JP2006014426A - Controller for ac motor - Google Patents

Controller for ac motor Download PDF

Info

Publication number
JP2006014426A
JP2006014426A JP2004184916A JP2004184916A JP2006014426A JP 2006014426 A JP2006014426 A JP 2006014426A JP 2004184916 A JP2004184916 A JP 2004184916A JP 2004184916 A JP2004184916 A JP 2004184916A JP 2006014426 A JP2006014426 A JP 2006014426A
Authority
JP
Japan
Prior art keywords
voltage
value
phase
rectangular wave
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004184916A
Other languages
Japanese (ja)
Other versions
JP4539192B2 (en
Inventor
Mitsuhiro Shoji
満博 正治
Takaaki Karikomi
卓明 苅込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004184916A priority Critical patent/JP4539192B2/en
Publication of JP2006014426A publication Critical patent/JP2006014426A/en
Application granted granted Critical
Publication of JP4539192B2 publication Critical patent/JP4539192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the offset of a current by reducing the slippage of voltage SW timing caused by the detection error of a position detector, in a controller for an AC motor which performs rectangular wave voltage drive. <P>SOLUTION: This controller for an AC motor computes the electric angular velocity ω, using the electric angle θ detected with a position detector 6, and divides the reference phase difference from the start of one voltage SW pattern to the end by the electric angular velocity ω thereby converting it into a reference phase difference time t'. The controller divides the phase difference (θsw<SP>*</SP>-θ next) between the electric angle target value θsw<SP>*</SP>in the switching of the voltage SW pattern at the next control operation and the electric angle predicted value θnext at the next control operation by the electric angle velocity ω thereby converting it into a phase difference error time Δt. The controller also corrects the above reference phase error time with the value being obtained by multiplying this phase error time by a coefficient K in a range larger than 0 and smaller than 1, and sets carrier frequency, according to the value after correction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は交流電動機の制御装置に関し、特に矩形波電圧駆動でインバータを制御する制御装置に関する。   The present invention relates to a control device for an AC motor, and more particularly to a control device that controls an inverter with a rectangular wave voltage drive.

従来における交流電動機の制御装置としては下記特許文献1に記載のものがある。
このような交流電動機の制御方法で、電動機に電流を供給するインバータを制御する方式として、PWM電圧駆動方式では出力電圧が制限を受ける動作領域等において用いられる矩形波電圧駆動方式がある。特許文献1に記載の矩形波電圧駆動方式においては、一定間隔のクロックで動作するタイマカウンタを使用し、カウント値が目標値に達する毎に電圧スイッチングパターン(以下、電圧SWパターンと略記)を切り替えて出力している。電圧SWパターンの開始から終わりまでの位相差目標値は、電圧SWパターン一区間の開始から終わりまでの理想的な基準位相差を求め、目標トルクと推定トルクの偏差に基づく位相誤差により基準位相差を補正して求めている。そしてカウンタ目標値は、位相差目標値を時間換算した値に従って決めており、電気角θを求める位置検出器を不要としている。
As a conventional control device for an AC motor, there is one described in Patent Document 1 below.
As a method for controlling the inverter that supplies current to the motor by such an AC motor control method, the PWM voltage drive method includes a rectangular wave voltage drive method that is used in an operation region where the output voltage is limited. In the rectangular wave voltage driving method described in Patent Document 1, a timer counter that operates with a clock at a fixed interval is used, and a voltage switching pattern (hereinafter abbreviated as a voltage SW pattern) is switched every time the count value reaches a target value. Is output. The phase difference target value from the start to the end of the voltage SW pattern is obtained as an ideal reference phase difference from the start to the end of one section of the voltage SW pattern, and the reference phase difference is determined by the phase error based on the deviation between the target torque and the estimated torque. It is obtained by correcting. The counter target value is determined according to a value obtained by time-converting the phase difference target value, and a position detector for obtaining the electrical angle θ is unnecessary.

特開2002−359996号公報JP 2002-359996 A

上記のように、従来例においては、位相差基準値をトルク偏差に基づく位相誤差で補正することによって位相差目標値を算出するという構成になっていたため、トルク推定を行わず、レゾルバ等の位置検出器の検出量に基づいて位相差目標値を決めるような制御を行う場合には、位置検出器の検出誤差によって電圧SWタイミングにズレが生じ、電流にオフセットが発生する場合がある、という問題があった。
本発明は上記の問題を解決するためになされたものであり、矩形波電圧駆動制御において、位置検出器の検出誤差に起因する電圧SWタイミングのズレを減少させ、電流のオフセットを抑制した交流電動機の制御装置を提供することを目的とする。
As described above, in the conventional example, the phase difference target value is calculated by correcting the phase difference reference value with the phase error based on the torque deviation. When performing control such that the phase difference target value is determined based on the detection amount of the detector, the voltage SW timing may be shifted due to the detection error of the position detector, and the current may be offset. was there.
The present invention has been made to solve the above-described problem, and in the rectangular wave voltage drive control, an AC motor in which a deviation in voltage SW timing caused by a detection error of a position detector is reduced and a current offset is suppressed. An object of the present invention is to provide a control device.

上記の目的を達成するため、本発明においては、位置検出器で検出した電気角θを用いて電気角速度ωを算出し、一つの電圧SWパターンの開始から終わりまでの基準位相差を電気角速度ωで除算することにより基準位相差時間t’に換算し、次回の制御演算時の電圧SWパターン切り替えの電気角目標値θswと次回の制御演算時における電気角予測値θnextとの位相誤差(θsw−θnext)を電気角速度ωで除算することにより位相誤差時間△tに換算し、この位相誤差時間に0より大で1以下の範囲の係数Kを乗じた値で前記基準位相差時間を補正し、補正後の値に応じてキャリア周期を設定するように構成している。 In order to achieve the above object, in the present invention, the electrical angular velocity ω is calculated using the electrical angle θ detected by the position detector, and the reference phase difference from the start to the end of one voltage SW pattern is calculated as the electrical angular velocity ω. Is converted into a reference phase difference time t ′, and the phase error (θsw) between the electrical angle target value θsw * for switching the voltage SW pattern at the next control calculation and the predicted electrical angle θnext at the next control calculation is calculated. * −θnext) is divided by electrical angular velocity ω to convert to phase error time Δt, and the reference phase difference time is corrected by a value obtained by multiplying this phase error time by a coefficient K in a range greater than 0 and less than or equal to 1. The carrier period is set in accordance with the corrected value.

係数Kの値を適宜設定することにより、位置検出器の誤差が電圧SWパターン切り替えタイミングの誤差として現われる量を少なく出来るので、位置検出器の誤差による電圧SWパターンの切り替えタイミングのズレを減少させ、電流のオフセットを抑制できる、という効果がある。   By appropriately setting the value of the coefficient K, it is possible to reduce the amount that the error of the position detector appears as the error of the voltage SW pattern switching timing, thereby reducing the deviation of the switching timing of the voltage SW pattern due to the error of the position detector, There is an effect that current offset can be suppressed.

図1は、この発明を適用する交流電動機の制御装置の構成を示す一実施例のブロック図である。
図1において、電圧位相生成手段1では、外部から入力されるトルク指令値Tおよび現在の回転速度ωを指標としてテーブル参照により求めた電圧位相目標値αを出力する。具体的には、例えば制御の対象となる電動機の評価試験等において、トルク指令値Tと回転速度ωとに対する電圧位相目標値αの値をテーブルデータとして求めておくことにより、そのときのトルク指令値Tと回転速度ωに対応した電圧位相目標値αの値をテーブル参照によって求めることができる。
FIG. 1 is a block diagram of an embodiment showing a configuration of an AC motor control apparatus to which the present invention is applied.
In FIG. 1, the voltage phase generating means 1 outputs a voltage phase target value α * obtained by referring to a table using an externally input torque command value T * and the current rotational speed ω as indices. Specifically, for example, in the evaluation test of the electric motor to be controlled, the value of the voltage phase target value α * with respect to the torque command value T * and the rotational speed ω is obtained as table data. The value of the voltage phase target value α * corresponding to the torque command value T * and the rotation speed ω can be obtained by referring to the table.

制御手段2は、矩形波制御手段2−1とPWM制御手段2−2からなる。本発明は矩形波電圧駆動に関するものなので、以下、矩形波制御手段2−1について主として説明し、PWM制御手段2−2については必要のある個所のみを説明する。   The control unit 2 includes a rectangular wave control unit 2-1 and a PWM control unit 2-2. Since the present invention relates to rectangular wave voltage driving, the rectangular wave control means 2-1 will be mainly described below, and only necessary portions of the PWM control means 2-2 will be described.

矩形波制御手段2−1は、電圧位相生成手段1から出力された電圧位相目標値αと、位置検出器6(例えばレゾルバ)で検出された電動機5の電気角θと、電気角θを入力とする速度演算手段7で求めた電気角速度ω(回転速度)とを入力し、オン/オフ信号の駆動信号Pを演算して出力する(詳細後述)。この駆動信号Pでインバータ3を制御し、インバータ3から振幅が電源電圧Vdcか0(または+Vdc/2か−Vdc/2)の3相の矩形波電圧Vu、Vv、、Vwを出力し、それによって3相の電動機5を駆動する。 The rectangular wave control means 2-1 determines the voltage phase target value α * output from the voltage phase generation means 1, the electrical angle θ of the electric motor 5 detected by the position detector 6 (for example, a resolver), and the electrical angle θ. The electric angular velocity ω (rotational speed) obtained by the velocity calculating means 7 as an input is input, and the drive signal P of the on / off signal is calculated and output (details will be described later). The inverter 3 is controlled by this drive signal P, and three-phase rectangular wave voltages Vu, Vv, and Vw having an amplitude of the power supply voltage Vdc or 0 (or + Vdc / 2 or −Vdc / 2) are output from the inverter 3. To drive the three-phase motor 5.

上記の電圧位相生成手段1および制御手段2はコンピュータ等で構成され、所定周期で繰り返し演算を行って駆動信号Pを演算する。
上記の駆動信号Pはオン/オフ信号であり、インバータ3の出力は駆動信号Pに同期して出力される。つまり、駆動信号Pのオン/オフの切り替わるタイミングがそのまま矩形波電圧の切り替わるタイミングとなる(厳密にはオンとオフが逆になることもある)。そして矩形波電圧駆動では、印加する電圧振幅は電源電圧Vdcか0(+Vdc/2か−Vdc/2)であって振幅を制御できないので、電圧位相を電圧位相目標値αに追従させるように制御することにより、与えられたトルク指令値Tを実現するように電動機5のトルク制御を行う。つまりトルクと電圧位相には相関があるので、電圧位相を制御することによってトルクを制御することが出来る。この電圧位相を制御するには後述する電圧SWパターンを切り替えることによって行う。
The voltage phase generation means 1 and the control means 2 are constituted by a computer or the like, and calculate the drive signal P by repeatedly performing calculations at a predetermined cycle.
The drive signal P is an on / off signal, and the output of the inverter 3 is output in synchronization with the drive signal P. That is, the timing at which the drive signal P is switched on / off is the timing at which the rectangular wave voltage is switched as it is (strictly speaking, on and off may be reversed). In the rectangular wave voltage drive, the applied voltage amplitude is the power supply voltage Vdc or 0 (+ Vdc / 2 or −Vdc / 2) and the amplitude cannot be controlled, so that the voltage phase follows the voltage phase target value α *. By controlling, the torque control of the electric motor 5 is performed so as to realize the given torque command value T * . That is, since there is a correlation between the torque and the voltage phase, the torque can be controlled by controlling the voltage phase. This voltage phase is controlled by switching a voltage SW pattern described later.

なお、制御手段2におけるPWM制御手段2−2は、PWM電圧駆動を行う領域では、電流センサ4で検出した検出電流Iu、Ivを用いて一般的なトルク制御演算を行い、インバータ3をPWM信号で制御し、電動機5の各相に与える電圧値を変えてトルク制御を行う。上記のPWM制御における一般的なトルク制御演算とは、例えば、入力したトルク指令値と電動機5の回転角度とに基づいてd軸電流指令値とq軸電流指令値を算出し、d軸電流指令値と実際のd軸電流値との偏差に基づき比例積分演算を行ってd軸電圧指令値を演算し、同様にq軸電流指令値と実際のq軸電流値との偏差に基づいてq軸電圧指令値を演算する。なお、実際のd軸電流値とq軸電流値は、検出電流Iu、Iv(IwはIuとIvから算出可能)から3相2相変換を行って求める。そしてd軸電圧指令値とq軸電圧指令値を2相3相変換し、3相電圧指令値を演算する。この3相電圧指令値からPWM信号のデューティ指令値を演算し、このデューティ指令値と所定のキャリア信号(三角波や鋸歯状波など)とを比較することにより、駆動信号Pを求めるものである。   Note that the PWM control means 2-2 in the control means 2 performs a general torque control calculation using the detected currents Iu and Iv detected by the current sensor 4 in the region where the PWM voltage drive is performed, and the inverter 3 outputs the PWM signal. The torque is controlled by changing the voltage value applied to each phase of the electric motor 5. The general torque control calculation in the above-described PWM control is, for example, calculating a d-axis current command value and a q-axis current command value based on the input torque command value and the rotation angle of the electric motor 5, and d-axis current command The proportional-integral calculation is performed based on the deviation between the value and the actual d-axis current value to calculate the d-axis voltage command value, and the q-axis is similarly calculated based on the deviation between the q-axis current command value and the actual q-axis current value. Calculate the voltage command value. The actual d-axis current value and q-axis current value are obtained by performing three-phase to two-phase conversion from the detected currents Iu and Iv (Iw can be calculated from Iu and Iv). Then, the d-axis voltage command value and the q-axis voltage command value are two-phase / three-phase converted to calculate a three-phase voltage command value. The drive signal P is obtained by calculating the duty command value of the PWM signal from the three-phase voltage command value and comparing the duty command value with a predetermined carrier signal (such as a triangular wave or a sawtooth wave).

本発明で用いる矩形波電圧駆動を行う場合には、上記キャリア信号と比較するデューティ指令値のデューティ比を0[%]か100[%]のどちらかにセットすることにより矩形波(Vdcか0の2値)の駆動信号Pを生成することが出来る。なお、一般に、矩形波電圧駆動は、高電圧が必要な弱め界磁領域で用いられ、その他の領域ではPWM制御が用いられる。   When the rectangular wave voltage drive used in the present invention is performed, the rectangular wave (Vdc or 0) is set by setting the duty ratio of the duty command value to be compared with the carrier signal to 0 [%] or 100 [%]. Drive signal P can be generated. In general, the rectangular wave voltage drive is used in a field weakening region where a high voltage is required, and PWM control is used in other regions.

また、矩形波制御手段2−1において、電圧位相を電圧位相目標値αに追従させるように制御するには、電圧SWパターン(詳細後述)を電圧位相目標値αに応じて決まるタイミングで切り替えることによって行う。
電圧SWパターンやキャリア周期の設定はキャリア信号の三角波や鋸歯状波の谷で有効になり、同時に制御演算を開始するための割り込みが発生する。そして電圧SWパターン切り替えタイミングが適切になるように、キャリア周期を変更して矩形波のパターン(電圧SWパターン)が切り替わるタイミングを調整している。つまり、矩形波を作るためのキャリア信号(例えば三角波)の周期を、電圧SWパターンの切り替わり時点とキャリア信号の谷(割り込み演算開始時)とが一致するように制御することにより、電圧位相を電圧位相目標値αに追従させるように制御している。
In addition, in order to control the voltage phase to follow the voltage phase target value α * in the rectangular wave control means 2-1, the voltage SW pattern (detailed later) is determined at a timing determined according to the voltage phase target value α *. Do by switching.
The setting of the voltage SW pattern and the carrier cycle is effective at the trough of the triangular wave or sawtooth wave of the carrier signal, and at the same time, an interrupt for starting the control calculation is generated. The timing at which the rectangular wave pattern (voltage SW pattern) is switched is adjusted by changing the carrier cycle so that the voltage SW pattern switching timing is appropriate. In other words, the voltage phase is set to voltage by controlling the period of the carrier signal (for example, triangular wave) for creating the rectangular wave so that the switching point of the voltage SW pattern coincides with the valley of the carrier signal (at the start of the interrupt calculation). Control is performed to follow the phase target value α * .

(実施例)
以下、実施例におけるキャリア周期の設定方法について詳細に説明する。
図2は、キャリア周期の設定方法を示す信号波形図である。
図2においては、キャリア信号(三角波)の谷(時点tやt)において制御演算の割り込みが行われると共に、電圧SWパターンが切り替えられている。電圧SWパターンは、U、V、Wの三相各相に与える電圧のパターン、つまり三相の何れを“1”つまりVdcにし、何れを“0”にするかのパターンであり、例えば時点t〜tにおいては「Vu=1(Vdc)、Vv=0、Vw=0」になっている。
(Example)
Hereinafter, the carrier period setting method in the embodiment will be described in detail.
FIG. 2 is a signal waveform diagram showing a carrier period setting method.
In FIG. 2, the control calculation is interrupted and the voltage SW pattern is switched at the valleys (time points t 0 and t 1 ) of the carrier signal (triangular wave). The voltage SW pattern is a voltage pattern applied to each of the three phases U, V, and W, that is, a pattern of which one of the three phases is set to “1”, that is, Vdc, and which is set to “0”. 0 in ~t 1 is in a "Vu = 1 (Vdc), Vv = 0, Vw = 0 ".

時点tで行われる制御演算1では、次の電圧SWパターン一区間のキャリア周期Tnextを、制御演算1開始時の電気角θと電気角速度ω、現在のキャリア周期Tnowを用いて、以下のように算出する。 In the control calculation 1 performed at the time point t 0 , the carrier cycle Tnext of one section of the next voltage SW pattern is used as follows using the electrical angle θ and the electrical angular velocity ω at the start of the control calculation 1 and the current carrier cycle Tow. To calculate.

まず、(数1)に示すように、一つの電圧SWパターンの、開始から終わりまでの基準位相差π/3[rad]を電気角速度ωで除算することにより時間t’(基準位相差時間)に換算する。
t’=π/3ω …(数1)
次に、(数2)式に示すように、次の電圧SWパターン切り替え時の電気角予測値θnextを算出する。
θnext=θ+ωTnow …(数2)
なお、現在のキャリア周期Tnowは一つ前の制御演算において算出された次の電気角予測値θnextに相当する。
First, as shown in (Equation 1), a time t ′ (reference phase difference time) is obtained by dividing the reference phase difference π / 3 [rad] from the start to the end of one voltage SW pattern by the electrical angular velocity ω. Convert to.
t ′ = π / 3ω (Equation 1)
Next, as shown in the equation (2), an electrical angle predicted value θnext at the time of switching the next voltage SW pattern is calculated.
θnext = θ + ωTnow (Equation 2)
The current carrier cycle Tow corresponds to the next predicted electrical angle value θnext calculated in the previous control calculation.

次回の電圧SWパターン切り替えの電気角目標値θswは、電気角θと、電圧位相目標値αと、電動機に入力すべき電圧のSWパターンとの関係を示す図3に基づき、θsw0〜θsw5の内からθnextと最も近い電気角を選択し、また、現在の回転方向から次の電圧SWパターン切り替え以降に出力する電圧SWパターンを判定する。例えば、図3において、θnextが(2π/3)−αに最も近い値であった場合は、次回の電圧SWパターン切り替えの電気角目標値θswとしてθsw2を選択し、次回の電圧SWパターンは「Vu=−Vdc/2、Vv=−Vdc/2、Vw=+Vdc/2」のパターンとなる。 The electrical angle target value of the next voltage SW pattern switching .theta.sw *, based on FIG. 3 showing the electrical angle theta, the voltage phase target value alpha *, the relationship between the SW pattern of voltage to be input to the motor, θsw0 * ~ The electrical angle closest to θnext is selected from θsw5 * , and the voltage SW pattern output after the next voltage SW pattern switching is determined from the current rotation direction. For example, in FIG. 3, if θnext is the closest value to (2π / 3) −α * , θsw2 * is selected as the electrical angle target value θsw * for the next voltage SW pattern switching, and the next voltage SW The pattern is “Vu = −Vdc / 2, Vv = −Vdc / 2, Vw = + Vdc / 2”.

なお、図3においては、各電圧SWパターンが0を中心とした+Vdc/2と−Vdc/2の2値の矩形波なっている。これは電動機の3相巻線をY接続した場合には、電源電圧Vdc端子と接地端子との間に、U、V、Wの3相のうちの何れか2相の巻線が直列に接続された回路が接続されることになるので、中性点を0とすれば、Vdc端子側に接続された相に+Vdc/2、接地端子側に接続された相に−Vdc/2が印加されたものと表示することが出来ることによる。したがって前記図2に示したように、+Vdc/2を“1”(Vdc)、−Vdc/2を“0”で表してもよい。   In FIG. 3, each voltage SW pattern is a binary rectangular wave of + Vdc / 2 and −Vdc / 2 with 0 as the center. This is because, when the three-phase winding of the motor is Y-connected, any two of the three phases U, V, and W are connected in series between the power supply voltage Vdc terminal and the ground terminal. If the neutral point is set to 0, + Vdc / 2 is applied to the phase connected to the Vdc terminal side, and -Vdc / 2 is applied to the phase connected to the ground terminal side. It is because it can be displayed. Therefore, as shown in FIG. 2, + Vdc / 2 may be represented by “1” (Vdc) and −Vdc / 2 may be represented by “0”.

上記のように、次の電圧SWパターン切り替えの電気角目標値θswを、θsw0〜θsw5から電気角予測値θnextが最も近いものを選択して求め、θnextとθswの差分を位相誤差とし、下記(数3)式に示すように、上記位相誤差(θsw−θnext)を電気角速度ωで除算することにより時間△t(位相誤差時間)に換算する。
△t=(θsw−θnext)/ω …(数3)
次に、下記(数4)式、(数5)式に示すように、前記の基準位相差π/3を時間に換算したt’を、上記の△tに係数K(0より大で1以下の範囲の値)を乗じた値で補正して時間tとし、これを次回のキャリア周期Tnextとする。
t=t’+K・△t …(数4)
Tnext=t …(数5)
また、次回の電圧SWパターンは、次の電圧SWパターン切り替えの電気角目標値θswと回転方向から、図3に基づいて選択する。
As described above, the electrical angle target value of the next voltage SW pattern switching θsw *, θsw0 * ~θsw5 * calculated by selecting those electrical angle prediction value θnext is closest to the phase error a difference θnext and .theta.sw * As shown in the following (Equation 3), the phase error (θsw * −θnext) is divided by the electrical angular velocity ω to be converted into time Δt (phase error time).
Δt = (θsw * −θnext) / ω (Equation 3)
Next, as shown in the following (Expression 4) and (Expression 5), t ′ obtained by converting the reference phase difference π / 3 into time is set to the above Δt with a coefficient K (1 greater than 0). A time t is corrected by a value multiplied by a value in the following range), and this is set as the next carrier cycle Tnext.
t = t ′ + K · Δt (Equation 4)
Tnext = t (Equation 5)
Further, the next voltage SW pattern is selected based on FIG. 3 from the electrical angle target value θsw * of the next voltage SW pattern switching and the rotation direction.

上記のように位相誤差(θsw−θnext)を時間に換算した△tだけ補正してやれば、次回の電圧SWパターン切り替えタイミングをキャリア信号の谷に一致させるように制御することが出来る。したがって上記(数4)式の係数Kは、原理的にはK=1にすればよい。しかし、上記のように位相誤差時間△tはレゾルバ等の位置検出器で検出した電気角θに基づいており、かつ前記のように位置検出器の検出値には誤差が含まれている。そのため△tも位置検出器の誤差を含んだ値であり、K=1として一度に△t分の補正を行うと、かえって電圧SWパターン切り替えタイミングがずれてしまうおそれがある。そのため、係数Kの値を0より大で1以下(実際上は1より小)の範囲でなるべく小さな値(例えば0.1)に設定し、複数回の演算で順次、位相誤差を補正した方が制御成績が向上する。 If the phase error (θsw * −θnext) is corrected by Δt converted to time as described above, the next voltage SW pattern switching timing can be controlled to coincide with the valley of the carrier signal. Therefore, the coefficient K in the above equation (4) may be set to K = 1 in principle. However, as described above, the phase error time Δt is based on the electrical angle θ detected by a position detector such as a resolver, and the detection value of the position detector includes an error as described above. Therefore, Δt is also a value including an error of the position detector. If correction for Δt is performed at a time with K = 1, the voltage SW pattern switching timing may be shifted. Therefore, the value of the coefficient K is set to a value as small as possible (for example, 0.1) within the range of greater than 0 and less than 1 (actually less than 1), and the phase error is sequentially corrected by a plurality of operations. However, the control performance is improved.

以下、上記の問題について説明する。
図4は、位置検出器の誤差とそれによる電圧SWパターンのずれの一例を示した図であり、(a)は位置検出器の誤差特性を示す図、(b)は基準となる目標電圧波形図、(c)はK=1の場合の実電圧波形図、(d)はK=0.1の場合の実電圧波形図である。
Hereinafter, the above problem will be described.
4A and 4B are diagrams showing an example of the position detector error and the deviation of the voltage SW pattern caused by the error. FIG. 4A is a diagram showing the error characteristic of the position detector, and FIG. 4B is a reference target voltage waveform. (C) is an actual voltage waveform diagram in the case of K = 1, and (d) is an actual voltage waveform diagram in the case of K = 0.1.

図4(a)に示すように、位置検出器(例えばレゾルバ)では、破線1で示した実際の電気角θに対して、実線2で示した検出電気角は電気角周期とほぼ同じ周期の正弦波状の誤差を有している。
位置検出器で検出した電気角θがこのような誤差を含む場合には、図4(b)の目標電圧波形3に示すように、電気角が0[rad]とπ[rad]の時に電圧SWパターンを切り替えるように制御したい場合に、前記の係数をK=1として一度に△t分の補正を行うと、位置検出器の検出誤差△θ、△θの分がそのまま切り替えタイミングの誤差として現われるので、図4(c)の実電圧波形4に示すように、検出誤差△θ、△θだけ電圧SWパターン切替え電気角がずれてしまう。
As shown in FIG. 4A, in the position detector (for example, resolver), the detected electrical angle indicated by the solid line 2 is substantially the same as the electrical angle period with respect to the actual electrical angle θ indicated by the broken line 1. It has a sinusoidal error.
When the electrical angle θ detected by the position detector includes such an error, as shown in the target voltage waveform 3 of FIG. 4B, the voltage is obtained when the electrical angle is 0 [rad] and π [rad]. When it is desired to switch the SW pattern, if the coefficient is set to K = 1 and correction for Δt is performed at a time, the detection errors Δθ 1 and Δθ 2 of the position detector are directly used as the switching timing. Since it appears as an error, the voltage SW pattern switching electrical angle is shifted by detection errors Δθ 1 and Δθ 2 as shown in the actual voltage waveform 4 of FIG.

これに対して、K=0.1とした場合には、検出誤差△θ、△θの1/10だけ電圧SWパターン切替え電気角がずれるので、図4(d)の実電圧波形5に示すように、検出誤差△θ、△θによる電圧SWパターン切替え電気角のずれは小さくなる。 On the other hand, when K = 0.1, the voltage SW pattern switching electrical angle is shifted by 1/10 of the detection errors Δθ 1 and Δθ 2 , so that the actual voltage waveform 5 in FIG. As shown in FIG. 5, the deviation of the voltage SW pattern switching electrical angle due to the detection errors Δθ 1 and Δθ 2 becomes small.

図4(c)、(d)に示すように、電圧SWパターンにおける電圧のON区間とOFF区間の長さの不平衡が大きいほど、電流オフセットが大きくなるので、Kをできるだけ小さくすることで、電圧のONの区間とOFFの区間の長さの不平衡を抑制し、電流オフセットを減少させることができる。ただし、係数Kを小さくすると、電圧SWパターン切替え電気角のずれを補正するまでの演算回数は大きくなる。例えばK=0.1とした場合、定常状態であれば1回の制御演算で補正できるずれは1/10なので、全部のずれを補正するのに10回の制御演算が必要である。したがって位置検出器の検出誤差との均衡を考慮して0<K≦1の範囲で最適な値(例えば0.1程度)に設定する。なお、Kの値を小さくした場合には、急加減速時のような過渡状態においては十分な補正を行うことは困難であるが、急加減速時においては電圧SWパターン切替え電気角のずれが生じるのは或る程度やむを得ないので、定常状態における制御の安定性との兼ね合いで定める。   As shown in FIGS. 4C and 4D, the current offset increases as the unbalance between the lengths of the ON and OFF periods of the voltage in the voltage SW pattern increases. Therefore, by reducing K as much as possible, It is possible to suppress an unbalance between the lengths of the voltage ON section and the OFF section and reduce the current offset. However, if the coefficient K is decreased, the number of operations until the deviation of the voltage SW pattern switching electrical angle is corrected increases. For example, when K = 0.1, the deviation that can be corrected by one control calculation in a steady state is 1/10. Therefore, ten control calculations are required to correct all the deviations. Therefore, an optimum value (for example, about 0.1) is set in the range of 0 <K ≦ 1 in consideration of the balance with the detection error of the position detector. When the value of K is reduced, it is difficult to perform sufficient correction in a transient state such as during sudden acceleration / deceleration, but the voltage SW pattern switching electrical angle shifts during sudden acceleration / deceleration. Since it is unavoidable to occur to some extent, it is determined in consideration of the stability of control in a steady state.

本発明を適用する交流電動機の制御装置の構成を示す一実施例のブロック図。The block diagram of one Example which shows the structure of the control apparatus of the alternating current motor to which this invention is applied. 実施例1におけるキャリア周期の設定方法を説明するための信号波形図。FIG. 4 is a signal waveform diagram for explaining a carrier period setting method in the first embodiment. 電動機に入力すべき電圧のSWパターンを示す図。The figure which shows SW pattern of the voltage which should be input into an electric motor. 位置検出器の誤差とそれによる電圧SWパターンのずれの一例を示した図。The figure which showed an example of the error of a position detector, and the shift | offset | difference of the voltage SW pattern by it.

符号の説明Explanation of symbols

1…電圧位相生成手段 2…制御手段
2−1…矩形波制御手段 2−2…PWM制御手段
3…インバータ 4…電流センサ
5…電動機 6…位置検出器
7…速度演算手段

DESCRIPTION OF SYMBOLS 1 ... Voltage phase generation means 2 ... Control means 2-1 ... Rectangular wave control means 2-2 ... PWM control means 3 ... Inverter 4 ... Current sensor 5 ... Electric motor 6 ... Position detector 7 ... Speed calculation means

Claims (1)

電源電圧の最高値と最低値を所定の電圧スイッチングパターンで電動機巻線の各相に印加する矩形波電圧駆動を行う交流電動機の制御装置において、
外部から与えられたトルク指令値と現在の回転速度とに応じた電圧位相目標値を出力する電圧位相生成手段と、
電動機の電気角を検出する位置検出器と、
前記電圧位相目標値と、前記電動機の電気角と、前記電動機の電気角速度から前記電動機を駆動する矩形波の駆動信号を演算する矩形波制御手段と、
前記矩形波の駆動信号に応じた矩形波電圧を前記電動機巻線の各相に印加して前記電動機を駆動するインバータと、を備え、
前記矩形波制御手段は、キャリア信号の谷の位置毎に制御演算を開始するための割り込みを繰り返し発生すると共に前記電圧スイッチングパターンの設定と前記キャリア信号のキャリア周期の設定とを行い、
かつ、前記位置検出器で検出した電気角から電気角速度を算出し、一つの電圧スイッチングパターンの開始から終わりまでの基準位相差を電気角速度で除算することにより基準位相差時間に換算し、次回の制御演算時の電圧スイッチングパターン切り替えの電気角目標値と次回の制御演算時における電気角予測値との位相誤差を電気角速度で除算することにより位相誤差時間に換算し、この位相誤差時間に0より大で1以下の範囲の係数を乗じた値で前記基準位相差時間を補正し、補正後の値に応じて次回のキャリア周期を設定するように構成したことを特徴とする交流電動機の制御装置。
In a control device for an AC motor that performs rectangular wave voltage drive that applies the highest value and the lowest value of the power supply voltage to each phase of the motor winding in a predetermined voltage switching pattern,
Voltage phase generation means for outputting a voltage phase target value according to a torque command value given from the outside and the current rotation speed;
A position detector for detecting the electrical angle of the electric motor;
Rectangular wave control means for calculating a drive signal of a rectangular wave for driving the electric motor from the voltage phase target value, the electric angle of the electric motor, and the electric angular velocity of the electric motor;
An inverter that drives the electric motor by applying a rectangular wave voltage corresponding to the rectangular wave driving signal to each phase of the motor winding; and
The rectangular wave control means repeatedly generates an interrupt for starting a control calculation for each valley position of the carrier signal and performs setting of the voltage switching pattern and setting of a carrier period of the carrier signal,
In addition, the electrical angular velocity is calculated from the electrical angle detected by the position detector, and the reference phase difference from the start to the end of one voltage switching pattern is divided by the electrical angular velocity to be converted into the reference phase difference time. By dividing the phase error between the electrical angle target value for switching the voltage switching pattern during the control calculation and the predicted electrical angle value during the next control calculation by the electrical angular velocity, the phase error time is converted to zero. A control apparatus for an AC motor, wherein the reference phase difference time is corrected by a value obtained by multiplying a coefficient in a range of 1 or less and a next carrier cycle is set according to the corrected value. .
JP2004184916A 2004-06-23 2004-06-23 AC motor control device Expired - Fee Related JP4539192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184916A JP4539192B2 (en) 2004-06-23 2004-06-23 AC motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184916A JP4539192B2 (en) 2004-06-23 2004-06-23 AC motor control device

Publications (2)

Publication Number Publication Date
JP2006014426A true JP2006014426A (en) 2006-01-12
JP4539192B2 JP4539192B2 (en) 2010-09-08

Family

ID=35780996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184916A Expired - Fee Related JP4539192B2 (en) 2004-06-23 2004-06-23 AC motor control device

Country Status (1)

Country Link
JP (1) JP4539192B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047997A1 (en) 2007-10-09 2009-04-16 Toyota Jidosha Kabushiki Kaisha Ac motor control device and ac motor control method
JP2009112140A (en) * 2007-10-31 2009-05-21 Nissan Motor Co Ltd Control device of motor and its control method
US20100194317A1 (en) * 2009-02-05 2010-08-05 Toyota Jidosha Kabushiki Kaisha Alternating-current motor control apparatus
US8344680B2 (en) 2007-12-04 2013-01-01 Mitsubishi Electric Corporation Control apparatus of alternating-current motor
WO2017037791A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Motor drive device, and heat pump device and refrigerating and air-conditioning device using said motor drive device
EP2337213A4 (en) * 2008-10-17 2018-02-28 Toyota Jidosha Kabushiki Kaisha Motor actuation control device
CN114024482A (en) * 2021-11-04 2022-02-08 中车大连电力牵引研发中心有限公司 Method for correcting modulation wave and carrier phase under low carrier ratio condition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298992A (en) * 2000-04-18 2001-10-26 Toyota Motor Corp Motor controller
JP2002044974A (en) * 2000-07-24 2002-02-08 Yaskawa Electric Corp Torque ripple correction method and motor control circuit
JP2003274687A (en) * 2002-03-13 2003-09-26 Mitsubishi Electric Corp Controlling apparatus for rotating machine
JP2004222448A (en) * 2003-01-16 2004-08-05 Toyota Motor Corp Motor control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298992A (en) * 2000-04-18 2001-10-26 Toyota Motor Corp Motor controller
JP2002044974A (en) * 2000-07-24 2002-02-08 Yaskawa Electric Corp Torque ripple correction method and motor control circuit
JP2003274687A (en) * 2002-03-13 2003-09-26 Mitsubishi Electric Corp Controlling apparatus for rotating machine
JP2004222448A (en) * 2003-01-16 2004-08-05 Toyota Motor Corp Motor control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373380B2 (en) 2007-10-09 2013-02-12 Toyota Jidosha Kabushiki Kaisha Device and method for controlling alternating-current motor
WO2009047997A1 (en) 2007-10-09 2009-04-16 Toyota Jidosha Kabushiki Kaisha Ac motor control device and ac motor control method
JP2009112140A (en) * 2007-10-31 2009-05-21 Nissan Motor Co Ltd Control device of motor and its control method
US8344680B2 (en) 2007-12-04 2013-01-01 Mitsubishi Electric Corporation Control apparatus of alternating-current motor
EP2337213A4 (en) * 2008-10-17 2018-02-28 Toyota Jidosha Kabushiki Kaisha Motor actuation control device
US8148927B2 (en) * 2009-02-05 2012-04-03 Toyota Jidosha Kabushiki Kaisha Alternating-current motor control apparatus
CN101800508B (en) * 2009-02-05 2013-01-09 丰田自动车株式会社 Alternating-current motor control apparatus
US20100194317A1 (en) * 2009-02-05 2010-08-05 Toyota Jidosha Kabushiki Kaisha Alternating-current motor control apparatus
WO2017037791A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Motor drive device, and heat pump device and refrigerating and air-conditioning device using said motor drive device
CN108093675A (en) * 2015-08-28 2018-05-29 三菱电机株式会社 Motor drive, heat pump assembly and refrigerating air-conditioning using motor drive
JPWO2017037791A1 (en) * 2015-08-28 2018-06-28 三菱電機株式会社 MOTOR DRIVE DEVICE, HEAT PUMP DEVICE AND REFRIGERATION AIR CONDITIONER USING MOTOR DRIVE DEVICE
US10281185B2 (en) 2015-08-28 2019-05-07 Mitsubishi Electric Corporation Motor driving device, and heat pump device and refrigerating and air conditioning device using the motor driving device
CN114024482A (en) * 2021-11-04 2022-02-08 中车大连电力牵引研发中心有限公司 Method for correcting modulation wave and carrier phase under low carrier ratio condition
CN114024482B (en) * 2021-11-04 2023-11-24 中车大连电力牵引研发中心有限公司 Modulated wave and carrier phase correction method under low carrier ratio condition

Also Published As

Publication number Publication date
JP4539192B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
EP2159909B1 (en) Ac motor drive controller
US6225774B1 (en) Motor control method and motor control system
JP5023788B2 (en) Control device and control method for power conversion device
JP5757304B2 (en) AC motor control device
US9385630B2 (en) Power conversion control device, power conversion control method, electric motor, and vehicle driving system
JP5319205B2 (en) Motor control device
JP5449441B2 (en) Synchronous machine controller
WO2014024460A1 (en) Motor control apparatus
JP5514660B2 (en) Load control device
JP4306298B2 (en) Motor control device
JP4155173B2 (en) Motor control device
JP4539192B2 (en) AC motor control device
JP2008148395A (en) Motor inverter device and its control method
JP2010279110A (en) Inverter device
JP2006074951A (en) Controller for ac motor
JP2006081322A (en) Ac motor control unit
CN112567620B (en) Inverter device
JP2011109848A (en) Motor drive control device
JP6471670B2 (en) Power control method and power control apparatus
JP2006074865A (en) Controller for ac motor
WO2023037589A1 (en) Inverter control device
JP2006034022A (en) Ac motor controller
JP3580133B2 (en) Motor control device
JP2010193566A (en) Motor control device
JP2006115605A (en) Control method of ac motor and apparatus for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4539192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees