手段は、指令電流から指令電流極性を判断する指令電流極性判断手段と、検出電流から検出電流極性を判断する検出電流極性判断手段と、前記指令電流極性と前記検出電流極性との情報から最終電流極性を判断する最終電流極性判断手段とを有し、また、前記最終電流極性判断手段では、前記指令電流極性と前記検出電流極性が同一である場合は最終電流極性としてそのまま確定することと、異なる場合は前記指令電流と前記検出電流とを加算して新しい電流を演算し、その電流から最終電流極性を判断する。すなわち、検出電流極性に指令電流極性の情報を加え、最終的な電流極性判断を求めることで、ゼロクロス付近で極性判断のチャタリング現象が低減でき、速度及び電流ひずみの最小化ができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るデッドタイム補償法に関する全体ブロック図である。
【図2】本発明の実施の形態に係るデッドタイム補償法に関する詳細ブロック図である。
【図3】従来デッドタイム補償法の全体ブロック図である。
【符号の説明】
* 指令を表す添字
Vdc インバータの直流電圧
V*  指令電圧
Vf* 最終指令電圧
I*  指令電流
Ifb 検出電流
ΔI 偏差電流
ω 速度
ωfb 検出速度
θ 位置
θfb 検出位置
td  デッドタイム時間
fc  スイッチングキャリア周波数(=1/tc)
tc スイッチングキャリア周期時間
ABS 絶対値
ABSVloss 損失電圧絶対値
ABSVcomp 補償電圧絶対値
Vcomp デッドタイム補償電圧
PorM 電流極性の値(正と負、又は−1と+1)
11 ACモータ
12 エンコーダ(位置センサー)
13 電流検出手段(電流センサー)
14 速度演算手段
15 電流偏差演算手段
16 電流制御部(PI制御部)
17 PWM電力変換装置
18 直流電圧
1 本発明のデッドタイム補償手段
2 従来のデッドタイム補償手段
101 検出電流極性判断手段
102 指令電流極性判断手段
103 最終電流極性判断手段
104、204 補償電圧絶対値
105、205 電圧加算演算手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an AC motor driving device, and more particularly, to dead time compensation of a PWM inverter.
[0002]
[Prior art]
In the conventional voltage type inverter, a dead time is provided to prevent a current short circuit accident due to simultaneous conduction of the upper and lower switching elements. Although the PWM inverter has high current control performance with the number of times of switching, it is easily affected by the dead time. In particular, the influence on the current control during low-speed and light-load operation is large, which also contributes to current distortion and torque pulsation.
In order to compensate for the loss voltage caused by the dead time setting of the inverter device, first, it is necessary to accurately grasp the absolute value of the loss voltage ABSVloss by the dead time setting, which can be calculated by equation (1) (Japanese Patent Application Laid-Open No. H11-98899). Publication). Further, the absolute value of the loss voltage can be handled as the absolute value of the dead time compensation voltage ABSVcomp.
ABSVloss = ABSVcomp = td × fc × Vdc = (td / tc) × Vdc (1)
Here, td is a dead time (on delay time),
fc is the switching carrier frequency (= 1 / tc),
tc is a switching carrier cycle time,
Vdc is a DC voltage.
[0003]
In the dead time compensation method, compensation can be performed simply from information of the current polarity value (positive or negative) and the dead time compensation voltage absolute value ABSVcomp. This is the most important processing in the dead time compensation algorithm, and requires accurate polarity judgment. In the conventional method for determining the current polarity, a detection current is often used.
FIG. 3 is an overall block diagram of a conventional dead time compensation method. In the figure, 2 is a dead time compensating means, 11 is an AC motor, 12 is an encoder which is a position sensor, 13 is a current detecting means which is a current sensor, 14 is a speed calculating means, 15 is a current deviation calculating means, and 16 is a PI control. A current control unit 17 is a PWM power converter, 18 is a DC voltage, 201 is a current polarity judging unit, 204 is a compensation voltage absolute value, and 205 is a voltage addition calculating unit.
[0004]
Next, the operation of FIG. 3 will be described. The current detection means 13 detects the current flowing to the AC motor 11 for each sampling interval, the deviation current calculation means 15 calculates the deviation current ΔI by subtracting the detection current Ifb from the command current I *, and the current control section 16 calculates the deviation current ΔI. The command voltage V * is calculated by multiplying the current ΔI by a gain. The current polarity determining means 201 determines the current polarity using the detected current Ifb, and then multiplies the current polarity value PorM (+1 or -1) by the absolute value of the compensation voltage ABSVcomp to obtain the dead time. The operation of the compensation voltage Vcomp is performed. Finally, the voltage addition calculating means 205 calculates the final command voltage Vf * by adding the dead time compensation voltage Vcomp to the command voltage V *, and inputs the calculated command voltage Vf * to the PWM power conversion device 17 to drive the AC motor 11. I have.
[0005]
[Patent Document 1]
JP-A-11-98899 (page 2, formula (1))
[Patent Document 2]
JP 2000-175491 A
[Problems to be solved by the invention]
However, in the related art, a detection current is used as a polarity determination current. Since the detection current of the polarity determination current includes switching noise, a chattering phenomenon occurs near the zero cross, and a determination error of the current polarity is likely to occur. Therefore, when the above polarity determination current is used, there is a problem that the current polarity is not correctly determined and the speed and current characteristics are further adversely affected (increase in distortion) as compared with a case where dead time compensation is not performed.
Therefore, an object of the present invention is to provide an AC motor driving device having a dead time compensating means for obtaining a polarity judging current capable of reducing the chattering phenomenon near the zero cross and minimizing the speed and current distortion. .
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a current detecting means for detecting a current flowing to an AC motor, a deviation current calculating means for calculating a deviation current from a command current and a detected current, and a calculation of a command voltage from the deviation current. A current control unit for performing the operation, a current polarity determining unit for determining a current polarity, and a dead time compensating unit for outputting a dead time compensating voltage; and adding the dead time compensating voltage to a command voltage calculated from the current control unit. AC motor drive comprising: a voltage addition calculating means for calculating a final command voltage; and a PWM power converter for converting a DC voltage to an AC voltage using information on the final command voltage obtained by the voltage adding calculation means. In the device,
The dead time compensating means includes a command current polarity determining means for determining a command current polarity from a command current, a detection current polarity determining means for determining a detection current polarity from a detection current, and a command current polarity and the detection current polarity. Final current polarity determining means for determining the final current polarity from the information.
Further, in the final current polarity determining means, when the command current polarity and the detection current polarity are the same, the final current polarity is determined as it is, and when different, the command current and the detection current are added. A new current is calculated, and a final current polarity is determined from the new current.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall block diagram relating to a dead time compensation method according to an embodiment of the present invention. FIG. 2 is a detailed block diagram of the dead time compensating means according to the embodiment of the present invention. The same reference numerals as in the related art are assigned the same reference numerals as much as possible, and redundant description will be omitted. FIG. 1 differs from the prior art in that it includes a dead time compensating means 1.
In the overall block diagram of FIG. 1, a current detection means 13 detects a current flowing to the AC motor 11 for each sampling interval, and a deviation current calculation means 15 calculates a deviation current ΔI by subtracting a detection current Ifb from a command current I *. The current controller 16 calculates the command voltage V * by multiplying the deviation current ΔI by a gain.
[0009]
The dead time compensating means 1 includes a voltage adding calculating means 105, a compensating voltage absolute value means 104 for calculating a compensating voltage absolute value, a final current polarity determining means 103, a command current polarity determining means 102, and a detected current polarity determining means 101. . In the detailed block diagram of FIG. 2, the command current polarity determining means 102 determines the command current polarity from the command current, and the detected current polarity determining means 101 determines the detected current polarity from the detected current. Then, the judgment results of the command current polarity judging means 102 and the detected current polarity judging means 101 are input to the final current polarity judging means 103.
[0010]
[Table 1]
Figure 2004112879
[0011]
When the command current polarity and the detected current polarity are the same as shown in Table 1 (conditions 1 and 4 in Table 1), the final current polarity determination means 103 determines the final current polarity PorM as it is.
However, when the command current polarity and the detection current polarity are different (conditions 2 and 3 in Table 1), a new current is calculated by adding the command current and the detection current, and the final current polarity PorM is determined from the current. I do.
The dead time compensation voltage Vcomp is calculated by multiplying the current polarity value PorM (+1 for a positive value and -1 for a negative value) by the absolute value of the compensation voltage ABSVcomp. Finally, the dead time compensation voltage Vcomp is added to the command voltage V * obtained by the current control unit 16 to calculate a final command voltage Vf * to be input to the PWM power converter.
[0012]
【The invention's effect】
As described above, according to the present invention, current detection means for detecting a current flowing to an AC motor, deviation current calculation means for calculating a deviation current from a command current and a detection current, and a command voltage A current control unit for performing an operation; a current polarity determination unit for determining a current polarity; a dead time compensation unit for outputting a dead time compensation voltage; and the dead time compensation voltage to a command voltage calculated from the current control unit. In addition, an AC comprising: a voltage addition calculating means for calculating a final command voltage; and a PWM power converter for converting a DC voltage to an AC voltage using information on the final command voltage obtained by the voltage adding calculation means. In the motor driving device, the dead time compensating means includes a command current polarity determining means for determining a command current polarity from a command current, and a detected current polarity based on a detected current. Detecting current polarity determining means, and final current polarity determining means for determining a final current polarity from information on the command current polarity and the detected current polarity. When the polarity and the detected current polarity are the same, it is determined as it is as the final current polarity, and when different, the command current and the detected current are added to calculate a new current, and the final current polarity is calculated from the current. to decide. That is, by adding information on the command current polarity to the detected current polarity and obtaining the final current polarity judgment, the chattering phenomenon of the polarity judgment near the zero crossing can be reduced, and the speed and current distortion can be minimized. .
[Brief description of the drawings]
FIG. 1 is an overall block diagram related to a dead time compensation method according to an embodiment of the present invention.
FIG. 2 is a detailed block diagram related to a dead time compensation method according to the embodiment of the present invention.
FIG. 3 is an overall block diagram of a conventional dead time compensation method.
[Explanation of symbols]
* Subscript Vdc representing the command DC voltage V of the inverter V * Command voltage Vf * Final command voltage I * Command current Ifb Detection current ΔI Deviation current ω Speed ωfb Detection speed θ Position θfb Detection position td Dead time time fc Switching carrier frequency (= 1 / Tc)
tc Switching carrier cycle time ABS Absolute value ABSVloss Loss voltage absolute value ABSVcomp Compensation voltage absolute value Vcomp Dead time compensation voltage PorM Current polarity value (positive and negative, or -1 and +1)
11 AC motor 12 Encoder (position sensor)
13 Current detection means (current sensor)
14 Speed calculation means 15 Current deviation calculation means 16 Current control unit (PI control unit)
17 PWM power converter 18 DC voltage 1 Dead time compensating means 2 of the present invention 2 Dead time compensating means 101 Conventional detecting current polarity determining means 102 Command current polarity determining means 103 Final current polarity determining means 104, 204 Compensation voltage absolute value 105, 205 voltage addition operation means

Claims (2)

ACモータへ流れる電流を検出する電流検出手段と、指令電流と検出電流とから偏差電流を計算する偏差電流演算手段と、前記偏差電流から指令電圧の演算を行う電流制御部と、電流極性を決める電流極性判断手段を有し、デッドタイム補償電圧を出力するデッドタイム補償手段と、前記電流制御部から計算された指令電圧に前記デッドタイム補償電圧を加えて最終指令電圧を演算する電圧加算演算手段と、前記電圧加算演算手段により得られた最終指令電圧の情報を用い直流電圧から交流電圧への変換を行うPWM電力変換装置とを備えたACモータ駆動装置において、
前記デッドタイム補償手段は、
指令電流から指令電流極性を判断する指令電流極性判断手段と、
検出電流から検出電流極性を判断する検出電流極性判断手段と、
前記指令電流極性と前記検出電流極性との情報から最終電流極性を判断する最終電流極性判断手段とを有することを特徴とするACモータ駆動装置。
Current detection means for detecting a current flowing to the AC motor; deviation current calculation means for calculating a deviation current from the command current and the detection current; a current control unit for calculating a command voltage from the deviation current; and determining a current polarity Dead time compensating means having current polarity determining means and outputting a dead time compensating voltage, and voltage adding calculating means for calculating the final command voltage by adding the dead time compensating voltage to the command voltage calculated from the current control unit An AC motor drive device comprising: a PWM power converter that converts a DC voltage into an AC voltage using information on the final command voltage obtained by the voltage addition calculator.
The dead time compensating means,
Command current polarity determining means for determining the command current polarity from the command current;
Detection current polarity determination means for determining the detection current polarity from the detection current;
An AC motor driving device, comprising: final current polarity determining means for determining a final current polarity from information on the command current polarity and the detected current polarity.
前記最終電流極性判断手段では、前記指令電流極性と前記検出電流極性が同一である場合は最終電流極性としてそのまま確定し、異なる場合は前記指令電流と前記検出電流とを加算して新しい電流を演算し、その電流から最終電流極性を判断することを特徴とする請求項1記載のACモータ駆動装置。The final current polarity determining means determines the final current polarity as it is when the command current polarity and the detection current polarity are the same, and calculates a new current by adding the command current and the detection current when different. 2. The AC motor driving device according to claim 1, wherein the final current polarity is determined from the current.
JP2002269336A 2002-09-17 2002-09-17 Ac motor driver Pending JP2004112879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269336A JP2004112879A (en) 2002-09-17 2002-09-17 Ac motor driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269336A JP2004112879A (en) 2002-09-17 2002-09-17 Ac motor driver

Publications (1)

Publication Number Publication Date
JP2004112879A true JP2004112879A (en) 2004-04-08

Family

ID=32267286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269336A Pending JP2004112879A (en) 2002-09-17 2002-09-17 Ac motor driver

Country Status (1)

Country Link
JP (1) JP2004112879A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014501A (en) * 2004-06-25 2006-01-12 Fuji Electric Fa Components & Systems Co Ltd Controller for voltage-type inverter
WO2008053538A1 (en) 2006-10-31 2008-05-08 Mitsubishi Electric Corporation Power converter
EP1921740A2 (en) * 2006-11-07 2008-05-14 Nissan Motor Manufacturing (UK) Ltd. Power converter control
JP2010088266A (en) * 2008-10-02 2010-04-15 Omron Corp Method and device for generating signal of switching voltage type inverter
JP2010268583A (en) * 2009-05-13 2010-11-25 Shindengen Electric Mfg Co Ltd Inverter
JP2012186939A (en) * 2011-03-07 2012-09-27 Shindengen Electric Mfg Co Ltd Inverter device
WO2019028444A1 (en) * 2017-08-04 2019-02-07 Faraday&Future Inc. Dead time compensation using an error voltage calculation
JP2020129931A (en) * 2019-02-12 2020-08-27 株式会社明電舎 Unit parallel inverter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014501A (en) * 2004-06-25 2006-01-12 Fuji Electric Fa Components & Systems Co Ltd Controller for voltage-type inverter
JP4581508B2 (en) * 2004-06-25 2010-11-17 富士電機システムズ株式会社 Control device for voltage source inverter
WO2008053538A1 (en) 2006-10-31 2008-05-08 Mitsubishi Electric Corporation Power converter
CN101523712B (en) * 2006-10-31 2012-06-13 三菱电机株式会社 Power converter
US8035334B2 (en) 2006-10-31 2011-10-11 Mitsubishi Electric Corporation Electric power converter
JP4786717B2 (en) * 2006-10-31 2011-10-05 三菱電機株式会社 Power converter
EP1921740A3 (en) * 2006-11-07 2010-12-22 Nissan Motor Manufacturing (UK) Ltd. Power converter control
EP1921740A2 (en) * 2006-11-07 2008-05-14 Nissan Motor Manufacturing (UK) Ltd. Power converter control
JP2010088266A (en) * 2008-10-02 2010-04-15 Omron Corp Method and device for generating signal of switching voltage type inverter
JP2010268583A (en) * 2009-05-13 2010-11-25 Shindengen Electric Mfg Co Ltd Inverter
JP2012186939A (en) * 2011-03-07 2012-09-27 Shindengen Electric Mfg Co Ltd Inverter device
WO2019028444A1 (en) * 2017-08-04 2019-02-07 Faraday&Future Inc. Dead time compensation using an error voltage calculation
JP2020129931A (en) * 2019-02-12 2020-08-27 株式会社明電舎 Unit parallel inverter
JP7088063B2 (en) 2019-02-12 2022-06-21 株式会社明電舎 Unit parallel inverter

Similar Documents

Publication Publication Date Title
JP6045765B1 (en) Power conversion device and vehicle drive system using the same
JP4749874B2 (en) Power conversion device and motor drive device using the same
US8084986B2 (en) Dead-time compensation apparatus of PWM inverter and method thereof
JP4759422B2 (en) Power converter system and washing machine using the same
JP4866216B2 (en) Power converter
US7560897B2 (en) Current controller and current offset correction
EP2219290B1 (en) Ac motor controller
US8878477B2 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
JP2003189599A (en) Voltage conversion unit and voltage conversion method
WO2009001738A1 (en) Motor drive system and its control method
JPWO2019008676A1 (en) Inverter device and electric power steering device
KR101091745B1 (en) Motor controlling apparatus and controlling method of the same
JP4984472B2 (en) Control device for electric power steering device
EP2779433B1 (en) Motor drive device
JP4522273B2 (en) Motor control device and motor drive system having the same
JP2004112879A (en) Ac motor driver
JP2002300800A (en) Power converter
JP2010268629A (en) Inverter device
JP2005229717A (en) Current sensorless-control method and device of synchronous motor
JP4967767B2 (en) Electric power steering control device
JP2004061217A (en) Current detecting device, method thereof, and electric motor
JP2008079399A (en) Vehicle controller
JP3954503B2 (en) Electric vehicle power converter
JP2004015856A (en) Ac motor driving device
JP2022090317A (en) Inverter control device, and control method of inverter