JP2009112140A - Control device of motor and its control method - Google Patents

Control device of motor and its control method Download PDF

Info

Publication number
JP2009112140A
JP2009112140A JP2007283032A JP2007283032A JP2009112140A JP 2009112140 A JP2009112140 A JP 2009112140A JP 2007283032 A JP2007283032 A JP 2007283032A JP 2007283032 A JP2007283032 A JP 2007283032A JP 2009112140 A JP2009112140 A JP 2009112140A
Authority
JP
Japan
Prior art keywords
rectangular wave
switching
unit
control
switching timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007283032A
Other languages
Japanese (ja)
Other versions
JP5303903B2 (en
Inventor
Takaaki Karikomi
卓明 苅込
Takeshi Kitaguchi
剛士 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007283032A priority Critical patent/JP5303903B2/en
Publication of JP2009112140A publication Critical patent/JP2009112140A/en
Application granted granted Critical
Publication of JP5303903B2 publication Critical patent/JP5303903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of a motor, which suppresses torque vibration, and its control method. <P>SOLUTION: The control device has a switch 103 for switching a rectangular wave generation part 107 to a PWM control part 105. The switch 103 performs the switching in accordance with the switching timing of a switching element. The rectangular wave generation part 107 operates an (n+1)-th control cycle tnow between (n+1)-th switching timing and (n+2)-th switching timing at n-th switching timing, and also operates a difference Δθ between (n+2)-th target switching timing, and the (n+2)-th switching timing based on the (n+1)-th control cycle tnow at the (n+1)-th switching timing. Immediately after the switching, the PWM control part 105 controls a voltage phase command valueα*(n+3) by using a value α(n+3) which is corrected on the basis of the difference Δθ. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、矩形波電圧とPWM(パルス幅変調)波形電圧を切替えて電動機へ出力できるインバータを制御する電動機の制御装置およびその制御方法に関する。   The present invention relates to a motor control device that controls an inverter capable of switching a rectangular wave voltage and a PWM (pulse width modulation) waveform voltage and outputting the voltage to the motor, and a control method therefor.

従来、矩形波電圧をインバータから電動機へ出力させる矩形波制御と、PWM波形電圧をインバータから電動機へ出力させるPWM制御とを切替えて電動機を制御する交流電動機の駆動制御装置がある(特許文献1参照)。当該駆動制御装置では、矩形波制御とPWM制御を切替えて電圧利用率を向上させている。
特開2000−50686号公報
Conventionally, there is a drive control device for an AC motor that controls a motor by switching between a rectangular wave control that outputs a rectangular wave voltage from the inverter to the motor and a PWM control that outputs a PWM waveform voltage from the inverter to the motor (see Patent Document 1). ). In the drive control device, the rectangular wave control and the PWM control are switched to improve the voltage utilization rate.
Japanese Patent Laid-Open No. 2000-50686

しかしながら、従来の駆動制御装置では、矩形波制御からPWM制御へ切替える際、矩形波制御の電圧位相をそのままPWM制御の電圧位相として用いている。このため、矩形波制御からPWM制御へ切替える際、電動機の回転速度が急激に変化した場合、トルクが振動する可能性があるといった問題があった。   However, in the conventional drive control device, when switching from rectangular wave control to PWM control, the voltage phase of rectangular wave control is used as it is as the voltage phase of PWM control. For this reason, when switching from the rectangular wave control to the PWM control, there is a problem that the torque may vibrate if the rotation speed of the electric motor changes suddenly.

本発明は、こうした問題に鑑みてなされたものであり、トルク振動を抑制することができる電動機の制御装置およびその制御方法を提供することを目的とする。   The present invention has been made in view of these problems, and an object thereof is to provide an electric motor control device and a control method thereof that can suppress torque vibration.

上記目的達成のため、本発明に係る電動機の制御装置では、インバータの出力電圧を矩形波状に制御する矩形波制御手段から、上記電圧を擬似正弦波状に制御するパルス幅変調制御手段への切替えを行う切替手段を備える。切替手段は、インバータを構成するスイッチング素子のスイッチングタイミングに合わせて、上記切替えを行う。矩形波制御手段は、n(n=1、2、・・・)回目スイッチングタイミングで、(n+1)回目スイッチングタイミングと(n+2)回目スイッチングタイミングとの間の(n+1)回目制御周期を演算する。更に、(n+1)回目スイッチングタイミングで、電圧位相指令値から求まる(n+2)回目の目標スイッチングタイミングと、(n+1)回目制御周期に基づく(n+2)回目スイッチングタイミングとの差を演算する。パルス幅変調制御手段は、切替手段による切替え直後、電圧位相指令値を上記差に基づいて補正した値で、制御することを特徴としている。   To achieve the above object, in the motor control device according to the present invention, switching from the rectangular wave control means for controlling the output voltage of the inverter to a rectangular wave shape to the pulse width modulation control means for controlling the voltage to a pseudo sine wave shape is performed. Switching means for performing is provided. The switching means performs the above switching in accordance with the switching timing of the switching elements constituting the inverter. The rectangular wave control means calculates an (n + 1) -th control cycle between the (n + 1) -th switching timing and the (n + 2) -th switching timing at the n (n = 1, 2,...) -Th switching timing. Further, at the (n + 1) th switching timing, the difference between the (n + 2) th target switching timing obtained from the voltage phase command value and the (n + 2) th switching timing based on the (n + 1) th control cycle is calculated. The pulse width modulation control means controls the voltage phase command value with a value corrected based on the difference immediately after switching by the switching means.

本発明により、矩形波制御からPWM制御へ切替える際、電動機の回転速度が急激に変化した場合に発生するトルク振動を抑制することができる。   According to the present invention, when switching from rectangular wave control to PWM control, it is possible to suppress torque vibration that occurs when the rotational speed of the motor changes rapidly.

本発明に係る電動機の制御装置を含む装置の一例として、インバータからモータへ出力する電圧を矩形波状に制御する矩形波制御と、上記電圧を擬似正弦波状に制御するPWM制御とを切替えるインバータシステムについて説明する。以下に、本発明の第1乃至第6の実施形態に係るインバータシステムについて、図1乃至図21を参照して説明する。   As an example of an apparatus including an electric motor control apparatus according to the present invention, an inverter system that switches between rectangular wave control for controlling a voltage output from an inverter to a motor in a rectangular wave form and PWM control for controlling the voltage in a pseudo sine wave form. explain. Hereinafter, inverter systems according to first to sixth embodiments of the present invention will be described with reference to FIGS. 1 to 21.

(第1の実施形態)
(インバータシステムの構成)
以下、図1を参照して、インバータシステムの構成と動作について説明する。図1は、本発明の第1の実施形態に係るインバータシステムの概略構成図である。本インバータシステムは、図1に示すように、インバータ1、電流センサ2、電動機であるモータ3および制御装置であるコントローラ10を主に備える。ここで、インバータ1は、直流電源B、U相スイッチング素子Tu+、Tu−、V相スイッチング素子Tv+、Tv−、W相スイッチング素子Tw+、Tw−を備える。更に、U相還流素子Du+、Du−、V相還流素子Dv+、Dv−、W相還流素子Dw+、Dw−を備える。
(First embodiment)
(Inverter system configuration)
Hereinafter, the configuration and operation of the inverter system will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of an inverter system according to the first embodiment of the present invention. As shown in FIG. 1, this inverter system mainly includes an inverter 1, a current sensor 2, a motor 3 that is an electric motor, and a controller 10 that is a control device. Here, the inverter 1 includes a DC power source B, U-phase switching elements Tu + and Tu−, V-phase switching elements Tv + and Tv−, and W-phase switching elements Tw + and Tw−. Furthermore, U-phase reflux elements Du + and Du−, V-phase reflux elements Dv + and Dv−, and W-phase reflux elements Dw + and Dw− are provided.

そして、インバータ1は、コントローラ10の駆動信号P(図2参照)に基づいて、直流電源Bから供給された直流電圧値Vdc[V](図2参照)を矩形波状または擬似正弦波状に変換する。ここで、駆動信号Pは、インバータ1のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−のON・OFF動作を制御している。なお、スイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−はIGBT等の半導体素子である。一方、還流素子Du+、Du−、Dv+、Dv−、Dw+、Dw−はダイオードである。モータ3は、インバータ1から供給された矩形波状または擬似正弦波状の出力電圧Vu[V]、Vv[V]、Vw[V](図3参照)に応じたトルクを発生する。電流センサ2は、モータ3に流れる3相電流を検出する。ここで、3相電流は、全電流を合計すると0[A]になる。すなわち、3相のうち2相を検出すれば他の1相は演算によって求められる。これから、電流センサ2は、3相のうち2相を検出している。   Then, the inverter 1 converts the DC voltage value Vdc [V] (see FIG. 2) supplied from the DC power supply B into a rectangular wave shape or a pseudo sine wave shape based on the drive signal P (see FIG. 2) of the controller 10. . Here, the drive signal P controls the ON / OFF operation of the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− of the inverter 1. The switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− are semiconductor elements such as IGBTs. On the other hand, the reflux elements Du +, Du−, Dv +, Dv−, Dw +, Dw− are diodes. The motor 3 generates a torque corresponding to the rectangular-wave or pseudo-sine-wave output voltages Vu [V], Vv [V], and Vw [V] (see FIG. 3) supplied from the inverter 1. The current sensor 2 detects a three-phase current flowing through the motor 3. Here, the three-phase current is 0 [A] when all currents are summed. That is, if two of the three phases are detected, the other phase can be obtained by calculation. From this, the current sensor 2 detects two phases out of the three phases.

次に、コントローラ10の内部構成について、図2を参照して説明する。図2は、図1に示すコントローラ10の内部構成を示す制御ブロック図である。コントローラ10は、演算装置(CPU)を内蔵し、図2に示すように、αテーブル参照部101、第1のフィルタ演算手段であるαフィルタ演算部102および切替手段であるスイッチ部103を備える。更に、パルス幅変調制御手段であるPWM制御部105、矩形波制御手段である矩形波生成部107、スイッチ部108、タイマユニット109、フラグ制御部110を備えている。ここで、αテーブル参照部101は、トルク指令値T[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照する。そして、当該テーブルから、変動抑制前電圧位相指令値α’を求める。αフィルタ演算部102は、伝達関数1/(τs+1)を用いて、変動抑制前電圧位相指令値α’の変動を抑制する。なお、時定数τは数ms程度である。 Next, the internal configuration of the controller 10 will be described with reference to FIG. FIG. 2 is a control block diagram showing an internal configuration of the controller 10 shown in FIG. The controller 10 includes a calculation device (CPU), and includes an α table reference unit 101, an α filter calculation unit 102 as a first filter calculation unit, and a switch unit 103 as a switching unit, as shown in FIG. Further, a PWM control unit 105 that is a pulse width modulation control unit, a rectangular wave generation unit 107 that is a rectangular wave control unit, a switch unit 108, a timer unit 109, and a flag control unit 110 are provided. Here, the α table reference unit 101 refers to a previously stored table based on the torque command value T [N · m], the motor rotation speed N [rpm], and the DC voltage value Vdc [V]. Then, the voltage phase command value α ′ * before fluctuation suppression is obtained from the table. The α filter calculation unit 102 uses the transfer function 1 / (τs + 1) to suppress fluctuations in the voltage phase command value α ′ * before fluctuation suppression. The time constant τ is about several ms.

スイッチ部103は、αフィルタ演算部102により変動を抑制された上記電圧位相指令値αを、PWM制御部105または矩形波生成部107へ出力する。後述するように、フラグ制御部110の矩形波フラグが1になった場合、スイッチ部103は、PWM制御部105で生成される次回制御周期指令の演算タイミングにおいて、接点を端子Bから端子Aへ切替える。そして、電圧位相指令値αを矩形波生成部107へ出力する。一方、フラグ制御部110の矩形波フラグが1から0へ変化した場合、スイッチ部103は、矩形波生成部107で生成される次回制御周期指令の演算タイミングにおいて、接点を端子Aから端子Bへ切替える。そして、電圧位相指令値αをPWM制御部105へ出力する。 The switch unit 103 outputs the voltage phase command value α * whose fluctuation is suppressed by the α filter calculation unit 102 to the PWM control unit 105 or the rectangular wave generation unit 107. As will be described later, when the rectangular wave flag of the flag control unit 110 becomes 1, the switch unit 103 changes the contact from the terminal B to the terminal A at the calculation timing of the next control cycle command generated by the PWM control unit 105. Switch. Then, the voltage phase command value α * is output to the rectangular wave generation unit 107. On the other hand, when the rectangular wave flag of the flag control unit 110 changes from 1 to 0, the switch unit 103 changes the contact from the terminal A to the terminal B at the calculation timing of the next control cycle command generated by the rectangular wave generation unit 107. Switch. Then, the voltage phase command value α * is output to the PWM control unit 105.

PWM制御部105は、インバータ1からモータ3へ出力する出力電圧Vu[V]、Vv[V]、Vw[V](図3参照)が擬似正弦波状になるように、スイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を制御する。これを、PWM制御とする。具体的には、PWM制御部105は、vd、vq指令演算部1051、2相/3相変換部1052およびPWM生成部1053からなる。ここで、vd、vq指令演算部1051は、図2に示したように、直流電圧値Vdc[V]および電圧位相指令値αからd軸電圧指令値vd[V]およびq軸電圧指令値vq[V]を演算する。2相/3相変換部1052は、回転子位相θにより、d軸電圧指令値vd[V]およびq軸電圧指令値vq[V]を3相電圧指令値vu[V]、vv[V]、vw[V]に変換する。PWM生成部1053は、3相電圧指令値vu[V]、vv[V]、vw[V]と三角波状のキャリア信号(図3参照)の大小関係を比較する。その大小関係に応じて3相比較値を生成する。また、PWM生成部1053は、所定の制御周期であるPWM周期Tpwm(図4参照)を演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。 The PWM control unit 105 switches the switching elements Tu + and Tu− so that the output voltages Vu [V], Vv [V], and Vw [V] (see FIG. 3) output from the inverter 1 to the motor 3 become pseudo sine waves. , Tv +, Tv−, Tw +, Tw− are controlled. This is referred to as PWM control. Specifically, the PWM control unit 105 includes a vd, vq command calculation unit 1051, a two-phase / three-phase conversion unit 1052, and a PWM generation unit 1053. Here, as shown in FIG. 2, the vd, vq command calculation unit 1051 calculates the d-axis voltage command value vd [V] and the q-axis voltage command value from the DC voltage value Vdc [V] and the voltage phase command value α *. vq [V] is calculated. The two-phase / three-phase converter 1052 converts the d-axis voltage command value vd [V] and the q-axis voltage command value vq [V] into the three-phase voltage command values vu [V] and vv [V] according to the rotor phase θ. , Vw [V]. The PWM generation unit 1053 compares the three-phase voltage command values vu [V], vv [V], and vw [V] with the magnitude relationship between the triangular wave carrier signal (see FIG. 3). A three-phase comparison value is generated according to the magnitude relationship. The PWM generation unit 1053 calculates a PWM cycle Tpwm (see FIG. 4), which is a predetermined control cycle, calculates the next calculation timing, and generates a next control cycle command.

一方、矩形波生成部107は、インバータ1からモータ3へ出力する出力電圧Vu[V]、Vv[V]、Vw[V]が矩形波状になるように、スイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を制御する。これを、矩形波制御とする。具体的には、矩形波生成部107は3相比較値を生成する。また、PWM制御部105と同様に、矩形波生成部107も、次回制御周期を演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。また、矩形波生成部107は、後述するように、今回演算タイミングに対する次々回演算タイミングの誤差Δα(n+3)(図3参照)を、演算タイミング毎に演算する。
更に、後述するように、スイッチ部103における矩形波生成部107からPWM制御部105への切替えが行われる場合、矩形波生成部107は、補正した値である実際の電圧位相α(n+3)で、αフィルタ演算部102を初期化する。ここで、初期化とは、実際の電圧位相α(n+3)を入力して、無限時間経過した状態にすることである。
On the other hand, the rectangular wave generator 107 switches the switching elements Tu +, Tu−, Tv +, so that the output voltages Vu [V], Vv [V], and Vw [V] output from the inverter 1 to the motor 3 are rectangular. Tv−, Tw +, and Tw− are controlled. This is rectangular wave control. Specifically, the rectangular wave generation unit 107 generates a three-phase comparison value. Similarly to the PWM control unit 105, the rectangular wave generation unit 107 calculates the next control cycle, calculates the next calculation timing, and generates the next control cycle command. Further, as will be described later, the rectangular wave generation unit 107 calculates an error Δα (n + 3) (see FIG. 3) of the next calculation timing with respect to the current calculation timing for each calculation timing.
Further, as described later, when switching from the rectangular wave generation unit 107 to the PWM control unit 105 in the switch unit 103 is performed, the rectangular wave generation unit 107 has an actual voltage phase α (n + 3) that is a corrected value. The α filter calculation unit 102 is initialized. Here, the initialization means that an actual voltage phase α (n + 3) is input and an infinite time has elapsed.

スイッチ部108は、スイッチ部103と同期して動作する。すなわち、矩形波フラグが1になった場合、スイッチ部108は、スイッチ部103の動作タイミングに合わせて、接点を端子Bから端子Aへ切替える。そして、矩形波生成部107により生成された3相比較値および次回制御周期指令をタイマユニット109へ出力する。一方、矩形波フラグが1から0へ変化した場合、スイッチ部108は、スイッチ部103の動作タイミングに合わせて、接点を端子Aから端子Bへ切替える。そして、PWM制御部105により生成された3相比較値および次回制御周期指令をタイマユニット109へ出力する。タイマユニット109は、次回制御周期指令の演算タイミングに合わせて、3相比較値に基づく駆動信号Pをインバータ1へ出力する。上述したように、駆動信号Pは、インバータ1のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−のON・OFF動作を制御している。これから、次回制御周期指令の演算タイミングとスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−のスイッチングタイミングは等しくなる。   The switch unit 108 operates in synchronization with the switch unit 103. That is, when the rectangular wave flag becomes 1, the switch unit 108 switches the contact from the terminal B to the terminal A in accordance with the operation timing of the switch unit 103. Then, the three-phase comparison value generated by the rectangular wave generation unit 107 and the next control cycle command are output to the timer unit 109. On the other hand, when the rectangular wave flag changes from 1 to 0, the switch unit 108 switches the contact from the terminal A to the terminal B in accordance with the operation timing of the switch unit 103. Then, the three-phase comparison value generated by the PWM control unit 105 and the next control cycle command are output to the timer unit 109. Timer unit 109 outputs drive signal P based on the three-phase comparison value to inverter 1 in accordance with the calculation timing of the next control cycle command. As described above, the drive signal P controls the ON / OFF operation of the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− of the inverter 1. Accordingly, the calculation timing of the next control cycle command becomes equal to the switching timing of the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw−.

フラグ制御部110は、矩形波フラグを格納し、矩形波フラグに基づいてスイッチ部103および108の動作を制御する。具体的には、フラグ制御部110は、矩形波フラグが1になった場合、スイッチ部103および108の接点を端子Bから端子Aへ切替えさせる。これから、矩形波生成部107に、出力電圧Vu[V]、Vv[V]、Vw[V]を矩形波状に制御する矩形波制御を実行させる。一方、フラグ制御部110は、矩形波フラグが1から0へ変化した場合、スイッチ部103および108の接点を端子Aから端子Bへ切替えさせる。これから、PWM制御部105に、出力電圧Vu[V]、Vv[V]、Vw[V]を擬似正弦波状に制御するPWM制御を実行させる。   The flag control unit 110 stores a rectangular wave flag and controls the operations of the switch units 103 and 108 based on the rectangular wave flag. Specifically, when the rectangular wave flag becomes 1, the flag control unit 110 switches the contact points of the switch units 103 and 108 from the terminal B to the terminal A. From this, the rectangular wave generation unit 107 is caused to execute rectangular wave control for controlling the output voltages Vu [V], Vv [V], and Vw [V] into a rectangular wave shape. On the other hand, when the rectangular wave flag changes from 1 to 0, the flag control unit 110 switches the contact points of the switch units 103 and 108 from the terminal A to the terminal B. From this, the PWM control unit 105 is caused to execute PWM control for controlling the output voltages Vu [V], Vv [V], and Vw [V] in a pseudo sine wave shape.

(矩形波生成部107の矩形波制御の演算)
次に、矩形波生成部107で実行される矩形波制御ための演算について、図3を参照して説明する。図3は、図2に示す矩形波生成部107で実行される矩形波制御の出力を示すタイミングチャートである。図3では、キャリア信号、出力電圧Vu[V]、Vv[V]、Vw[V]、スイッチングタイミング、演算タイミング、回転子位相θおよび実際のモータ角周波数ωre[rad/s]の一例を示している。上記の通り、演算タイミングとスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−のスイッチングタイミングは一致している。すなわち、n(n=1、2、・・)回目スイッチングタイミングで前回演算が実行され、(n+1)回目スイッチングタイミングで今回演算が実行されている。(n+2)回目スイッチングタイミングで次回演算が実行され、(n+3)回目スイッチングタイミングで次々回演算が実行される。なお、各スイッチングタイミングで、出力電圧Vu[V]、Vv[V]、Vw[V]のいずれかが反転する。
(Calculation of rectangular wave control by the rectangular wave generator 107)
Next, calculation for rectangular wave control executed by the rectangular wave generation unit 107 will be described with reference to FIG. FIG. 3 is a timing chart showing the output of the rectangular wave control executed by the rectangular wave generator 107 shown in FIG. FIG. 3 shows an example of the carrier signal, output voltages Vu [V], Vv [V], Vw [V], switching timing, calculation timing, rotor phase θ, and actual motor angular frequency ωre [rad / s]. ing. As described above, the calculation timings coincide with the switching timings of the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw−. That is, the previous calculation is performed at the n (n = 1, 2,...) Switching timing, and the current calculation is performed at the (n + 1) th switching timing. The next calculation is executed at the (n + 2) -th switching timing, and the next calculation is executed at the (n + 3) -th switching timing. Note that at each switching timing, one of the output voltages Vu [V], Vv [V], and Vw [V] is inverted.

図3に示すように、第1の実施形態では、(n+1)回目スイッチングタイミング、すなわち、今回演算タイミングにおいて、実際のモータ角周波数ωre[rad/s]が急変した場合を想定している。この場合、矩形波生成部107は、現在の回転子位相θ、モータ回転数N[rpm]および今回制御周期tnowに基づいて、(n+2)回目スイッチングタイミングである次回演算タイミングにおける回転子位相θnextを演算する。ここで、(n+1)回目制御周期である今回制御周期tnowは、n回目スイッチングタイミング、すなわち、前回演算タイミングにおいて、矩形波生成部107により演算されている。上記のように、今回演算タイミングにおいて、αフィルタ演算部102は、変動抑制前電圧位相指令値α’の変動を抑制し、次回演算タイミングにおける電圧位相指令値α(n+2)を求める。 As shown in FIG. 3, in the first embodiment, it is assumed that the actual motor angular frequency ωre [rad / s] suddenly changes at the (n + 1) th switching timing, that is, the current calculation timing. In this case, the rectangular wave generation unit 107 calculates the rotor phase θnext at the next calculation timing that is the (n + 2) -th switching timing based on the current rotor phase θ, the motor rotation speed N [rpm], and the current control cycle tnow. Calculate. Here, the current control cycle tnow, which is the (n + 1) th control cycle, is calculated by the rectangular wave generation unit 107 at the nth switching timing, that is, the previous calculation timing. As described above, at the current calculation timing, the α filter calculation unit 102 suppresses fluctuations in the voltage phase command value α ′ * before fluctuation suppression, and obtains the voltage phase command value α * (n + 2) at the next calculation timing.

今回演算タイミングにおいて、矩形波生成部107は、電圧位相指令値α(n+2)に基づいて、(n+2)回目の目標スイッチングタイミングにおける回転子位相目標値θnextを演算する。次に、矩形波生成部107は、回転子位相θnextと回転子位相目標値θnextとの誤差Δθを求める。このようにして、誤差Δθを演算している。次に、今回演算タイミングにおいて、矩形波生成部107は、次回制御周期tnextを演算する。次回制御周期tnextは、今回制御周期tnowと同じである。しかし、今回演算タイミングにおいて、実際のモータ角周波数ωre[rad/s]が急変したため、次回演算タイミングにおいて、回転子位相目標値θnextとの誤差Δθが発生している。このため、誤差Δθに基づいて、次回制御周期tnextを補正する必要がある。 At the current calculation timing, the rectangular wave generation unit 107 calculates the rotor phase target value θ * next at the (n + 2) th target switching timing based on the voltage phase command value α * (n + 2). Next, the rectangular wave generation unit 107 obtains an error Δθ between the rotor phase θnext and the rotor phase target value θ * next. In this way, the error Δθ is calculated. Next, at the current calculation timing, the rectangular wave generation unit 107 calculates the next control cycle tnext. The next control cycle tnext is the same as the current control cycle tnow. However, since the actual motor angular frequency ωre [rad / s] suddenly changes at the current calculation timing, an error Δθ from the rotor phase target value θ * next occurs at the next calculation timing. For this reason, it is necessary to correct the next control cycle tnext based on the error Δθ.

ここで、所定値である補正係数K(0.1〜0.5前後)を誤差Δθに乗算してから補正する処理を実行する。すなわち、次回演算タイミングで演算される誤差Δθを次々回演算タイミング1回で補正する訳ではなく、補正量をK倍して数制御周期かけて補正していく。具体的には、今回演算タイミングにおいて、矩形波生成部107は、誤差ΔθをK倍した補正量KΔθを次回制御周期tnextに加算して、補正後の次回制御周期tnext’を演算する。そして、(n+2)回目スイッチングタイミング、すなわち、次回演算タイミングにおいて、矩形波生成部107は、キャリア信号の1周期を補正後の次回制御周期tnext’に合わせる。更に、矩形波生成部107は、(n+3)回目スイッチングタイミング、すなわち、次々回演算タイミングを、補正後の次回制御周期tnext’から演算する。   Here, a correction process is performed after the error Δθ is multiplied by a predetermined correction coefficient K (around 0.1 to 0.5). That is, the error Δθ calculated at the next calculation timing is not corrected one time after the next calculation timing, but is corrected by multiplying the correction amount by K and taking several control cycles. Specifically, at the current calculation timing, the rectangular wave generation unit 107 calculates a corrected next control cycle tnext ′ by adding a correction amount KΔθ obtained by multiplying the error Δθ by K to the next control cycle tnext. Then, at the (n + 2) -th switching timing, that is, the next calculation timing, the rectangular wave generating unit 107 matches one cycle of the carrier signal with the corrected next control cycle tnext ′. Further, the rectangular wave generation unit 107 calculates the (n + 3) -th switching timing, that is, the next calculation timing from the corrected next control cycle tnext ′.

次に、電圧位相指令値αを誤差Δθに基づいて補正した値である実際の電圧位相αと誤差Δαについて説明する。図3に示したように、前回演算タイミングおよび今回演算タイミングにおいて、誤差Δαは0である。すなわち、前回演算タイミングにおいて、実際の電圧位相αnと電圧位相指令値αnは等しい。また、今回演算タイミングにおいて、実際の電圧位相α(n+1)と電圧位相指令値α(n+1)は等しい。一方、次回演算タイミングにおいて、上記のように、誤差Δθが発生しているので、誤差Δα(n+2)=誤差Δθである。すなわち、次回演算タイミングにおいて、実際の電圧位相α(n+2)=電圧位相指令値α(n+2)+誤差Δα(n+2)=電圧位相指令値α(n+2)+誤差Δθである。 Next, actual voltage phase α and error Δα, which are values obtained by correcting voltage phase command value α * based on error Δθ, will be described. As shown in FIG. 3, the error Δα is 0 at the previous calculation timing and the current calculation timing. That is, at the previous calculation timing, the actual voltage phase αn is equal to the voltage phase command value α * n. Further, at the current calculation timing, the actual voltage phase α (n + 1) and the voltage phase command value α * (n + 1) are equal. On the other hand, since the error Δθ has occurred as described above at the next calculation timing, the error Δα (n + 2) = error Δθ. That is, at the next calculation timing, the actual voltage phase α (n + 2) = voltage phase command value α * (n + 2) + error Δα (n + 2) = voltage phase command value α * (n + 2) + error Δθ.

また、図3に示したように、次々回演算タイミングにおいて、誤差Δα(n+3)=Δθ(1−K)である。すなわち、次々回演算タイミングにおいて、実際の電圧位相α(n+3)=電圧位相指令値α(n+3)+誤差Δα(n+3)=電圧位相指令値α(n+3)+Δθ(1−K)である。ただし、今回演算タイミングから次々回演算タイミングまでの間、モータ回転数N[rpm]が一定という前提で、誤差Δθや補正後の次回制御周期tnext’を演算している。よって、今回演算タイミングから次々回演算タイミングまでの時間が短いほど、今回演算タイミングに対する次々回演算タイミングの誤差Δα(n+3)の演算精度はあがる。 Further, as shown in FIG. 3, the error Δα (n + 3) = Δθ (1−K) at the next calculation timing. That is, at the next calculation timing, the actual voltage phase α (n + 3) = voltage phase command value α * (n + 3) + error Δα (n + 3) = voltage phase command value α * (n + 3) + Δθ (1-K). However, the error Δθ and the corrected next control cycle tnext ′ are calculated on the assumption that the motor rotation speed N [rpm] is constant from the current calculation timing to the next calculation timing. Therefore, the shorter the time from the current calculation timing to the next calculation timing, the higher the calculation accuracy of the error Δα (n + 3) of the next calculation timing with respect to the current calculation timing.

(矩形波生成部107からPWM制御部105への切替え処理)
次に、第1の実施形態における、矩形波制御する矩形波生成部107からPWM制御するPWM制御部105への切替え処理について、図4を参照して説明する。図4は、図1に示すコントローラ10における矩形波/PWM制御の切替え処理による出力を示すタイミングチャートである。図4では、出力電圧Vu[V]、Vv[V]、Vw[V]、キャリア信号、スイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−のスイッチングタイミングを示している。ここで、図4における(n+3)回目スイッチングタイミングの左側は、矩形波生成部107による矩形波制御を、右側はPWM制御部105によるPWM制御を示している。なお、各スイッチングタイミングで、出力電圧Vu[V]、Vv[V]、Vw[V]のいずれかが反転している。
(Switching process from the rectangular wave generator 107 to the PWM controller 105)
Next, switching processing from the rectangular wave generating unit 107 that performs rectangular wave control to the PWM control unit 105 that performs PWM control in the first embodiment will be described with reference to FIG. FIG. 4 is a timing chart showing an output by the rectangular wave / PWM control switching process in the controller 10 shown in FIG. FIG. 4 shows switching timings of the output voltages Vu [V], Vv [V], Vw [V], carrier signals, switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw−. Here, the left side of the (n + 3) -th switching timing in FIG. 4 shows the rectangular wave control by the rectangular wave generation unit 107, and the right side shows the PWM control by the PWM control unit 105. Note that at each switching timing, one of the output voltages Vu [V], Vv [V], and Vw [V] is inverted.

図4に示すように、(n+1)回目スイッチングタイミングまで、矩形波生成部107で実行される矩形波制御ための演算(以下、矩形波演算とする。)が実行されている。(n+2)回目スイッチングタイミングにおいて、矩形波生成部107からPWM制御部105への切替えを行っている。その後、PWM制御部105で実行されるPWM制御のための演算(以下、PWM演算とする。)が実行されている。しかし、PWM制御部105によってPWM制御が開始されるのは、(n+3)回目スイッチングタイミング以降である。上述したように、(n+3)回目制御周期であるPWM周期Tpwmは、(n+2)回目スイッチングタイミングにおいて、PWM制御部105により演算される。このため、(n+2)回目スイッチングタイミングにおいて、矩形波生成部107からPWM制御部105への切替えを行っても、(n+2)回目スイッチングタイミングからPWM制御を開始することはできない。1スイッチングタイミング遅れて、PWM制御は開始される。そして、(n+3)回目スイッチングタイミング以降、PWM制御部105は、PWM制御するため、キャリア信号の1周期をPWM周期Tpwmに合わせている。   As shown in FIG. 4, until the (n + 1) th switching timing, the calculation for rectangular wave control (hereinafter, referred to as rectangular wave calculation) executed by the rectangular wave generation unit 107 is executed. Switching from the rectangular wave generator 107 to the PWM controller 105 is performed at the (n + 2) th switching timing. Thereafter, a calculation for PWM control (hereinafter referred to as PWM calculation) executed by the PWM control unit 105 is executed. However, the PWM control unit 105 starts the PWM control after the (n + 3) th switching timing. As described above, the PWM cycle Tpwm that is the (n + 3) th control cycle is calculated by the PWM control unit 105 at the (n + 2) th switching timing. For this reason, even if switching from the rectangular wave generation unit 107 to the PWM control unit 105 is performed at the (n + 2) th switching timing, the PWM control cannot be started from the (n + 2) th switching timing. PWM control is started with a delay of one switching timing. After the (n + 3) th switching timing, the PWM control unit 105 matches one cycle of the carrier signal with the PWM cycle Tpwm in order to perform PWM control.

ここで、矩形波制御からPWM制御へ切替える際、具体的には、矩形波演算からPWM演算へ切替える際、モータ回転数N[rpm]が急変した場合、トルクが振動する可能性があった。そこで、第1の実施形態に係る矩形波生成部107では、(n+1)回目スイッチングタイミングに対する(n+3)回目スイッチングタイミングの誤差Δα(n+3)=Δθ(1−K)を、演算タイミング毎に演算している。すなわち、図3に示したように、(n+1)回目スイッチングタイミングにおいて、モータ回転数N[rpm]が急変し、その直後〜(n+3)回目スイッチングタイミングまで、モータ回転数N[rpm]が一定の場合を想定している。   Here, when switching from the rectangular wave control to the PWM control, specifically, when switching from the rectangular wave calculation to the PWM calculation, if the motor rotation speed N [rpm] suddenly changes, the torque may vibrate. Therefore, the rectangular wave generation unit 107 according to the first embodiment calculates an error Δα (n + 3) = Δθ (1−K) of the (n + 3) -th switching timing with respect to the (n + 1) -th switching timing for each calculation timing. ing. That is, as shown in FIG. 3, at the (n + 1) th switching timing, the motor rotation speed N [rpm] suddenly changes, and immediately after that, until the (n + 3) th switching timing, the motor rotation speed N [rpm] is constant. Assume the case.

また、上記のように、(n+2)回目スイッチングタイミングにおいて、αフィルタ演算部102は、変動抑制前電圧位相指令値α’の変動を抑制する。そして、αフィルタ演算部102は、(n+3)回目スイッチングタイミングにおける電圧位相指令値α(n+3)を、スイッチ部103を介して、矩形波生成部107へ出力する。矩形波生成部107は、(n+2)回目スイッチングタイミングにおいて、(n+3)回目スイッチングタイミングにおける実際の電圧位相α(n+3)=電圧位相指令値α(n+3)+Δθ(1−K)を演算する。次に、矩形波生成部107は、αフィルタ演算部102を実際の電圧位相α(n+3)で初期化する。その後、(n+2)回目スイッチングタイミングにおいて、スイッチ部103は、矩形波生成部107からPWM制御部105への切替えを行う。切換え直後、PWM制御部105は、実際の電圧位相α(n+3)を用いて、PWM制御する。 Further, as described above, at the (n + 2) -th switching timing, the α filter calculation unit 102 suppresses fluctuations in the voltage phase command value α ′ * before fluctuation suppression. Then, the α filter calculation unit 102 outputs the voltage phase command value α * (n + 3) at the (n + 3) -th switching timing to the rectangular wave generation unit 107 via the switch unit 103. At the (n + 2) th switching timing, the rectangular wave generation unit 107 calculates the actual voltage phase α (n + 3) = voltage phase command value α * (n + 3) + Δθ (1-K) at the (n + 3) th switching timing. Next, the rectangular wave generation unit 107 initializes the α filter calculation unit 102 with the actual voltage phase α (n + 3). Thereafter, at the (n + 2) -th switching timing, the switch unit 103 performs switching from the rectangular wave generation unit 107 to the PWM control unit 105. Immediately after the switching, the PWM control unit 105 performs PWM control using the actual voltage phase α (n + 3).

次に、図4に示す切替え処理を実行した場合の効果について、図5および図6を参照して説明する。図5は、図4に示す切替え処理を実行した時の実際の電圧位相αを示す図、図6は、図4に示す切替え処理を実行した時のモータ回転数N[rpm]と出力電力Pnt[kw]を示す図である。図5(a)に示す従来技術では、(n+3)回目スイッチングタイミングで、矩形波制御の電圧位相指令値α(n+3)をそのままPWM制御の電圧位相指令値αとして用いている。矩形波制御からPWM制御への切替え時近傍において、図6(a)に示すようにモータ回転数N[rpm]が急変した場合、誤差Δα(n+3)が発生する。図5(a)に示したように、誤差Δα(n+3)により、実際の電圧位相αがステップ状に変化する。実際の電圧位相αがステップ状に変化した場合、矩形波制御からPWM制御への切替え後、出力電力Pnt[kw]が振動する。すなわち、トルクが振動する。 Next, the effect when the switching process shown in FIG. 4 is executed will be described with reference to FIGS. 5 is a diagram showing an actual voltage phase α when the switching process shown in FIG. 4 is executed, and FIG. 6 is a diagram showing the motor rotation speed N [rpm] and the output power Pnt when the switching process shown in FIG. 4 is executed. It is a figure which shows [kw]. In the prior art shown in FIG. 5A, the voltage phase command value α * (n + 3) of rectangular wave control is used as it is as the voltage phase command value α * of PWM control at the (n + 3) -th switching timing. In the vicinity of switching from the rectangular wave control to the PWM control, when the motor rotation speed N [rpm] changes suddenly as shown in FIG. 6A, an error Δα (n + 3) occurs. As shown in FIG. 5A, the actual voltage phase α changes stepwise due to the error Δα (n + 3). When the actual voltage phase α changes stepwise, the output power Pnt [kw] oscillates after switching from rectangular wave control to PWM control. That is, the torque vibrates.

一方、上述したように、第1の実施形態では、(n+1)回目スイッチングタイミングで、矩形波生成部107は誤差Δα(n+3)=Δθ(1−K)を演算する。(n+2)回目スイッチングタイミングで、矩形波生成部107は、実際の電圧位相α(n+3)=電圧位相指令値α(n+3)+誤差Δα(n+3)を演算し、実際の電圧位相α(n+3)でαフィルタ演算部102を初期化する。初期化後、スイッチ部103は、矩形波生成部107からPWM制御部105への切替えを行う。切替え直後、αフィルタ演算部102からスイッチ部103を介してPWM制御部105へ出力された電圧位相指令値αは、図5(b)に示すように、実際の電圧位相α(n+3)と等しくなる。更に、図5(b)に示したように、αフィルタ演算部102のフィルタ作用により、実際の電圧位相αのステップ状の急峻な変化が緩和する。これから、図6(b)に示すように、モータ回転数N[rpm]が急変した場合でも、出力電力Pnt[kw]の振動を抑制できる。よって、トルク振動を抑制することができる。 On the other hand, as described above, in the first embodiment, the rectangular wave generation unit 107 calculates the error Δα (n + 3) = Δθ (1-K) at the (n + 1) th switching timing. At the (n + 2) -th switching timing, the rectangular wave generation unit 107 calculates the actual voltage phase α (n + 3) = voltage phase command value α * (n + 3) + error Δα (n + 3), and the actual voltage phase α (n + 3). ) Initializes the α filter calculation unit 102. After the initialization, the switch unit 103 performs switching from the rectangular wave generation unit 107 to the PWM control unit 105. Immediately after the switching, the voltage phase command value α * output from the α filter calculation unit 102 to the PWM control unit 105 via the switch unit 103 is the actual voltage phase α (n + 3) as shown in FIG. Will be equal. Furthermore, as shown in FIG. 5B, the steep step-like change in the actual voltage phase α is mitigated by the filter action of the α filter calculation unit 102. From this, as shown in FIG. 6B, even when the motor rotation speed N [rpm] changes suddenly, the vibration of the output power Pnt [kw] can be suppressed. Therefore, torque vibration can be suppressed.

(コントローラ10で実行される制御方法)
次に、第1の実施形態に係るコントローラ10で実行される制御方法について、図7を参照して説明する。図7は、図1に示すコントローラ10で実行される制御方法を示すフローチャートである。本制御方法は、図7に示すフローチャートのプログラムをコントローラ10に組み込み実現している。なお、図3に示したように、(n+1)回目スイッチングタイミングにおいて、実際のモータ角周波数ωre[rad/s]が急変した場合を想定する。また、(n+2)回目スイッチングタイミングにおいて、矩形波生成部107からPWM制御部105への切替えを行うこととする。図7に示すように、(n+1)回目スイッチングタイミングにおいて、αテーブル参照部101はαテーブル参照処理を実行する(ステップS101)。ここで、αテーブル参照処理とは、トルク指令値T[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照し、変動抑制前電圧位相指令値α’を求める制御処理である。
(Control method executed by the controller 10)
Next, a control method executed by the controller 10 according to the first embodiment will be described with reference to FIG. FIG. 7 is a flowchart showing a control method executed by the controller 10 shown in FIG. This control method is implemented by incorporating the program of the flowchart shown in FIG. As shown in FIG. 3, it is assumed that the actual motor angular frequency ωre [rad / s] changes suddenly at the (n + 1) th switching timing. In addition, switching from the rectangular wave generation unit 107 to the PWM control unit 105 is performed at the (n + 2) th switching timing. As shown in FIG. 7, at the (n + 1) -th switching timing, the α table reference unit 101 executes an α table reference process (step S101). Here, the α table reference process refers to a table stored in advance based on the torque command value T [N · m], the motor rotation speed N [rpm], and the DC voltage value Vdc [V], and suppresses fluctuations. This is a control process for obtaining the previous voltage phase command value α ′ * .

次に、フラグ制御部110に格納された矩形波フラグが1から0へ変化したか否かフラグ制御部110は判定する(ステップS102)。矩形波フラグが1から0へ変化していないとフラグ制御部110が判定した場合(ステップS102:No)、αフィルタ演算部102はαフィルタ演算する(ステップS104)。具体的には、αフィルタ演算部102は、変動抑制前電圧位相指令値α’の変動を抑制し、スイッチ部103へ電圧位相指令値α(n+2)を出力する。次に、フラグ制御部110は、矩形波フラグが1か否か判定する(ステップS105)。矩形波フラグが1であるとフラグ制御部110が判定した場合(ステップS105:Yes)、フラグ制御部110は、スイッチ部103および108の接点を端子Bに接触させたままとする。これより、スイッチ部103を介して、矩形波生成部107に電圧位相指令値α(n+2)が出力される。次に、フラグ制御部110は、矩形波生成部107に矩形波生成処理を実行させる(ステップS109)。ここで、矩形波生成処理とは3相比較値を生成する制御処理である。 Next, the flag control unit 110 determines whether or not the rectangular wave flag stored in the flag control unit 110 has changed from 1 to 0 (step S102). When the flag control unit 110 determines that the rectangular wave flag has not changed from 1 to 0 (step S102: No), the α filter calculation unit 102 performs α filter calculation (step S104). Specifically, the α filter calculation unit 102 suppresses fluctuations in the voltage phase command value α ′ * before fluctuation suppression, and outputs the voltage phase command value α * (n + 2) to the switch unit 103. Next, the flag control unit 110 determines whether or not the rectangular wave flag is 1 (step S105). When the flag control unit 110 determines that the rectangular wave flag is 1 (step S105: Yes), the flag control unit 110 keeps the contacts of the switch units 103 and 108 in contact with the terminal B. Accordingly, the voltage phase command value α * (n + 2) is output to the rectangular wave generation unit 107 via the switch unit 103. Next, the flag control unit 110 causes the rectangular wave generation unit 107 to execute a rectangular wave generation process (step S109). Here, the rectangular wave generation process is a control process for generating a three-phase comparison value.

次に、矩形波生成部107は、Δα演算を実行する(ステップS110)。ここで、Δα演算では、図3に示したように、現在の回転子位相θ、モータ回転数N[rpm]および(n+1)回目制御周期tnowに基づいて、(n+2)回目スイッチングタイミングにおける回転子位相θnextを演算する。また、Δα演算では、電圧位相指令値α(n+2)に基づいて、(n+2)回目の目標スイッチングタイミングにおける回転子位相目標値θnextを演算する。更に、回転子位相θnextと回転子位相目標値θnextとの誤差Δθを求める。更に、Δα演算では、誤差Δθに基づいて、補正後の(n+2)回目制御周期tnext’および誤差Δα(n+3)を演算する。以上より、(n+1)回目スイッチングタイミングにおけるコントローラ10の制御処理を終了する。 Next, the rectangular wave generation unit 107 performs Δα calculation (step S110). Here, in the Δα calculation, as shown in FIG. 3, the rotor at the (n + 2) -th switching timing is based on the current rotor phase θ, the motor rotation speed N [rpm], and the (n + 1) -th control cycle tnow. The phase θnext is calculated. In the Δα calculation, the rotor phase target value θ * next at the (n + 2) th target switching timing is calculated based on the voltage phase command value α * (n + 2). Further, an error Δθ between the rotor phase θnext and the rotor phase target value θ * next is obtained. Further, in the Δα calculation, the corrected (n + 2) th control cycle tnext ′ and the error Δα (n + 3) are calculated based on the error Δθ. Thus, the control process of the controller 10 at the (n + 1) th switching timing is completed.

(n+2)回目スイッチングタイミングにおいて、矩形波フラグが1から0へ変化したとフラグ制御部110が判定した場合(ステップS102:Yes)、ステップS103の制御処理に移行する。ステップS103の制御処理において、フラグ制御部110は、矩形波生成部107にαフィルタ演算部102を初期化させる。具体的には、スイッチ部103を介して出力された電圧位相指令値α(n+3)に誤差Δα(n+3)を加算して、実際の電圧位相α(n+3)を演算する。そして、矩形波生成部107は実際の電圧位相α(n+3)で、αフィルタ演算部102を初期化する。次に、αフィルタ演算部102はαフィルタ演算する(ステップS104)。ステップS103の制御処理において、αフィルタ演算部102は、実際の電圧位相α(n+3)で初期化されているので、αフィルタ演算部102の出力である電圧位相指令値αは実際の電圧位相α(n+3)に等しくなる。 When the flag control unit 110 determines that the rectangular wave flag has changed from 1 to 0 at the (n + 2) th switching timing (step S102: Yes), the process proceeds to the control process of step S103. In the control process of step S103, the flag control unit 110 causes the rectangular wave generation unit 107 to initialize the α filter calculation unit 102. Specifically, the actual voltage phase α (n + 3) is calculated by adding the error Δα (n + 3) to the voltage phase command value α * (n + 3) output via the switch unit 103. The rectangular wave generation unit 107 initializes the α filter calculation unit 102 with the actual voltage phase α (n + 3). Next, the α filter calculation unit 102 performs α filter calculation (step S104). In the control process of step S103, the α filter calculation unit 102 is initialized with the actual voltage phase α (n + 3), so that the voltage phase command value α * output from the α filter calculation unit 102 is the actual voltage phase. It is equal to α (n + 3).

次に、フラグ制御部110は、矩形波フラグが1か否か判定する(ステップS105)。(n+2)回目スイッチングタイミングにおいて実行されたステップS102の制御処理で、矩形波フラグが1から0へ変化したと判定しているので、矩形波フラグは1でないとフラグ制御部110は判定する(ステップS105:No)。矩形波フラグは1でないとフラグ制御部110が判定した場合、フラグ制御部110は、スイッチ部103および108の接点を端子Aから端子Bへ切り替えさせる。これより、スイッチ部103を介して、PWM制御部105に電圧位相指令値α=実際の電圧位相α(n+3)が出力される。 Next, the flag control unit 110 determines whether or not the rectangular wave flag is 1 (step S105). In the control process of step S102 executed at the (n + 2) -th switching timing, it is determined that the rectangular wave flag has changed from 1 to 0, so the flag control unit 110 determines that the rectangular wave flag is not 1 (step) S105: No). When the flag control unit 110 determines that the rectangular wave flag is not 1, the flag control unit 110 switches the contacts of the switch units 103 and 108 from the terminal A to the terminal B. Thus, the voltage phase command value α * = actual voltage phase α (n + 3) is output to the PWM control unit 105 via the switch unit 103.

次に、フラグ制御部110は、PWM制御部105にPWM制御を実行させる。具体的には、vd、vq指令演算部1051は、直流電圧値Vdc[V]および電圧位相指令値αからd軸電圧指令値vd[V]およびq軸電圧指令値vq[V]を演算する制御処理を実行する(ステップS106)。次に、2相/3相変換部1052は、回転子位相θにより、d軸電圧指令値vd[V]およびq軸電圧指令値vq[V]を3相電圧指令値vu[V]、vv[V]、vw[V]に変換する制御処理を実行する(ステップS107)。次に、PWM生成部1053は、3相電圧指令値vu[V]、vv[V]、vw[V]と三角波状のキャリア信号の大小関係を比較し、その大小関係に応じて3相比較値を生成する制御処理を実行する(ステップS108)。また、PWM生成部1053は、PWM周期Tpwmを演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。以上より、(n+2)回目スイッチングタイミングにおけるコントローラ10の制御処理を終了する。 Next, the flag control unit 110 causes the PWM control unit 105 to execute PWM control. Specifically, the vd, vq command calculation unit 1051 calculates the d-axis voltage command value vd [V] and the q-axis voltage command value vq [V] from the DC voltage value Vdc [V] and the voltage phase command value α *. A control process is executed (step S106). Next, the two-phase / three-phase converter 1052 converts the d-axis voltage command value vd [V] and the q-axis voltage command value vq [V] into the three-phase voltage command values vu [V], vv based on the rotor phase θ. A control process for converting to [V] and vw [V] is executed (step S107). Next, the PWM generation unit 1053 compares the magnitude relationship between the three-phase voltage command values vu [V], vv [V], and vw [V] and a triangular wave carrier signal, and compares the three-phases according to the magnitude relationship. A control process for generating a value is executed (step S108). The PWM generation unit 1053 calculates the PWM cycle Tpwm, calculates the next calculation timing, and generates the next control cycle command. Thus, the control process of the controller 10 at the (n + 2) th switching timing is completed.

(n+3)回目スイッチングタイミングにおいて、矩形波フラグはすでに0になっているので、矩形波フラグが1から0へ変化していないとフラグ制御部110は判定する(ステップS102:No)。以降、ステップS104〜S108の制御処理を実行する。以上より、(n+3)回目スイッチングタイミングにおけるコントローラ10の制御処理を終了する。その後、ステップS105の制御処理において、矩形波フラグが1であるとフラグ制御部110が判定するまで、ステップS101、S102、S104〜S108の制御処理を順次繰り返す。その後、ステップS105の制御処理において、矩形波フラグが1であるとフラグ制御部110が判定した場合(ステップS105:Yes)、フラグ制御部110は、スイッチ部103および108の接点を端子Bから端子Aへ切り替えさせる。これより、スイッチ部103を介して、矩形波生成部107に電圧位相指令値αが出力される。以降、ステップS109およびS110の制御処理を実行する。その後、ステップS102の制御処理において、矩形波フラグが1から0へ変化したとフラグ制御部110が判定するまで、ステップS101、S102、S104、S105、S109およびS110の制御処理を順次繰り返す。 Since the rectangular wave flag is already 0 at the (n + 3) -th switching timing, the flag control unit 110 determines that the rectangular wave flag has not changed from 1 to 0 (step S102: No). Thereafter, the control process of steps S104 to S108 is executed. Thus, the control process of the controller 10 at the (n + 3) th switching timing is completed. Thereafter, in the control process of step S105, the control processes of steps S101, S102, and S104 to S108 are sequentially repeated until the flag control unit 110 determines that the rectangular wave flag is 1. Thereafter, in the control process of step S105, when the flag control unit 110 determines that the rectangular wave flag is 1 (step S105: Yes), the flag control unit 110 connects the contact points of the switch units 103 and 108 from the terminal B to the terminal B. Switch to A. As a result, the voltage phase command value α * is output to the rectangular wave generation unit 107 via the switch unit 103. Thereafter, the control processes of steps S109 and S110 are executed. Thereafter, in the control process of step S102, the control processes of steps S101, S102, S104, S105, S109, and S110 are sequentially repeated until the flag control unit 110 determines that the rectangular wave flag has changed from 1 to 0.

以上より、第1の実施形態に係るインバータシステムは、複数のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を含むインバータ1、モータ3およびコントローラ10を含む。コントローラ10は、インバータ1からモータ3への出力電圧Vu[V]、Vv[V]、Vw[V]を矩形波状に制御する矩形波生成部107を含む。また、出力電圧Vu[V]、Vv[V]、Vw[V]を擬似正弦波状に制御するPWM制御部105を含む。更に、矩形波生成部107からPWM制御部105への切替えを、スイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−のスイッチングタイミングに合わせて行うスイッチ部103を備えている。矩形波生成部107は、n回目スイッチングタイミングで、(n+1)回目スイッチングタイミングと(n+2)回目スイッチングタイミングとの間の(n+1)回目制御周期tnowを演算する。   As described above, the inverter system according to the first embodiment includes the inverter 1, the motor 3, and the controller 10 including the plurality of switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw−. The controller 10 includes a rectangular wave generation unit 107 that controls the output voltages Vu [V], Vv [V], and Vw [V] from the inverter 1 to the motor 3 into a rectangular wave shape. Also included is a PWM controller 105 that controls the output voltages Vu [V], Vv [V], and Vw [V] in a pseudo sine wave form. Furthermore, the switch part 103 which switches from the rectangular wave production | generation part 107 to the PWM control part 105 according to the switching timing of switching element Tu +, Tu-, Tv +, Tv-, Tw +, Tw- is provided. The rectangular wave generation unit 107 calculates the (n + 1) th control cycle tnow between the (n + 1) th switching timing and the (n + 2) th switching timing at the nth switching timing.

(n+1)回目スイッチングタイミングで、(n+1)回目制御周期tnowに基づく(n+2)回目スイッチングタイミングにおける回転子位相θnextを演算する。更に、トルク指令値T[N・m]およびモータ回転数N[rpm]に基づく電圧位相指令値αから求まる(n+2)回目の目標スイッチングタイミングにおける回転子位相目標値θnextを演算する。上記回転子位相目標値θnextと上記回転子位相θnextとの差Δθを演算する。スイッチ部103による切替え直後、PWM制御部105は、電圧位相指令値α(n+3)を上記差Δθに基づいて補正した実際の電圧位相α(n+3)で制御する。また、(n+2)回目スイッチングタイミングで、かつ、スイッチ部103が切替える直前に、矩形波生成部107は実際の電圧位相α(n+3)を演算する。実際の電圧位相α(n+3)は、(n+3)回目スイッチングタイミングにおける電圧位相指令値をα(n+3)、前記差をΔθ、所定値をKとすると、α(n+3)=α(n+3)+Δθ×(1−K)である。これから、切替え前後でモータ回転数N[rpm]が急変した場合でも、切替え直後、電圧位相指令値α=実際の電圧位相α(n+3)でPWM制御するので、トルク振動を抑制することができる。 At the (n + 1) th switching timing, the rotor phase θnext at the (n + 2) th switching timing based on the (n + 1) th control cycle tnow is calculated. Furthermore, the rotor phase target value θ * next at the (n + 2) th target switching timing obtained from the voltage phase command value α * based on the torque command value T [N · m] and the motor rotation speed N [rpm] is calculated. A difference Δθ between the rotor phase target value θ * next and the rotor phase θnext is calculated. Immediately after the switching by the switch unit 103, the PWM control unit 105 controls the voltage phase command value α * (n + 3) with the actual voltage phase α (n + 3) corrected based on the difference Δθ. In addition, at the (n + 2) -th switching timing and immediately before the switch unit 103 is switched, the rectangular wave generation unit 107 calculates the actual voltage phase α (n + 3). The actual voltage phase α (n + 3) is, (n + 3) th voltage phase command value in a switching timing α * (n + 3), the difference Δθ a and a predetermined value and K, α (n + 3) = α * (n + 3) + Δθ × (1−K). From this, even when the motor rotation speed N [rpm] changes suddenly before and after the switching, the PWM control is performed with the voltage phase command value α * = the actual voltage phase α (n + 3) immediately after the switching, so that torque vibration can be suppressed. .

また、コントローラ10は、PWM制御部105または矩形波生成部107に電圧位相指令値αを出力するαフィルタ演算部102を備える。矩形波生成部107は、切替え直後、αフィルタ演算部102からPWM制御部105に実際の電圧位相α(n+3)を出力させる。これにより、αフィルタ演算部102のフィルタ作用により、矩形波生成部107からPWM制御部105への切替え直後に発生する、実際の電圧位相αのステップ状の急峻な変化を緩和することができる。よって、トルク振動をより抑制することができる。 Further, the controller 10 includes an α filter calculation unit 102 that outputs a voltage phase command value α * to the PWM control unit 105 or the rectangular wave generation unit 107. The rectangular wave generating unit 107 outputs the actual voltage phase α (n + 3) from the α filter calculation unit 102 to the PWM control unit 105 immediately after switching. As a result, a steep step-like change in the actual voltage phase α that occurs immediately after switching from the rectangular wave generation unit 107 to the PWM control unit 105 can be mitigated by the filter action of the α filter calculation unit 102. Therefore, torque vibration can be further suppressed.

(第2の実施形態)
次に、第2の実施形態に係るインバータシステムについて、第1の実施形態に係るインバータシステムと異なる点を中心に図8乃至図10を参照して説明する。また、第2の実施形態に係るインバータシステムについて、第1の実施形態に係るインバータシステムと同様の構造には同じ番号を付し、説明を省略する。なお、第2の実施形態に係るインバータシステムは、第1の実施形態に係るインバータシステムとほとんど同じである。図8は、本発明の第2の実施形態に係るコントローラ20の内部構成を示す制御ブロック図である。図8に示すように、第2の実施形態に係るインバータシステムが第1の実施形態と異なる点は、コントローラ20に含まれる矩形波制御手段である矩形波生成部207とフラグ制御部210が異なることだけである。
(Second Embodiment)
Next, an inverter system according to the second embodiment will be described with reference to FIGS. 8 to 10 focusing on differences from the inverter system according to the first embodiment. Moreover, about the inverter system which concerns on 2nd Embodiment, the same number is attached | subjected to the structure similar to the inverter system which concerns on 1st Embodiment, and description is abbreviate | omitted. The inverter system according to the second embodiment is almost the same as the inverter system according to the first embodiment. FIG. 8 is a control block diagram showing the internal configuration of the controller 20 according to the second embodiment of the present invention. As shown in FIG. 8, the inverter system according to the second embodiment is different from the first embodiment in that a rectangular wave generation unit 207 that is a rectangular wave control unit included in the controller 20 and a flag control unit 210 are different. It is only that.

矩形波生成部207は、第1の実施形態と同様に、インバータ1のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を矩形波制御する。具体的には、第1の実施形態と同様に、矩形波生成部207は3相比較値を生成する。また、第1の実施形態と同様に、矩形波生成部207は、次回制御周期を演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。また、矩形波生成部207は、第1の実施形態と異なり、今回演算タイミングに対する次回演算タイミングの誤差Δα(n+2)(図3参照)を、演算タイミング毎に演算する。更に、スイッチ部103における矩形波生成部207からPWM制御部105への切替えが行われる場合、矩形波生成部207は、実際の電圧位相α(n+2)で、αフィルタ演算部102を初期化する。   The rectangular wave generator 207 performs rectangular wave control on the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− of the inverter 1 as in the first embodiment. Specifically, as in the first embodiment, the rectangular wave generation unit 207 generates a three-phase comparison value. Similarly to the first embodiment, the rectangular wave generation unit 207 calculates the next control cycle, calculates the next calculation timing, and generates the next control cycle command. Further, unlike the first embodiment, the rectangular wave generation unit 207 calculates an error Δα (n + 2) (see FIG. 3) of the next calculation timing with respect to the current calculation timing for each calculation timing. Further, when switching from the rectangular wave generation unit 207 to the PWM control unit 105 in the switch unit 103 is performed, the rectangular wave generation unit 207 initializes the α filter calculation unit 102 with the actual voltage phase α (n + 2). .

フラグ制御部210は、第1の実施形態と同様に、矩形波フラグを格納し、矩形波フラグに基づいてスイッチ部103および108の動作を制御する。具体的には、フラグ制御部210は、矩形波フラグが1になった場合、スイッチ部103および108の接点を端子Bから端子Aへ切替えさせる。これから、矩形波生成部207に、出力電圧Vu[V]、Vv[V]、Vw[V]を矩形波状に制御する矩形波制御を実行させる。一方、フラグ制御部210は、矩形波フラグが1から0へ変化した場合、スイッチ部103および108の接点を端子Aから端子Bへ切替えさせる。これから、PWM制御部105に、出力電圧Vu[V]、Vv[V]、Vw[V]を擬似正弦波状に制御するPWM制御を実行させる。   As in the first embodiment, the flag control unit 210 stores a rectangular wave flag and controls the operations of the switch units 103 and 108 based on the rectangular wave flag. Specifically, when the rectangular wave flag becomes 1, the flag control unit 210 switches the contact points of the switch units 103 and 108 from the terminal B to the terminal A. From this, the rectangular wave generation unit 207 is caused to execute rectangular wave control for controlling the output voltages Vu [V], Vv [V], and Vw [V] into a rectangular wave shape. On the other hand, when the rectangular wave flag changes from 1 to 0, the flag control unit 210 switches the contact of the switch units 103 and 108 from the terminal A to the terminal B. From this, the PWM control unit 105 is caused to execute PWM control for controlling the output voltages Vu [V], Vv [V], and Vw [V] in a pseudo sine wave shape.

(矩形波生成部207からPWM制御部105への切替え処理)
次に、第2の実施形態における、矩形波制御する矩形波生成部207からPWM制御するPWM制御部105への切替え処理について、図9を参照して説明する。図9は、図8に示すコントローラ20における矩形波/PWM制御の切替え処理による出力を示すタイミングチャートである。図9では、第1の実施形態の図4と同様に、出力電圧Vu[V]、Vv[V]、Vw[V]、キャリア信号、スイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−のスイッチングタイミングを示している。ここで、図9における(n+2)回目スイッチングタイミングの左側は、矩形波生成部207による矩形波制御を、右側はPWM制御部105によるPWM制御を示している。なお、第1の実施形態の図4と同様に、各スイッチングタイミングで、出力電圧Vu[V]、Vv[V]、Vw[V]のいずれかが反転している。
(Switching process from the rectangular wave generator 207 to the PWM controller 105)
Next, switching processing from the rectangular wave generating unit 207 that performs rectangular wave control to the PWM control unit 105 that performs PWM control in the second embodiment will be described with reference to FIG. FIG. 9 is a timing chart showing the output of the rectangular wave / PWM control switching process in the controller 20 shown in FIG. In FIG. 9, similarly to FIG. 4 of the first embodiment, output voltages Vu [V], Vv [V], Vw [V], carrier signals, switching elements Tu +, Tu−, Tv +, Tv−, Tw +, The switching timing of Tw− is shown. Here, the left side of the (n + 2) th switching timing in FIG. 9 shows the rectangular wave control by the rectangular wave generation unit 207, and the right side shows the PWM control by the PWM control unit 105. As in FIG. 4 of the first embodiment, one of the output voltages Vu [V], Vv [V], and Vw [V] is inverted at each switching timing.

第2の実施形態では、図9に示すように、n回目スイッチングタイミングまで、矩形波生成部207で矩形波演算が実行されている。(n+1)回目スイッチングタイミングにおいて、矩形波生成部207からPWM制御部105への切替えを行っている。その後、PWM制御部105でPWM演算が実行されている。しかし、第1の実施形態と同様に、(n+2)回目制御周期であるPWM周期Tpwmは、(n+1)回目スイッチングタイミングにおいて、PWM制御部105により演算される。このため、矩形波生成部207からPWM制御部105への切替えを行った後、1スイッチングタイミング遅れて、PWM制御は開始される。すなわち、(n+2)回目スイッチングタイミング以降、PWM制御部105によってPWM制御が開始される。そして、(n+2)回目スイッチングタイミング以降、PWM制御部105は、PWM制御するため、キャリア信号の1周期をPWM周期Tpwmに合わせている。   In the second embodiment, as shown in FIG. 9, the rectangular wave calculation is executed by the rectangular wave generation unit 207 until the n-th switching timing. Switching from the rectangular wave generator 207 to the PWM controller 105 is performed at the (n + 1) -th switching timing. Thereafter, the PWM calculation is performed by the PWM control unit 105. However, as in the first embodiment, the PWM cycle Tpwm that is the (n + 2) th control cycle is calculated by the PWM control unit 105 at the (n + 1) th switching timing. For this reason, after switching from the rectangular wave generator 207 to the PWM controller 105, the PWM control is started with a delay of one switching timing. That is, after the (n + 2) th switching timing, the PWM control unit 105 starts PWM control. After the (n + 2) th switching timing, the PWM control unit 105 matches one cycle of the carrier signal with the PWM cycle Tpwm in order to perform PWM control.

図9に示したように、第2の実施形態では、第1の実施形態と異なり、(n+1)回目スイッチングタイミングにおいて、矩形波生成部207はΔα演算を実行する。第1の実施形態と異なり、Δα演算の実行後、矩形波生成部207からPWM制御部105への切替えを行う。ここで、第1の実施形態では、(n+1)回目スイッチングタイミングにおいて、実際のモータ角周波数ωre[rad/s](図3参照)、すなわち、モータ回転数N[rpm]が急変した場合を想定している。また、(n+1)回目スイッチングタイミングから(n+3)回目スイッチングタイミングまでの間、モータ回転数N[rpm]が一定という前提でΔα演算を実行している。一方、第2の実施形態では、n回目スイッチングタイミングから(n+2)回目スイッチングタイミングまでの間も、モータ回転数N[rpm]が変化するという前提でΔα演算している。すなわち、(n+1)回目スイッチングタイミングにおいて、上記切替えを行う前に、実際のモータ角周波数ωre[rad/s]、すなわち、モータ回転数N[rpm]が変化する場合を想定している。   As shown in FIG. 9, in the second embodiment, unlike the first embodiment, the rectangular wave generation unit 207 performs Δα calculation at the (n + 1) th switching timing. Unlike the first embodiment, after execution of the Δα calculation, switching from the rectangular wave generation unit 207 to the PWM control unit 105 is performed. Here, in the first embodiment, it is assumed that the actual motor angular frequency ωre [rad / s] (see FIG. 3), that is, the motor rotation speed N [rpm] changes suddenly at the (n + 1) th switching timing. is doing. Further, the Δα calculation is executed on the assumption that the motor rotation speed N [rpm] is constant from the (n + 1) th switching timing to the (n + 3) th switching timing. On the other hand, in the second embodiment, Δα is calculated on the assumption that the motor rotation speed N [rpm] changes from the n-th switching timing to the (n + 2) -th switching timing. That is, it is assumed that at the (n + 1) th switching timing, the actual motor angular frequency ωre [rad / s], that is, the motor rotation speed N [rpm] changes before the above switching.

具体的には、第2の実施形態に係る矩形波生成部207では、(n+1)回目スイッチングタイミングに対する(n+2)回目スイッチングタイミングの誤差Δα(n+2)=誤差Δθ(図3参照)を、演算タイミング毎に演算している。第1の実施形態と同様に、(n+1)回目スイッチングタイミングにおいて、αフィルタ演算部102は、変動抑制前電圧位相指令値α’の変動を抑制する。そして、αフィルタ演算部102は、(n+2)回目スイッチングタイミングにおける電圧位相指令値α(n+2)(図3参照)を、スイッチ部103を介して、矩形波生成部207へ出力する。第1の実施形態と異なり、(n+1)回目スイッチングタイミングにおいて、矩形波生成部207からPWM制御部105への切替えを行う前に、矩形波生成部207は、Δα演算を実行する。 Specifically, in the rectangular wave generation unit 207 according to the second embodiment, the error Δα (n + 2) = error Δθ (see FIG. 3) of the (n + 2) -th switching timing with respect to the (n + 1) -th switching timing is calculated as the calculation timing. It is calculated every time. Similar to the first embodiment, at the (n + 1) -th switching timing, the α filter calculation unit 102 suppresses fluctuations in the voltage phase command value α ′ * before fluctuation suppression. Then, the α filter calculation unit 102 outputs the voltage phase command value α * (n + 2) (see FIG. 3) at the (n + 2) -th switching timing to the rectangular wave generation unit 207 via the switch unit 103. Unlike the first embodiment, at the (n + 1) -th switching timing, the rectangular wave generation unit 207 performs Δα calculation before switching from the rectangular wave generation unit 207 to the PWM control unit 105.

ここで、第2の実施形態に係るΔα演算では、現在の回転子位相θ、モータ回転数N[rpm]および(n+1)回目制御周期tnow(図3参照)に基づいて、回転子位相θnext(図3参照)を演算する。また、Δα演算では、第1の実施形態と同様に、電圧位相指令値α(n+2)に基づいて、(n+2)回目の目標スイッチングタイミングにおける回転子位相目標値θnext(図3参照)を演算する。更に、第1の実施形態と同様に、回転子位相θnextと回転子位相目標値θnextとの誤差Δθを求める。更に、Δα演算では、誤差Δθに基づいて、誤差Δα(n+2)=誤差Δθを演算する。 Here, in the Δα calculation according to the second embodiment, based on the current rotor phase θ, the motor rotation speed N [rpm], and the (n + 1) th control cycle tnow (see FIG. 3), the rotor phase θnext ( (See FIG. 3). In the Δα calculation, similarly to the first embodiment, based on the voltage phase command value α * (n + 2), the rotor phase target value θ * next at the (n + 2) th target switching timing (see FIG. 3). Is calculated. Further, as in the first embodiment, an error Δθ between the rotor phase θnext and the rotor phase target value θ * next is obtained. Further, in Δα calculation, error Δα (n + 2) = error Δθ is calculated based on error Δθ.

その後、(n+1)回目スイッチングタイミングにおいて、上記切替えを行う前に、矩形波生成部207は、実際の電圧位相α(n+2)=電圧位相指令値α(n+2)+誤差Δθを演算する。次に、矩形波生成部207は、αフィルタ演算部102を実際の電圧位相α(n+2)で初期化する。その後、(n+1)回目スイッチングタイミングにおいて、スイッチ部103は、矩形波生成部207からPWM制御部105への切替えを行う。切換え直後、PWM制御部105は、実際の電圧位相α(n+2)を用いて、PWM制御する。これから、図5および図6に示した、第1の実施形態と同様の効果を取得できる。 Thereafter, at the (n + 1) th switching timing, the rectangular wave generation unit 207 calculates the actual voltage phase α (n + 2) = voltage phase command value α * (n + 2) + error Δθ before performing the switching. Next, the rectangular wave generation unit 207 initializes the α filter calculation unit 102 with the actual voltage phase α (n + 2). Thereafter, at the (n + 1) -th switching timing, the switch unit 103 performs switching from the rectangular wave generation unit 207 to the PWM control unit 105. Immediately after the switching, the PWM control unit 105 performs PWM control using the actual voltage phase α (n + 2). From this, the same effects as those of the first embodiment shown in FIGS. 5 and 6 can be obtained.

(コントローラ20で実行される制御方法)
次に、第2の実施形態に係るコントローラ20で実行される制御方法について、図10を参照して説明する。図10は、図8に示すコントローラ20で実行される制御方法を示すフローチャートである。本制御方法は、図10に示すフローチャートのプログラムをコントローラ20に組み込み実現している。なお、本制御処理は、第1の実施形態に係るコントローラ10で実行される制御処理をほとんど同じである。第1の実施形態に係るコントローラ10で実行される制御処理と本制御処理が異なる点は、ステップS203の制御処理において、矩形波生成部207がΔα演算を実行することだけである。
(Control method executed by the controller 20)
Next, a control method executed by the controller 20 according to the second embodiment will be described with reference to FIG. FIG. 10 is a flowchart showing a control method executed by the controller 20 shown in FIG. This control method is implemented by incorporating the program of the flowchart shown in FIG. This control process is almost the same as the control process executed by the controller 10 according to the first embodiment. The only difference between the control process executed by the controller 10 according to the first embodiment and the present control process is that the rectangular wave generation unit 207 executes the Δα calculation in the control process of step S203.

図10に示すように、第1の実施形態のステップS101の制御処理と同様に、n回目スイッチングタイミングにおいて、αテーブル参照部101はαテーブル参照処理を実行する(ステップS201)。次に、フラグ制御部210に格納された矩形波フラグが1から0へ変化したか否かフラグ制御部210は判定する(ステップS202)。矩形波フラグが1から0へ変化していないとフラグ制御部210が判定した場合(ステップS202:No)、ステップS104の制御処理と同様に、αフィルタ演算部102はαフィルタ演算する(ステップS205)。具体的には、αフィルタ演算部102は、変動抑制前電圧位相指令値α’の変動を抑制し、スイッチ部103へ電圧位相指令値α(n+1)を出力する。以降、ステップS105、S109およびS110の制御処理と、それぞれ同様であるステップS206、S210およびS211の制御処理を実行する。以上より、n回目スイッチングタイミングにおけるコントローラ20の制御処理を終了する。 As illustrated in FIG. 10, the α table reference unit 101 executes the α table reference process at the n-th switching timing, similarly to the control process in step S101 of the first embodiment (step S201). Next, the flag control unit 210 determines whether or not the rectangular wave flag stored in the flag control unit 210 has changed from 1 to 0 (step S202). When the flag control unit 210 determines that the rectangular wave flag has not changed from 1 to 0 (step S202: No), the α filter calculation unit 102 performs α filter calculation (step S205), similarly to the control process of step S104. ). Specifically, the α filter calculation unit 102 suppresses fluctuations in the voltage phase command value α ′ * before fluctuation suppression, and outputs the voltage phase command value α * (n + 1) to the switch unit 103. Thereafter, the control processes of steps S206, S210, and S211 that are similar to the control processes of steps S105, S109, and S110, respectively, are executed. As described above, the control process of the controller 20 at the n-th switching timing is completed.

(n+1)回目スイッチングタイミングにおいて、矩形波フラグが1から0へ変化したとフラグ制御部210が判定した場合(ステップS202:Yes)、ステップS203の制御処理に移行する。ステップS203の制御処理において、フラグ制御部210は、矩形波生成部207にΔα演算を実行させる。次に、矩形波生成部207は、ステップS103の制御処理と同様に、αフィルタ演算部102を初期化させる(ステップS204)。次に、ステップS104の制御処理と同様に、αフィルタ演算部102はαフィルタ演算する(ステップS205)。ステップS204の制御処理において、αフィルタ演算部102は実際の電圧位相α(n+2)で初期化されているので、αフィルタ演算部102の出力である電圧位相指令値αは実際の電圧位相α(n+2)に等しくなる。 When the flag control unit 210 determines that the rectangular wave flag has changed from 1 to 0 at the (n + 1) th switching timing (step S202: Yes), the process proceeds to the control process of step S203. In the control process of step S203, the flag control unit 210 causes the rectangular wave generation unit 207 to execute Δα calculation. Next, the rectangular wave generation unit 207 initializes the α filter calculation unit 102 as in the control process of step S103 (step S204). Next, as in the control process in step S104, the α filter calculation unit 102 performs an α filter calculation (step S205). In the control process of step S204, the α filter calculation unit 102 is initialized with the actual voltage phase α (n + 2), so that the voltage phase command value α * output from the α filter calculation unit 102 is the actual voltage phase α. It becomes equal to (n + 2).

次に、ステップS105の制御処理と同様に、フラグ制御部210は、矩形波フラグが1か否か判定する(ステップS206)。第1の実施形態と同様に、矩形波フラグは1でないとフラグ制御部210は判定するので(ステップS206:No)、フラグ制御部210は、スイッチ部103および108の接点を端子Aから端子Bへ切り替えさせる。これより、第1の実施形態と同様に、スイッチ部103を介して、PWM制御部105に電圧位相指令値α=実際の電圧位相α(n+2)が出力される。以降、ステップS106〜S108の制御処理と、それぞれ同様であるステップS207〜S209の制御処理を実行する。以上より、(n+1)回目スイッチングタイミングにおけるコントローラ20の制御処理を終了する。 Next, similarly to the control process in step S105, the flag control unit 210 determines whether or not the rectangular wave flag is 1 (step S206). As in the first embodiment, since the flag control unit 210 determines that the rectangular wave flag is not 1 (step S206: No), the flag control unit 210 connects the contacts of the switch units 103 and 108 from the terminal A to the terminal B. Switch to. Thus, as in the first embodiment, the voltage phase command value α * = actual voltage phase α (n + 2) is output to the PWM control unit 105 via the switch unit 103. Thereafter, the control processes of steps S207 to S209, which are the same as the control processes of steps S106 to S108, respectively, are executed. Thus, the control process of the controller 20 at the (n + 1) th switching timing is completed.

第1の実施形態と同様に、(n+2)回目スイッチングタイミングにおいて、矩形波フラグはすでに0になっているので、矩形波フラグが1から0へ変化していないとフラグ制御部210は判定する(ステップS202:No)。以降、ステップS205〜S209の制御処理を実行する。以上より、(n+2)回目スイッチングタイミングにおけるコントローラ20の制御処理を終了する。その後、ステップS206の制御処理において、矩形波フラグが1であるとフラグ制御部210が判定するまで、ステップS201、S202、S205〜S209の制御処理を順次繰り返す。その後、ステップS206の制御処理において、矩形波フラグが1であるとフラグ制御部210が判定した場合(ステップS206:Yes)、フラグ制御部210は、スイッチ部103および108の接点を端子Bから端子Aへ切り替えさせる。これより、第1の実施形態と同様に、スイッチ部103を介して、矩形波生成部207に電圧位相指令値αが出力される。以降、ステップS209およびS210の制御処理を実行する。その後、ステップS202の制御処理において、矩形波フラグが1から0へ変化したとフラグ制御部210が判定するまで、ステップS201、S202、S205、S206、S210およびS211の制御処理を順次繰り返す。 As in the first embodiment, since the rectangular wave flag is already 0 at the (n + 2) -th switching timing, the flag control unit 210 determines that the rectangular wave flag has not changed from 1 to 0 ( Step S202: No). Thereafter, the control process of steps S205 to S209 is executed. Thus, the control process of the controller 20 at the (n + 2) th switching timing is completed. Thereafter, in the control process of step S206, the control processes of steps S201, S202, and S205 to S209 are sequentially repeated until the flag control unit 210 determines that the rectangular wave flag is 1. Thereafter, in the control process of step S206, when the flag control unit 210 determines that the rectangular wave flag is 1 (step S206: Yes), the flag control unit 210 connects the contacts of the switch units 103 and 108 from the terminal B to the terminal B. Switch to A. Thus, the voltage phase command value α * is output to the rectangular wave generation unit 207 via the switch unit 103 as in the first embodiment. Thereafter, the control processes of steps S209 and S210 are executed. Thereafter, in the control process of step S202, the control processes of steps S201, S202, S205, S206, S210, and S211 are sequentially repeated until the flag control unit 210 determines that the rectangular wave flag has changed from 1 to 0.

以上より、第2の実施形態に係る矩形波生成部207は、(n+2)回目スイッチングタイミングにおける電圧位相指令値α(n+2)と誤差Δθを加算して、実際の電圧位相α(n+2)を演算する。スイッチ部103は、(n+1)回目スイッチングタイミングにおける矩形波生成部207の上記演算後、矩形波生成部207からPWM制御部105への切替えを行う。これから、第1の実施形態と同様の効果を取得できる。更に、第1の実施形態と比較して1スイッチングタイミング遅れて取得したモータ回転数N[rpm]に基づいて、誤差Δθ=誤差Δαを演算することができる。よって、n回目スイッチングタイミングから(n+2)回目スイッチングタイミングまでの間、モータ回転数N[rpm]が変化する場合でも、精度良くΔα演算を実行することができる。 As described above, the rectangular wave generation unit 207 according to the second embodiment adds the voltage phase command value α * (n + 2) and the error Δθ at the (n + 2) -th switching timing to obtain the actual voltage phase α (n + 2). Calculate. The switch unit 103 performs switching from the rectangular wave generation unit 207 to the PWM control unit 105 after the calculation of the rectangular wave generation unit 207 at the (n + 1) -th switching timing. From this, the same effects as those of the first embodiment can be obtained. Furthermore, the error Δθ = the error Δα can be calculated based on the motor rotation speed N [rpm] acquired with a delay of one switching timing as compared with the first embodiment. Therefore, even when the motor rotation speed N [rpm] changes from the n-th switching timing to the (n + 2) -th switching timing, the Δα calculation can be executed with high accuracy.

次に、第2の実施形態の変形例について、図11を参照して説明する。図11は、第2の実施形態の変形例における矩形波/PWM制御の切替え処理による出力を示すタイミングチャートである。第2の実施形態の変形例に係るコントローラは、第2の実施形態に係るコントローラ20と同じ構造である。第2の実施形態の変形例が、第2の実施形態と異なる点は、図11に示すように、(n+1)回目制御周期tnowをPWM周期Tpwmと等しくする矩形波制御手段である矩形波生成部が異なることだけである。すなわち、第2の実施形態の変形例では、第2の実施形態と同様に、(n+1)回目スイッチングタイミングにおいて、矩形波生成部からPWM制御部105への切替えを行う前に、矩形波生成部はΔα演算を実行する。更に、第2の実施形態と同様に、矩形波生成部は、αフィルタ演算部102を実際の電圧位相α(n+2)で初期化する。その後、(n+1)回目スイッチングタイミングにおいて、スイッチ部103は、矩形波生成部からPWM制御部105への切替えを行う。よって、第2の実施形態と同様の効果を取得できる。更に、(n+1)回目制御周期tnowが短くなるので、第2の実施形態より、精度良くΔα演算を実行することができる。なお、第2の実施形態の変形例は、n回目スイッチングタイミングにおいて矩形波生成部で演算される(n+1)回目制御周期tnowをPWM周期Tpwmと等しく設定すれば、実現できる。   Next, a modification of the second embodiment will be described with reference to FIG. FIG. 11 is a timing chart showing an output by the rectangular wave / PWM control switching process in the modification of the second embodiment. The controller according to the modification of the second embodiment has the same structure as the controller 20 according to the second embodiment. The modification of the second embodiment differs from the second embodiment in that a rectangular wave is generated as rectangular wave control means for making the (n + 1) th control cycle tnow equal to the PWM cycle Tpwm, as shown in FIG. Only the parts are different. That is, in the modified example of the second embodiment, as in the second embodiment, the rectangular wave generation unit is switched before switching from the rectangular wave generation unit to the PWM control unit 105 at the (n + 1) th switching timing. Performs the Δα operation. Furthermore, as in the second embodiment, the rectangular wave generation unit initializes the α filter calculation unit 102 with the actual voltage phase α (n + 2). Thereafter, at the (n + 1) -th switching timing, the switch unit 103 performs switching from the rectangular wave generation unit to the PWM control unit 105. Therefore, the same effect as in the second embodiment can be obtained. Furthermore, since the (n + 1) th control cycle tnow is shortened, the Δα calculation can be executed with higher accuracy than in the second embodiment. The modification of the second embodiment can be realized by setting the (n + 1) th control cycle tnow calculated by the rectangular wave generator at the nth switching timing to be equal to the PWM cycle Tpwm.

以上より、矩形波生成部は、(n+1)回目制御周期tnowを、PWM制御部105で演算されるPWM周期と等しくする。これから、(n+1)回目制御周期tnowが短くなる。よって、n回目スイッチングタイミングから(n+2)回目スイッチングタイミングまでの間、モータ回転数N[rpm]が変化する場合でも、より精度良くΔα演算を実行することができる。   As described above, the rectangular wave generation unit makes the (n + 1) th control cycle tnow equal to the PWM cycle calculated by the PWM control unit 105. Accordingly, the (n + 1) th control cycle tnow is shortened. Therefore, even when the motor rotation speed N [rpm] changes from the n-th switching timing to the (n + 2) -th switching timing, the Δα calculation can be executed with higher accuracy.

(第3の実施形態)
次に、第3の実施形態に係るインバータシステムについて、第1の実施形態に係るインバータシステムと異なる点を中心に図12乃至図15を参照して説明する。また、第3の実施形態に係るインバータシステムについて、第1の実施形態に係るインバータシステムと同様の構造には同じ番号を付し、説明を省略する。なお、第3の実施形態に係るインバータシステムは、第1の実施形態に係るインバータシステムとほとんど同じである。図12は、本発明の第3の実施形態に係るコントローラ30の内部構成を示す制御ブロック図である。図12に示すように、第3の実施形態に係るインバータシステムが第1の実施形態と異なる点は、コントローラ30が異なることだけである。
(Third embodiment)
Next, an inverter system according to a third embodiment will be described with reference to FIGS. 12 to 15 focusing on differences from the inverter system according to the first embodiment. Moreover, about the inverter system which concerns on 3rd Embodiment, the same number is attached | subjected to the structure similar to the inverter system which concerns on 1st Embodiment, and description is abbreviate | omitted. Note that the inverter system according to the third embodiment is almost the same as the inverter system according to the first embodiment. FIG. 12 is a control block diagram showing the internal configuration of the controller 30 according to the third embodiment of the present invention. As shown in FIG. 12, the only difference between the inverter system according to the third embodiment and the first embodiment is that the controller 30 is different.

ここで、コントローラ30は、第1の実施形態と異なり、第2のフィルタ演算手段であるΔαフィルタ演算部311および第1の加算手段である加算部312を備える。また、第1の実施形態と異なり、コントローラ30に含まれるαテーブル参照部301、第1のフィルタ演算手段であるαフィルタ演算部302、矩形波制御手段である矩形波生成部307とフラグ制御部310が異なる。αテーブル参照部301は、第1の実施形態と同様に、トルク指令値T[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照する。そして、第1の実施形態と異なり、当該テーブルから、加算前電圧位相指令値α”を求める。αフィルタ演算部302は、伝達関数1/(τ1s+1)を用いて、後述する変動抑制前電圧位相指令値α’の変動を抑制する。なお、第1の実施形態と同様に、時定数τ1は数ms程度である。 Here, unlike the first embodiment, the controller 30 includes a Δα filter calculation unit 311 that is a second filter calculation unit and an addition unit 312 that is a first addition unit. Further, unlike the first embodiment, an α table reference unit 301 included in the controller 30, an α filter calculation unit 302 as a first filter calculation unit, a rectangular wave generation unit 307 as a rectangular wave control unit, and a flag control unit 310 is different. As in the first embodiment, the α table reference unit 301 stores a table stored in advance based on the torque command value T [N · m], the motor rotation speed N [rpm], and the DC voltage value Vdc [V]. Refer to Unlike the first embodiment, the pre-addition voltage phase command value α ″ * is obtained from the table. The α filter calculation unit 302 uses the transfer function 1 / (τ1s + 1) to determine the voltage before fluctuation suppression described later. The variation of the phase command value α ′ * is suppressed, and the time constant τ1 is about several ms as in the first embodiment.

矩形波生成部307は、第1の実施形態と同様に、インバータ1のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を矩形波制御する。具体的には、第1の実施形態と同様に、矩形波生成部307は3相比較値を生成する。また、第1の実施形態と同様に、矩形波生成部307も、次回制御周期を演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。また、矩形波生成部307は、第1の実施形態と同様に、今回演算タイミングに対する次々回演算タイミングの誤差Δα(n+3)(図3参照)を、演算タイミング毎に演算する。また、第1の実施形態と同様に、スイッチ部103における矩形波生成部307からPWM制御部105への切替えが行われる場合、矩形波生成部307は、実際の電圧位相α(n+3)で、αフィルタ演算部302を初期化する。同時に、矩形波生成部307は、誤差Δα(n+3)で、Δαフィルタ演算部311を初期化する。   The rectangular wave generating unit 307 performs rectangular wave control on the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− of the inverter 1 as in the first embodiment. Specifically, as in the first embodiment, the rectangular wave generation unit 307 generates a three-phase comparison value. Similarly to the first embodiment, the rectangular wave generation unit 307 also calculates the next control cycle, calculates the next calculation timing, and generates the next control cycle command. Similarly to the first embodiment, the rectangular wave generation unit 307 calculates an error Δα (n + 3) (see FIG. 3) of the next calculation timing with respect to the current calculation timing for each calculation timing. Similarly to the first embodiment, when switching from the rectangular wave generation unit 307 to the PWM control unit 105 in the switch unit 103 is performed, the rectangular wave generation unit 307 has an actual voltage phase α (n + 3), The α filter calculation unit 302 is initialized. At the same time, the rectangular wave generation unit 307 initializes the Δα filter calculation unit 311 with the error Δα (n + 3).

フラグ制御部310は、第1の実施形態と同様に、矩形波フラグを格納し、矩形波フラグに基づいてスイッチ部103および108の動作を制御する。具体的には、フラグ制御部310は、矩形波フラグが1になった場合、スイッチ部103および108の接点を端子Bから端子Aへ切替えさせる。これから、矩形波生成部307に、出力電圧Vu[V]、Vv[V]、Vw[V]を矩形波状に制御する矩形波制御を実行させる。一方、フラグ制御部310は、矩形波フラグが1から0へ変化した場合、スイッチ部103および108の接点を端子Aから端子Bへ切替えさせる。これから、PWM制御部105に、出力電圧Vu[V]、Vv[V]、Vw[V]を擬似正弦波状に制御するPWM制御を実行させる。Δαフィルタ演算部311は、伝達関数1/(τ2s+1)を持つフィルタであり、加算部312にフィルタ後誤差Δα’を出力する。なお、時定数τ2は数百ms程度である。加算部312は、フィルタ後誤差Δα’と加算前電圧位相指令値α”を加算して得た変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する。 As in the first embodiment, the flag control unit 310 stores a rectangular wave flag and controls the operations of the switch units 103 and 108 based on the rectangular wave flag. Specifically, when the rectangular wave flag becomes 1, the flag control unit 310 switches the contact points of the switch units 103 and 108 from the terminal B to the terminal A. From this, the rectangular wave generation unit 307 is caused to execute rectangular wave control for controlling the output voltages Vu [V], Vv [V], and Vw [V] into a rectangular wave shape. On the other hand, when the rectangular wave flag changes from 1 to 0, the flag control unit 310 switches the contacts of the switch units 103 and 108 from the terminal A to the terminal B. From this, the PWM control unit 105 is caused to execute PWM control for controlling the output voltages Vu [V], Vv [V], and Vw [V] in a pseudo sine wave shape. The Δα filter calculation unit 311 is a filter having a transfer function 1 / (τ2s + 1), and outputs a post-filter error Δα ′ to the addition unit 312. The time constant τ2 is about several hundred ms. Adding section 312 outputs the filter after the error [Delta] [alpha] 'and the addition before the voltage phase command value alpha "* before the addition-obtained fluctuation suppressing voltage phase command value alpha' * to alpha filter operation unit 302.

(矩形波生成部307からPWM制御部105への切替え処理)
次に、第3の実施形態における、矩形波制御する矩形波生成部307からPWM制御するPWM制御部105への切替え処理について説明する。第3の実施形態における上記切替え処理は、第1の実施形態と同じである。すなわち、(n+1)回目スイッチングタイミングまで矩形波演算が実行され、(n+2)回目スイッチングタイミングにおいて、上記切替えを行い、その後、PWM演算が実行される。そして、第1の実施形態と同様に、(n+3)回目スイッチングタイミング以降、PWM制御部105によってPWM制御が実行される。また、第1の実施形態と同様に、矩形波生成部307は、(n+2)回目スイッチングタイミングにおいて、上記切替え前に、実際の電圧位相α(n+3)=電圧位相指令値α(n+3)+Δθ(1−K)(図3参照)を演算する。また、第1の実施形態と同様に、矩形波生成部307は、αフィルタ演算部302を実際の電圧位相α(n+3)で初期化する。更に、第1の実施形態と異なり、矩形波生成部307は、Δαフィルタ演算部311を誤差Δα(n+3)=Δθ(1−K)で初期化する。その後、上記切替えが行われる。
(Switching process from the rectangular wave generator 307 to the PWM controller 105)
Next, switching processing from the rectangular wave generation unit 307 that performs rectangular wave control to the PWM control unit 105 that performs PWM control in the third embodiment will be described. The switching process in the third embodiment is the same as that in the first embodiment. That is, the rectangular wave calculation is executed until the (n + 1) th switching timing, the switching is performed at the (n + 2) th switching timing, and then the PWM calculation is executed. As in the first embodiment, the PWM control unit 105 executes PWM control after the (n + 3) th switching timing. Similarly to the first embodiment, the rectangular wave generation unit 307 determines that the actual voltage phase α (n + 3) = voltage phase command value α * (n + 3) + Δθ before the switching at the (n + 2) -th switching timing. (1-K) (see FIG. 3) is calculated. Similarly to the first embodiment, the rectangular wave generation unit 307 initializes the α filter calculation unit 302 with the actual voltage phase α (n + 3). Furthermore, unlike the first embodiment, the rectangular wave generation unit 307 initializes the Δα filter calculation unit 311 with an error Δα (n + 3) = Δθ (1-K). Thereafter, the switching is performed.

次に、図12に示すコントローラ30における第1の実施形態と同様の切替え処理を実行した場合の効果について、図13および図14を参照して説明する。図13は、図12に示すコントローラ30における第1の実施形態と同様の切替え処理を実行した時の実際の電圧位相αを示す図である。図14は、図12に示すコントローラ30における第1の実施形態と同様の切替え処理を実行した時のモータ回転数N[rpm]と出力電力Pnt[kw]を示す図である。図13(a)に示す従来技術では、(n+3)回目スイッチングタイミングで、矩形波制御の電圧位相指令値α(n+3)をそのままPWM制御の電圧位相指令値αとして用いている。矩形波制御からPWM制御への切替え時近傍において、図14(a)に示すようにモータ回転数N[rpm]が急変した場合、誤差Δα(n+3)が発生する。図13(a)に示したように、誤差Δα(n+3)により、実際の電圧位相αがステップ状に変化する。実際の電圧位相αがステップ状に変化した場合、矩形波制御からPWM制御への切替え後、出力電力Pnt[kw]が振動する。すなわち、トルクが振動する。 Next, the effect when the switching process similar to that of the first embodiment in the controller 30 shown in FIG. 12 is executed will be described with reference to FIGS. 13 and 14. FIG. 13 is a diagram showing the actual voltage phase α when the switching process similar to that of the first embodiment is executed in the controller 30 shown in FIG. FIG. 14 is a diagram illustrating the motor rotation speed N [rpm] and the output power Pnt [kw] when the switching process similar to that of the first embodiment in the controller 30 illustrated in FIG. 12 is executed. In the prior art shown in FIG. 13A, the rectangular wave control voltage phase command value α * (n + 3) is directly used as the PWM control voltage phase command value α * at the (n + 3) -th switching timing. In the vicinity of switching from the rectangular wave control to the PWM control, when the motor rotation speed N [rpm] changes suddenly as shown in FIG. 14A, an error Δα (n + 3) occurs. As shown in FIG. 13A, the actual voltage phase α changes stepwise due to the error Δα (n + 3). When the actual voltage phase α changes stepwise, the output power Pnt [kw] oscillates after switching from rectangular wave control to PWM control. That is, the torque vibrates.

一方、第1の実施形態では、(n+1)回目スイッチングタイミングで、矩形波生成部107は誤差Δα(n+3)=Δθ(1−K)を演算する。(n+2)回目スイッチングタイミングで、矩形波生成部107は、実際の電圧位相α(n+3)=電圧位相指令値α(n+3)+誤差Δα(n+3)を演算し、実際の電圧位相α(n+3)でαフィルタ演算部302を初期化する。初期化後、スイッチ部103は、矩形波生成部107からPWM制御部105への切替えを行う。切替え直後、αフィルタ演算部302からスイッチ部103を介してPWM制御部105へ出力された電圧位相指令値αは、図13(b)に示すように、実際の電圧位相α(n+3)と等しくなる。更に、図13(b)に示したように、αフィルタ演算部102のフィルタ作用により、実際の電圧位相αのステップ状の急峻な変化が緩和する。これから、図14(b)に示すように、モータ回転数N[rpm]が急変した場合でも、出力電力Pnt[kw]の振動を抑制している。しかし、実際の電圧位相αのステップ状の急峻な変化を緩和しているが、αフィルタ演算部102の時定数τが短いため、十分とはいえない。 On the other hand, in the first embodiment, the rectangular wave generation unit 107 calculates an error Δα (n + 3) = Δθ (1-K) at the (n + 1) th switching timing. At the (n + 2) -th switching timing, the rectangular wave generation unit 107 calculates the actual voltage phase α (n + 3) = voltage phase command value α * (n + 3) + error Δα (n + 3), and the actual voltage phase α (n + 3). ) Initializes the α filter calculation unit 302. After the initialization, the switch unit 103 performs switching from the rectangular wave generation unit 107 to the PWM control unit 105. Immediately after the switching, the voltage phase command value α * output from the α filter calculation unit 302 to the PWM control unit 105 via the switch unit 103 is the actual voltage phase α (n + 3) as shown in FIG. Will be equal. Furthermore, as shown in FIG. 13B, the steep step-like change in the actual voltage phase α is mitigated by the filter action of the α filter calculation unit 102. From this, as shown in FIG. 14B, even when the motor rotation speed N [rpm] suddenly changes, the vibration of the output power Pnt [kw] is suppressed. However, although the stepwise steep change of the actual voltage phase α is alleviated, it is not sufficient because the time constant τ of the α filter calculation unit 102 is short.

そこで、第3の実施形態では、Δαフィルタ演算部311と加算部312を追加している。具体的には、第1の実施形態と同様に、(n+1)回目スイッチングタイミングで、矩形波生成部307は誤差Δα(n+3)=Δθ(1−K)を演算する。(n+2)回目スイッチングタイミングで、矩形波生成部307は、実際の電圧位相α(n+3)=電圧位相指令値α(n+3)+誤差Δα(n+3)を演算する。その後、矩形波生成部307は、実際の電圧位相α(n+3)でαフィルタ演算部302を初期化するとともに、誤差Δα(n+3)でΔαフィルタ演算部311を初期化する。初期化直後、Δαフィルタ演算部311はフィルタ後誤差Δα’=誤差Δα(n+3)を加算部312へ出力する。加算部312は、加算前電圧位相指令値α”と誤差Δα(n+3)を加算して得た変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する。 Therefore, in the third embodiment, a Δα filter calculation unit 311 and an addition unit 312 are added. Specifically, as in the first embodiment, the rectangular wave generation unit 307 calculates an error Δα (n + 3) = Δθ (1-K) at the (n + 1) th switching timing. At the (n + 2) -th switching timing, the rectangular wave generation unit 307 calculates actual voltage phase α (n + 3) = voltage phase command value α * (n + 3) + error Δα (n + 3). Thereafter, the rectangular wave generation unit 307 initializes the α filter calculation unit 302 with the actual voltage phase α (n + 3) and initializes the Δα filter calculation unit 311 with the error Δα (n + 3). Immediately after initialization, the Δα filter calculation unit 311 outputs a post-filter error Δα ′ = error Δα (n + 3) to the adder 312. The adding unit 312 outputs the voltage phase command value α ′ * before fluctuation suppression obtained by adding the voltage phase command value α ″ * before addition and the error Δα (n + 3) to the α filter calculating unit 302.

初期化後、第1の実施形態と同様に、スイッチ部103は、矩形波生成部307からPWM制御部105への切替えを行う。第1の実施形態と同様に、切替え直後、αフィルタ演算部302からスイッチ部103を介してPWM制御部105へ出力された電圧位相指令値αは、図13(c)に示すように、実際の電圧位相α(n+3)と等しくなる。第1の実施形態と同様に、αフィルタ演算部302のフィルタ作用により、実際の電圧位相αのステップ状の急峻な変化が緩和する。更に、Δαフィルタ演算部311の時定数τ2が長いので、Δαフィルタ演算部311のフィルタ作用により、実際の電圧位相αは十分なめらかに変化していく。これから、図14(c)に示すように、モータ回転数N[rpm]が急変した場合でも、出力電力Pnt[kw]の振動をより抑制できる。よって、第1の実施形態と比較して、トルク振動をより抑制することができる。なお、Δαフィルタ演算部311の入力値は0なので、初期化されない限り、フィルタ後誤差Δα’は影響を与えない。 After initialization, as in the first embodiment, the switch unit 103 performs switching from the rectangular wave generation unit 307 to the PWM control unit 105. As in the first embodiment, immediately after switching, the voltage phase command value α * output from the α filter calculation unit 302 to the PWM control unit 105 via the switch unit 103 is as shown in FIG. It becomes equal to the actual voltage phase α (n + 3). Similar to the first embodiment, the steep change in step of the actual voltage phase α is mitigated by the filter action of the α filter calculation unit 302. Furthermore, since the time constant τ2 of the Δα filter calculation unit 311 is long, the actual voltage phase α changes sufficiently smoothly by the filter action of the Δα filter calculation unit 311. From this, as shown in FIG.14 (c), even when the motor rotation speed N [rpm] changes suddenly, the vibration of output electric power Pnt [kw] can be suppressed more. Therefore, torque vibration can be further suppressed as compared with the first embodiment. Since the input value of the Δα filter calculation unit 311 is 0, the post-filter error Δα ′ has no effect unless it is initialized.

(コントローラ30で実行される制御方法)
次に、第3の実施形態に係るコントローラ30で実行される制御方法について、図15を参照して説明する。図15は、図12に示すコントローラ30で実行される制御方法を示すフローチャートである。本制御方法は、図15に示すフローチャートのプログラムをコントローラ30に組み込み実現している。なお、本制御処理は、第1の実施形態に係るコントローラ10で実行される制御処理とほとんど同じである。第1の実施形態に係るコントローラ10で実行される制御処理と本制御処理が異なる点は、ステップS304〜S306の制御処理を追加したことだけである。
(Control method executed by the controller 30)
Next, a control method executed by the controller 30 according to the third embodiment will be described with reference to FIG. FIG. 15 is a flowchart showing a control method executed by the controller 30 shown in FIG. This control method is implemented by incorporating the program of the flowchart shown in FIG. This control process is almost the same as the control process executed by the controller 10 according to the first embodiment. The only difference between this control process and the control process executed by the controller 10 according to the first embodiment is that the control processes in steps S304 to S306 are added.

第1の実施形態のステップS101の制御処理と同様に、(n+1)回目スイッチングタイミングにおいて、αテーブル参照部301はαテーブル参照処理を実行する(ステップS301)。ここで、αテーブル参照処理とは、トルク指令値T[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照し、加算前電圧位相指令値α”を求める制御処理である。次に、フラグ制御部310に格納された矩形波フラグが1から0へ変化したか否かフラグ制御部310は判定する(ステップS302)。矩形波フラグが1から0へ変化していないとフラグ制御部310が判定した場合(ステップS302:No)、Δαフィルタ演算部311はΔαフィルタ演算し、フィルタ後誤差Δα’を加算部312へ出力する(ステップS305)。 Similar to the control process in step S101 of the first embodiment, at the (n + 1) th switching timing, the α table reference unit 301 executes the α table reference process (step S301). Here, the α table reference processing refers to a table stored in advance based on the torque command value T [N · m], the motor rotation speed N [rpm], and the DC voltage value Vdc [V]. This is a control process for obtaining the voltage phase command value α ″ * . Next, the flag control unit 310 determines whether or not the rectangular wave flag stored in the flag control unit 310 has changed from 1 to 0 (step S302). When the flag control unit 310 determines that the rectangular wave flag has not changed from 1 to 0 (step S302: No), the Δα filter calculation unit 311 performs a Δα filter calculation and outputs a post-filter error Δα ′ to the addition unit 312. (Step S305).

次に、加算部312は、加算前電圧位相指令値α”にフィルタ後誤差Δα’を加算する。加算して得られた変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する(ステップS306)。αフィルタ演算部302は、ステップS104の制御処理と同様に、αフィルタ演算する(ステップS307)。具体的には、αフィルタ演算部302は、変動抑制前電圧位相指令値α’の変動を抑制し、スイッチ部103へ電圧位相指令値α(n+2)を出力する。以降、ステップS105、S109およびS110の制御処理と、それぞれ同様であるステップS308、S312およびS313の制御処理を実行する。以上より、(n+1)回目スイッチングタイミングにおけるコントローラ30の制御処理を終了する。 Next, the adding unit 312 adds the post-filtering error Δα ′ to the pre-addition voltage phase command value α ″ * . The pre-fluctuation voltage phase command value α ′ * obtained by the addition is sent to the α filter calculation unit 302. In step S306, the α filter calculation unit 302 performs α filter calculation (step S307) in the same manner as the control process in step S104. The fluctuation of the value α ′ * is suppressed, and the voltage phase command value α * (n + 2) is output to the switch unit 103. Thereafter, steps S308, S312 and S313, which are the same as the control processing of steps S105, S109 and S110, respectively. Thus, the control process of the controller 30 at the (n + 1) th switching timing is completed.

(n+2)回目スイッチングタイミングにおいて、矩形波フラグが1から0へ変化したとフラグ制御部310が判定した場合(ステップS302:Yes)、ステップS303の制御処理に移行する。ステップS303の制御処理において、フラグ制御部310は、ステップS103の制御処理と同様に、矩形波生成部307にαフィルタ演算部302を実際の電圧位相α(n+3)で初期化させる。次に、矩形波生成部307は、Δαフィルタ演算部311を誤差Δα(n+3)で初期化する(ステップS304)。次に、Δαフィルタ演算部311はΔαフィルタ演算し、フィルタ後誤差Δα’を加算部312へ出力する(ステップS305)。ステップS304の制御処理において、Δαフィルタ演算部311は誤差Δα(n+3)で初期化されているので、フィルタ後誤差Δα’は誤差Δα(n+3)に等しくなる。次に、加算部312は、加算前電圧位相指令値α”にフィルタ後誤差Δα’を加算する。加算して得られた変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する(ステップS306)。 When the flag control unit 310 determines that the rectangular wave flag has changed from 1 to 0 at the (n + 2) -th switching timing (step S302: Yes), the process proceeds to the control process of step S303. In the control process of step S303, the flag control unit 310 causes the rectangular wave generation unit 307 to initialize the α filter calculation unit 302 with the actual voltage phase α (n + 3), similarly to the control process of step S103. Next, the rectangular wave generation unit 307 initializes the Δα filter calculation unit 311 with an error Δα (n + 3) (step S304). Next, the Δα filter calculation unit 311 performs a Δα filter calculation and outputs a post-filter error Δα ′ to the addition unit 312 (step S305). In the control process of step S304, the Δα filter calculation unit 311 is initialized with the error Δα (n + 3), so the post-filter error Δα ′ is equal to the error Δα (n + 3). Next, the adding unit 312 adds the post-filtering error Δα ′ to the pre-addition voltage phase command value α ″ * . The pre-fluctuation voltage phase command value α ′ * obtained by the addition is sent to the α filter calculation unit 302. Output (step S306).

次に、ステップS104の制御処理と同様に、αフィルタ演算部302はαフィルタ演算する(ステップS307)。ステップS303の制御処理において、αフィルタ演算部302は実際の電圧位相α(n+3)で初期化されているので、αフィルタ演算部302の出力である電圧位相指令値αは実際の電圧位相α(n+3)に等しくなる。次に、ステップS105の制御処理と同様に、フラグ制御部310は、矩形波フラグが1か否か判定する(ステップS308)。第1の実施形態と同様に、矩形波フラグは1でないとフラグ制御部310は判定するので(ステップS308:No)、フラグ制御部310は、スイッチ部103および108の接点を端子Aから端子Bへ切り替えさせる。これより、第1の実施形態と同様に、スイッチ部103を介して、PWM制御部105に電圧位相指令値α=実際の電圧位相α(n+3)が出力される。以降、ステップS106〜S108の制御処理と、それぞれ同様であるステップS309〜S311の制御処理を実行する。以上より、(n+2)回目スイッチングタイミングにおけるコントローラ30の制御処理を終了する。 Next, as in the control process in step S104, the α filter calculation unit 302 performs α filter calculation (step S307). In the control process of step S303, since the α filter calculation unit 302 is initialized with the actual voltage phase α (n + 3), the voltage phase command value α * output from the α filter calculation unit 302 is the actual voltage phase α. It becomes equal to (n + 3). Next, similarly to the control process in step S105, the flag control unit 310 determines whether or not the rectangular wave flag is 1 (step S308). As in the first embodiment, since the flag control unit 310 determines that the rectangular wave flag is not 1 (step S308: No), the flag control unit 310 connects the contacts of the switch units 103 and 108 from the terminal A to the terminal B. Switch to. Thus, as in the first embodiment, the voltage phase command value α * = the actual voltage phase α (n + 3) is output to the PWM control unit 105 via the switch unit 103. Thereafter, the control processes of steps S309 to S311 that are similar to the control processes of steps S106 to S108, respectively, are executed. Thus, the control process of the controller 30 at the (n + 2) th switching timing is completed.

第1の実施形態と同様に、(n+3)回目スイッチングタイミングにおいて、矩形波フラグはすでに0になっているので、矩形波フラグが1から0へ変化していないとフラグ制御部310は判定する(ステップS302:No)。以降、ステップS305〜S311の制御処理を実行する。以上より、(n+3)回目スイッチングタイミングにおけるコントローラ30の制御処理を終了する。その後、ステップS308の制御処理において、矩形波フラグが1であるとフラグ制御部310が判定するまで、ステップS301、S302、S305〜S311の制御処理を順次繰り返す。その後、ステップS308の制御処理において、矩形波フラグが1であるとフラグ制御部310が判定した場合(ステップS308:Yes)、フラグ制御部310は、スイッチ部103および108の接点を端子Bから端子Aへ切り替えさせる。これより、第1の実施形態と同様に、スイッチ部103を介して、矩形波生成部307に電圧位相指令値αが出力される。以降、ステップS312およびS313の制御処理を実行する。その後、ステップS302の制御処理において、矩形波フラグが1から0へ変化したとフラグ制御部310が判定するまで、ステップS301、S302、S305〜S308、S312およびS313の制御処理を順次繰り返す。 As in the first embodiment, since the rectangular wave flag is already 0 at the (n + 3) -th switching timing, the flag control unit 310 determines that the rectangular wave flag has not changed from 1 to 0 ( Step S302: No). Thereafter, the control processing of steps S305 to S311 is executed. Thus, the control process of the controller 30 at the (n + 3) th switching timing is completed. Thereafter, in the control process of step S308, the control processes of steps S301, S302, S305 to S311 are sequentially repeated until the flag control unit 310 determines that the rectangular wave flag is 1. Thereafter, in the control process of step S308, when the flag control unit 310 determines that the rectangular wave flag is 1 (step S308: Yes), the flag control unit 310 connects the contact points of the switch units 103 and 108 from the terminal B to the terminal B. Switch to A. Accordingly, the voltage phase command value α * is output to the rectangular wave generation unit 307 via the switch unit 103 as in the first embodiment. Thereafter, the control processes of steps S312 and S313 are executed. Thereafter, in the control process of step S302, the control processes of steps S301, S302, S305 to S308, S312 and S313 are sequentially repeated until the flag control unit 310 determines that the rectangular wave flag has changed from 1 to 0.

以上より、第3の実施形態に係るコントローラ30は、スイッチ部103における矩形波生成部307からPWM制御部105への切替え直後、誤差Δα(n+3)を出力するΔαフィルタ演算部311を備える。更に、Δαフィルタ演算部311からの誤差Δα(n+3)と加算前電圧位相指令値α”を加算して得た変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する加算部312とを備える。これから、第1の実施形態と同様の効果を取得できる。更に、Δαフィルタ演算部311のフィルタ作用により、矩形波生成部307からPWM制御部105への切替え直後に発生する、実際の電圧位相αのステップ状の急峻な変化を十分なめらかにできる。よって、第1の実施形態と比較して、トルク振動をより抑制することができる。 As described above, the controller 30 according to the third embodiment includes the Δα filter calculation unit 311 that outputs the error Δα (n + 3) immediately after switching from the rectangular wave generation unit 307 to the PWM control unit 105 in the switch unit 103. Further, an addition for outputting the voltage phase command value α ′ * before fluctuation suppression obtained by adding the error Δα (n + 3) from the Δα filter calculation unit 311 and the voltage phase command value α ″ * before addition to the α filter calculation unit 302. From this, it is possible to obtain the same effect as in the first embodiment, and further, generated immediately after switching from the rectangular wave generation unit 307 to the PWM control unit 105 due to the filter action of the Δα filter calculation unit 311. As a result, the stepwise steep change in the actual voltage phase α can be sufficiently smoothed, so that torque vibration can be further suppressed as compared with the first embodiment.

(第4の実施形態)
次に、第4の実施形態に係るインバータシステムについて、第2の実施形態に係るインバータシステムと異なる点を中心に図16乃至図17を参照して説明する。また、第4の実施形態に係るインバータシステムについて、第2および第3の実施形態に係るインバータシステムと同様の構造には同じ番号を付し、説明を省略する。なお、第4の実施形態に係るインバータシステムは、第2の実施形態に係るインバータシステムとほとんど同じである。図16は、本発明の第4の実施形態に係るコントローラ40の内部構成を示す制御ブロック図である。図16に示すように、第4の実施形態に係るインバータシステムが第2の実施形態と異なる点は、コントローラ40が異なることだけである。
(Fourth embodiment)
Next, an inverter system according to a fourth embodiment will be described with reference to FIGS. 16 to 17 focusing on differences from the inverter system according to the second embodiment. Moreover, about the inverter system which concerns on 4th Embodiment, the same number is attached | subjected to the structure similar to the inverter system which concerns on 2nd and 3rd embodiment, and description is abbreviate | omitted. Note that the inverter system according to the fourth embodiment is almost the same as the inverter system according to the second embodiment. FIG. 16 is a control block diagram showing an internal configuration of the controller 40 according to the fourth embodiment of the present invention. As shown in FIG. 16, the only difference between the inverter system according to the fourth embodiment and the second embodiment is that the controller 40 is different.

ここで、コントローラ40は、第2の実施形態と異なり、第2のフィルタ演算手段であるΔαフィルタ演算部311および第1の加算手段である加算部312を備える。また、第2の実施形態と異なり、コントローラ40に含まれるαテーブル参照部301、第1のフィルタ演算手段であるαフィルタ演算部302、矩形波制御手段である矩形波生成部407とフラグ制御部410が異なる。矩形波生成部407は、第2の実施形態と同様に、インバータ1のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を矩形波制御する。具体的には、第2の実施形態と同様に、矩形波生成部407は3相比較値を生成する。   Here, unlike the second embodiment, the controller 40 includes a Δα filter calculation unit 311 that is a second filter calculation unit and an addition unit 312 that is a first addition unit. Also, unlike the second embodiment, an α table reference unit 301 included in the controller 40, an α filter calculation unit 302 as a first filter calculation unit, a rectangular wave generation unit 407 as a rectangular wave control unit, and a flag control unit 410 is different. The rectangular wave generation unit 407 performs rectangular wave control on the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− of the inverter 1 as in the second embodiment. Specifically, as in the second embodiment, the rectangular wave generation unit 407 generates a three-phase comparison value.

また、第2の実施形態と同様に、矩形波生成部407は、次回制御周期を演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。また、矩形波生成部407は、第2の実施形態と同様に、今回演算タイミングに対する次回演算タイミングの誤差Δα(n+2)(図3参照)を、演算タイミング毎に演算する。更に、第2の実施形態と同様に、スイッチ部103における矩形波生成部407からPWM制御部105への切替えが行われる場合、矩形波生成部407は、実際の電圧位相α(n+2)(図3参照)で、αフィルタ演算部302を初期化する。同時に、矩形波生成部407は、誤差Δα(n+2)で、Δαフィルタ演算部311を初期化する。   Further, similarly to the second embodiment, the rectangular wave generation unit 407 calculates the next control cycle, calculates the next calculation timing, and generates the next control cycle command. Further, similarly to the second embodiment, the rectangular wave generation unit 407 calculates an error Δα (n + 2) (see FIG. 3) of the next calculation timing with respect to the current calculation timing for each calculation timing. Furthermore, as in the second embodiment, when switching from the rectangular wave generating unit 407 to the PWM control unit 105 in the switch unit 103 is performed, the rectangular wave generating unit 407 has an actual voltage phase α (n + 2) (FIG. 3), the α filter calculation unit 302 is initialized. At the same time, the rectangular wave generation unit 407 initializes the Δα filter calculation unit 311 with an error Δα (n + 2).

フラグ制御部410は、第2の実施形態と同様に、矩形波フラグを格納し、矩形波フラグに基づいてスイッチ部103および108の動作を制御する。具体的には、フラグ制御部410は、矩形波フラグが1になった場合、スイッチ部103および108の接点を端子Bから端子Aへ切替えさせる。これから、矩形波生成部407に、出力電圧Vu[V]、Vv[V]、Vw[V]を矩形波状に制御する矩形波制御を実行させる。一方、フラグ制御部410は、矩形波フラグが1から0へ変化した場合、スイッチ部103および108の接点を端子Aから端子Bへ切替えさせる。これから、PWM制御部105に、出力電圧Vu[V]、Vv[V]、Vw[V]を擬似正弦波状に制御するPWM制御を実行させる。   As in the second embodiment, the flag control unit 410 stores a rectangular wave flag and controls the operations of the switch units 103 and 108 based on the rectangular wave flag. Specifically, when the rectangular wave flag becomes 1, the flag control unit 410 switches the contact points of the switch units 103 and 108 from the terminal B to the terminal A. From this, the rectangular wave generation unit 407 is caused to execute rectangular wave control for controlling the output voltages Vu [V], Vv [V], and Vw [V] into a rectangular wave shape. On the other hand, when the rectangular wave flag changes from 1 to 0, the flag control unit 410 switches the contacts of the switch units 103 and 108 from the terminal A to the terminal B. From this, the PWM control unit 105 is caused to execute PWM control for controlling the output voltages Vu [V], Vv [V], and Vw [V] in a pseudo sine wave shape.

(矩形波生成部407からPWM制御部105への切替え処理)
次に、第4の実施形態における、矩形波制御する矩形波生成部407からPWM制御するPWM制御部105への切替え処理について説明する。第4の実施形態における上記切替え処理は、第2の実施形態と同じである。すなわち、n回目スイッチングタイミングまで矩形波演算が実行され、(n+1)回目スイッチングタイミングにおいて、上記切替えを行い、その後、PWM演算が実行される。そして、第2の実施形態と同様に、(n+2)回目スイッチングタイミング以降、PWM制御部105によってPWM制御が実行される。また、第2の実施形態と同様に、矩形波生成部407は、(n+1)回目スイッチングタイミングにおいて、上記切替え前に、実際の電圧位相α(n+2)=電圧位相指令値α(n+2)+誤差Δα(n+2)を演算する。
(Switching process from the rectangular wave generator 407 to the PWM controller 105)
Next, switching processing from the rectangular wave generating unit 407 that performs rectangular wave control to the PWM control unit 105 that performs PWM control in the fourth embodiment will be described. The switching process in the fourth embodiment is the same as that in the second embodiment. That is, the rectangular wave calculation is executed until the n-th switching timing, the switching is performed at the (n + 1) -th switching timing, and then the PWM calculation is executed. As in the second embodiment, the PWM control unit 105 executes PWM control after the (n + 2) th switching timing. Similarly to the second embodiment, the rectangular wave generation unit 407, at the (n + 1) -th switching timing, before the switching, the actual voltage phase α (n + 2) = voltage phase command value α * (n + 2) + The error Δα (n + 2) is calculated.

また、第2の実施形態と同様に、矩形波生成部407は、αフィルタ演算部302を実際の電圧位相α(n+2)で初期化する。更に、第2の実施形態と異なり、矩形波生成部407は、Δαフィルタ演算部311を誤差Δα(n+2)=Δθ(図3参照)で初期化する。その後、上記切替えが行われる。これから、第2の実施形態と同様の効果を取得できる。更に、矩形波生成部407からPWM制御部105への切替え前後でモータ回転数N[rpm]が急変した場合でも、Δαフィルタ演算部311の時定数τ2が長いので、実際の電圧位相αを十分なめらかに変化させることができる。すなわち、図13に示した変化と同様になる。これから、出力電力Pnt[kw]の振動をより抑制できる。よって、第2の実施形態と比較して、トルク振動をより抑制することができる。   Similarly to the second embodiment, the rectangular wave generation unit 407 initializes the α filter calculation unit 302 with the actual voltage phase α (n + 2). Furthermore, unlike the second embodiment, the rectangular wave generation unit 407 initializes the Δα filter calculation unit 311 with an error Δα (n + 2) = Δθ (see FIG. 3). Thereafter, the switching is performed. From this, the same effects as those of the second embodiment can be obtained. Further, even when the motor rotation speed N [rpm] suddenly changes before and after switching from the rectangular wave generation unit 407 to the PWM control unit 105, the time constant τ2 of the Δα filter calculation unit 311 is long, so that the actual voltage phase α is sufficient. It can be changed smoothly. That is, it becomes the same as the change shown in FIG. From this, the vibration of the output power Pnt [kw] can be further suppressed. Therefore, torque vibration can be further suppressed as compared with the second embodiment.

(コントローラ40で実行される制御方法)
次に、第4の実施形態に係るコントローラ40で実行される制御方法について、図17を参照して説明する。図17は、図16に示すコントローラ40で実行される制御方法を示すフローチャートである。本制御方法は、図16に示すフローチャートのプログラムをコントローラ40に組み込み実現している。なお、本制御処理は、第2の実施形態に係るコントローラ20で実行される制御処理とほとんど同じである。第2の実施形態に係るコントローラ20で実行される制御処理と本制御処理が異なる点は、ステップS405〜S407の制御処理を追加したことだけである。
(Control method executed by the controller 40)
Next, a control method executed by the controller 40 according to the fourth embodiment will be described with reference to FIG. FIG. 17 is a flowchart showing a control method executed by the controller 40 shown in FIG. This control method is implemented by incorporating the program of the flowchart shown in FIG. This control process is almost the same as the control process executed by the controller 20 according to the second embodiment. The only difference between this control process and the control process executed by the controller 20 according to the second embodiment is that the control processes in steps S405 to S407 are added.

第2の実施形態のステップS201の制御処理と同様に、n回目スイッチングタイミングにおいて、αテーブル参照部301はαテーブル参照処理を実行する(ステップS401)。ここで、αテーブル参照処理とは、トルク指令値T[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照し、加算前電圧位相指令値α”を求める制御処理である。次に、フラグ制御部410に格納された矩形波フラグが1から0へ変化したか否かフラグ制御部410は判定する(ステップS402)。矩形波フラグが1から0へ変化していないとフラグ制御部410が判定した場合(ステップS402:No)、Δαフィルタ演算部311はΔαフィルタ演算し、フィルタ後誤差Δα’を加算部312へ出力する(ステップS406)。 Similar to the control process in step S201 of the second embodiment, the α table reference unit 301 executes the α table reference process at the n-th switching timing (step S401). Here, the α table reference processing refers to a table stored in advance based on the torque command value T [N · m], the motor rotation speed N [rpm], and the DC voltage value Vdc [V]. This is a control process for obtaining the voltage phase command value α ″ * . Next, the flag control unit 410 determines whether or not the rectangular wave flag stored in the flag control unit 410 has changed from 1 to 0 (step S402). When the flag control unit 410 determines that the rectangular wave flag has not changed from 1 to 0 (step S402: No), the Δα filter calculation unit 311 performs a Δα filter calculation and outputs a post-filter error Δα ′ to the addition unit 312. (Step S406).

次に、加算部312は、加算前電圧位相指令値α”にフィルタ後誤差Δα’を加算する。加算して得られた変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する(ステップS407)。αフィルタ演算部302は、ステップS205の制御処理と同様に、αフィルタ演算する(ステップS408)。具体的には、αフィルタ演算部302は、変動抑制前電圧位相指令値α’の変動を抑制し、スイッチ部103へ電圧位相指令値α(n+1)を出力する。以降、ステップS206、S210およびS211の制御処理と、それぞれ同様であるステップS409、S413およびS414の制御処理を実行する。以上より、n回目スイッチングタイミングにおけるコントローラ40の制御処理を終了する。 Next, the adding unit 312 adds the post-filtering error Δα ′ to the pre-addition voltage phase command value α ″ * . The pre-fluctuation voltage phase command value α ′ * obtained by the addition is sent to the α filter calculation unit 302. In step S407, the α filter calculation unit 302 performs α filter calculation in the same manner as the control process in step S205 (step S408) Specifically, the α filter calculation unit 302 outputs the voltage phase command before fluctuation suppression. The variation of the value α ′ * is suppressed, and the voltage phase command value α * (n + 1) is output to the switch unit 103. Thereafter, steps S409, S413, and S414, which are the same as the control processes in steps S206, S210, and S211, respectively. Thus, the control process of the controller 40 at the n-th switching timing is completed.

(n+1)回目スイッチングタイミングにおいて、矩形波フラグが1から0へ変化したとフラグ制御部410が判定した場合(ステップS402:Yes)、ステップS403の制御処理に移行する。ステップS403の制御処理において、フラグ制御部410は、ステップS203の制御処理と同様に、矩形波生成部407にΔα演算を実行させる。次に、矩形波生成部407は、ステップS204の制御処理と同様に、αフィルタ演算部302を実際の電圧位相α(n+2)で初期化する(ステップS404)。次に、矩形波生成部407は、Δαフィルタ演算部311を誤差Δα(n+2)で初期化する(ステップS405)。次に、Δαフィルタ演算部311はΔαフィルタ演算し、フィルタ後誤差Δα’を加算部312へ出力する(ステップS406)。ステップS405の制御処理において、Δαフィルタ演算部311は誤差Δα(n+2)で初期化されているので、フィルタ後誤差Δα’は誤差Δα(n+2)に等しくなる。次に、加算部312は、加算前電圧位相指令値α”にフィルタ後誤差Δα’を加算する。加算して得られた変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する(ステップS407)。 When the flag control unit 410 determines that the rectangular wave flag has changed from 1 to 0 at the (n + 1) th switching timing (step S402: Yes), the process proceeds to the control process of step S403. In the control process of step S403, the flag control unit 410 causes the rectangular wave generation unit 407 to execute Δα calculation, similarly to the control process of step S203. Next, the rectangular wave generation unit 407 initializes the α filter calculation unit 302 with the actual voltage phase α (n + 2), similarly to the control processing in step S204 (step S404). Next, the rectangular wave generation unit 407 initializes the Δα filter calculation unit 311 with an error Δα (n + 2) (step S405). Next, the Δα filter calculation unit 311 performs a Δα filter calculation and outputs a post-filter error Δα ′ to the addition unit 312 (step S406). In the control process of step S405, the Δα filter calculation unit 311 is initialized with the error Δα (n + 2), so the post-filter error Δα ′ is equal to the error Δα (n + 2). Next, the adding unit 312 adds the post-filtering error Δα ′ to the pre-addition voltage phase command value α ″ * . The pre-fluctuation voltage phase command value α ′ * obtained by the addition is sent to the α filter calculation unit 302. Output (step S407).

次に、ステップS205の制御処理と同様に、αフィルタ演算部302はαフィルタ演算する(ステップS408)。ステップS404の制御処理において、αフィルタ演算部302は実際の電圧位相α(n+2)で初期化されているので、αフィルタ演算部302の出力である電圧位相指令値αは実際の電圧位相α(n+2)に等しくなる。次に、ステップS206の制御処理と同様に、フラグ制御部410は、矩形波フラグが1か否か判定する(ステップS409)。第2の実施形態と同様に、矩形波フラグは1でないとフラグ制御部410は判定するので(ステップS409:No)、フラグ制御部410は、スイッチ部103および108の接点を端子Aから端子Bへ切り替えさせる。これより、第2の実施形態と同様に、スイッチ部103を介して、PWM制御部105に電圧位相指令値α=実際の電圧位相α(n+2)が出力される。以降、ステップS207〜S209の制御処理と、それぞれ同様であるステップS410〜S412の制御処理を実行する。以上より、(n+1)回目スイッチングタイミングにおけるコントローラ40の制御処理を終了する。 Next, as in the control process of step S205, the α filter calculation unit 302 performs α filter calculation (step S408). In the control processing of step S404, the α filter calculation unit 302 is initialized with the actual voltage phase α (n + 2), and therefore the voltage phase command value α * that is the output of the α filter calculation unit 302 is the actual voltage phase α. It becomes equal to (n + 2). Next, similarly to the control process in step S206, the flag control unit 410 determines whether or not the rectangular wave flag is 1 (step S409). As in the second embodiment, since the flag control unit 410 determines that the rectangular wave flag is not 1 (step S409: No), the flag control unit 410 connects the contacts of the switch units 103 and 108 from the terminal A to the terminal B. Switch to. Thus, as in the second embodiment, the voltage phase command value α * = actual voltage phase α (n + 2) is output to the PWM control unit 105 via the switch unit 103. Thereafter, the control processes of steps S410 to S412 that are similar to the control processes of steps S207 to S209 are executed. Thus, the control process of the controller 40 at the (n + 1) th switching timing is completed.

第2の実施形態と同様に、(n+2)回目スイッチングタイミングにおいて、矩形波フラグはすでに0になっているので、矩形波フラグが1から0へ変化していないとフラグ制御部410は判定する(ステップS402:No)。以降、ステップS406〜S412の制御処理を実行する。以上より、(n+2)回目スイッチングタイミングにおけるコントローラ40の制御処理を終了する。その後、ステップS409の制御処理において、矩形波フラグが1であるとフラグ制御部410が判定するまで、ステップS401、S402、S406〜S412の制御処理を順次繰り返す。その後、ステップS409の制御処理において、矩形波フラグが1であるとフラグ制御部410が判定した場合(ステップS409:Yes)、フラグ制御部410は、スイッチ部103および108の接点を端子Bから端子Aへ切り替えさせる。これより、第2の実施形態と同様に、スイッチ部103を介して、矩形波生成部407に電圧位相指令値αが出力される。以降、ステップS413およびS414の制御処理を実行する。その後、ステップS402の制御処理において、矩形波フラグが1から0へ変化したとフラグ制御部410が判定するまで、ステップS401、S402、S406〜409、S413およびS414の制御処理を順次繰り返す。 As in the second embodiment, since the rectangular wave flag is already 0 at the (n + 2) -th switching timing, the flag control unit 410 determines that the rectangular wave flag has not changed from 1 to 0 ( Step S402: No). Thereafter, the control processing of steps S406 to S412 is executed. Thus, the control process of the controller 40 at the (n + 2) th switching timing is completed. Thereafter, in the control process of step S409, the control processes of steps S401, S402, and S406 to S412 are sequentially repeated until the flag control unit 410 determines that the rectangular wave flag is 1. Thereafter, in the control process of step S409, when the flag control unit 410 determines that the rectangular wave flag is 1 (step S409: Yes), the flag control unit 410 connects the contact points of the switch units 103 and 108 from the terminal B to the terminal B. Switch to A. Accordingly, the voltage phase command value α * is output to the rectangular wave generation unit 407 via the switch unit 103 as in the second embodiment. Thereafter, the control processes of steps S413 and S414 are executed. Thereafter, in the control process of step S402, the control processes of steps S401, S402, S406 to 409, S413, and S414 are sequentially repeated until the flag control unit 410 determines that the rectangular wave flag has changed from 1 to 0.

以上より、第4の実施形態に係るコントローラ40は、スイッチ部103における矩形波生成部407からPWM制御部105への切替え直後、誤差Δα(n+2)を出力するΔαフィルタ演算部311を備える。更に、Δαフィルタ演算部311からの誤差Δα(n+2)と加算前電圧位相指令値α”を加算して得た変動抑制前電圧位相指令値α’をαフィルタ演算部302へ出力する加算部312とを備える。これから、第2の実施形態と同様の効果を取得できる。更に、Δαフィルタ演算部311のフィルタ作用により、矩形波生成部307からPWM制御部105への切替え直後に発生する、実際の電圧位相αのステップ状の急峻な変化を十分なめらかにできる。よって、第2の実施形態と比較して、トルク振動をより抑制することができる。 As described above, the controller 40 according to the fourth embodiment includes the Δα filter calculation unit 311 that outputs the error Δα (n + 2) immediately after switching from the rectangular wave generation unit 407 to the PWM control unit 105 in the switch unit 103. Further, an addition for outputting the voltage phase command value α ′ * before fluctuation suppression obtained by adding the error Δα (n + 2) from the Δα filter calculation unit 311 and the voltage phase command value α ″ * before addition to the α filter calculation unit 302 From this, it is possible to acquire the same effect as in the second embodiment, and it occurs immediately after switching from the rectangular wave generation unit 307 to the PWM control unit 105 due to the filter action of the Δα filter calculation unit 311. As a result, the stepwise steep change of the actual voltage phase α can be sufficiently smoothed, so that torque vibration can be further suppressed as compared with the second embodiment.

(第5の実施形態)
次に、第5の実施形態に係るインバータシステムについて、第1の実施形態に係るインバータシステムと異なる点を中心に図18乃至図19を参照して説明する。また、第5の実施形態に係るインバータシステムについて、第1および第3の実施形態に係るインバータシステムと同様の構造には同じ番号を付し、説明を省略する。なお、第5の実施形態に係るインバータシステムは、第1の実施形態に係るインバータシステムとほとんど同じである。図18は、本発明の第5の実施形態に係るコントローラ50の内部構成を示す制御ブロック図である。図18に示すように、第5の実施形態に係るインバータシステムが第1の実施形態と異なる点は、コントローラ50が異なることだけである。
(Fifth embodiment)
Next, an inverter system according to a fifth embodiment will be described with reference to FIGS. 18 to 19, focusing on differences from the inverter system according to the first embodiment. Moreover, about the inverter system which concerns on 5th Embodiment, the same number is attached | subjected to the structure similar to the inverter system which concerns on 1st and 3rd embodiment, and description is abbreviate | omitted. Note that the inverter system according to the fifth embodiment is almost the same as the inverter system according to the first embodiment. FIG. 18 is a control block diagram showing the internal configuration of the controller 50 according to the fifth embodiment of the present invention. As shown in FIG. 18, the inverter system according to the fifth embodiment is different from the first embodiment only in that the controller 50 is different.

ここで、コントローラ50は、第1の実施形態と異なり、第3のフィルタ演算手段であるΔTフィルタ演算部511および第2の加算手段である加算部512を備える。また、第1の実施形態と異なり、コントローラ50に含まれるαテーブル参照部501、第1のフィルタ演算手段であるαフィルタ演算部302、矩形波制御手段である矩形波生成部507とフラグ制御部510が異なる。αテーブル参照部501は、第1の実施形態と異なり、後述する加算後トルク指令値T”[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照する。そして、当該テーブルから、変動抑制前電圧位相指令値α’を求める。 Here, unlike the first embodiment, the controller 50 includes a ΔT filter calculation unit 511 that is a third filter calculation unit and an addition unit 512 that is a second addition unit. Further, unlike the first embodiment, an α table reference unit 501 included in the controller 50, an α filter calculation unit 302 as a first filter calculation unit, a rectangular wave generation unit 507 as a rectangular wave control unit, and a flag control unit 510 is different. The α table reference unit 501 is different from the first embodiment in advance based on an after-addition torque command value T ″ [N · m], a motor rotation speed N [rpm], and a DC voltage value Vdc [V]. The stored table is referred to, and the voltage phase command value α ′ * before fluctuation suppression is obtained from the table.

矩形波生成部507は、第1の実施形態と同様に、インバータ1のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を矩形波制御する。具体的には、第1の実施形態と同様に、矩形波生成部507は3相比較値を生成する。また、第1の実施形態と同様に、矩形波生成部507も、次回制御周期を演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。また、矩形波生成部507は、第1の実施形態と同様に、今回演算タイミングに対する次々回演算タイミングの誤差Δα(n+3)(図3参照)を、演算タイミング毎に演算する。また、第1の実施形態と同様に、スイッチ部103における矩形波生成部507からPWM制御部105への切替えが行われる場合、矩形波生成部507は、実際の電圧位相α(n+3)で、αフィルタ演算部302を初期化する。同時に、矩形波生成部507は、誤差Δα(n+3)相当のトルク差であるトルク換算値ΔT(n+3)[N・m]を演算し、トルク換算値ΔT(n+3)[N・m]でΔTフィルタ演算部511を初期化する。   The rectangular wave generation unit 507 performs rectangular wave control on the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− of the inverter 1 as in the first embodiment. Specifically, as in the first embodiment, the rectangular wave generation unit 507 generates a three-phase comparison value. Similarly to the first embodiment, the rectangular wave generation unit 507 also calculates the next control cycle, calculates the next calculation timing, and generates the next control cycle command. Further, as in the first embodiment, the rectangular wave generation unit 507 calculates an error Δα (n + 3) (see FIG. 3) of the next calculation timing with respect to the current calculation timing for each calculation timing. Similarly to the first embodiment, when switching from the rectangular wave generation unit 507 to the PWM control unit 105 in the switch unit 103 is performed, the rectangular wave generation unit 507 has the actual voltage phase α (n + 3), The α filter calculation unit 302 is initialized. At the same time, the rectangular wave generation unit 507 calculates a torque conversion value ΔT (n + 3) [N · m], which is a torque difference corresponding to the error Δα (n + 3), and ΔT with the torque conversion value ΔT (n + 3) [N · m]. The filter calculation unit 511 is initialized.

フラグ制御部510は、第1の実施形態と同様に、矩形波フラグを格納し、矩形波フラグに基づいてスイッチ部103および108の動作を制御する。具体的には、フラグ制御部510は、矩形波フラグが1になった場合、スイッチ部103および108の接点を端子Bから端子Aへ切替えさせる。これから、矩形波生成部507に、出力電圧Vu[V]、Vv[V]、Vw[V]を矩形波状に制御する矩形波制御を実行させる。一方、フラグ制御部510は、矩形波フラグが1から0へ変化した場合、スイッチ部103および108の接点を端子Aから端子Bへ切替えさせる。これから、PWM制御部105に、出力電圧Vu[V]、Vv[V]、Vw[V]を擬似正弦波状に制御するPWM制御を実行させる。ΔTフィルタ演算部511は、伝達関数1/(τ3s+1)を持つフィルタであり、加算部512にフィルタ後トルク換算値ΔT’[N・m]を出力する。なお、時定数τ3は数百ms程度である。加算部512は、フィルタ後トルク換算値ΔT’[N・m]とトルク指令値T[N・m]を加算し、加算後トルク指令値T”[N・m]をαテーブル参照部501へ出力する。   Similarly to the first embodiment, the flag control unit 510 stores a rectangular wave flag and controls the operations of the switch units 103 and 108 based on the rectangular wave flag. Specifically, when the rectangular wave flag becomes 1, the flag control unit 510 switches the contact points of the switch units 103 and 108 from the terminal B to the terminal A. From this, the rectangular wave generation unit 507 is caused to execute rectangular wave control for controlling the output voltages Vu [V], Vv [V], and Vw [V] into a rectangular wave shape. On the other hand, when the rectangular wave flag changes from 1 to 0, the flag control unit 510 switches the contacts of the switch units 103 and 108 from the terminal A to the terminal B. From this, the PWM control unit 105 is caused to execute PWM control for controlling the output voltages Vu [V], Vv [V], and Vw [V] in a pseudo sine wave shape. The ΔT filter calculation unit 511 is a filter having a transfer function 1 / (τ3s + 1), and outputs a post-filter torque conversion value ΔT ′ [N · m] to the addition unit 512. The time constant τ3 is about several hundred ms. The adding unit 512 adds the filtered torque converted value ΔT ′ [N · m] and the torque command value T [N · m], and adds the added torque command value T ″ [N · m] to the α table reference unit 501. Output.

(矩形波生成部507からPWM制御部105への切替え処理)
次に、第5の実施形態における、矩形波制御する矩形波生成部507からPWM制御するPWM制御部105への切替え処理について説明する。第5の実施形態における上記切替え処理は、第1の実施形態と同じである。すなわち、(n+1)回目スイッチングタイミングまで矩形波演算が実行され、(n+2)回目スイッチングタイミングにおいて、上記切替えを行い、その後、PWM演算が実行される。そして、第1の実施形態と同様に、(n+3)回目スイッチングタイミング以降、PWM制御部105によってPWM制御が実行される。また、第1の実施形態と同様に、矩形波生成部507は、(n+2)回目スイッチングタイミングにおいて、上記切替え前に、実際の電圧位相α(n+3)=電圧位相指令値α(n+3)+Δθ(1−K)(図3参照)を演算する。また、第1の実施形態と同様に、矩形波生成部507は、αフィルタ演算部302を実際の電圧位相α(n+3)で初期化する。
(Switching process from the rectangular wave generator 507 to the PWM controller 105)
Next, switching processing from the rectangular wave generating unit 507 that performs rectangular wave control to the PWM control unit 105 that performs PWM control in the fifth embodiment will be described. The switching process in the fifth embodiment is the same as that in the first embodiment. That is, the rectangular wave calculation is executed until the (n + 1) th switching timing, the switching is performed at the (n + 2) th switching timing, and then the PWM calculation is executed. As in the first embodiment, the PWM control unit 105 executes PWM control after the (n + 3) th switching timing. Similarly to the first embodiment, the rectangular wave generation unit 507 performs the actual voltage phase α (n + 3) = voltage phase command value α * (n + 3) + Δθ before the switching at the (n + 2) -th switching timing. (1-K) (see FIG. 3) is calculated. Similarly to the first embodiment, the rectangular wave generation unit 507 initializes the α filter calculation unit 302 with the actual voltage phase α (n + 3).

更に、第1の実施形態と異なり、矩形波生成部507は、誤差Δα(n+3)=Δθ(1−K)をトルク換算したトルク換算値ΔT(n+3)[N・m]を演算する。そして、矩形波生成部507は、トルク換算値ΔT(n+3)[N・m]でΔTフィルタ演算部511を初期化する。その後、上記切替えが行われる。これから、図5および図6に示した、第1の実施形態と同様の効果を取得できる。更に、矩形波生成部507からPWM制御部105への切替え前後でモータ回転数N[rpm]が急変した場合でも、ΔTフィルタ演算部511の時定数τ3が長いので、実際の電圧位相αを十分なめらかに変化させることができる。すなわち、図13に示した変化と同様になる。これから、出力電力Pnt[kw]の振動をより抑制できる。よって、第1の実施形態と比較して、トルク振動をより抑制することができる。なお、ΔTフィルタ演算部511の入力値は0なので、初期化されない限り、フィルタ後トルク換算値ΔT’[N・m]は影響を与えない。   Further, unlike the first embodiment, the rectangular wave generation unit 507 calculates a torque conversion value ΔT (n + 3) [N · m] obtained by converting the error Δα (n + 3) = Δθ (1−K) into torque. Then, the rectangular wave generation unit 507 initializes the ΔT filter calculation unit 511 with the torque conversion value ΔT (n + 3) [N · m]. Thereafter, the switching is performed. From this, the same effects as those of the first embodiment shown in FIGS. 5 and 6 can be obtained. Furthermore, even when the motor rotation speed N [rpm] suddenly changes before and after switching from the rectangular wave generation unit 507 to the PWM control unit 105, the time constant τ3 of the ΔT filter calculation unit 511 is long, so that the actual voltage phase α is sufficient. It can be changed smoothly. That is, it becomes the same as the change shown in FIG. From this, the vibration of the output power Pnt [kw] can be further suppressed. Therefore, torque vibration can be further suppressed as compared with the first embodiment. Since the input value of the ΔT filter calculation unit 511 is 0, the post-filter torque conversion value ΔT ′ [N · m] has no effect unless it is initialized.

(コントローラ50で実行される制御方法)
次に、第5の実施形態に係るコントローラ50で実行される制御方法について、図19を参照して説明する。図19は、図18に示すコントローラ50で実行される制御方法を示すフローチャートである。本制御方法は、図19に示すフローチャートのプログラムをコントローラ50に組み込み実現している。なお、本制御処理は、第1の実施形態に係るコントローラ10で実行される制御処理とほとんど同じである。第1の実施形態に係るコントローラ10で実行される制御処理と本制御処理が異なる点は、ステップS504〜S506の制御処理を追加したことだけである。
(Control method executed by the controller 50)
Next, a control method executed by the controller 50 according to the fifth embodiment will be described with reference to FIG. FIG. 19 is a flowchart showing a control method executed by the controller 50 shown in FIG. This control method is implemented by incorporating the program of the flowchart shown in FIG. This control process is almost the same as the control process executed by the controller 10 according to the first embodiment. The only difference between the control process executed by the controller 10 according to the first embodiment and the present control process is that the control processes of steps S504 to S506 are added.

第1の実施形態のステップS101の制御処理と同様に、(n+1)回目スイッチングタイミングにおいて、αテーブル参照部501はαテーブル参照処理を実行する(ステップS501)。ここで、αテーブル参照処理とは、加算後トルク指令値T”[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照し、変動抑制前電圧位相指令値α’を求める制御処理である。次に、フラグ制御部510に格納された矩形波フラグが1から0へ変化したか否かフラグ制御部510は判定する(ステップS502)。矩形波フラグが1から0へ変化していないとフラグ制御部510が判定した場合(ステップS502:No)、ΔTフィルタ演算部511はΔTフィルタ演算する。演算後、フィルタ後トルク換算値ΔT’[N・m]を加算部512へ出力する(ステップS505)。 Similar to the control process in step S101 of the first embodiment, at the (n + 1) th switching timing, the α table reference unit 501 executes the α table reference process (step S501). Here, the α table reference processing refers to a table stored in advance based on the added torque command value T ″ [N · m], the motor rotation speed N [rpm], and the DC voltage value Vdc [V]. This is a control process for obtaining the voltage phase command value α ′ * before fluctuation suppression.Next, the flag control unit 510 determines whether or not the rectangular wave flag stored in the flag control unit 510 has changed from 1 to 0 ( (Step S502) When the flag control unit 510 determines that the rectangular wave flag has not changed from 1 to 0 (Step S502: No), the ΔT filter calculation unit 511 performs a ΔT filter calculation. The value ΔT ′ [N · m] is output to the adding unit 512 (step S505).

次に、加算部512は、トルク指令値T[N・m]にフィルタ後トルク換算値ΔT’[N・m]を加算する。加算して得られた加算後トルク指令値T”[N・m]をαテーブル参照部501へ出力する(ステップS506)。次に、αフィルタ演算部302は、ステップS104の制御処理と同様に、αフィルタ演算する(ステップS507)。具体的には、αフィルタ演算部302は、変動抑制前電圧位相指令値α’の変動を抑制し、スイッチ部103へ電圧位相指令値α(n+2)を出力する。以降、ステップS105、S109およびS110の制御処理と、それぞれ同様であるステップS508、S512およびS513の制御処理を実行する。以上より、(n+1)回目スイッチングタイミングにおけるコントローラ50の制御処理を終了する。 Next, the adding unit 512 adds the post-filter torque conversion value ΔT ′ [N · m] to the torque command value T [N · m]. The added torque command value T ″ [N · m] obtained by the addition is output to the α table reference unit 501 (step S506). Next, the α filter calculation unit 302 performs the same process as the control process of step S104. (Alpha) filter calculation (step S507) Specifically, the α filter calculation unit 302 suppresses fluctuations in the voltage phase command value α ′ * before fluctuation suppression, and sends the voltage phase command value α * (n + 2) to the switch unit 103. Thereafter, the control processes of steps S508, S512, and S513, which are the same as the control processes of steps S105, S109, and S110, respectively, are executed, As described above, the control process of the controller 50 at the (n + 1) th switching timing. Exit.

(n+2)回目スイッチングタイミングにおいて、矩形波フラグが1から0へ変化したとフラグ制御部510が判定した場合(ステップS502:Yes)、ステップS503の制御処理に移行する。ステップS503の制御処理において、フラグ制御部510は、ステップS103の制御処理と同様に、矩形波生成部507にαフィルタ演算部302を実際の電圧位相α(n+3)で初期化させる。次に、矩形波生成部507は、ΔTフィルタ演算部511をトルク換算値ΔT(n+3)[N・m]で初期化する(ステップS504)。次に、ΔTフィルタ演算部511はΔTフィルタ演算し、フィルタ後トルク換算値ΔT’[N・m]を加算部512へ出力する(ステップS505)。ステップS504の制御処理において、ΔTフィルタ演算部511はトルク換算値ΔT(n+3)[N・m]で初期化されているので、フィルタ後トルク換算値ΔT’[N・m]はトルク換算値ΔT(n+3)[N・m]に等しくなる。次に、加算部512は、トルク指令値T[N・m]にフィルタ後トルク換算値ΔT’[N・m]を加算する。加算して得られた加算後トルク指令値T”[N・m]をαテーブル参照部501へ出力する(ステップS506)。   When the flag control unit 510 determines that the rectangular wave flag has changed from 1 to 0 at the (n + 2) -th switching timing (step S502: Yes), the process proceeds to the control process of step S503. In the control process of step S503, the flag control unit 510 causes the rectangular wave generation unit 507 to initialize the α filter calculation unit 302 with the actual voltage phase α (n + 3), similarly to the control process of step S103. Next, the rectangular wave generation unit 507 initializes the ΔT filter calculation unit 511 with the torque conversion value ΔT (n + 3) [N · m] (step S504). Next, the ΔT filter calculation unit 511 performs a ΔT filter calculation, and outputs the filtered torque conversion value ΔT ′ [N · m] to the addition unit 512 (step S505). In the control process of step S504, since the ΔT filter calculation unit 511 is initialized with the torque conversion value ΔT (n + 3) [N · m], the post-filter torque conversion value ΔT ′ [N · m] is the torque conversion value ΔT. It is equal to (n + 3) [N · m]. Next, the adding unit 512 adds the filtered torque conversion value ΔT ′ [N · m] to the torque command value T [N · m]. The added torque command value T ″ [N · m] obtained by the addition is output to the α table reference unit 501 (step S506).

次に、ステップS104の制御処理と同様に、αフィルタ演算部302はαフィルタ演算する(ステップS507)。ステップS503の制御処理において、αフィルタ演算部302は実際の電圧位相α(n+3)で初期化されているので、αフィルタ演算部302の出力である電圧位相指令値αは実際の電圧位相α(n+3)に等しくなる。次に、ステップS105の制御処理と同様に、フラグ制御部510は、矩形波フラグが1か否か判定する(ステップS508)。第1の実施形態と同様に、矩形波フラグは1でないとフラグ制御部510は判定するので(ステップS508:No)、フラグ制御部510は、スイッチ部103および108の接点を端子Aから端子Bへ切り替えさせる。これより、第1の実施形態と同様に、スイッチ部103を介して、PWM制御部105に電圧位相指令値α=実際の電圧位相α(n+3)が出力される。以降、ステップS106〜S108の制御処理と、それぞれ同様であるステップS509〜S511の制御処理を実行する。以上より、(n+2)回目スイッチングタイミングにおけるコントローラ50の制御処理を終了する。 Next, as in the control process of step S104, the α filter calculation unit 302 performs α filter calculation (step S507). In the control process of step S503, the α filter calculation unit 302 is initialized with the actual voltage phase α (n + 3), so the voltage phase command value α * that is the output of the α filter calculation unit 302 is the actual voltage phase α. It becomes equal to (n + 3). Next, similarly to the control process in step S105, the flag control unit 510 determines whether or not the rectangular wave flag is 1 (step S508). As in the first embodiment, since the flag control unit 510 determines that the rectangular wave flag is not 1 (step S508: No), the flag control unit 510 connects the contacts of the switch units 103 and 108 from the terminal A to the terminal B. Switch to. Thus, as in the first embodiment, the voltage phase command value α * = the actual voltage phase α (n + 3) is output to the PWM control unit 105 via the switch unit 103. Thereafter, the control processing of steps S509 to S511, which is the same as the control processing of steps S106 to S108, respectively, is executed. Thus, the control process of the controller 50 at the (n + 2) th switching timing is completed.

第1の実施形態と同様に、(n+3)回目スイッチングタイミングにおいて、矩形波フラグはすでに0になっているので、矩形波フラグが1から0へ変化していないとフラグ制御部510は判定する(ステップS502:No)。以降、ステップS505〜S511の制御処理を実行する。以上より、(n+3)回目スイッチングタイミングにおけるコントローラ50の制御処理を終了する。その後、ステップS508の制御処理において、矩形波フラグが1であるとフラグ制御部510が判定するまで、ステップS501、S502、S505〜S511の制御処理を順次繰り返す。その後、ステップS508の制御処理において、矩形波フラグが1であるとフラグ制御部510が判定した場合(ステップS508:Yes)、フラグ制御部510は、スイッチ部103および108の接点を端子Bから端子Aへ切り替えさせる。これより、第1の実施形態と同様に、スイッチ部103を介して、矩形波生成部507に電圧位相指令値αが出力される。以降、ステップS512およびS513の制御処理を実行する。その後、ステップS502の制御処理において、矩形波フラグが1から0へ変化したとフラグ制御部510が判定するまで、ステップS501、S502、S505〜S508、S512およびS513の制御処理を順次繰り返す。 As in the first embodiment, since the rectangular wave flag is already 0 at the (n + 3) -th switching timing, the flag control unit 510 determines that the rectangular wave flag has not changed from 1 to 0 ( Step S502: No). Thereafter, the control processing of steps S505 to S511 is executed. Thus, the control process of the controller 50 at the (n + 3) th switching timing is completed. Thereafter, in the control process of step S508, the control processes of steps S501, S502, S505 to S511 are sequentially repeated until the flag control unit 510 determines that the rectangular wave flag is 1. Thereafter, in the control process of step S508, when the flag control unit 510 determines that the rectangular wave flag is 1 (step S508: Yes), the flag control unit 510 connects the contact points of the switch units 103 and 108 from the terminal B to the terminal B. Switch to A. Accordingly, the voltage phase command value α * is output to the rectangular wave generation unit 507 via the switch unit 103 as in the first embodiment. Thereafter, the control processes of steps S512 and S513 are executed. Thereafter, the control processes of steps S501, S502, S505 to S508, S512, and S513 are sequentially repeated until the flag control unit 510 determines that the rectangular wave flag has changed from 1 to 0 in the control process of step S502.

以上より、第5の実施形態に係るコントローラ50は、ΔTフィルタ演算部511を備える。ΔTフィルタ演算部511は、矩形波生成部507からPWM制御部105への切替え直後、誤差Δα(n+3)=Δθ(1−K)相当のトルク換算値ΔT(n+3)[N・m]を出力する。また、トルク換算値ΔT(n+3)[N・m]とトルク指令値T[N・m]を加算する加算部512とを備える。これから、第1の実施形態と同様の効果を取得できる。更に、ΔTフィルタ演算部511のフィルタ作用により、矩形波生成部507からPWM制御部105への切替え直後に発生する、実際の電圧位相αのステップ状の急峻な変化を十分なめらかにできる。よって、第1の実施形態と比較して、トルク振動をより抑制することができる。   As described above, the controller 50 according to the fifth embodiment includes the ΔT filter calculation unit 511. The ΔT filter calculation unit 511 outputs a torque conversion value ΔT (n + 3) [N · m] corresponding to an error Δα (n + 3) = Δθ (1-K) immediately after switching from the rectangular wave generation unit 507 to the PWM control unit 105. To do. An addition unit 512 that adds the torque conversion value ΔT (n + 3) [N · m] and the torque command value T [N · m] is provided. From this, the same effects as those of the first embodiment can be obtained. Further, the filter action of the ΔT filter calculation unit 511 can sufficiently smooth the stepwise steep change of the actual voltage phase α that occurs immediately after switching from the rectangular wave generation unit 507 to the PWM control unit 105. Therefore, torque vibration can be further suppressed as compared with the first embodiment.

(第6の実施形態)
次に、第6の実施形態に係るインバータシステムについて、第2の実施形態に係るインバータシステムと異なる点を中心に図20乃至図21を参照して説明する。また、第6の実施形態に係るインバータシステムについて、第2、第3および第5の実施形態に係るインバータシステムと同様の構造には同じ番号を付し、説明を省略する。なお、第6の実施形態に係るインバータシステムは、第2の実施形態に係るインバータシステムとほとんど同じである。図20は、本発明の第6の実施形態に係るコントローラ60の内部構成を示す制御ブロック図である。図20に示すように、第6の実施形態に係るインバータシステムが第2の実施形態と異なる点は、コントローラ60が異なることだけである。
(Sixth embodiment)
Next, an inverter system according to a sixth embodiment will be described with reference to FIGS. 20 to 21 with a focus on differences from the inverter system according to the second embodiment. Moreover, about the inverter system which concerns on 6th Embodiment, the same number is attached | subjected to the structure similar to the inverter system which concerns on 2nd, 3rd and 5th embodiment, and description is abbreviate | omitted. Note that the inverter system according to the sixth embodiment is almost the same as the inverter system according to the second embodiment. FIG. 20 is a control block diagram showing the internal configuration of the controller 60 according to the sixth embodiment of the present invention. As shown in FIG. 20, the only difference between the inverter system according to the sixth embodiment and the second embodiment is that the controller 60 is different.

ここで、コントローラ60は、第2の実施形態と異なり、第3のフィルタ演算手段であるΔTフィルタ演算部511および第2の加算手段である加算部512を備える。また、第2の実施形態と異なり、コントローラ60に含まれるαテーブル参照部501、第1のフィルタ演算手段であるαフィルタ演算部302、矩形波制御手段である矩形波生成部607とフラグ制御部610が異なる。矩形波生成部607は、第2の実施形態と同様に、インバータ1のスイッチング素子Tu+、Tu−、Tv+、Tv−、Tw+、Tw−を矩形波制御する。具体的には、第2の実施形態と同様に、矩形波生成部607は3相比較値を生成する。   Here, unlike the second embodiment, the controller 60 includes a ΔT filter calculation unit 511 that is a third filter calculation unit and an addition unit 512 that is a second addition unit. Also, unlike the second embodiment, an α table reference unit 501 included in the controller 60, an α filter calculation unit 302 as a first filter calculation unit, a rectangular wave generation unit 607 as a rectangular wave control unit, and a flag control unit 610 is different. The rectangular wave generator 607 performs rectangular wave control on the switching elements Tu +, Tu−, Tv +, Tv−, Tw +, and Tw− of the inverter 1 as in the second embodiment. Specifically, as in the second embodiment, the rectangular wave generation unit 607 generates a three-phase comparison value.

また、第2の実施形態と同様に、矩形波生成部607は、次回制御周期を演算し、次回演算タイミングを演算し、次回制御周期指令を生成する。また、矩形波生成部607は、第2の実施形態と同様に、今回演算タイミングに対する次回演算タイミングの誤差Δα(n+2)(図3参照)を、演算タイミング毎に演算する。更に、第2の実施形態と同様に、スイッチ部103における矩形波生成部607からPWM制御部105への切替えが行われる場合、矩形波生成部607は、実際の電圧位相α(n+2)(図3参照)で、αフィルタ演算部302を初期化する。同時に、矩形波生成部607は、誤差Δα(n+2)相当のトルク差であるトルク換算値ΔT(n+2)[N・m]を演算し、トルク換算値ΔT(n+2)[N・m]でΔTフィルタ演算部511を初期化する。   Similarly to the second embodiment, the rectangular wave generation unit 607 calculates the next control cycle, calculates the next calculation timing, and generates the next control cycle command. Further, as in the second embodiment, the rectangular wave generation unit 607 calculates an error Δα (n + 2) (see FIG. 3) of the next calculation timing with respect to the current calculation timing for each calculation timing. Further, as in the second embodiment, when switching from the rectangular wave generating unit 607 to the PWM control unit 105 in the switch unit 103 is performed, the rectangular wave generating unit 607 determines the actual voltage phase α (n + 2) (FIG. 3), the α filter calculation unit 302 is initialized. At the same time, the rectangular wave generating unit 607 calculates a torque conversion value ΔT (n + 2) [N · m], which is a torque difference corresponding to the error Δα (n + 2), and ΔT with the torque conversion value ΔT (n + 2) [N · m]. The filter calculation unit 511 is initialized.

フラグ制御部610は、第2の実施形態と同様に、矩形波フラグを格納し、矩形波フラグに基づいてスイッチ部103および108の動作を制御する。具体的には、フラグ制御部610は、矩形波フラグが1になった場合、スイッチ部103および108の接点を端子Bから端子Aへ切替えさせる。これから、矩形波生成部607に、出力電圧Vu[V]、Vv[V]、Vw[V]を矩形波状に制御する矩形波制御を実行させる。一方、フラグ制御部610は、矩形波フラグが1から0へ変化した場合、スイッチ部103および108の接点を端子Aから端子Bへ切替えさせる。これから、PWM制御部105に、出力電圧Vu[V]、Vv[V]、Vw[V]を擬似正弦波状に制御するPWM制御を実行させる。   Similarly to the second embodiment, the flag control unit 610 stores a rectangular wave flag, and controls the operations of the switch units 103 and 108 based on the rectangular wave flag. Specifically, when the rectangular wave flag becomes 1, the flag control unit 610 switches the contact points of the switch units 103 and 108 from the terminal B to the terminal A. From this, the rectangular wave generation unit 607 is caused to execute rectangular wave control for controlling the output voltages Vu [V], Vv [V], and Vw [V] into a rectangular wave shape. On the other hand, when the rectangular wave flag changes from 1 to 0, the flag control unit 610 switches the contact points of the switch units 103 and 108 from the terminal A to the terminal B. From this, the PWM control unit 105 is caused to execute PWM control for controlling the output voltages Vu [V], Vv [V], and Vw [V] in a pseudo sine wave shape.

(矩形波生成部607からPWM制御部105への切替え処理)
次に、第6の実施形態における、矩形波制御する矩形波生成部607からPWM制御するPWM制御部105への切替え処理について説明する。第6の実施形態における上記切替え処理は、第2の実施形態と同じである。すなわち、n回目スイッチングタイミングまで矩形波演算が実行され、(n+1)回目スイッチングタイミングにおいて、上記切替えを行い、その後、PWM演算が実行される。そして、第2の実施形態と同様に、(n+2)回目スイッチングタイミング以降、PWM制御部105によってPWM制御が実行される。また、第2の実施形態と同様に、矩形波生成部607は、(n+1)回目スイッチングタイミングにおいて、上記切替え前に、実際の電圧位相α(n+2)=電圧位相指令値α(n+2)+誤差Δα(n+2)を演算する。
(Switching process from the rectangular wave generator 607 to the PWM controller 105)
Next, switching processing from the rectangular wave generation unit 607 that performs rectangular wave control to the PWM control unit 105 that performs PWM control in the sixth embodiment will be described. The switching process in the sixth embodiment is the same as that in the second embodiment. That is, the rectangular wave calculation is executed until the n-th switching timing, the switching is performed at the (n + 1) -th switching timing, and then the PWM calculation is executed. As in the second embodiment, the PWM control unit 105 executes PWM control after the (n + 2) th switching timing. Similarly to the second embodiment, the rectangular wave generation unit 607 determines that the actual voltage phase α (n + 2) = voltage phase command value α * (n + 2) + before the switching at the (n + 1) th switching timing. The error Δα (n + 2) is calculated.

また、第2の実施形態と同様に、矩形波生成部607は、αフィルタ演算部302を実際の電圧位相α(n+2)で初期化する。更に、第2の実施形態と異なり、矩形波生成部607は、誤差Δα(n+2)=Δθをトルク換算したトルク換算値ΔT(n+2)[N・m]を演算する。そして、矩形波生成部607は、トルク換算値ΔT(n+2)[N・m]でΔTフィルタ演算部511を初期化する。その後、上記切替えが行われる。これから、第2の実施形態と同様の効果を取得できる。更に、矩形波生成部607からPWM制御部105への切替え前後でモータ回転数N[rpm]が急変した場合でも、ΔTフィルタ演算部511の時定数τ3が長いので、実際の電圧位相αを十分なめらかに変化させることができる。すなわち、図13に示した変化と同様になる。これから、出力電力Pnt[kw]の振動をより抑制できる。よって、第2の実施形態と比較して、トルク振動をより抑制することができる。   Similarly to the second embodiment, the rectangular wave generation unit 607 initializes the α filter calculation unit 302 with the actual voltage phase α (n + 2). Further, unlike the second embodiment, the rectangular wave generation unit 607 calculates a torque converted value ΔT (n + 2) [N · m] obtained by converting the error Δα (n + 2) = Δθ into torque. Then, the rectangular wave generation unit 607 initializes the ΔT filter calculation unit 511 with the torque conversion value ΔT (n + 2) [N · m]. Thereafter, the switching is performed. From this, the same effects as those of the second embodiment can be obtained. Furthermore, even when the motor rotation speed N [rpm] suddenly changes before and after switching from the rectangular wave generation unit 607 to the PWM control unit 105, the time constant τ3 of the ΔT filter calculation unit 511 is long, so that the actual voltage phase α is sufficient. It can be changed smoothly. That is, it becomes the same as the change shown in FIG. From this, the vibration of the output power Pnt [kw] can be further suppressed. Therefore, torque vibration can be further suppressed as compared with the second embodiment.

(コントローラ60で実行される制御方法)
次に、第6の実施形態に係るコントローラ60で実行される制御方法について、図21を参照して説明する。図21は、図20に示すコントローラ60で実行される制御方法を示すフローチャートである。本制御方法は、図21に示すフローチャートのプログラムをコントローラ60に組み込み実現している。なお、本制御処理は、第2の実施形態に係るコントローラ20で実行される制御処理とほとんど同じである。第2の実施形態に係るコントローラ20で実行される制御処理と本制御処理が異なる点は、ステップS605〜S607の制御処理を追加したことだけである。
(Control method executed by the controller 60)
Next, a control method executed by the controller 60 according to the sixth embodiment will be described with reference to FIG. FIG. 21 is a flowchart showing a control method executed by the controller 60 shown in FIG. This control method is implemented by incorporating the program of the flowchart shown in FIG. This control process is almost the same as the control process executed by the controller 20 according to the second embodiment. The only difference between the control process executed by the controller 20 according to the second embodiment and the present control process is that the control processes in steps S605 to S607 are added.

第2の実施形態のステップS201の制御処理と同様に、n回目スイッチングタイミングにおいて、αテーブル参照部501はαテーブル参照処理を実行する(ステップS601)。ここで、αテーブル参照処理とは、加算後トルク指令値T”[N・m]、モータ回転数N[rpm]および直流電圧値Vdc[V]に基づいて、予め格納されたテーブルを参照し、変動抑制前電圧位相指令値α’を求める制御処理である。次に、フラグ制御部610に格納された矩形波フラグが1から0へ変化したか否かフラグ制御部610は判定する(ステップS602)。矩形波フラグが1から0へ変化していないとフラグ制御部610が判定した場合(ステップS602:No)、ΔTフィルタ演算部511はΔTフィルタ演算する。演算後、フィルタ後トルク換算値ΔT’[N・m]を加算部512へ出力する(ステップS606)。 Similar to the control process in step S201 of the second embodiment, the α table reference unit 501 executes the α table reference process at the n-th switching timing (step S601). Here, the α table reference processing refers to a table stored in advance based on the added torque command value T ″ [N · m], the motor rotation speed N [rpm], and the DC voltage value Vdc [V]. This is a control process for obtaining the voltage phase command value α ′ * before fluctuation suppression.Next, the flag control unit 610 determines whether or not the rectangular wave flag stored in the flag control unit 610 has changed from 1 to 0 ( Step S602) When the flag control unit 610 determines that the rectangular wave flag has not changed from 1 to 0 (Step S602: No), the ΔT filter calculation unit 511 performs ΔT filter calculation. The value ΔT ′ [N · m] is output to the adding unit 512 (step S606).

次に、加算部512は、トルク指令値T[N・m]にフィルタ後トルク換算値ΔT’[N・m]を加算する。加算して得られた加算後トルク指令値T”[N・m]をαテーブル参照部501へ出力する(ステップS607)。αフィルタ演算部302は、ステップS205の制御処理と同様に、αフィルタ演算する(ステップS608)。具体的には、αフィルタ演算部302は、変動抑制前電圧位相指令値α’の変動を抑制し、スイッチ部103へ電圧位相指令値α(n+1)を出力する。以降、ステップS206、S210およびS211の制御処理と、それぞれ同様であるステップS609、S613およびS614の制御処理を実行する。以上より、n回目スイッチングタイミングにおけるコントローラ60の制御処理を終了する。 Next, the adding unit 512 adds the post-filter torque conversion value ΔT ′ [N · m] to the torque command value T [N · m]. The added torque command value T ″ [N · m] obtained by the addition is output to the α table reference unit 501 (step S607). The α filter calculation unit 302 performs the α filter similarly to the control process of step S205. More specifically, the α filter calculation unit 302 suppresses fluctuations in the voltage phase command value α ′ * before fluctuation suppression, and outputs the voltage phase command value α * (n + 1) to the switch unit 103. Thereafter, the control processes of steps S609, S613, and S614, which are the same as the control processes of steps S206, S210, and S211, respectively, are executed, and the control process of the controller 60 at the n-th switching timing is ended.

(n+1)回目スイッチングタイミングにおいて、矩形波フラグが1から0へ変化したとフラグ制御部610が判定した場合(ステップS602:Yes)、ステップS603の制御処理に移行する。ステップS603の制御処理において、フラグ制御部610は、ステップS203の制御処理と同様に、矩形波生成部607にΔα演算を実行させる。次に、矩形波生成部607は、ステップS204の制御処理と同様に、αフィルタ演算部302を実際の電圧位相α(n+2)で初期化する(ステップS604)。次に、矩形波生成部607は、ΔTフィルタ演算部511をトルク換算値ΔT(n+2)[N・m]で初期化する(ステップS605)。次に、ΔTフィルタ演算部511はΔTフィルタ演算し、フィルタ後トルク換算値ΔT’[N・m]を加算部512へ出力する(ステップS606)。ステップS605の制御処理において、ΔTフィルタ演算部511はトルク換算値ΔT(n+2)[N・m]で初期化されているので、フィルタ後トルク換算値ΔT’[N・m]はトルク換算値ΔT(n+2)[N・m]に等しくなる。次に、加算部512は、トルク指令値T[N・m]にフィルタ後トルク換算値ΔT’[N・m]を加算する。加算して得られた加算後トルク指令値T”[N・m]をαテーブル参照部501へ出力する(ステップS607)。   When the flag control unit 610 determines that the rectangular wave flag has changed from 1 to 0 at the (n + 1) -th switching timing (step S602: Yes), the process proceeds to the control process of step S603. In the control process of step S603, the flag control unit 610 causes the rectangular wave generation unit 607 to execute Δα calculation, similarly to the control process of step S203. Next, the rectangular wave generation unit 607 initializes the α filter calculation unit 302 with the actual voltage phase α (n + 2), similarly to the control processing in step S204 (step S604). Next, the rectangular wave generation unit 607 initializes the ΔT filter calculation unit 511 with the torque conversion value ΔT (n + 2) [N · m] (step S605). Next, the ΔT filter calculation unit 511 performs a ΔT filter calculation, and outputs a post-filter torque conversion value ΔT ′ [N · m] to the addition unit 512 (step S606). In the control process of step S605, since the ΔT filter calculation unit 511 is initialized with the torque conversion value ΔT (n + 2) [N · m], the post-filter torque conversion value ΔT ′ [N · m] is the torque conversion value ΔT. It is equal to (n + 2) [N · m]. Next, the adding unit 512 adds the filtered torque conversion value ΔT ′ [N · m] to the torque command value T [N · m]. The added torque command value T ″ [N · m] obtained by the addition is output to the α table reference unit 501 (step S607).

次に、ステップS205の制御処理と同様に、αフィルタ演算部302はαフィルタ演算する(ステップS608)。ステップS604の制御処理において、αフィルタ演算部302は実際の電圧位相α(n+2)で初期化されているので、αフィルタ演算部302の出力である電圧位相指令値αは実際の電圧位相α(n+2)に等しくなる。次に、ステップS206の制御処理と同様に、フラグ制御部610は、矩形波フラグが1か否か判定する(ステップS609)。第2の実施形態と同様に、矩形波フラグは1でないとフラグ制御部610は判定するので(ステップS609:No)、フラグ制御部610は、スイッチ部103および108の接点を端子Aから端子Bへ切り替えさせる。これより、第2の実施形態と同様に、スイッチ部103を介して、PWM制御部105に電圧位相指令値α=実際の電圧位相α(n+2)が出力される。以降、ステップS207〜S209の制御処理と、それぞれ同様であるステップS610〜S612の制御処理を実行する。以上より、(n+1)回目スイッチングタイミングにおけるコントローラ60の制御処理を終了する。 Next, as in the control process in step S205, the α filter calculation unit 302 performs α filter calculation (step S608). In the control processing of step S604, the α filter calculation unit 302 is initialized with the actual voltage phase α (n + 2), so that the voltage phase command value α * that is the output of the α filter calculation unit 302 is the actual voltage phase α It becomes equal to (n + 2). Next, similarly to the control process in step S206, the flag control unit 610 determines whether or not the rectangular wave flag is 1 (step S609). As in the second embodiment, since the flag control unit 610 determines that the rectangular wave flag is not 1 (step S609: No), the flag control unit 610 connects the contacts of the switch units 103 and 108 from the terminal A to the terminal B. Switch to. Thus, as in the second embodiment, the voltage phase command value α * = actual voltage phase α (n + 2) is output to the PWM control unit 105 via the switch unit 103. Thereafter, the control processes of steps S610 to S612 that are similar to the control processes of steps S207 to S209 are executed. Thus, the control process of the controller 60 at the (n + 1) th switching timing is completed.

第2の実施形態と同様に、(n+2)回目スイッチングタイミングにおいて、矩形波フラグはすでに0になっているので、矩形波フラグが1から0へ変化していないとフラグ制御部610は判定する(ステップS602:No)。以降、ステップS606〜S612の制御処理を実行する。以上より、(n+2)回目スイッチングタイミングにおけるコントローラ60の制御処理を終了する。その後、ステップS609の制御処理において、矩形波フラグが1であるとフラグ制御部610が判定するまで、ステップS601、S602、S606〜S612の制御処理を順次繰り返す。その後、ステップS609の制御処理において、矩形波フラグが1であるとフラグ制御部610が判定した場合(ステップS609:Yes)、フラグ制御部610は、スイッチ部103および108の接点を端子Bから端子Aへ切り替えさせる。これより、第2の実施形態と同様に、スイッチ部103を介して、矩形波生成部607に電圧位相指令値αが出力される。以降、ステップS613およびS614の制御処理を実行する。その後、ステップS602の制御処理において、矩形波フラグが1から0へ変化したとフラグ制御部610が判定するまで、ステップS601、S602、S606〜609、S613およびS614の制御処理を順次繰り返す。 As in the second embodiment, since the rectangular wave flag is already 0 at the (n + 2) -th switching timing, the flag control unit 610 determines that the rectangular wave flag has not changed from 1 to 0 ( Step S602: No). Thereafter, the control process of steps S606 to S612 is executed. Thus, the control process of the controller 60 at the (n + 2) th switching timing is completed. Thereafter, in the control process of step S609, the control processes of steps S601, S602, and S606 to S612 are sequentially repeated until the flag control unit 610 determines that the rectangular wave flag is 1. Thereafter, in the control process of step S609, when the flag control unit 610 determines that the rectangular wave flag is 1 (step S609: Yes), the flag control unit 610 connects the contacts of the switch units 103 and 108 from the terminal B to the terminal B Switch to A. Accordingly, the voltage phase command value α * is output to the rectangular wave generation unit 607 via the switch unit 103 as in the second embodiment. Thereafter, the control processes of steps S613 and S614 are executed. Thereafter, in the control process in step S602, the control processes in steps S601, S602, S606 to 609, S613, and S614 are sequentially repeated until the flag control unit 610 determines that the rectangular wave flag has changed from 1 to 0.

以上より、第6の実施形態に係るコントローラ60は、ΔTフィルタ演算部511を備える。ΔTフィルタ演算部511は、矩形波生成部607からPWM制御部105への切替え直後、誤差Δα(n+2)=Δθ相当のトルク換算値ΔT(n+2)[N・m]を出力する。また、トルク換算値ΔT(n+2)[N・m]とトルク指令値T[N・m]を加算する加算部512とを備える。これから、第2の実施形態と同様の効果を取得できる。更に、ΔTフィルタ演算部511のフィルタ作用により、矩形波生成部607からPWM制御部105への切替え直後に発生する、実際の電圧位相αのステップ状の急峻な変化を十分なめらかにできる。よって、第2の実施形態と比較して、トルク振動をより抑制することができる。   As described above, the controller 60 according to the sixth embodiment includes the ΔT filter calculation unit 511. The ΔT filter calculation unit 511 outputs a torque conversion value ΔT (n + 2) [N · m] corresponding to an error Δα (n + 2) = Δθ immediately after switching from the rectangular wave generation unit 607 to the PWM control unit 105. An addition unit 512 that adds the torque conversion value ΔT (n + 2) [N · m] and the torque command value T [N · m] is provided. From this, the same effects as those of the second embodiment can be obtained. Further, the filter action of the ΔT filter calculation unit 511 can sufficiently smooth the stepwise steep change of the actual voltage phase α that occurs immediately after switching from the rectangular wave generation unit 607 to the PWM control unit 105. Therefore, torque vibration can be further suppressed as compared with the second embodiment.

なお、以上に述べた実施形態は、本発明の実施の一例であり、本発明の範囲はこれらに限定されるものでなく、特許請求の範囲に記載した範囲内で、他の様々な実施形態に適用可能である。例えば、第1乃至第6の実施形態に係るインバータ1では、還流素子Du+、Du−、Dv+、Dv−、Dw+、Dw−を備えているが、特にこれに限定されるものでなく、無くても良い。   The embodiment described above is an example of the implementation of the present invention, and the scope of the present invention is not limited thereto, and other various embodiments are within the scope described in the claims. It is applicable to. For example, the inverter 1 according to the first to sixth embodiments includes the reflux elements Du +, Du−, Dv +, Dv−, Dw +, and Dw−. However, the present invention is not particularly limited to this. Also good.

また、第1、第3および第5の実施形態では、(n+1)回目スイッチングタイミングにおいて、実際のモータ角周波数ωre[rad/s]が急変した場合について説明している。しかし、特にこれに限定されるものでなく、n回目スイッチングタイミングにおいて、実際のモータ角周波数ωre[rad/s]が急変した場合にも適用可能である。すなわち、n回目スイッチングタイミングで誤差Δθが発生した場合、誤差Δθに基づいて補正された次回制御周期tnext’により、(n+1)回目スイッチングタイミングにおいて、誤差Δθ’=Δθ(1−K)となる。そこで、当該誤差Δθ’に基づいて、誤差Δα(n+3)を演算すれば良い。同様に、実際のモータ角周波数ωre[rad/s]が急変し、誤差Δθが発生するタイミングは、矩形波生成部からPWM制御部への切替えるタイミングと無関係であっても、適用可能である。   In the first, third, and fifth embodiments, the case where the actual motor angular frequency ωre [rad / s] suddenly changes at the (n + 1) th switching timing is described. However, the present invention is not particularly limited to this, and can also be applied to a case where the actual motor angular frequency ωre [rad / s] changes suddenly at the n-th switching timing. That is, when the error Δθ occurs at the n-th switching timing, the error Δθ ′ = Δθ (1-K) is obtained at the (n + 1) -th switching timing by the next control cycle tnext ′ corrected based on the error Δθ. Therefore, the error Δα (n + 3) may be calculated based on the error Δθ ′. Similarly, the timing at which the actual motor angular frequency ωre [rad / s] suddenly changes and the error Δθ is generated is applicable even if it is unrelated to the switching timing from the rectangular wave generation unit to the PWM control unit.

また、第2、第4および第6の実施形態では、(n+1)回目スイッチングタイミングにおいて、実際のモータ角周波数ωre[rad/s]が急変した場合について説明している。しかし、特にこれに限定されるものでなく、n回目スイッチングタイミングにおいて、実際のモータ角周波数ωre[rad/s]が急変した場合にも適用可能である。すなわち、n回目スイッチングタイミングで誤差Δθが発生した場合、誤差Δθに基づいて補正された次回制御周期tnext’により、(n+1)回目スイッチングタイミングにおいて、誤差Δθ’=Δθ(1−K)となる。そこで、誤差Δθ’に基づいて、誤差Δα(n+2)を演算すれば良い。同様に、実際のモータ角周波数ωre[rad/s]が急変し、誤差Δθが発生するタイミングは、矩形波生成部からPWM制御部への切替えるタイミングと無関係であっても、適用可能である。   In the second, fourth, and sixth embodiments, the case where the actual motor angular frequency ωre [rad / s] changes suddenly at the (n + 1) th switching timing is described. However, the present invention is not particularly limited to this, and can also be applied to a case where the actual motor angular frequency ωre [rad / s] changes suddenly at the n-th switching timing. That is, when the error Δθ occurs at the n-th switching timing, the error Δθ ′ = Δθ (1-K) is obtained at the (n + 1) -th switching timing by the next control cycle tnext ′ corrected based on the error Δθ. Therefore, the error Δα (n + 2) may be calculated based on the error Δθ ′. Similarly, the timing at which the actual motor angular frequency ωre [rad / s] suddenly changes and the error Δθ is generated is applicable even if it is unrelated to the switching timing from the rectangular wave generation unit to the PWM control unit.

また、第4および第6の実施形態のコントローラ40、60では、第2の実施形態と同様に、(n+1)回目スイッチングタイミングにおいて、(n+1)回目制御周期tnowを矩形波生成部407、607で演算している。しかし、特にこれに限定されるものでなく、第2の実施形態の変形例のように、(n+1)回目制御周期tnowをPWM周期Tpwmと等しく設定しても良い。   In the controllers 40 and 60 of the fourth and sixth embodiments, the (n + 1) th control cycle tnow is set to the rectangular wave generation units 407 and 607 at the (n + 1) th switching timing, as in the second embodiment. Arithmetic. However, the present invention is not particularly limited to this, and the (n + 1) th control cycle tnow may be set equal to the PWM cycle Tpwm as in the modification of the second embodiment.

本発明の第1の実施形態に係るインバータシステムの概略構成図1 is a schematic configuration diagram of an inverter system according to a first embodiment of the present invention. 図1に示すコントローラの内部構成を示す制御ブロック図Control block diagram showing the internal configuration of the controller shown in FIG. 図2に示す矩形波生成部で実行される矩形波制御の出力を示すタイミングチャートTiming chart showing output of rectangular wave control executed by the rectangular wave generator shown in FIG. 図1に示すコントローラにおける矩形波/PWM制御の切替え処理による出力を示すタイミングチャートTiming chart showing output by rectangular wave / PWM control switching process in controller shown in FIG. 図4に示す切替え処理を実行した時の実際の電圧位相を示す図The figure which shows the actual voltage phase when the switching process shown in FIG. 4 is performed 図4に示す切替え処理を実行した時の回転数と出力電力を示す図The figure which shows the rotation speed and output power at the time of performing the switching process shown in FIG. 図1に示すコントローラで実行される制御方法を示すフローチャートThe flowchart which shows the control method performed with the controller shown in FIG. 本発明の第2の実施形態に係るコントローラの内部構成を示す制御ブロック図The control block diagram which shows the internal structure of the controller which concerns on the 2nd Embodiment of this invention. 図8に示すコントローラにおける矩形波/PWM制御の切替え処理による出力を示すタイミングチャートTiming chart showing output by rectangular wave / PWM control switching process in controller shown in FIG. 図8に示すコントローラで実行される制御方法を示すフローチャートThe flowchart which shows the control method performed with the controller shown in FIG. 第2の実施形態の変形例における矩形波/PWM制御の切替え処理による出力を示すタイミングチャートTiming chart showing output by rectangular wave / PWM control switching process in modification of second embodiment 本発明の第3の実施形態に係るコントローラの内部構成を示す制御ブロック図The control block diagram which shows the internal structure of the controller which concerns on the 3rd Embodiment of this invention. 図12に示すコントローラにおける第1の実施形態と同様の切替え処理を実行した時の実際の電圧位相を示す図The figure which shows the actual voltage phase when performing the switching process similar to 1st Embodiment in the controller shown in FIG. 図12に示すコントローラにおける第1の実施形態と同様の切替え処理を実行した時の回転数と出力電力を示す図The figure which shows the rotation speed and output power when the switching process similar to 1st Embodiment in the controller shown in FIG. 12 is performed. 図12に示すコントローラで実行される制御方法を示すフローチャートThe flowchart which shows the control method performed with the controller shown in FIG. 本発明の第4の実施形態に係るコントローラの内部構成を示す制御ブロック図The control block diagram which shows the internal structure of the controller which concerns on the 4th Embodiment of this invention. 図16に示すコントローラで実行される制御方法を示すフローチャートThe flowchart which shows the control method performed with the controller shown in FIG. 本発明の第5の実施形態に係るコントローラの内部構成を示す制御ブロック図The control block diagram which shows the internal structure of the controller which concerns on the 5th Embodiment of this invention. 図18に示すコントローラで実行される制御方法を示すフローチャートThe flowchart which shows the control method performed with the controller shown in FIG. 本発明の第6の実施形態に係るコントローラの内部構成を示す制御ブロック図Control block diagram showing an internal configuration of a controller according to a sixth embodiment of the present invention 図20に示すコントローラで実行される制御方法を示すフローチャートThe flowchart which shows the control method performed with the controller shown in FIG.

符号の説明Explanation of symbols

1 インバータ、2 電流センサ、3 電動機であるモータ、
10、20、30、40、50、60 制御装置であるコントローラ、
101、301、501 αテーブル参照部、
102、302 第1のフィルタ演算手段であるαフィルタ演算部、
103 切替手段であるスイッチ部、
105 パルス幅変調制御手段であるPWM制御部、
107、207、307、407、507、607 矩形波制御手段である矩形波生成部、108 スイッチ部、109 タイマユニット、
110、210、310、410、510、610 フラグ制御部、
311 第2のフィルタ演算手段であるΔαフィルタ演算部、
312 第1の加算手段である加算部、
511 第3のフィルタ演算手段であるΔTフィルタ演算部、
512 第2の加算手段である加算部、
1051 vd、vq指令演算部、1052 2相/3相変換部、
1053 PWM生成部、B 直流電源、Du+、Du− U相還流素子、
Dv+、Dv− V相還流素子、Dw+、Dw− W相還流素子、
K 所定値である補正係数、N モータ回転数、P 駆動信号、
Pnt 出力電力、tnow (n+1)回目制御周期である今回制御周期、
tnext 次回制御周期、tnext’ 補正後の次回制御周期、
Tpwm 所定の制御周期であるPWM周期、T トルク指令値、
ΔT(n+2)、ΔT(n+3) トルク差であるトルク換算値、
ΔT’ フィルタ後トルク換算値、T” 加算後トルク指令値、
Tu+、Tu− U相スイッチング素子、
Tv+、Tv− V相スイッチング素子、
Tw+、Tw− W相スイッチング素子、
Vdc 直流電圧値、vd d軸電圧指令値、vq q軸電圧指令値、
vu U相電圧指令値、vv V相電圧指令値、vw W相電圧指令値、
Vu U相出力電圧、Vv V相出力電圧、Vw W相出力電圧、
α、αn、α(n+1)、α(n+2)、α(n+3) 補正した値である実際の電圧位相、α、αn、α(n+1)、α(n+2)、α(n+3) 電圧位相指令値、α’ 変動抑制前電圧位相指令値、
α” 加算前電圧位相指令値、
Δα、Δα(n+2)、Δα(n+3) 誤差、Δα’ フィルタ後誤差
θ、θnext 回転子位相、θnext 回転子位相目標値、
Δθ 差である誤差、τ、τ1、τ2、τ3 時定数、
ωre 実際のモータ角周波数
1 Inverter, 2 Current sensor, 3 Motor as motor
10, 20, 30, 40, 50, 60 Controller which is a control device,
101, 301, 501 α table reference section,
102, 302 α filter calculation unit as first filter calculation means,
103 a switch unit which is a switching means,
105 PWM controller as pulse width modulation control means,
107, 207, 307, 407, 507, 607, rectangular wave generation unit that is rectangular wave control means, 108 switch unit, 109 timer unit,
110, 210, 310, 410, 510, 610 flag control unit,
311 is a Δα filter calculation unit which is a second filter calculation unit;
312 is an adding unit as first adding means;
511, a ΔT filter calculation unit which is a third filter calculation unit,
512, an addition unit as second addition means,
1051 vd, vq command calculation unit, 1052 2 phase / 3 phase conversion unit,
1053 PWM generator, B DC power supply, Du +, Du− U-phase reflux element,
Dv +, Dv− V-phase reflux element, Dw +, Dw− W-phase reflux element,
K correction coefficient which is a predetermined value, N motor speed, P drive signal,
Pnt output power, tnow (n + 1) th control cycle, which is the current control cycle,
tnext next control cycle, tnext 'next control cycle after correction,
Tpwm PWM cycle which is a predetermined control cycle, T torque command value,
ΔT (n + 2), ΔT (n + 3) Torque conversion value which is a torque difference,
ΔT 'Torque converted value after filtering, T "Torque command value after addition,
Tu +, Tu- U phase switching element,
Tv +, Tv- V-phase switching element,
Tw +, Tw- W phase switching element,
Vdc DC voltage value, vd d-axis voltage command value, vq q-axis voltage command value,
vu U phase voltage command value, vv V phase voltage command value, vw W phase voltage command value,
Vu U phase output voltage, Vv V phase output voltage, Vw W phase output voltage,
α, αn, α (n + 1), α (n + 2), α (n + 3) The actual voltage phase as corrected values, α * , α * n, α * (n + 1), α * (n + 2), α * ( n + 3) Voltage phase command value, α ′ * Voltage phase command value before fluctuation suppression,
α ” * Voltage phase command value before addition,
Δα, Δα (n + 2), Δα (n + 3) error, Δα ′ filtered error θ, θnext rotor phase, θ * next rotor phase target value,
Δθ difference error, τ, τ1, τ2, τ3 time constants,
ωre Actual motor angular frequency

Claims (8)

複数のスイッチング素子を含むインバータから電動機へ出力する電圧を矩形波状に制御する矩形波制御手段から、前記電圧を擬似正弦波状に制御するパルス幅変調制御手段への切替えを、前記スイッチング素子のスイッチングタイミングに合わせて行う切替手段を備え、
前記矩形波制御手段は、前記スイッチング素子のn(n=1、2、・・・)回目スイッチングタイミングで、(n+1)回目スイッチングタイミングと(n+2)回目スイッチングタイミングとの間の(n+1)回目制御周期を演算し、
前記(n+1)回目スイッチングタイミングで、トルク指令値および前記電動機の回転数に基づく電圧位相指令値から求まる(n+2)回目の目標スイッチングタイミングと、前記(n+1)回目制御周期に基づく前記(n+2)回目スイッチングタイミングとの差を演算し、
前記切替手段による前記切替え直後、前記パルス幅変調制御手段は、前記電圧位相指令値を前記差に基づいて補正した値で、制御することを特徴とする電動機の制御装置。
Switching from the rectangular wave control means for controlling the voltage output from the inverter including the plurality of switching elements to the electric motor in a rectangular wave form to the pulse width modulation control means for controlling the voltage in a pseudo sine wave form, the switching timing of the switching elements Switching means to be adapted to the
The rectangular wave control means controls the (n + 1) th time between the (n + 1) th switching timing and the (n + 2) th switching timing at the n (n = 1, 2,...) Th switching timing of the switching element. Calculate the period,
At the (n + 1) -th switching timing, the (n + 2) -th target switching timing obtained from the torque command value and the voltage phase command value based on the rotation speed of the motor, and the (n + 2) -th time based on the (n + 1) -th control cycle. Calculate the difference with the switching timing,
Immediately after the switching by the switching unit, the pulse width modulation control unit controls the voltage phase command value with a value corrected based on the difference.
前記(n+2)回目スイッチングタイミングで、かつ、前記切替手段が切替える直前に、前記矩形波制御手段は前記補正した値を演算し、
当該補正した値αは、(n+3)回目スイッチングタイミングにおける前記電圧位相指令値をα、前記差をΔθ、所定値をKとすると、
α=α+Δθ×(1−K)
であること特徴とする請求項1に記載の電動機の制御装置。
The rectangular wave control means calculates the corrected value at the (n + 2) -th switching timing and immediately before the switching means switches,
The corrected value α is expressed as follows, where the voltage phase command value at the (n + 3) th switching timing is α * , the difference is Δθ, and the predetermined value is K.
α = α * + Δθ × (1-K)
The motor control device according to claim 1, wherein:
前記矩形波制御手段は、前記(n+2)回目スイッチングタイミングにおける前記電圧位相指令値と前記差を加算して、前記補正した値を演算し、
前記切替手段は、前記(n+1)回目スイッチングタイミングにおける前記矩形波制御手段の前記演算後、前記切替えを行うことを特徴とする請求項1に記載の電動機の制御装置。
The rectangular wave control means adds the voltage phase command value and the difference at the (n + 2) -th switching timing to calculate the corrected value,
2. The motor control device according to claim 1, wherein the switching unit performs the switching after the calculation of the rectangular wave control unit at the (n + 1) -th switching timing.
前記矩形波制御手段は、前記(n+1)回目制御周期を、前記パルス幅変調制御手段で演算される所定の制御周期と等しくすることを特徴とする請求項3に記載の電動機の制御装置。   4. The motor control device according to claim 3, wherein the rectangular wave control means makes the (n + 1) th control cycle equal to a predetermined control cycle calculated by the pulse width modulation control means. 前記パルス幅変調制御手段または前記矩形波制御手段に、前記電圧位相指令値を出力する第1のフィルタ演算手段を備え、
前記矩形波制御手段は、前記切替え直後、前記第1のフィルタ演算手段から前記パルス幅変調制御手段に前記補正した値を出力させることを特徴とする請求項1乃至4のいずれかに記載の電動機の制御装置。
The pulse width modulation control unit or the rectangular wave control unit includes a first filter calculation unit that outputs the voltage phase command value,
5. The electric motor according to claim 1, wherein the rectangular wave control unit causes the pulse width modulation control unit to output the corrected value immediately after the switching from the first filter calculation unit. Control device.
前記切替え直後、前記差を出力する第2のフィルタ演算手段と、
前記第2のフィルタ演算手段からの前記差と加算前電圧位相指令値を加算して得た変動抑制前電圧位相指令値を前記第1のフィルタ演算手段へ出力する第1の加算手段とを備えることを特徴とする請求項5に記載の電動機の制御装置。
Second filter computing means for outputting the difference immediately after the switching;
First addition means for outputting the voltage phase command value before fluctuation suppression obtained by adding the difference from the second filter calculation means and the voltage phase command value before addition to the first filter calculation means. The motor control device according to claim 5.
前記切替え直後、前記差相当のトルク差を出力する第3のフィルタ演算手段と、
前記トルク差と前記トルク指令値を加算する第2の加算手段とを備えることを特徴とする請求項5に記載の電動機の制御装置。
Immediately after the switching, a third filter calculating means for outputting a torque difference corresponding to the difference;
The motor control device according to claim 5, further comprising second addition means for adding the torque difference and the torque command value.
複数のスイッチング素子を含むインバータから電動機へ出力する電圧を矩形波状に制御する矩形波制御手段から、前記電圧を擬似正弦波状に制御するパルス幅変調制御手段へ、前記スイッチング素子のスイッチングタイミングに合わせて切替える電動機の制御方法であって、
前記矩形波制御手段により、前記スイッチング素子のn(n=1、2、・・・)回目スイッチングタイミングで、(n+1)回目スイッチングタイミングと(n+2)回目スイッチングタイミングとの間の(n+1)回目制御周期を演算し、
前記(n+1)回目スイッチングタイミングで、トルク指令値および前記電動機の回転数に基づく電圧位相指令値から求まる(n+2)回目の目標スイッチングタイミングと、前記(n+1)回目制御周期に基づく前記(n+2)回目スイッチングタイミングとの差を演算し、
前記パルス幅変調制御手段により、前記切替手段による前記切替え直後、前記電圧位相指令値を前記差に基づいて補正した値で、制御することを特徴とする電動機の制御方法。
From the rectangular wave control means for controlling the voltage output from the inverter including the plurality of switching elements to the electric motor in the form of a rectangular wave, to the pulse width modulation control means for controlling the voltage in the form of a pseudo sine wave, in accordance with the switching timing of the switching elements. A method for controlling an electric motor to be switched,
(N + 1) -th control between the (n + 1) -th switching timing and the (n + 2) -th switching timing at the n (n = 1, 2,...) -Th switching timing of the switching element by the rectangular wave control means. Calculate the period,
At the (n + 1) -th switching timing, the (n + 2) -th target switching timing obtained from the torque command value and the voltage phase command value based on the rotation speed of the motor, and the (n + 2) -th time based on the (n + 1) -th control cycle. Calculate the difference with the switching timing,
The method for controlling an electric motor, wherein the pulse width modulation control means controls the voltage phase command value with a value corrected based on the difference immediately after the switching by the switching means.
JP2007283032A 2007-10-31 2007-10-31 Electric motor control device and control method thereof Active JP5303903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007283032A JP5303903B2 (en) 2007-10-31 2007-10-31 Electric motor control device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007283032A JP5303903B2 (en) 2007-10-31 2007-10-31 Electric motor control device and control method thereof

Publications (2)

Publication Number Publication Date
JP2009112140A true JP2009112140A (en) 2009-05-21
JP5303903B2 JP5303903B2 (en) 2013-10-02

Family

ID=40780013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007283032A Active JP5303903B2 (en) 2007-10-31 2007-10-31 Electric motor control device and control method thereof

Country Status (1)

Country Link
JP (1) JP5303903B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276818A1 (en) * 2016-07-27 2018-01-31 Kabushiki Kaisha Toshiba Motor control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285288A (en) * 1998-03-26 1999-10-15 Toyota Motor Corp Motor control device and method therefor
JP2006014426A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Controller for ac motor
JP2006074865A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Controller for ac motor
JP2007135343A (en) * 2005-11-11 2007-05-31 Hitachi Ltd Power converter
JP2007143235A (en) * 2005-11-16 2007-06-07 Denso Corp Drive controller of ac motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285288A (en) * 1998-03-26 1999-10-15 Toyota Motor Corp Motor control device and method therefor
JP2006014426A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Controller for ac motor
JP2006074865A (en) * 2004-08-31 2006-03-16 Nissan Motor Co Ltd Controller for ac motor
JP2007135343A (en) * 2005-11-11 2007-05-31 Hitachi Ltd Power converter
JP2007143235A (en) * 2005-11-16 2007-06-07 Denso Corp Drive controller of ac motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276818A1 (en) * 2016-07-27 2018-01-31 Kabushiki Kaisha Toshiba Motor control device
US20180034400A1 (en) * 2016-07-27 2018-02-01 Kabushiki Kaisha Toshiba Motor control device
JP2018019496A (en) * 2016-07-27 2018-02-01 株式会社東芝 Device for motor control
CN107666265A (en) * 2016-07-27 2018-02-06 株式会社东芝 Motor control equipment
US10630221B2 (en) 2016-07-27 2020-04-21 Kabushiki Kaisha Toshiba Motor control device
CN107666265B (en) * 2016-07-27 2020-05-05 株式会社东芝 Motor control device

Also Published As

Publication number Publication date
JP5303903B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP6516857B2 (en) Control device for alternating current rotating machine and electric power steering device provided with the same
JP2011142791A (en) Control device for polyphase rotating machine
JP2008228554A (en) Controller and control method of power converter
JP2010252434A (en) Device for control of rotary machine
JP2010252433A (en) Device for control of rotary machine
JP5413420B2 (en) Rotating machine control device
CN108966683B (en) Inverter control device
JP2010246260A (en) Motor control device and method
JP2006352957A (en) Controller for synchronous motor
JP5790390B2 (en) AC motor control device and control method
JP2009194950A (en) Controller for voltage-type pwm inverter
JP2017060367A (en) Inverter control device
JP2013034334A (en) Controller for rotary machine
JP2007135343A (en) Power converter
JP5303903B2 (en) Electric motor control device and control method thereof
JP2006197718A (en) Controller for motor
JP5678837B2 (en) Rotating machine control device
JP2019193455A (en) Control method and control arrangement of electric motor
JP5428796B2 (en) Motor drive control device
JP6961096B2 (en) Inverter device
JP2010239834A (en) Inverter control circuit for synchronous motor and synchronous motor controller equipped with the inverter control circuit
JP2010252523A (en) Control apparatus and control method for ac motor
JP2007252139A (en) Motor controller and motor control method
JP2006081322A (en) Ac motor control unit
JP6145025B2 (en) Inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5303903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150