JP2006013465A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2006013465A
JP2006013465A JP2005148357A JP2005148357A JP2006013465A JP 2006013465 A JP2006013465 A JP 2006013465A JP 2005148357 A JP2005148357 A JP 2005148357A JP 2005148357 A JP2005148357 A JP 2005148357A JP 2006013465 A JP2006013465 A JP 2006013465A
Authority
JP
Japan
Prior art keywords
wiring
semiconductor device
film
semiconductor
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005148357A
Other languages
Japanese (ja)
Inventor
Koichi Hirano
浩一 平野
Yoshiyuki Yamamoto
義之 山本
Seiichi Nakatani
誠一 中谷
Toshiyuki Kojima
俊之 小島
Shingo Komatsu
慎五 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005148357A priority Critical patent/JP2006013465A/en
Publication of JP2006013465A publication Critical patent/JP2006013465A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device where inconvenience, that a semiconductor device applying a WB method, FC method, or TAB method has, is alleviated. <P>SOLUTION: The semiconductor device includes a first semiconductor element 101A which has a first element body 10 and a first element electrode 12a provided on a first surface 10a of the first element body; a wiring substrate 301 which has an insulating substrate 30 and a first wiring layer 32 formed on one main surface of the insulating substrate and where the one main surface is positioned so as to face the second surface of the first element body; a first film 20 which covers at least a part of a surface containing the surface of the first element electrode of the first semiconductor element and at least a part of a surface of the first semiconductor element side of the wiring substrate; and a second wiring layer 25 which is formed on a surface of the wiring substrate side of the first film and contains first wiring 22 having a first end and second end. The first end of the first wiring and the first element electrode are joined, and the second end of the first wiring and a part of the first wiring layer are joined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置およびその製造方法に関する。特に、配線基板と配線基板に実装された半導体素子とを含む半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof. In particular, the present invention relates to a semiconductor device including a wiring board and a semiconductor element mounted on the wiring board, and a manufacturing method thereof.

半導体素子と配線基板の配線とを接続する技術には、大別すると(1)ワイヤーボンディング(WB)法(例えば、特許文献1参照)、(2)フィリップチップボンディング(FC)法(例えば、特許文献2参照)、(3)TAB(tape automated bonding)法(例えば、特許文献3参照)等がある。以下、これらの方法を簡単に説明する。   The technology for connecting the semiconductor element and the wiring on the wiring board can be broadly divided into (1) wire bonding (WB) method (for example, see Patent Document 1) and (2) Philip chip bonding (FC) method (for example, patent). Reference 3), (3) TAB (tape automated bonding) method (for example, see Patent Document 3), and the like. Hereinafter, these methods will be briefly described.

まず、WB法を、図17A、図17B、および図18を参照しながら説明する。図17Aは、半導体チップとリードフレームとがボンディングワイヤにより接続された状態を説明する平面図であり、図17Bは図17AのA−A断面図である。図18はWB法を採用した半導体装置の断面図である。   First, the WB method will be described with reference to FIG. 17A, FIG. 17B, and FIG. FIG. 17A is a plan view for explaining a state in which the semiconductor chip and the lead frame are connected by bonding wires, and FIG. 17B is a cross-sectional view taken along line AA of FIG. 17A. FIG. 18 is a cross-sectional view of a semiconductor device employing the WB method.

図17Aおよび図17Bに示すように、WB法では、まず、半導体チップ501をリードフレームのダイパッド504にダイボンディングする。その後、半導体チップ501のワイヤーボンディングパッド502と、リードフレームの外部端子505のインナーリード部とをボンディングワイヤ503を介して接続する。次いで、図18に示すように、半導体チップ501および外部端子505のインナーリード部を含む領域を封止樹脂506によって樹脂封止し、樹脂封止体(半導体装置)500を得る。   As shown in FIGS. 17A and 17B, in the WB method, first, a semiconductor chip 501 is die-bonded to a die pad 504 of a lead frame. Thereafter, the wire bonding pad 502 of the semiconductor chip 501 and the inner lead portion of the external terminal 505 of the lead frame are connected via the bonding wire 503. Next, as shown in FIG. 18, the region including the semiconductor chip 501 and the inner lead portion of the external terminal 505 is sealed with a sealing resin 506 to obtain a resin sealing body (semiconductor device) 500.

次に、FC法について、図19を参照しながら説明する。図19は、FC法を採用した半導体装置600の断面構成を示している。FC法では、基板601(配線基板)の配線層602と半導体チップ605の電極604とが、パンプ603を介して接続されている。基板601と半導体チップ605との隙間は封止樹脂607により封止されており、封止樹脂607内に、配線層602、バンプ603および電極604が埋め込まれている。尚、図19において、606は、トランジスタ等が形成されたセンシティブエリアである。   Next, the FC method will be described with reference to FIG. FIG. 19 shows a cross-sectional configuration of a semiconductor device 600 employing the FC method. In the FC method, the wiring layer 602 of the substrate 601 (wiring substrate) and the electrode 604 of the semiconductor chip 605 are connected via a pump 603. A gap between the substrate 601 and the semiconductor chip 605 is sealed with a sealing resin 607, and the wiring layer 602, the bump 603, and the electrode 604 are embedded in the sealing resin 607. In FIG. 19, reference numeral 606 denotes a sensitive area in which transistors and the like are formed.

次に、TAB法を採用した半導体装置について、図20〜図23を参照しながら説明する。図20および図22は、TAB法を採用した半導体装置700の断面構成を示しており、図21および図23は、その半導体装置700を実装基板709に実装した状態を示している。   Next, a semiconductor device employing the TAB method will be described with reference to FIGS. 20 and 22 show a cross-sectional configuration of a semiconductor device 700 employing the TAB method, and FIGS. 21 and 23 show a state in which the semiconductor device 700 is mounted on a mounting substrate 709.

図20および図22に示した半導体装置700は、ベースフィルム702と、半導体ICチップ701とを含んでいる。半導体ICチップ701は、ベースフィルム702に形成されたデバイスホール内に配置されている。ベースフィルム702の一方の面上には銅箔配線703が形成されている。半導体ICチップ701の電極701aは、銅箔配線703の内側先端部(インナーリード703a)に接続されている。銅箔配線703のうちインナーリード703aよりも外側の部分には、外部接続用のランド703bが設けられている。ランド703bには半田バンプ706が接続されている。ベースフィルム702にはスルーホール702aが形成されており、ランド703bの中央部には孔703cが形成されている。ベースフィルム702上にはカバーレジスト704が形成されている。デバイスホール内には、半導体ICチップ701を保護する封止樹脂705が充填されている。   A semiconductor device 700 shown in FIGS. 20 and 22 includes a base film 702 and a semiconductor IC chip 701. The semiconductor IC chip 701 is disposed in a device hole formed in the base film 702. Copper foil wiring 703 is formed on one surface of the base film 702. The electrode 701a of the semiconductor IC chip 701 is connected to the inner tip (inner lead 703a) of the copper foil wiring 703. An external connection land 703b is provided in a portion of the copper foil wiring 703 outside the inner lead 703a. Solder bumps 706 are connected to the lands 703b. A through hole 702a is formed in the base film 702, and a hole 703c is formed in the center of the land 703b. A cover resist 704 is formed on the base film 702. The device hole is filled with a sealing resin 705 that protects the semiconductor IC chip 701.

この半導体装置700では、半田バンプ706がアウターリードの役割を果たしている。図21および図23に示すように、実装基板709上のパッド709a上に半田バンプ706が配置され、一括リフロー方式によって、半導体装置700が実装基板709に実装されている。
特開平4−286134号公報 特開2000−36504号公報 特開平8−88245号公報
In this semiconductor device 700, the solder bumps 706 serve as outer leads. As shown in FIGS. 21 and 23, solder bumps 706 are arranged on pads 709a on the mounting substrate 709, and the semiconductor device 700 is mounted on the mounting substrate 709 by a batch reflow method.
JP-A-4-286134 JP 2000-36504 A JP-A-8-88245

しかし、WB法を採用した半導体装置500では、ワイヤーボンディングパッド502と、外部端子505とを一つずつボンディングワイヤ503で接続する。そのため、ワイヤーボンディングパッド502や外部端子505の数が多くなればなるほど作業の手間がかかり生産性が悪くなるという問題がある(図17Aおよび図17B参照)。図18に示すように、WB法を採用した半導体装置500は、この図においてボンディングワイヤ503の一部が半導体チップ501の下面よりも下方に配置され、半導体チップ501とボンディングワイヤ503とが封止樹脂506によって封止された構造をしている。そのため、半導体装置500の薄型化について制約が大きい。また、隣り合う外部端子505間のピッチによって、隣り合うワイヤーボンディングパッド502間のピッチが規定されてしまう。外部端子505は基板へ半田付けされる。そのため、外部端子間のショート等の問題が生じないように、外部端子間のピッチは、現状では、0.4mm程度である。半導体チップのワイヤーボンディングパッド502間のピッチを狭くすることができても、外部端子505間のピッチは、0.4mmより小さくすることは困難である。このことが、半導体装置の小型化の妨げとなっていた。   However, in the semiconductor device 500 employing the WB method, the wire bonding pads 502 and the external terminals 505 are connected one by one with the bonding wires 503. Therefore, there is a problem that the more the number of wire bonding pads 502 and external terminals 505, the more labor is required and the productivity becomes worse (see FIGS. 17A and 17B). As shown in FIG. 18, in the semiconductor device 500 employing the WB method, a part of the bonding wire 503 is disposed below the lower surface of the semiconductor chip 501 in this figure, and the semiconductor chip 501 and the bonding wire 503 are sealed. A structure sealed with a resin 506 is employed. For this reason, there are significant restrictions on the thickness reduction of the semiconductor device 500. Further, the pitch between adjacent wire bonding pads 502 is defined by the pitch between adjacent external terminals 505. The external terminal 505 is soldered to the board. Therefore, the pitch between the external terminals is currently about 0.4 mm so as not to cause a problem such as a short circuit between the external terminals. Even if the pitch between the wire bonding pads 502 of the semiconductor chip can be reduced, it is difficult to make the pitch between the external terminals 505 smaller than 0.4 mm. This has hindered miniaturization of the semiconductor device.

FC法を採用した半導体装置600(図19参照)には、次のような問題がある。FC法を採用する半導体装置では、隣り合う電極604間のピッチが、外部端子505間(図17参照)のピッチよりも狭い。それゆえ、半導体チップ605と基板601との位置合わせについて、非常に高い精度が要求される。   The semiconductor device 600 (see FIG. 19) employing the FC method has the following problems. In a semiconductor device employing the FC method, the pitch between adjacent electrodes 604 is narrower than the pitch between external terminals 505 (see FIG. 17). Therefore, very high accuracy is required for alignment between the semiconductor chip 605 and the substrate 601.

また、基板601が高価になる傾向があるという問題もある。なぜなら、FC法を採用した半導体装置では、半導体チップ605の電極604に対応した、微細な配線を含む配線層602を有する基板601が必要となるからである。また、電極604の数が多い場合には、多層構造の基板601(配線基板)が必要となりコスト高となるからである。   There is also a problem that the substrate 601 tends to be expensive. This is because a semiconductor device employing the FC method requires a substrate 601 having a wiring layer 602 including fine wiring corresponding to the electrode 604 of the semiconductor chip 605. Further, when the number of electrodes 604 is large, a multilayer substrate 601 (wiring substrate) is required, resulting in high costs.

また、FC法を採用した半導体装置600では、半導体チップ605と配線基板601とがバンプ603を介して接続された構造となっているので、半導体チップ605の線膨張係数と基板601の線膨張係数とをできるだけ一致させる必要がある。半導体チップ605の線膨張係数と基板601の線膨張係数とが大きく異なると、バンプ603等に応力が加わり、半導体チップ605と配線基板601との電気接続が損なわれる場合があるからである。したがって、両者の線膨張係数のマッチングは厳密に行われる必要があり、材料選択の制限が大きい。   Further, the semiconductor device 600 adopting the FC method has a structure in which the semiconductor chip 605 and the wiring substrate 601 are connected via the bumps 603. Therefore, the linear expansion coefficient of the semiconductor chip 605 and the linear expansion coefficient of the substrate 601 are obtained. Must be matched as much as possible. This is because if the linear expansion coefficient of the semiconductor chip 605 and the linear expansion coefficient of the substrate 601 are greatly different, stress is applied to the bumps 603 and the like, and the electrical connection between the semiconductor chip 605 and the wiring substrate 601 may be impaired. Therefore, matching of the linear expansion coefficients of the two needs to be performed strictly, and there is a great limitation on material selection.

さらに、FC法を採用した半導体装置600では、半導体チップ605と基板601とをバンプ603を介して接続した後、両者の隙間に樹脂(アンダーフィル剤)607を充填するため、その分コストがかかり、工程数も多く、生産性が良くない。また、FC法を採用した半導体装置600は、WB法を採用した半導体装置よりも、半導体チップの放熱性が悪いという問題もある。WB法を採用した半導体装置では、半導体チップの本体部の一方の面が樹脂や半田等からなる薄い接合材層を介して熱伝導性の高いダイパットに固定されているので、半導体チップの放熱性は比較的良い。一方、FC法を採用した半導体装置では、半導体チップ605がバンプ603を介して基板601に接続されているので、半導体チップ605の本体部の基板601に対向する面と、基板601の半導体素子605側の面とが、WB法を採用した半導体装置よりも離れており、半導体チップの放熱性が悪い。また、FC法を採用した半導体装置600では、その製造過程において、バンプ603を形成しなければならず、手間がかかる。   Further, in the semiconductor device 600 adopting the FC method, since the semiconductor chip 605 and the substrate 601 are connected via the bumps 603 and the gap between them is filled with the resin (underfill agent) 607, the cost increases accordingly. There are many processes and productivity is not good. Further, the semiconductor device 600 adopting the FC method also has a problem that the heat dissipation of the semiconductor chip is worse than that of the semiconductor device adopting the WB method. In a semiconductor device adopting the WB method, one surface of the main body of the semiconductor chip is fixed to a die pad having high thermal conductivity through a thin bonding material layer made of resin, solder, or the like. Is relatively good. On the other hand, in the semiconductor device adopting the FC method, since the semiconductor chip 605 is connected to the substrate 601 through the bump 603, the surface of the main body of the semiconductor chip 605 facing the substrate 601 and the semiconductor element 605 of the substrate 601. The side surface is separated from the semiconductor device adopting the WB method, and the heat dissipation of the semiconductor chip is poor. Further, in the semiconductor device 600 adopting the FC method, bumps 603 must be formed in the manufacturing process, which is troublesome.

TAB法を採用した半導体装置700には次のような問題がある。TAB法を採用した半導体装置700では、製造過程において、半導体ICチップ701の電極701aとインナーリード703aとを接続するインナーリードボンディング(ILB)工程と、ランド703bに半田バンプ706を形成するアウターリードボンディング(OLB)工程とが、全く異なる手法により行われるので手間がかかる。また、デバイスホールに配置された半導体ICチップ701を封止樹脂705で封止する必要がある。この工程も手間がかり、TAB法を採用した半導体装置700は、生産性が良くない。   The semiconductor device 700 employing the TAB method has the following problems. In the semiconductor device 700 employing the TAB method, in the manufacturing process, an inner lead bonding (ILB) process for connecting the electrode 701a of the semiconductor IC chip 701 and the inner lead 703a, and an outer lead bonding for forming a solder bump 706 on the land 703b. Since the (OLB) process is performed by a completely different method, it takes time. In addition, the semiconductor IC chip 701 disposed in the device hole needs to be sealed with a sealing resin 705. This process also takes time, and the semiconductor device 700 adopting the TAB method has poor productivity.

本発明は、WB法、FC法またはTAB法を採用した半導体装置が抱えていた不都合が軽減された半導体装置を提供する。本発明は、例えば、生産性が良い半導体装置を提供する。   The present invention provides a semiconductor device in which the disadvantages of a semiconductor device employing the WB method, FC method, or TAB method are reduced. The present invention provides, for example, a semiconductor device with high productivity.

本発明の半導体装置は、第1面と前記第1面に対向する第2面とを有する第1の素子本体部と、前記第1面に設けられた第1の素子電極とを含む第1の半導体素子と、絶縁性基板と前記絶縁性基板の一方の主面に形成された第1の配線層とを含み、前記一方の主面が前記第1の素子本体部の前記第2面と向かい合うように配置された配線基板と、前記第1の半導体素子の前記第1の素子電極の表面を含む面の少なくとも一部と、前記配線基板の第1の半導体素子側の面の少なくとも一部とを覆う第1のフィルムと、前記第1のフィルムの前記配線基板側の面に形成され、第1端と第2端とを有する第1の配線を含む第2の配線層と、を備え、前記第1の配線の前記第1端と前記第1の素子電極とが接合され、前記第1の配線の前記第2端と前記第1の配線層の一部とが接合されていることを特徴とする。   The semiconductor device according to the present invention includes a first element body having a first surface and a second surface facing the first surface, and a first element electrode provided on the first surface. The semiconductor element, an insulating substrate, and a first wiring layer formed on one main surface of the insulating substrate, wherein the one main surface is the second surface of the first element body. A wiring substrate disposed so as to face each other, at least a part of a surface including the surface of the first element electrode of the first semiconductor element, and at least a part of a surface of the wiring substrate on the first semiconductor element side And a second wiring layer including a first wiring having a first end and a second end formed on the surface of the first film on the wiring board side. The first end of the first wiring and the first element electrode are joined, and the second end of the first wiring and the front A portion of the first wiring layer is characterized in that it is joined.

本発明の半導体装置の製造方法は、第1の素子本体部と前記第1の素子本体部に設けられた第1の素子電極とを有する第1の半導体素子と、絶縁性基板と前記絶縁性基板の一方の主面に形成された第1の配線層とを含む配線基板とを、前記第1の素子本体部の前記第1の素子電極が設けられた面の反対面と、前記絶縁性基板の前記一方の主面とが向かい合うように重ね、フィルムと前記フィルムの一方の主面に形成され、第1端と第2端とを有する第1の配線を含む第2の配線層とを含むシート状物の、前記第1の配線の前記第1端と前記第1の素子電極とを接合し、前記第1の配線の前記第2端と前記第1の配線層の一部とを接合して、前記フィルムで、前記第1の半導体素子の前記第1の素子電極の表面を含む面の少なくとも一部と、前記配線基板の前記第1の半導体素子側の面の少なくとも一部とを覆う実装工程を含む。   The method of manufacturing a semiconductor device according to the present invention includes a first semiconductor element having a first element body and a first element electrode provided on the first element body, an insulating substrate, and the insulating material. A wiring substrate including a first wiring layer formed on one main surface of the substrate, a surface opposite to the surface of the first element body portion on which the first element electrode is provided, and the insulating property A second wiring layer including a first wiring having a first end and a second end formed on the one main surface of the film, and overlapping the first main surface of the substrate so as to face each other. The sheet-like material including the first end of the first wiring and the first element electrode are joined, and the second end of the first wiring and a part of the first wiring layer are joined together. Bonding, at least a part of a surface including the surface of the first element electrode of the first semiconductor element with the film; Comprising the mounting step of covering at least a portion of the surface of the first semiconductor element side of the wiring board.

本発明によれば、WB法、FC法またはTAB法を採用した半導体装置が抱えていた不都合が軽減された半導体装置を提供できる。例えば、生産性が良い半導体装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device with which the trouble which the semiconductor device which employ | adopted WB method, FC method, or TAB method had was reduced can be provided. For example, a semiconductor device with high productivity can be provided.

本発明の半導体装置の一例において、好ましくは、第1のフィルムが実質的に透明である。ここで、「実質的に透明」であるとは、第1のフィルムの一方の主面側から、第1のフィルムのもう一方の主面側にある第1の半導体素子の第1の素子電極、および/または絶縁性基板に形成された第1の配線層を可視できる程度に透明であることを意味する。   In one example of the semiconductor device of the present invention, preferably, the first film is substantially transparent. Here, “substantially transparent” means that the first element electrode of the first semiconductor element located on the other main surface side of the first film from the one main surface side of the first film. And / or transparent to such an extent that the first wiring layer formed on the insulating substrate is visible.

本発明の半導体装置の一例において、好ましくは、第1の半導体素子と絶縁性基板とが、接合材を介して接合されている。   In an example of the semiconductor device of the present invention, preferably, the first semiconductor element and the insulating substrate are bonded via a bonding material.

本発明の半導体装置の一例において、好ましくは、第1のフィルムの配線基板側の面の反対面に形成された電磁波遮蔽層をさらに含んでいる。   In one example of the semiconductor device of the present invention, it preferably further includes an electromagnetic wave shielding layer formed on the surface opposite to the surface on the wiring substrate side of the first film.

本発明の半導体装置の一例において、好ましくは、第1のフィルムと第2の配線層とからなる積層体の第2の配線層側の面の一部が、第1の半導体素子の第1の素子電極の表面を含む面に、直接または間接的に密着している。また、本発明の半導体装置の一例において、さらに好ましくは、上記積層体の第2の配線層側の面の上記一部とは異なる他の一部と、第1の素子本体部の側面も、直接または間接的に密着している。   In an example of the semiconductor device of the present invention, preferably, a part of the surface on the second wiring layer side of the laminate composed of the first film and the second wiring layer is the first semiconductor element first surface. It is in direct or indirect contact with the surface including the surface of the device electrode. In one example of the semiconductor device of the present invention, more preferably, another part different from the part of the surface on the second wiring layer side of the stacked body, and the side surface of the first element main body part, Direct or indirect contact.

本発明の半導体装置の一例において、好ましくは、第1のフィルムと第2の配線層とからなる積層体の配線基板側の面が、第1の半導体素子および配線基板に直接または間接的に接合されて、第1の半導体素子が、積層体と配線基板によって囲われる密閉空間内に配置されている。   In an example of the semiconductor device of the present invention, preferably, the surface on the wiring substrate side of the laminate composed of the first film and the second wiring layer is directly or indirectly bonded to the first semiconductor element and the wiring substrate. Thus, the first semiconductor element is disposed in a sealed space surrounded by the stacked body and the wiring board.

本発明の半導体装置の一例において、好ましくは、第1の配線の第1端と第1の素子電極とが接し、第1の配線の第2端と第1の配線層の一部とが接している。   In an example of the semiconductor device of the present invention, preferably, the first end of the first wiring is in contact with the first element electrode, and the second end of the first wiring is in contact with a part of the first wiring layer. ing.

本発明の半導体装置の一例において、好ましくは、第1のフィルムの配線基板側の面の反対面に形成された第3の配線層をさらに含んでいる。   One example of the semiconductor device of the present invention preferably further includes a third wiring layer formed on the surface of the first film opposite to the surface on the wiring substrate side.

本発明の半導体装置の一例において、好ましくは、第2の素子電極を有する第2の半導体素子をさらに含み、第2の素子電極と第3の配線層とが接合されている。   In one example of the semiconductor device of the present invention, preferably, the semiconductor device further includes a second semiconductor element having a second element electrode, and the second element electrode and the third wiring layer are joined.

本発明の半導体装置の一例において、好ましくは、第1のフィルムの配線基板側の面の反対面は、第1の素子本体部の第1面と同面積の平面を含んでいる。また、本発明の半導体装置の一例は、第2の素子本体部と第2の素子本体部に設けられた第2の素子電極とを有する第2の半導体素子をさらに含み、第2の素子本体部の第2の素子電極の表面を含む面の反対面と、第1のフィルムの上記平面とが向かい合うように、第1のフィルム上に第2の半導体素子が配置されている。   In an example of the semiconductor device of the present invention, preferably, the surface opposite to the surface on the wiring board side of the first film includes a plane having the same area as the first surface of the first element body. In addition, an example of the semiconductor device of the present invention further includes a second semiconductor element having a second element body and a second element electrode provided in the second element body, and the second element body The second semiconductor element is disposed on the first film so that the opposite surface of the part including the surface of the second element electrode faces the plane of the first film.

本発明の半導体装置の一例において、好ましくは、第2の半導体素子の第2の素子電極の表面を含む面の少なくとも一部と、配線基板の第2の半導体素子側の面の少なくとも一部とを覆う第2のフィルムと、第2フィルムの配線基板側の面に形成され、第1端と第2端とを有する第2の配線を含む第4の配線層とをさらに備え、第2の配線の第1端と第2の素子電極とが接合され、第1の配線の第2端が接合された第1の配線層の上記一部とは異なる第1の配線層の他の一部と、第2の配線の第2端とが接合されている。   In an example of the semiconductor device of the present invention, preferably, at least a part of a surface including the surface of the second element electrode of the second semiconductor element, and at least a part of a surface of the wiring substrate on the second semiconductor element side, And a second wiring layer formed on a surface of the second film on the side of the wiring board and including a second wiring having a first end and a second end, and a second wiring layer. The other part of the first wiring layer different from the part of the first wiring layer in which the first end of the wiring and the second element electrode are joined and the second end of the first wiring is joined. And the second end of the second wiring are joined.

本発明の半導体装置の一例において、好ましくは、絶縁性基板の第1の配線層が形成された面側に凹部が形成されており、凹部内に、第1の半導体素子が配置されている。   In an example of the semiconductor device of the present invention, preferably, a concave portion is formed on a surface side of the insulating substrate on which the first wiring layer is formed, and the first semiconductor element is disposed in the concave portion.

本発明の半導体装置の一例において、好ましくは、絶縁性基板の第1の配線層が形成された面と、第1の素子本体部の第1面とが、実質的に同一面内にある。   In an example of the semiconductor device of the present invention, preferably, the surface of the insulating substrate on which the first wiring layer is formed and the first surface of the first element main body are substantially in the same plane.

本発明の半導体装置の一例において、好ましくは、第1のフィルムの配線基板側の面の反対面は、実質的に平面である。   In an example of the semiconductor device of the present invention, preferably, the surface opposite to the surface on the wiring board side of the first film is substantially flat.

本発明の半導体装置の一例において、好ましくは、第2の素子本体部と第2の素子本体部に設けられた第2の素子電極とを有する第2の半導体素子をさらに含み、第2の半導体素子の第2の素子電極の表面を含む面の反対面と、第1のフィルムの上記平面とが向かい合うように、第2の半導体素子が第1のフィルム上に配置されている。   In one example of the semiconductor device of the present invention, preferably, the semiconductor device further includes a second semiconductor element having a second element body and a second element electrode provided in the second element body, and the second semiconductor The second semiconductor element is disposed on the first film so that the surface opposite to the surface including the surface of the second element electrode of the element faces the plane of the first film.

本発明の半導体装置の一例において、好ましくは、第2の半導体素子の第2の素子電極の表面を含む面の少なくとも一部と、配線基板の第2の半導体素子側の面の少なくとも一部とを覆う第2のフィルムと、第2フィルムの前記配線基板側の面に形成され、第1端と第2端とを有する第2の配線を含む第4の配線層と、をさらに備え、第2の配線の第1端と第2の素子電極とが接合され、第1の配線の第2端が接合された第1の配線層の一部とは異なる第1の配線層の他の一部と、第2の配線の第2端とが接合されている。   In an example of the semiconductor device of the present invention, preferably, at least a part of a surface including the surface of the second element electrode of the second semiconductor element, and at least a part of a surface of the wiring substrate on the second semiconductor element side, And a fourth wiring layer formed on a surface of the second film on the wiring board side and including a second wiring having a first end and a second end, and The other end of the first wiring layer is different from the part of the first wiring layer in which the first end of the second wiring and the second element electrode are joined, and the second end of the first wiring is joined. And the second end of the second wiring are joined.

本発明の半導体装置の一例において、好ましくは、配線基板は、プリント基板またはガラス基板である。   In one example of the semiconductor device of the present invention, preferably, the wiring board is a printed board or a glass substrate.

本発明の半導体装置の製造方法の一例において、好ましくは、実装工程において、第1の半導体素子と配線基板とを接合する。   In an example of the method for manufacturing a semiconductor device of the present invention, preferably, in the mounting process, the first semiconductor element and the wiring substrate are bonded.

本発明の半導体装置の製造方法の一例において、好ましくは、実装工程において、第1の半導体素子と配線基板とを接合した後、第1の配線の第1端と第1の素子電極とを接合し、第1の配線の第2端と第1の配線層の一部とを接合する。   In an example of the method for manufacturing a semiconductor device of the present invention, preferably, in the mounting step, the first semiconductor element and the wiring substrate are joined, and then the first end of the first wiring and the first element electrode are joined. Then, the second end of the first wiring and a part of the first wiring layer are joined.

本発明の半導体装置の製造方法の一例において、好ましくは、実装工程において、第1の配線の第1端と第1の素子電極とを接合した後、第1の半導体素子と配線基板とを接合する。   In an example of the method for manufacturing a semiconductor device of the present invention, preferably, in the mounting step, the first end of the first wiring and the first element electrode are bonded, and then the first semiconductor element and the wiring substrate are bonded. To do.

本発明の半導体装置の製造方法の一例において、好ましくは、実装工程において、超音波振動を用いて、第1の配線の第1端と第1の素子電極とを接合し、第1の配線の第2端と第1の配線層の一部とを接合する。   In an example of the method for manufacturing a semiconductor device of the present invention, preferably, in the mounting process, the first end of the first wiring and the first element electrode are bonded using ultrasonic vibration, and the first wiring is formed. The second end and a part of the first wiring layer are joined.

本発明の半導体装置の製造方法の一例において、好ましくは、実装工程において、シート状物の第2の配線層側の面の一部を、第1の半導体素子の第1の素子電極の表面を含む面に、直接または間接的に密着させる。例えば、フィルムは樹脂を含み、実装工程において、フィルムを加熱して熱収縮させることにより、シート状物を、第1の半導体素子の第1の素子電極の表面を含む面に密着させる。   In one example of the method for manufacturing a semiconductor device of the present invention, preferably, in the mounting step, a part of the surface of the sheet-like material on the second wiring layer side is formed on the surface of the first element electrode of the first semiconductor element. Adhere directly or indirectly to the containing surface. For example, the film contains a resin, and in the mounting process, the film is heated and thermally contracted, thereby bringing the sheet-like material into close contact with the surface including the surface of the first element electrode of the first semiconductor element.

本発明の半導体装置の製造方法の一例において、好ましくは、実装工程において、フィルムを加熱し、加圧して、フィルムの第2の配線層側の面の反対面を平面とする。   In an example of the method for manufacturing a semiconductor device of the present invention, preferably, in the mounting step, the film is heated and pressed to make the surface opposite to the surface on the second wiring layer side of the film a flat surface.

本発明の半導体装置の製造方法の一例において、好ましくは、フィルムは未硬化状態の熱硬化性樹脂を含み、実装工程において、シート状物を所定の形状に加工した後、加熱により上記熱硬化性樹脂を硬化して、シート状物を第1の半導体素子の第1の素子電極の表面を含む面の少なくとも一部と、配線基板の第1の半導体素子側の面の少なくとも一部とを覆うことができる形状に加工した後、第1の配線の第1端と第1の素子電極とを接合し、第1の配線の第2端と第1の配線層の一部とを接合する。   In an example of the method for producing a semiconductor device of the present invention, preferably, the film contains an uncured thermosetting resin, and in the mounting step, the sheet-like material is processed into a predetermined shape, and then the thermosetting property is heated by heating. The resin is cured to cover the sheet-like material with at least part of the surface including the surface of the first element electrode of the first semiconductor element and at least part of the surface of the wiring substrate on the first semiconductor element side. After processing into a shape that can be performed, the first end of the first wiring and the first element electrode are joined, and the second end of the first wiring and a part of the first wiring layer are joined.

本発明の半導体装置の製造方法の一例において、好ましくは、絶縁性基板の第1の配線層が形成された面側に凹部が形成されており、実装工程において、第1の半導体素子を、凹部内に配置する。   In one example of the method for manufacturing a semiconductor device of the present invention, preferably, a recess is formed on the surface side of the insulating substrate on which the first wiring layer is formed. In the mounting step, the first semiconductor element is inserted into the recess. Place in.

本発明の半導体装置の製造方法の一例において、好ましくは、実装工程の後に、フィルムの第2の配線層が形成された面の反対面上に、第2の素子電極を有する第2の半導体素子を配置する工程をさらに含み、この工程において、第2の半導体素子の第2の素子電極の表面を含む面の反対面とフィルムの平面とが向かい合うように、第2の半導体素子をフィルム上に配置する。   In an example of the method for manufacturing a semiconductor device of the present invention, preferably, after the mounting step, the second semiconductor element having the second element electrode on the surface opposite to the surface on which the second wiring layer of the film is formed. And in this step, the second semiconductor element is placed on the film so that the opposite surface of the second semiconductor element including the surface of the second element electrode faces the plane of the film. Deploy.

以下、図面を参照しながら、本発明の半導体装置およびその製造方法の一例を説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素には同一の参照符号を付す。尚、本発明は下記の実施形態に限定されない。   Hereinafter, an example of a semiconductor device and a manufacturing method thereof according to the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same functions are denoted by the same reference numerals for the sake of brevity. In addition, this invention is not limited to the following embodiment.

(実施形態1)
図1〜図3を参照しながら、本実施形態の半導体装置について説明する。図1Aは、本実施形態の半導体装置を模式的に示す断面図であり、図1Bは、図1Aの半導体装置を模式的に示す上面図である。図2は、図1Aの半導体装置を模式的に示す斜視図であり、図3は、他の半導体装置を模式的に示す断面図である。
(Embodiment 1)
The semiconductor device of this embodiment will be described with reference to FIGS. FIG. 1A is a cross-sectional view schematically showing the semiconductor device of this embodiment, and FIG. 1B is a top view schematically showing the semiconductor device of FIG. 1A. 2 is a perspective view schematically showing the semiconductor device of FIG. 1A, and FIG. 3 is a cross-sectional view schematically showing another semiconductor device.

図1A、図1Bおよび図2に示した半導体装置100は、第1の半導体素子101Aと、配線基板(インターポーザー基板)301と、第1のフィルム20と、第2の配線層25とから構成されている。第1の半導体素子101Aは、第1の素子本体部10と、第1の素子本体部10の第1面10aに設けられた第1の素子電極12aとを有しており、例えばベアチップである。配線基板301は、絶縁性基板30と、絶縁性基板30の一方の主面に形成された第1の配線層32とを含んでいる。配線基板301は、例えば、リジッド基板(一例を挙げると、典型的なプリント基板)である。   A semiconductor device 100 shown in FIGS. 1A, 1B, and 2 includes a first semiconductor element 101A, a wiring board (interposer board) 301, a first film 20, and a second wiring layer 25. Has been. The first semiconductor element 101A includes a first element body 10 and a first element electrode 12a provided on the first surface 10a of the first element body 10 and is, for example, a bare chip. . The wiring substrate 301 includes an insulating substrate 30 and a first wiring layer 32 formed on one main surface of the insulating substrate 30. The wiring board 301 is, for example, a rigid board (a typical printed board, for example).

図1Aに示すように、第1の半導体素子101Aは、第1の素子本体部10の第1面10aに対向する第2面10bが、絶縁性基板30の第1の配線層32が形成された面と向かい合うように、配線基板301上に配置されている。   As shown in FIG. 1A, in the first semiconductor element 101A, the second surface 10b opposite to the first surface 10a of the first element body 10 is formed with the first wiring layer 32 of the insulating substrate 30. It is disposed on the wiring board 301 so as to face the surface.

図1A、図1Bおよび図2に示すように、第1のフィルム20は、第1の半導体素子101Aの第1の素子電極12aの表面を含む面(第2面10bに対向する面、または第1面10aと第1の素子電極12aの表面とを含む面)の少なくとも一部と、配線基板301の第1の半導体素子101A側の面の少なくとも一部とを覆っている。   As shown in FIG. 1A, FIG. 1B, and FIG. 2, the first film 20 is a surface including the surface of the first element electrode 12a of the first semiconductor element 101A (the surface facing the second surface 10b, or the first 1 surface 10a and the surface of the first element electrode 12a) and at least a part of the surface of the wiring substrate 301 on the first semiconductor element 101A side.

第1のフィルム20の配線基板301側の面には、第2の配線層25が形成されている。第2の配線層は25は、第1端と第2端とを有する第1の配線22を複数含んでいる。各第1の配線22の第1端は、第1の半導体素子101Aの第1の素子電極12aに接しており、第2端は、第1の配線層32の一部に接している。したがって、第2の配線層25によって、第1の半導体素子101Aと、配線基板301とが電気接続されている。   A second wiring layer 25 is formed on the surface of the first film 20 on the wiring substrate 301 side. The second wiring layer 25 includes a plurality of first wirings 22 having a first end and a second end. The first end of each first wiring 22 is in contact with the first element electrode 12a of the first semiconductor element 101A, and the second end is in contact with a part of the first wiring layer 32. Therefore, the first semiconductor element 101 </ b> A and the wiring substrate 301 are electrically connected by the second wiring layer 25.

第1の配線22の第1端と第1の素子電極12aとの接合、および、第1の配線22の第2端と第1の配線層32の一部との接合は、例えば、超音波振動を利用してなされている。超音波振動を用いた接合では、例えば、半田を用いて接合する場合よりも、短時間および低温で接合できる点で好ましい。   The bonding between the first end of the first wiring 22 and the first element electrode 12a and the bonding between the second end of the first wiring 22 and a part of the first wiring layer 32 are performed by, for example, ultrasonic waves. It is made using vibration. Joining using ultrasonic vibration is preferable in that joining can be performed in a short time and at a low temperature, compared to, for example, joining using solder.

上記のような構造をした本実施形態の半導体装置100では、WB法、FC法、TAB法を採用した半導体装置と比較して、後述する種々の特徴および利点を有している。   The semiconductor device 100 of the present embodiment having the above-described structure has various features and advantages to be described later as compared with the semiconductor device adopting the WB method, the FC method, and the TAB method.

本実施形態の半導体装置100では、電気絶縁性基板30の第1の配線層32が形成された面と、第1の素子本体部10の第2面10bとが向かい合うように、第1の半導体素子101Aと配線基板301とが配置されているので、第1の半導体素子101Aはダイボンディングにより電気絶縁性基板30に接合できる。そのため、半導体装置100は、FC法を採用した半導体装置よりも放熱性が優れている。   In the semiconductor device 100 of the present embodiment, the first semiconductor is arranged such that the surface of the electrically insulating substrate 30 on which the first wiring layer 32 is formed faces the second surface 10b of the first element body 10. Since the element 101A and the wiring substrate 301 are arranged, the first semiconductor element 101A can be bonded to the electrically insulating substrate 30 by die bonding. Therefore, the semiconductor device 100 has better heat dissipation than a semiconductor device employing the FC method.

ダイボンディングに用いられる接合材13(図1A参照)について特に制限はなく、従来からダイボンディングに用いられている接合材を用いればよい。例えば、接合材には、ダイボンディングフィルム、ポリマー型導電性ペースト、はんだ等を用いればよい。   There is no particular limitation on the bonding material 13 (see FIG. 1A) used for die bonding, and a bonding material conventionally used for die bonding may be used. For example, a die bonding film, a polymer type conductive paste, solder, or the like may be used as the bonding material.

また、本実施形態の半導体装置100では、第2の配線層25の第1の配線22によって、第1の半導体素子101Aと配線基板301とが電気的に接続されている。そのため、製造過程において、ワイヤーボンディングパット502と外部端子505とをボンディングワイヤによって接続する作業を、何度も繰り返す必要はない(図17参照)。半導体装置100では、第2の配線層25によって、複数の第1の素子電極12aと第1の配線層32とを電気接続しており、WB法を採用した半導体装置よりも、製造過程における作業の手間が軽減されており生産性もよい。   In the semiconductor device 100 of this embodiment, the first semiconductor element 101A and the wiring board 301 are electrically connected by the first wiring 22 of the second wiring layer 25. Therefore, it is not necessary to repeat the operation of connecting the wire bonding pad 502 and the external terminal 505 with the bonding wire many times during the manufacturing process (see FIG. 17). In the semiconductor device 100, the plurality of first element electrodes 12a and the first wiring layer 32 are electrically connected by the second wiring layer 25, and the work in the manufacturing process is more than that of the semiconductor device employing the WB method. The productivity of this product is also reduced.

また、本実施形態の半導体装置100では、WB法を採用した半導体装置よりも、隣り合う配線間の間隔を狭くすることが可能である。ボンディングワイヤは、その両端部のみが固定され、それ以外の部分は固定されていない。それゆえ、封止樹脂により封止される際の封止樹脂の流れにより、隣り合うボンディングワイヤが接しない程度に、隣り合うボンディングワイヤ間の間隔を設定しておくことが必要とされる。一方、半導体装置100では、第1のフィルム20に形成された第2の配線層25によって、第1の半導体素子101Aと配線基板301とが電気接続されているので、ボンディングワイヤを用いた場合のように、隣り合う配線(ボンディングワイヤ)間隔を広めに設定する必要はない。したがって、WB法を採用した半導体装置よりも、配線間の間隔を狭くすることができる。   Further, in the semiconductor device 100 of the present embodiment, the interval between adjacent wirings can be narrower than that of a semiconductor device employing the WB method. Only both ends of the bonding wire are fixed, and other portions are not fixed. Therefore, it is necessary to set an interval between the adjacent bonding wires so that the adjacent bonding wires do not come into contact with each other due to the flow of the sealing resin when sealing with the sealing resin. On the other hand, in the semiconductor device 100, since the first semiconductor element 101A and the wiring board 301 are electrically connected by the second wiring layer 25 formed on the first film 20, the bonding wire is used. Thus, it is not necessary to set the interval between adjacent wires (bonding wires) wider. Therefore, the interval between wirings can be narrower than that of a semiconductor device employing the WB method.

また、本実施形態の半導体装置100では、第1のフィルム20に形成された第1の配線22によって第1の半導体素子101Aと配線基板301とが電気接続されているので、WB法を採用した半導体装置よりも、半導体装置を薄型化できる。   Further, in the semiconductor device 100 of the present embodiment, since the first semiconductor element 101A and the wiring substrate 301 are electrically connected by the first wiring 22 formed on the first film 20, the WB method is adopted. The semiconductor device can be made thinner than the semiconductor device.

また、本実施形態の半導体装置100では、FC法を採用した半導体装置よりも、隣り合う配線間の狭ピッチ化に伴うコストアップを抑制できる。FC法を採用する半導体装置では、配線基板の所定の領域、すなわち、半導体素子と面する領域に、数多くの端子(配線層のうちのバンプとの接続部)が集中的に配置される。それに伴って、配線基板の多層化が必要となる場合が多い。しかし、多層構造の配線基板を用いるとコストアップしてしまう。本実施形態の半導体装置101では、第1のフィルム20に形成された、所望のパターンの第2の配線層25を構成する第1の配線22によって第1の半導体素子101Aと配線基板301とが電気接続されているので、FC法を採用した半導体装置と比較して、配線基板301の多層化を抑制でき、コストアップを抑制できる。   Moreover, in the semiconductor device 100 of this embodiment, the cost increase accompanying the narrow pitch between adjacent wirings can be suppressed as compared with the semiconductor device adopting the FC method. In a semiconductor device adopting the FC method, a large number of terminals (connection portions with bumps in the wiring layer) are intensively arranged in a predetermined region of the wiring substrate, that is, a region facing the semiconductor element. Along with this, it is often necessary to increase the number of wiring boards. However, the use of a multilayered wiring board increases the cost. In the semiconductor device 101 of the present embodiment, the first semiconductor element 101A and the wiring substrate 301 are formed by the first wiring 22 that forms the second wiring layer 25 having a desired pattern formed on the first film 20. Since they are electrically connected, the wiring board 301 can be prevented from being multi-layered and the cost can be increased as compared with a semiconductor device employing the FC method.

また、本実施形態の半導体装置100では、第1の半導体素子101Aの線熱膨張係数と第1のフィルム20の線熱膨張係数とのマッチングは、FC法を採用した半導体装置の場合よりも、厳格でなくてもよい。その理由は、第1のフィルム20は配線基板よりも薄いからである。また、第1のフィルム20は、その可撓性によって、第1のフィルム20の線熱膨張係数と第1の半導体素子101Aの線熱膨張係数との差異に起因して生じる応力を吸収することができるからである。   Further, in the semiconductor device 100 of the present embodiment, the matching between the linear thermal expansion coefficient of the first semiconductor element 101A and the linear thermal expansion coefficient of the first film 20 is more than in the case of the semiconductor device adopting the FC method. It doesn't have to be strict. The reason is that the first film 20 is thinner than the wiring board. Further, the first film 20 absorbs stress caused by the difference between the linear thermal expansion coefficient of the first film 20 and the linear thermal expansion coefficient of the first semiconductor element 101A due to its flexibility. Because you can.

また、本実施形態の半導体装置100では、FC法を採用した半導体装置に使用されるアンダーフィル剤(封止樹脂)が不要である。したがって、封止樹脂を注入する工程が不要であり、生産性もよい。また、第1の素子電極12aと第1の配線22との接続部、および第1の配線層32と第1の配線22との接続部が、第1のフィルム20によって保護されているので、電気接続の信頼性も優れている。   Further, in the semiconductor device 100 of this embodiment, an underfill agent (sealing resin) used for a semiconductor device adopting the FC method is unnecessary. Therefore, the step of injecting the sealing resin is unnecessary and the productivity is good. Moreover, since the connection part of the 1st element electrode 12a and the 1st wiring 22, and the connection part of the 1st wiring layer 32 and the 1st wiring 22 are protected by the 1st film 20, Excellent electrical connection reliability.

また、本実施形態の半導体装置100では、第1の配線22によって第1の半導体素子101Aと配線基板301とが電気接続されているので、インナーリードボンディング(ILB)工程と、アウターリードボンディング(OLB)工程とを別々に行う必要がある、TAB法を採用した半導体装置よりも簡単に製造できる。また、本実施形態の半導体装置100では、TAB法を採用した半導体装置のように封止樹脂で半導体素子を封止する工程が不要であり、生産性がよい。   Further, in the semiconductor device 100 of the present embodiment, the first semiconductor element 101A and the wiring substrate 301 are electrically connected by the first wiring 22, so that an inner lead bonding (ILB) process and an outer lead bonding (OLB) are performed. ) Can be manufactured more easily than a semiconductor device employing the TAB method, which needs to be performed separately. Further, the semiconductor device 100 of this embodiment does not require a step of sealing a semiconductor element with a sealing resin unlike a semiconductor device employing the TAB method, and has high productivity.

本実施形態の半導体装置100において、第1のフィルム20は、実質的に透明であると好ましい。第1のフィルム20が実質的に透明であると、第2の配線層25を第1のフィルム20越しに見ることができる。また、第1のフィルム20越しに第1の素子電極12aの位置を確認することもできる。そのため、FC法を採用した半導体装置におけるバンプと配線基板の配線との位置合わせよりも、第1の配線22の第1端と第1の素子電極12aとの位置合わせ、および、第1の配線22の第2端と第1の配線層32との位置合わせの方が容易である。また、FC法を採用した半導体装置の場合、接続状況の目視による確認は困難である。一方、本実施形態の半導体装置100では、第1のフィルム20が実質的に透明である場合は、接続確認が目視により容易に行える。   In the semiconductor device 100 of this embodiment, it is preferable that the first film 20 is substantially transparent. If the first film 20 is substantially transparent, the second wiring layer 25 can be seen through the first film 20. In addition, the position of the first element electrode 12 a can be confirmed through the first film 20. Therefore, the alignment between the first end of the first wiring 22 and the first element electrode 12a, and the first wiring, rather than the alignment between the bump and the wiring on the wiring board in the semiconductor device adopting the FC method. It is easier to align the second end of 22 and the first wiring layer 32. In the case of a semiconductor device adopting the FC method, it is difficult to visually confirm the connection status. On the other hand, in the semiconductor device 100 of this embodiment, when the first film 20 is substantially transparent, connection confirmation can be easily performed by visual observation.

第1のフィルム20は、例えば、透光性を有する絶縁性の樹脂にて形成されている。上記樹脂には、例えば、熱可塑性樹脂(ポリイミド、PPS(ポリフェニレンサルファイド)、ポリプロピレン、ポリメタクリル酸メチル等が挙げられる。第1のフィルム20の厚さは、例えば、10μm〜100μmであり、特には、50μm以下であると好ましい。第1のフィルム20上に形成された第1の配線22(第2の配線層25)は、例えば、銅にて形成されている。第1の配線22の厚さは、例えば、5μm〜35μmであると好ましい。尚、第1の半導体素子(ベアチップ)101Aの厚さは、例えば、50μm〜400μmであると好ましい。   The first film 20 is made of, for example, an insulating resin having translucency. Examples of the resin include thermoplastic resins (polyimide, PPS (polyphenylene sulfide), polypropylene, polymethyl methacrylate, etc.) The thickness of the first film 20 is, for example, 10 μm to 100 μm, particularly The first wiring 22 (second wiring layer 25) formed on the first film 20 is made of, for example, copper, and the thickness of the first wiring 22 is 50 μm or less. For example, the thickness of the first semiconductor element (bare chip) 101A is preferably 50 μm to 400 μm, for example.

図1A、図1Bおよび図2に示すように、第1のフィルム20は、第1の半導体素子101Aと、配線基板301の第1の配線層32の一部(第1の配線22が接触している部位)とを覆っている。また、図1Aに示すように、第1のフィルム20と第2の配線層25とからなる積層体50の第2の配線層25側の面の一部は、第1の半導体素子101Aの第1の素子電極12aの表面を含む面に、直接または間接的に密着している。これにより、第1の配線22の第1端と第1の素子電極12aの接合部が第1のフィルム20によって保護され、接続安定性が向上するので好ましい。積層体50の第2の配線層側の面の上記一部とは異なる他の一部と、第1の素子本体部10の4つの側面のうちの少なくとも1つの側面とが、直接または間接的に密着していると、さらに接続安定性が向上するので好ましい。   As shown in FIGS. 1A, 1B, and 2, the first film 20 includes a first semiconductor element 101A and a part of the first wiring layer 32 of the wiring board 301 (the first wiring 22 is in contact with the first film 20). Covering the part). Further, as shown in FIG. 1A, a part of the surface on the second wiring layer 25 side of the laminated body 50 formed of the first film 20 and the second wiring layer 25 is a part of the first semiconductor element 101A. It is in direct or indirect contact with the surface including the surface of one element electrode 12a. This is preferable because the joint between the first end of the first wiring 22 and the first element electrode 12a is protected by the first film 20 and the connection stability is improved. Another part different from the part of the surface on the second wiring layer side of the stacked body 50 and at least one side surface of the four side surfaces of the first element body 10 are directly or indirectly. It is preferable to be in close contact with the surface because the connection stability is further improved.

尚、図1Aに示した例では、第1のフィルム20と第2の配線層25とからなる積層体50の第2の配線層25側の面の一部が、配線基板301にも密着している。すなわち、積層体50の配線基板側の面が、第1の半導体素子101Aおよび配線基板301に直接または間接的に接合されて、積層体50と配線基板301によって囲われる密閉空間内に第1の半導体素子101Aが配置されている。したがって、図1Aに示した半導体装置100は、第1の配線22の第2端と第1の配線層32の接合部の接続安定性もよい。また、第1のフィルム20の材料に水蒸気透過性の低い材料を用いた場合には、第1の半導体素子101Aを湿気から保護でき、半導体装置の耐湿性が向上する。水蒸気透過性の低い材料としては、例えば、ポリ塩化ビニリデン、ポリエチレンービニルアルコール等が挙げられるが、特に、高い透明性も兼備えたセラミック蒸着フィルムが好ましい。   In the example shown in FIG. 1A, a part of the surface on the second wiring layer 25 side of the laminate 50 composed of the first film 20 and the second wiring layer 25 is in close contact with the wiring substrate 301. ing. That is, the surface of the multilayer body 50 on the wiring board side is directly or indirectly joined to the first semiconductor element 101 </ b> A and the wiring board 301, so that the first space is surrounded by the multilayer body 50 and the wiring board 301. A semiconductor element 101A is arranged. Therefore, the semiconductor device 100 shown in FIG. 1A has good connection stability between the second end of the first wiring 22 and the joint portion of the first wiring layer 32. In addition, when a material having low water vapor permeability is used as the material of the first film 20, the first semiconductor element 101A can be protected from moisture, and the moisture resistance of the semiconductor device is improved. Examples of the material having low water vapor permeability include polyvinylidene chloride and polyethylene-vinyl alcohol, and a ceramic vapor-deposited film having high transparency is particularly preferable.

上記積層体50を第1の素子電極12aおよび第1の素子本体部10の第1面10a等に密着させる方法としては、例えば、第1の半導体素子101Aの第1の素子電極12aの表面を含む面に第1のフィルム20を貼り付けた後、第1のフィルム20を熱収縮させる方法等が挙げられる。   As a method for bringing the stacked body 50 into close contact with the first element electrode 12a and the first surface 10a of the first element body 10, the surface of the first element electrode 12a of the first semiconductor element 101A is, for example, Examples include a method in which the first film 20 is heat-shrinked after the first film 20 is attached to the surface to be included.

図1Aに示した半導体装置100では、第1の素子電極12aと第1の配線22とが直接接合されているが、バンプ(例えば、半田バンプ、金バンプ)を介して接合されていてもよい。   In the semiconductor device 100 shown in FIG. 1A, the first element electrode 12a and the first wiring 22 are directly bonded, but may be bonded via a bump (for example, a solder bump or a gold bump). .

尚、図1Bおよび図2に示した例では、16個の第1の素子電極12aを有した第1の半導体素子101Aが用いられているが、第1の素子電極12aの数はこれに限定されず、例えば、16個よりも多くてもよいし、少なくてもよい。また、図1Bおよび図2に示した例では、第1の素子電極12aが第1の素子本体部10の周縁部に配列された第1の半導体素子101Aが用いられているが、第1の半導体素子101Aはこれに限定されず、第1の素子電極12aがアレイ状(格子状)に配列された第1の半導体素子101Aを用いてもよい。   In the example shown in FIG. 1B and FIG. 2, the first semiconductor element 101A having 16 first element electrodes 12a is used, but the number of the first element electrodes 12a is limited to this. For example, it may be more or less than 16. In the example shown in FIGS. 1B and 2, the first semiconductor element 101 </ b> A in which the first element electrode 12 a is arranged on the peripheral edge of the first element body 10 is used. The semiconductor element 101A is not limited to this, and the first semiconductor element 101A in which the first element electrodes 12a are arranged in an array (lattice) may be used.

また、図1および図2に示した例では、第1の半導体素子101A(第1の素子本体部10)の側面に第1の配線22が接しているが、本実施形態の半導体装置はこのような形態に制限されず、図3に示す半導体装置100のように、第1の配線22と第1の半導体素子101Aの側面とが接していなくてもよい。また、図1Aおよび図1Bに示すように、第1の配線22の第1端によって第1の素子電極12aの全体が覆われていてもよいし、図3に示すように、第1の配線22の第1端と第1の素子電極12aの上面のみとが接していてもよい。   In the example shown in FIG. 1 and FIG. 2, the first wiring 22 is in contact with the side surface of the first semiconductor element 101A (first element body 10). The first wiring 22 and the side surface of the first semiconductor element 101A do not have to be in contact with each other as in the semiconductor device 100 illustrated in FIG. Further, as shown in FIGS. 1A and 1B, the first element electrode 12a may be entirely covered by the first end of the first wiring 22, or as shown in FIG. The first end of 22 may be in contact with only the upper surface of the first element electrode 12a.

次に、図4A〜図6Bを参照しながら、本実施形態の半導体装置100の製造方法の一例について説明する。   Next, an example of a method for manufacturing the semiconductor device 100 of this embodiment will be described with reference to FIGS. 4A to 6B.

まず、図4Aに示すように、第1の配線層32が絶縁性基板30の一方の主面に形成された配線基板301を用意する。配線基板301は、リジット基板であり、例えば、ガラス−エポキシ(エポキシ樹脂がガラス織布に含浸された)基板である。配線基板301は、BT(ビスマレイミド・トリアジン)基板、紙フェノール樹脂基板、アラミド−エポキシ(エポキシ樹脂がアラミド基板に含浸された)基板のような樹脂系基板であってもよいし、アルミナ基板、ガラス−アルミナ基板等のようなセラミック系基板であってもよい。   First, as shown in FIG. 4A, a wiring substrate 301 having a first wiring layer 32 formed on one main surface of the insulating substrate 30 is prepared. The wiring board 301 is a rigid board, for example, a glass-epoxy (epoxy resin impregnated in a glass woven fabric) board. The wiring substrate 301 may be a resin-based substrate such as a BT (bismaleimide / triazine) substrate, a paper phenolic resin substrate, an aramid-epoxy (an epoxy resin is impregnated with an aramid substrate), an alumina substrate, It may be a ceramic substrate such as a glass-alumina substrate.

図4Aに示した配線基板301は、配線層が絶縁性基板30の一方の主面にのみ形成された片面基板であるが、これに制限されない。配線基板301は、配線層が絶縁性基板30の両主面に形成された両面基板、または、配線層が絶縁性基板の内部にも設けられた多層基板であってもよい。第1の配線層32は、例えば、銅箔にて形成されている。   The wiring substrate 301 shown in FIG. 4A is a single-sided substrate in which the wiring layer is formed only on one main surface of the insulating substrate 30, but is not limited thereto. The wiring substrate 301 may be a double-sided substrate in which a wiring layer is formed on both main surfaces of the insulating substrate 30 or a multilayer substrate in which the wiring layer is also provided inside the insulating substrate. The first wiring layer 32 is made of, for example, copper foil.

次に、図4Bに示すように、第1の素子本体部10の第1面10aに第1の素子電極12aが設けられた第1の半導体素子101Aを用意する。次いで、第1の素子本体部10の第2面10bが配線基板の絶縁性基板30に向くように、第1の半導体素子101Aを接合材13を用いて配線基板(絶縁性基板30)にダイボンディングする。第1の半導体素子101Aは、例えば、いわゆるベアチップである。第1の素子電極12aは、例えば、アルミニウムまたはアルミニウムを主成分とする合金(Al−Cu、Al−Cu−Si等)にて形成されている。   Next, as shown in FIG. 4B, a first semiconductor element 101 </ b> A in which a first element electrode 12 a is provided on the first surface 10 a of the first element body 10 is prepared. Next, the first semiconductor element 101A is bonded to the wiring substrate (insulating substrate 30) using the bonding material 13 so that the second surface 10b of the first element body 10 faces the insulating substrate 30 of the wiring substrate. Bond. The first semiconductor element 101A is, for example, a so-called bare chip. The first element electrode 12a is formed of, for example, aluminum or an alloy containing aluminum as a main component (Al—Cu, Al—Cu—Si, or the like).

一方で、図5Aおよび図5Bに示すように、フィルムの一方の主面に第2の配線層が形成されたシート状物を形成する。まず、図5Aに示すように、フィルム20'上に金属層21を形成する。フィルム20'の材料は、例えば、ポリイミド、PPS(ポリフェニレンサルファイド)、ポリプロピレン、ポリメタクリル酸メチル等である。図5Aに示したフィルム20'は、透明な材料、例えば、ポリメタクリル酸メチルから形成されている。金属層21は、例えば、銅箔である。フィルム20'上への金属層21の形成は、例えば、金属箔の貼り合わせや、金属メッキによって行うことができる。フィルム20'の厚みは、例えば、約10μm〜100μmであり、金属層21の厚さは、例えば、約5μm〜35μmである。   On the other hand, as shown to FIG. 5A and FIG. 5B, the sheet-like material in which the 2nd wiring layer was formed in one main surface of a film is formed. First, as shown in FIG. 5A, a metal layer 21 is formed on a film 20 ′. The material of the film 20 ′ is, for example, polyimide, PPS (polyphenylene sulfide), polypropylene, polymethyl methacrylate, or the like. The film 20 ′ shown in FIG. 5A is made of a transparent material, for example, polymethyl methacrylate. The metal layer 21 is, for example, a copper foil. Formation of the metal layer 21 on the film 20 ′ can be performed by, for example, bonding metal foils or metal plating. The thickness of the film 20 ′ is, for example, about 10 μm to 100 μm, and the thickness of the metal layer 21 is, for example, about 5 μm to 35 μm.

次に、所定のパターンが得られるように金属層21をエッチングして、図5Bに示すように、フィルム20'の一方の主面に第1の配線22を含む第2の配線層25を形成する。エッチングは、例えば、フォトレジストを用いて所定の個所にマスクをした後、塩化鉄や塩化銅を用いて金属層21のうちの不要な部分を化学的に除去することにより行えばよい。   Next, the metal layer 21 is etched so as to obtain a predetermined pattern, and as shown in FIG. 5B, a second wiring layer 25 including the first wiring 22 is formed on one main surface of the film 20 ′. To do. Etching may be performed, for example, by masking a predetermined portion using a photoresist and then chemically removing unnecessary portions of the metal layer 21 using iron chloride or copper chloride.

次に、図6Aに示すように、第1の半導体素子101Aの第1の素子電極12aの表面を含む面、および配線基板301の第1の半導体素子101A側の面の一部を、第2の配線層25とフィルム20'とからなるシート状物50'で覆う。この時、第2の配線層25を構成する第1の配線22の第1端が第1の素子電極12aに接し、かつ、第1の配線22の第2端が配線基板301の第1の配線層32の一部に接するように位置合わせを行う。この位置合わせは、フィルム20'が実質的に透明であれば容易に行える。尚、第1の素子電極12a上に、バンプが形成されていてもよく、バンプを介して第1の素子電極12aと第1の配線22の第1端とを接合してもよい。   Next, as shown in FIG. 6A, a surface including the surface of the first element electrode 12a of the first semiconductor element 101A and a part of the surface of the wiring substrate 301 on the first semiconductor element 101A side are Is covered with a sheet-like material 50 'composed of the wiring layer 25 and the film 20'. At this time, the first end of the first wiring 22 constituting the second wiring layer 25 is in contact with the first element electrode 12 a, and the second end of the first wiring 22 is the first of the wiring substrate 301. Positioning is performed so as to contact a part of the wiring layer 32. This alignment can be easily performed if the film 20 'is substantially transparent. Note that a bump may be formed on the first element electrode 12a, and the first element electrode 12a and the first end of the first wiring 22 may be joined via the bump.

次に、図6Bに示すように、第1の半導体素子101Aの配線基板301と接した面を除く全て表面および配線基板301の第1の半導体素子101A側の面の一部に、フィルム20'と第2の配線層25とからなるシート状物50'を密着させる。密着方法としては、フィルム20'の熱収縮等が挙げられる。フィルム20'を熱収縮させる際に、雰囲気を減圧してもよい。   Next, as shown in FIG. 6B, a film 20 ′ is formed on the entire surface of the first semiconductor element 101A except the surface in contact with the wiring board 301 and on a part of the surface of the wiring board 301 on the first semiconductor element 101A side. And the second wiring layer 25 are brought into close contact with each other. Examples of the adhesion method include thermal shrinkage of the film 20 ′. When the film 20 ′ is thermally contracted, the atmosphere may be reduced.

また、フィルム20'の熱収縮によりシート状物50'を第1の半導体素子101A等に密着させる場合、フィルム20'の熱収縮の程度を考慮し、熱収縮後において、第1の配線22の第1端と第1の素子電極12a、および第1の配線22の第2端と第1の配線層32とを電気接続することができるように、第2の配線層25をフィルム20'に形成しておく必要がある。例えば、フィルム20'の熱収縮の程度を考慮して、第2の配線層25に含まれる複数の第1の配線22間の間隔を広めにしておけばよい。   Further, when the sheet-like material 50 ′ is brought into close contact with the first semiconductor element 101A or the like by the thermal contraction of the film 20 ′, the degree of the thermal contraction of the film 20 ′ is taken into account and the first wiring 22 The second wiring layer 25 is formed on the film 20 ′ so that the first end and the first element electrode 12 a and the second end of the first wiring 22 and the first wiring layer 32 can be electrically connected. It is necessary to form. For example, in consideration of the degree of thermal contraction of the film 20 ′, the interval between the plurality of first wirings 22 included in the second wiring layer 25 may be widened.

尚、シート状物50'の第1の半導体素子101A等への密着が容易に行えるように、フィルム20'の第1の半導体素子101A等に対向する面に、例えば、部分的に接着剤を塗布等しておいてもよい。図6Aおよび図6Bにおいて、30は、絶縁性基板である。   Note that, for example, an adhesive is partially applied to the surface of the film 20 ′ facing the first semiconductor element 101A or the like so that the sheet-like object 50 ′ can be easily adhered to the first semiconductor element 101A or the like. Application may be made. 6A and 6B, reference numeral 30 denotes an insulating substrate.

次に、第1の配線22の第1端と第1の素子電極12a、および、第1の配線22の第2端と第1の配線層32の一部とを、例えば、超音波振動により一括して接合する。第1の配線22の第1端と第1の素子電極12a、および、第1の配線22の第2端と第1の配線層32の一部は、ともに、半田等を用いて接合してもよい。   Next, the first end of the first wiring 22 and the first element electrode 12a, and the second end of the first wiring 22 and a part of the first wiring layer 32, for example, by ultrasonic vibration Join together. The first end of the first wiring 22 and the first element electrode 12a, and the second end of the first wiring 22 and a part of the first wiring layer 32 are joined together using solder or the like. Also good.

本実施形態の半導体装置の製造方法では、未硬化状態の熱硬化性樹脂を含むフィルム20'を用い、シート状物50'を所定の形状に加工した後、加熱により熱硬化性樹脂を硬化して、シート状物50'を、第1の半導体素子101Aの第1の素子電極12aの表面を含む面と配線基板301の第1の半導体素子側の面の少なくとも一部とを覆うことができる形状に加工してから、第1の配線22の第1端と第1の素子電極12aとを接合し、第1の配線22の第2端と第1の配線層32の一部とを接合してもよい。   In the method for manufacturing a semiconductor device of this embodiment, a film 20 ′ containing an uncured thermosetting resin is used to process the sheet-like material 50 ′ into a predetermined shape, and then the thermosetting resin is cured by heating. Thus, the sheet-like object 50 ′ can cover the surface including the surface of the first element electrode 12a of the first semiconductor element 101A and at least a part of the surface of the wiring substrate 301 on the first semiconductor element side. After processing into a shape, the first end of the first wiring 22 and the first element electrode 12a are joined, and the second end of the first wiring 22 and a part of the first wiring layer 32 are joined. May be.

尚、図4A〜図6Bを用いて説明した本実施形態の半導体装置の製造方法では、第1の半導体素子101Aと配線基板301とを接合した後、第1の配線22の第1端と第1の素子電極12aとを接合し、第1の配線22の第2端と第1の配線層32の一部とを接合しているが、本実施形態の半導体装置の製造方法はこれに制限されない。例えば、第1の配線22の第1端と第1の素子電極12aとを接合した後に、第1の半導体素子101Aと配線基板301とを接合してもよい。第1の半導体素子101Aと配線基板301とを接合する前に、第1の配線22の第2端と第1の素子電極12aとを接合する場合は、第1の配線22の第1端と第1の素子電極12aとの位置合わせが容易となり、好ましい。   In the method of manufacturing the semiconductor device according to this embodiment described with reference to FIGS. 4A to 6B, the first end of the first wiring 22 and the first end of the first wiring 22 are joined after the first semiconductor element 101A and the wiring substrate 301 are joined. The first element electrode 12a is joined, and the second end of the first wiring 22 and a part of the first wiring layer 32 are joined. However, the manufacturing method of the semiconductor device of this embodiment is limited to this. Not. For example, the first semiconductor element 101A and the wiring substrate 301 may be bonded after the first end of the first wiring 22 and the first element electrode 12a are bonded. In the case where the second end of the first wiring 22 and the first element electrode 12a are bonded before bonding the first semiconductor element 101A and the wiring substrate 301, the first end of the first wiring 22 Positioning with the first element electrode 12a is easy, which is preferable.

次に、図7〜図11を参照しながら、本実施形態の半導体装置100の他の例について説明する。   Next, another example of the semiconductor device 100 of the present embodiment will be described with reference to FIGS.

図7に示す半導体装置100には、第1のフィルム20の第2の配線層25が形成された面の反対面に電磁波遮蔽層24が形成されているので、第1の半導体素子から放射される電磁ノイズが外部に放射されるのを抑制できる。電磁波遮蔽層24は、上記反対面のほぼ全面に形成されている。電磁波遮蔽層24の材料としては、例えば、銅、ニッケル、金、鉄、銀およびフェライトからなる群から選ばれる少なくとも1種が挙げられる。   In the semiconductor device 100 shown in FIG. 7, since the electromagnetic wave shielding layer 24 is formed on the surface opposite to the surface on which the second wiring layer 25 of the first film 20 is formed, it is emitted from the first semiconductor element. Can be prevented from being radiated to the outside. The electromagnetic wave shielding layer 24 is formed on almost the entire opposite surface. Examples of the material of the electromagnetic wave shielding layer 24 include at least one selected from the group consisting of copper, nickel, gold, iron, silver, and ferrite.

図8に示す半導体装置100では、第1のフィルム20の配線基板301側の面の反対面が、第1の素子本体部の第1面10aと同面積以上の平面20aを含んでいる。このように第1のフィルム20が上記平面20aを含んでいると、図9に示すように、この平面20a上に電子部品(この例では、第2の半導体素子101B)を容易に配置できる。尚、上記平面20aの平担度は、第2の半導体素子101Bの配置が容易となる程度であれば十分である。   In the semiconductor device 100 shown in FIG. 8, the surface opposite to the surface on the wiring board 301 side of the first film 20 includes a flat surface 20a having the same area or more as the first surface 10a of the first element body. As described above, when the first film 20 includes the plane 20a, an electronic component (in this example, the second semiconductor element 101B) can be easily arranged on the plane 20a as shown in FIG. It should be noted that the flatness of the flat surface 20a is sufficient as long as the second semiconductor element 101B can be easily arranged.

第1のフィルム20の配線基板301側の面の反対面を平面とするためには、例えば、第1のフィルム20となるフィルム20'(図6A参照)が加熱されて柔らかくなっている状態の時に、フィルム20'をプレスすればよい。   In order to make the surface opposite to the surface on the wiring board 301 side of the first film 20, for example, the film 20 ′ (see FIG. 6A) that becomes the first film 20 is heated and softened. Sometimes film 20 'may be pressed.

図9に示した半導体装置100では、2つの半導体素子を含んでおり、第1の半導体素子101Aの上方に第2の半導体素子101Bが配置されている。第1の半導体素子101Aは、第2の配線層25の第1の配線22によって第1の配線層の一部32Aに接続されている。第2の半導体素子101Bは、ボンディングワイヤ40によって、第1の配線22が接した第1の配線層32の一部32Aとは異なる第1の配線層32の他の一部32Bに接続されている。   The semiconductor device 100 shown in FIG. 9 includes two semiconductor elements, and the second semiconductor element 101B is disposed above the first semiconductor element 101A. The first semiconductor element 101 </ b> A is connected to a part 32 </ b> A of the first wiring layer by the first wiring 22 of the second wiring layer 25. The second semiconductor element 101B is connected to another part 32B of the first wiring layer 32 different from the part 32A of the first wiring layer 32 with which the first wiring 22 is in contact by the bonding wire 40. Yes.

図9に示した半導体装置100は、第1の半導体素子101A、および第2の半導体装置101BがともにWB法にて配線基板301に電気接続された半導体装置よりも、下記のような利点を有する。第1の半導体素子101A、および第2の半導体素子101BがともにWB法にて配線基板301に電気接続された半導体装置では、図9に示した半導体装置100のように、ほぼ同じ寸法の複数の半導体素子を上下に配置したスタック構造を採用することは困難である。その理由は、ほぼ同じ寸法の複数の半導体素子を上下に配置する場合、下に配置される半導体素子について、ボンディングワイヤで第1の素子電極と第1の配線層とを接続することが困難だからである。これに対して、本実施形態の半導体装置100では、図9に示すように、第1の半導体素子101Aについては、第1の配線22を介して配線基板301に電気接続されているので、実質的に同じ寸法の第1の半導体素子101A、および第2の半導体素子101Bを上下に配置したスタック構造の採用が容易である。   The semiconductor device 100 shown in FIG. 9 has the following advantages over the semiconductor device in which the first semiconductor element 101A and the second semiconductor device 101B are both electrically connected to the wiring substrate 301 by the WB method. . In a semiconductor device in which both the first semiconductor element 101A and the second semiconductor element 101B are electrically connected to the wiring substrate 301 by the WB method, a plurality of semiconductor devices having substantially the same dimensions as the semiconductor device 100 shown in FIG. It is difficult to adopt a stack structure in which semiconductor elements are arranged one above the other. The reason is that when a plurality of semiconductor elements having substantially the same dimensions are arranged one above the other, it is difficult to connect the first element electrode and the first wiring layer with bonding wires for the semiconductor elements arranged below. It is. On the other hand, in the semiconductor device 100 of this embodiment, as shown in FIG. 9, the first semiconductor element 101 </ b> A is electrically connected to the wiring substrate 301 via the first wiring 22. Therefore, it is easy to adopt a stack structure in which the first semiconductor element 101A and the second semiconductor element 101B having the same dimensions are arranged vertically.

また、第1の半導体素子101A、および第2の半導体素子101BをともにWB法で配線基板301に電気接続する場合、第2の半導体素子101Bの下に配置された第1の半導体素子101Aに接続されたボンディングワイヤのループの高さについては、できるだけ低くする必要がある。しかし、本実施形態の半導体装置100では、第1の半導体素子101Aと配線基板301との接続にボンディングワイヤを用いておらず、第1の配線22を介して第1の半導体素子101Aと配線基板301とを電気接続しているので、ループの高さについて考慮する必要がない。   When both the first semiconductor element 101A and the second semiconductor element 101B are electrically connected to the wiring board 301 by the WB method, the first semiconductor element 101A and the second semiconductor element 101B are connected to the first semiconductor element 101A disposed below the second semiconductor element 101B. The height of the bonded bonding wire loop should be as low as possible. However, in the semiconductor device 100 of the present embodiment, no bonding wire is used to connect the first semiconductor element 101A and the wiring board 301, and the first semiconductor element 101A and the wiring board are connected via the first wiring 22. Since 301 is electrically connected, it is not necessary to consider the height of the loop.

第1のフィルム20の上に第2の半導体素子101Bを配置する場合、半導体装置100は、図10に示すような形態をしていてもよい。図10に示した半導体装置100では、第2の半導体素子101Bの第2の素子電極12bの表面を含む面の反対面と第1のフィルム20の平面20aとが向かい合うように、第2の半導体素子101Bが第1のフィルム20上に配置されている。   When the second semiconductor element 101B is arranged on the first film 20, the semiconductor device 100 may have a form as shown in FIG. In the semiconductor device 100 shown in FIG. 10, the second semiconductor element 101 </ b> B has the second semiconductor element 101 </ b> B so that the opposite surface of the second element electrode 12 b including the surface of the second semiconductor element 101 </ b> B faces the plane 20 a of the first film 20. The element 101B is disposed on the first film 20.

図10に示した半導体装置100は、第2のフィルム41と、第2フィルム41の配線基板301側の面に形成され、第2の配線42を含む第4の配線層45とを備えている。第2の配線42は、第1端と第2端とを有している。第2フィルム41は、第2の半導体素子101Bの第2の素子電極12bの表面を含む面(第2の素子電極12bの表面と第2の素子本体部11の第1のフィルム20側の面の反対面とを含む面)と、配線基板301の第2の半導体素子101B側の面の一部とを、第2の素子電極12b側から覆っている。   The semiconductor device 100 shown in FIG. 10 includes a second film 41 and a fourth wiring layer 45 formed on the surface of the second film 41 on the wiring substrate 301 side and including the second wiring 42. . The second wiring 42 has a first end and a second end. The second film 41 is a surface including the surface of the second element electrode 12b of the second semiconductor element 101B (the surface of the second element electrode 12b and the surface of the second element body 11 on the first film 20 side). And a part of the surface of the wiring substrate 301 on the second semiconductor element 101B side from the side of the second element electrode 12b.

第2の配線42の第1端は、第2の素子電極12bに接しており、第2の配線42の第2端は、第1の配線22の第2端が接した第1の配線層の一部32Aとは異なる第1の配線層32の他の一部32Bに接している。尚、図10に示した半導体装置100では、2個の半導体素子101A,101Bを積層したスタック構造をしているが、半導体素子の数について特に制限はなく、3個またはそれ以上の半導体素子が積層されていてもよい。   The first end of the second wiring 42 is in contact with the second element electrode 12 b, and the second end of the second wiring 42 is in contact with the second end of the first wiring 22. Is in contact with another portion 32B of the first wiring layer 32 different from the portion 32A of the first wiring layer 32. The semiconductor device 100 shown in FIG. 10 has a stack structure in which two semiconductor elements 101A and 101B are stacked. However, the number of semiconductor elements is not particularly limited, and three or more semiconductor elements are included. It may be laminated.

図11に示すように、第1のフィルム20の第2の配線層25が形成された面の反対面に第3の配線層36を形成し、第1のフィルムの平面20aに、第3の配線層36を構成する配線の一端が配置されるようにすれば、この配線の一端上に第2の半導体素子101Bをフィリップチップ実装することもできる。上記配線の他端は、例えば、第1のフィルム20内に設けられたビア26を介して第1の配線層の一部32Bに電気接続することができる。   As shown in FIG. 11, a third wiring layer 36 is formed on the surface opposite to the surface on which the second wiring layer 25 of the first film 20 is formed, and a third wiring layer 36 is formed on the plane 20a of the first film. If one end of the wiring constituting the wiring layer 36 is arranged, the second semiconductor element 101B can be Philip chip mounted on one end of the wiring. The other end of the wiring can be electrically connected to a part 32B of the first wiring layer through a via 26 provided in the first film 20, for example.

尚、第1のフィルム20内にビア26設けずに、図11Bに示すように、第1のフィルム20と第3の配線層36とからなる積層体の端部を折り曲げて、第3の配線層36を構成する配線と第1の配線層の一部32Bとを電気接続してもよい。   In addition, without providing the vias 26 in the first film 20, as shown in FIG. 11B, the end of the laminate composed of the first film 20 and the third wiring layer 36 is bent to form the third wiring. The wiring constituting the layer 36 and the part 32B of the first wiring layer may be electrically connected.

図1〜図11Bを用いて説明した本実施形態の半導体装置は、いずれも、第1の半導体素子が、接合材を介して配線基板に接合されているが、例えば、第1のフィルムによって第1の半導体素子が所定の位置に固定されれば、第1の半導体素子が配線基板に接合されていなくてもよい。   In each of the semiconductor devices according to the present embodiment described with reference to FIGS. 1 to 11B, the first semiconductor element is bonded to the wiring board via the bonding material. For example, the first film is formed by the first film. If one semiconductor element is fixed at a predetermined position, the first semiconductor element may not be bonded to the wiring board.

(実施形態2)
次に、図12〜図16を参照しながら、本実施形態2の半導体装置200の一例について説明する。
(Embodiment 2)
Next, an example of the semiconductor device 200 according to the second embodiment will be described with reference to FIGS.

図12に示すように、本実施形態の半導体装置200では、絶縁性基板30の第1面側に凹部35が形成されており、その凹部35内に第1の半導体素子101Aが配置されている。この点が、実施形態1の半導体装置と異なる。他の点は、実施形態1の半導体装置と同様であるので説明を省略する。   As shown in FIG. 12, in the semiconductor device 200 of this embodiment, a recess 35 is formed on the first surface side of the insulating substrate 30, and the first semiconductor element 101 </ b> A is disposed in the recess 35. . This point is different from the semiconductor device of the first embodiment. Since other points are the same as those of the semiconductor device of the first embodiment, description thereof is omitted.

本実施形態の半導体装置200では、第1の半導体素子101Aが凹部35内に配置されているので、半導体装置200の外形について凹凸を減らすことがでる。また、半導体装置200の薄型化も可能となる。   In the semiconductor device 200 of the present embodiment, since the first semiconductor element 101A is disposed in the recess 35, the unevenness of the outer shape of the semiconductor device 200 can be reduced. In addition, the semiconductor device 200 can be thinned.

図12に示すように、第1の半導体素子101Aの第1の素子本体部10の第1面10aと絶縁性基板30の第1の配線層32が形成された面30aとが、実質的に同一面内にあると好ましい。半導体装置200の外形について凹凸をさらに減らすことができるからである。図12に示した半導体装置200を用いれば、例えば、薄型化が求められるモバイル機器等の設計におけるレイアウトの複雑化を低減できる。   As shown in FIG. 12, the first surface 10a of the first element body 10 of the first semiconductor element 101A and the surface 30a of the insulating substrate 30 on which the first wiring layer 32 is formed are substantially It is preferable that they are in the same plane. This is because the unevenness of the outer shape of the semiconductor device 200 can be further reduced. If the semiconductor device 200 shown in FIG. 12 is used, for example, the complexity of the layout in the design of a mobile device or the like that is required to be thin can be reduced.

また、図12に示した半導体装置200では、第1のフィルム20の第2の配線層25が形成された面の反対面のほぼ全面が平面20aとなっている。そのため、第1のフィルム20の上記平面20a上に電子部品を配置し易い。   Further, in the semiconductor device 200 shown in FIG. 12, the almost entire surface opposite to the surface on which the second wiring layer 25 of the first film 20 is formed is a flat surface 20a. Therefore, it is easy to arrange electronic components on the plane 20 a of the first film 20.

図13に示すように、第1の素子本体部の第1面10aのうちの、第1の素子電極12a間に、第1のフィルム20を密着させると、第1の素子電極12a間の絶縁耐圧を高めることができる。   As shown in FIG. 13, when the first film 20 is brought into close contact between the first element electrodes 12a of the first surface 10a of the first element body portion, the insulation between the first element electrodes 12a is achieved. The breakdown voltage can be increased.

図13に示した半導体装置200では、凹部35と第1の半導体素子101Aとの間に隙間が存在するが、図14に示すように、凹部35の形状と第1の半導体素子の第1の素子本体部10の形状とをほぼ等しくして、凹部35と第1の半導体素子との間に隙間を無くしてもよい。凹部35の形状と第1の素子本体部10の形状とがほぼ等しいと、第1の素子電極12aと第2の配線層25とを位置合わせがし易い。また、絶縁性基板30と第1の素子本体部10の側面とが接していると、第1の半導体素子の放熱性が高まる。   In the semiconductor device 200 shown in FIG. 13, there is a gap between the recess 35 and the first semiconductor element 101A. However, as shown in FIG. 14, the shape of the recess 35 and the first semiconductor element The shape of the element body 10 may be made substantially the same so that there is no gap between the recess 35 and the first semiconductor element. If the shape of the recess 35 and the shape of the first element body 10 are substantially equal, the first element electrode 12a and the second wiring layer 25 can be easily aligned. Moreover, if the insulating substrate 30 and the side surface of the first element body 10 are in contact with each other, the heat dissipation of the first semiconductor element is enhanced.

また、図15に示すように、第1のフィルム20の第2の配線層25が形成された面の反対面のほぼ全面が平面20aであり、平面20aの面積は、第1の半導体素子101Aの第1の素子本体部10の第1面10aの面積よりも大きくてもよい。この場合、第1のフィルム20の上記平面20a上に、例えば、第1の半導体素子101Aよりも平面視したときの面積が大きい他の半導体素子を配置すること、または、複数の半導体素子を配置することが可能となる。   Further, as shown in FIG. 15, almost the entire surface opposite to the surface on which the second wiring layer 25 of the first film 20 is formed is a flat surface 20a, and the area of the flat surface 20a is the first semiconductor element 101A. The area of the first surface 10a of the first element body 10 may be larger. In this case, for example, another semiconductor element having a larger area when viewed in plan than the first semiconductor element 101A is arranged on the plane 20a of the first film 20, or a plurality of semiconductor elements are arranged. It becomes possible to do.

図16に示すように、第2の配線層25が絶縁性基板30の第1の配線層32が形成された面30aと略平行となるように配置されていると、配線長を短くすることができるので、高速応答に有利となる。   As shown in FIG. 16, when the second wiring layer 25 is disposed so as to be substantially parallel to the surface 30a of the insulating substrate 30 on which the first wiring layer 32 is formed, the wiring length is shortened. This is advantageous for high-speed response.

本実施形態の半導体装置200においても、実施形態1の半導体装置と同様に、2つ以上の半導体素子を含むスタック構造をしていてもよい。本実施形態の半導体装置では、第1の半導体素子101Aが凹部35内に配置されているので、スタック構造としても、実施形態1の半導体装置よりも、半導体装置の高さをより低くすることができ薄型化できる。   Also in the semiconductor device 200 of the present embodiment, similarly to the semiconductor device of the first embodiment, it may have a stack structure including two or more semiconductor elements. In the semiconductor device of this embodiment, since the first semiconductor element 101A is disposed in the recess 35, the height of the semiconductor device can be made lower than that of the semiconductor device of Embodiment 1 even in the stack structure. Can be made thinner.

図16に示すように、本実施形態の半導体装置200では、凹部35の底面上に金属層37を配置し、金属層37の上に第1の半導体素子101Aを配置してもよい。第1の半導体素子101Aを金属層37の上に配置すると、金属層37は放熱板として機能するので、第1の半導体素子101Aの放熱性が高まる。   As shown in FIG. 16, in the semiconductor device 200 of this embodiment, the metal layer 37 may be disposed on the bottom surface of the recess 35, and the first semiconductor element 101 </ b> A may be disposed on the metal layer 37. When the first semiconductor element 101A is disposed on the metal layer 37, the metal layer 37 functions as a heat dissipation plate, so that the heat dissipation of the first semiconductor element 101A is enhanced.

実施形態1および実施形態2では、第1の半導体素子101Aの第1の素子電極12aの表面を含む面の全面が第1のフィルム20によって覆われているが、第1の半導体素子101Aの第1の素子電極12aの表面を含む面の一部が、第1のフィルム20によって覆われていてもよい。また、図10に示した例では、第2の半導体素子101Bの第2の素子電極12bの表面を含む面の全面が第2のフィルム41によって覆われているが、第2の半導体素子101Bの第2の素子電極12bの表面を含む面の一部が、第2のフィルム41によって覆われていてもよい。   In the first embodiment and the second embodiment, the entire surface including the surface of the first element electrode 12a of the first semiconductor element 101A is covered with the first film 20, but the first semiconductor element 101A includes the first semiconductor element 101A. A part of the surface including the surface of one element electrode 12 a may be covered with the first film 20. In the example shown in FIG. 10, the entire surface including the surface of the second element electrode 12b of the second semiconductor element 101B is covered with the second film 41. A part of the surface including the surface of the second element electrode 12 b may be covered with the second film 41.

実施形態1および実施形態2では、第1の半導体素子101Aがベアチップである場合について説明したが、半導体素子はベアチップに限定されない。第1の半導体素子101Aは、例えば、チップ・サイズ・パッケージ(CSP)構造をしていてもよい。   In the first and second embodiments, the case where the first semiconductor element 101A is a bare chip has been described. However, the semiconductor element is not limited to a bare chip. For example, the first semiconductor element 101A may have a chip size package (CSP) structure.

また、第1の半導体素子101Aは、典型的には、メモリICチップや、ロジックICチップ、またはシステムLSIチップであるが、発光ダイオード(LED)チップであってもよい。第1の半導体素子101AとしてLEDチップを用い、第1のフィルム20が、LEDが発光する光に対して実質的に透明であると、発光デバイス(半導体装置)を実現できる。   The first semiconductor element 101A is typically a memory IC chip, a logic IC chip, or a system LSI chip, but may be a light emitting diode (LED) chip. When an LED chip is used as the first semiconductor element 101A and the first film 20 is substantially transparent to light emitted from the LED, a light emitting device (semiconductor device) can be realized.

第1の半導体素子101AとしてLEDチップを用いる場合に、第1のフィルム20内に蛍光体が分散されていると、LEDチップからの出射光と蛍光体から発する光との両方の光を利用した発光デバイスを実現できる。   When an LED chip is used as the first semiconductor element 101A, if the phosphor is dispersed in the first film 20, both light emitted from the LED chip and light emitted from the phosphor are used. A light emitting device can be realized.

実施形態1〜2の半導体装置が白色発光デバイスである場合、第1の半導体素子101Aとして、青色光を出射する青色LEDチップを用い、第1のフィルム20に蛍光体を分散させればよい。蛍光体としては、青色光を黄色光に変換する蛍光体を用いればよい。このようにすれば、青色光および黄色光によって白色の光が得られる。この場合、LEDチップとしては、例えば、窒化ガリウム(GaN)系材料からなるLEDチップを、蛍光体としては、(Y・Sm)3(Al・Ga)512:Ce、(Y0.39Gd0.57Ce0.03Sm0.013Al512等が好適に用いられる。 When the semiconductor device of Embodiments 1 and 2 is a white light emitting device, a blue LED chip that emits blue light may be used as the first semiconductor element 101 </ b> A, and a phosphor may be dispersed in the first film 20. As the phosphor, a phosphor that converts blue light into yellow light may be used. In this way, white light can be obtained by blue light and yellow light. In this case, for example, an LED chip made of a gallium nitride (GaN) -based material is used as the LED chip, and (Y · Sm) 3 (Al · Ga) 5 O 12 : Ce (Y 0.39 Gd 0.57 is used as the phosphor. Ce 0.03 Sm 0.01 ) 3 Al 5 O 12 or the like is preferably used.

第1の半導体素子101Aとしては、青色LEDチップの他に、紫外光を発する紫外LEDチップも用いることができる。この場合、紫外LEDチップから発生した光により励起して、赤(R)、緑(G)および青(B)の光を発する蛍光体を第1のフィルム20に分散させれば、白色発光デバイスを実現できる。このように、LEDチップの種類と蛍光体の種類とを適宜選択することによって、所望の色を発する発光デバイスを実現できる。   As the first semiconductor element 101A, an ultraviolet LED chip that emits ultraviolet light can be used in addition to a blue LED chip. In this case, a white light emitting device is obtained by dispersing phosphors that emit red (R), green (G), and blue (B) light in the first film 20 by being excited by light generated from the ultraviolet LED chip. Can be realized. In this manner, a light emitting device that emits a desired color can be realized by appropriately selecting the type of LED chip and the type of phosphor.

また、配線基板は、ガラス板と透明性の高い導電性材料(例えば、インジウム−スズ系酸化物)を含む配線層とを備えたガラス基板であってもよい。配線基板として、透光性を有するガラス板を用い、第1のフィルムとして、入射光に対して実質的に透明なフィルムを用いれば、第1の半導体素子101A側から入射する光を配線基板側に透過させることが可能な、透光性を有する半導体装置を提供できる。また、この場合に、第1の半導体素子101AとしてLEDチップ等を用いれば、LEDチップから生じる光を配線基板側に透過させることができる。透光性を有する半導体装置は、例えば、液晶ディスプレイ等の部品として有用であり、バックライトから生じる光を透過させることができる。   Further, the wiring substrate may be a glass substrate including a glass plate and a wiring layer containing a highly transparent conductive material (for example, indium-tin oxide). If a glass plate having translucency is used as the wiring substrate and a film substantially transparent to incident light is used as the first film, the light incident from the first semiconductor element 101A side is transmitted to the wiring substrate side. Thus, a light-transmitting semiconductor device can be provided. In this case, if an LED chip or the like is used as the first semiconductor element 101A, light generated from the LED chip can be transmitted to the wiring board side. A semiconductor device having a light-transmitting property is useful as a component such as a liquid crystal display, and can transmit light generated from a backlight.

以下、本発明の半導体装置の一例についてさらに具体的に説明するが、本発明の半導体装置は、下記の実施例に限定されない。   Hereinafter, an example of the semiconductor device of the present invention will be described more specifically, but the semiconductor device of the present invention is not limited to the following examples.

まず、厚さ0.4mmのガラス−アルミナセラミックからなる配線基板(京セラ株式会社製)を用意した。この配線基板の配線層は、銅層と銅層の上に施された無電解ニッケルめっき層および無電解金めっき層からなる。   First, a wiring board (made by Kyocera Corporation) made of glass-alumina ceramic having a thickness of 0.4 mm was prepared. The wiring layer of this wiring board includes a copper layer and an electroless nickel plating layer and an electroless gold plating layer applied on the copper layer.

次に、外形4mm角、厚さ0.15mmの半導体素子を用意した。この半導体素子を配線基板にダイボンドフィルム(新日鐵化学株式会社製、NEX−130)を介して接合した。次に、太さ30μmの金ワイヤを用いて、半導体素子の素子電極上にバンプを形成した。   Next, a semiconductor element having an outer shape of 4 mm square and a thickness of 0.15 mm was prepared. This semiconductor element was joined to the wiring substrate via a die bond film (Nex-130, manufactured by Nippon Steel Chemical Co., Ltd.). Next, bumps were formed on the element electrodes of the semiconductor element using a gold wire with a thickness of 30 μm.

一方、厚さ25μmのポリイミドフィルムと、ポリイミドフィルムに接合された厚さ9μmの銅箔とからなる積層フィルム(新日鐵化学株式会社製)を用意し、上記銅箔を所定の形状にパターニングした。次いで、パターニングされた銅箔に、ニッケルめっきおよび金めっきを施して、ポリイミドフィルムの一方の主面に配線層が形成されたシート状物を形成した。   On the other hand, a laminated film (made by Nippon Steel Chemical Co., Ltd.) composed of a polyimide film having a thickness of 25 μm and a copper foil having a thickness of 9 μm bonded to the polyimide film was prepared, and the copper foil was patterned into a predetermined shape. . Next, the patterned copper foil was subjected to nickel plating and gold plating to form a sheet-like material in which a wiring layer was formed on one main surface of the polyimide film.

次に、半導体素子の素子電極と、配線層を構成する複数の配線のうちの所定の配線の第1端とが重なるように、シート状物を半導体素子上に配置した。次いで、超音波を印加しながら平板ツールでシート状物を加熱および加圧して、半導体素子の素子電極と配線とを電気接続した。   Next, the sheet-like object was arranged on the semiconductor element so that the element electrode of the semiconductor element and a first end of a predetermined wiring among the plurality of wirings constituting the wiring layer overlapped. Next, the sheet-like material was heated and pressurized with a flat plate tool while applying ultrasonic waves to electrically connect the element electrodes of the semiconductor elements and the wiring.

次に、上記所定の配線の第2端を、配線基板の配線層の所定の位置に重ね合わせた後、配線の第2端と配線層とが接した部分に、超音波ツールを押し当てて、加圧しながら超音波を印加し、上記所定の配線の第2端と、配線基板の配線層とを電気接続した。以上のようにして、半導体装置を得た。   Next, after the second end of the predetermined wiring is overlapped with a predetermined position of the wiring layer of the wiring board, an ultrasonic tool is pressed against a portion where the second end of the wiring is in contact with the wiring layer. Then, an ultrasonic wave was applied while applying pressure, and the second end of the predetermined wiring was electrically connected to the wiring layer of the wiring board. A semiconductor device was obtained as described above.

次に、半導体装置を、温度30℃、湿度60%の恒温恒湿槽内に192時間放置し、その後、ピーク温度を260℃とするリフロー試験を行った。リフロー試験後、素子電極とシート状物の配線との接続部分、配線基板の配線層とシート状物の配線との接続部分に、異常は認められなかった。また、リフロー試験後に、半導体装置を、−65℃の雰囲気中に30分間放置し、続いて150℃の雰囲気中に30分間放置するという1サイクルの操作を、1000回行った後、接続抵抗を測定した。接続抵抗の変動は、10%以内であり、良好な電気接続が保たれていることが確認できた。   Next, the semiconductor device was left in a constant temperature and humidity chamber having a temperature of 30 ° C. and a humidity of 60% for 192 hours, and then a reflow test was performed with a peak temperature of 260 ° C. After the reflow test, no abnormality was observed in the connection portion between the element electrode and the sheet-like wiring and the connection portion between the wiring layer of the wiring board and the sheet-like wiring. In addition, after the reflow test, the semiconductor device was left in an atmosphere at −65 ° C. for 30 minutes and then left in an atmosphere at 150 ° C. for 30 minutes. It was measured. The fluctuation of the connection resistance was within 10%, and it was confirmed that a good electrical connection was maintained.

配線基板として、深さ約0.13mmの凹部を有する厚さ0.4mmの4層ガラスエポキシ基板(日立化成工業株式会社製、E−679F)を用意した。この配線基板の配線層は、厚さ18μmの銅層と銅層の上に施された無電解ニッケルめっき層および無電解金めっき層からなる。   As a wiring board, a 4-layer glass epoxy board (manufactured by Hitachi Chemical Co., Ltd., E-679F) having a thickness of about 0.13 mm and a recess having a depth of about 0.13 mm was prepared. The wiring layer of this wiring board is composed of a copper layer having a thickness of 18 μm and an electroless nickel plating layer and an electroless gold plating layer applied on the copper layer.

次に、外形4mm角、厚さ0.1mmの半導体素子を用意した。この半導体素子の素子電極上に、太さ25μmの金ワイヤを用いてバンプを形成した。   Next, a semiconductor element having an outer diameter of 4 mm square and a thickness of 0.1 mm was prepared. Bumps were formed on the device electrodes of this semiconductor device using a gold wire with a thickness of 25 μm.

一方、厚さ50μmの液晶ポリマーフィルムと、液晶ポリマーフィルムに接合された厚さ12μmの銅箔とからなる積層フィルム(新日鐵化学株式会社製)を用意し、上記銅箔を所定の形状にパターニングした。次いで、パターニングされた銅箔に、ニッケルめっきおよび金めっきを施して、液晶ポリマーフィルムの一方の主面に配線層が形成されたシート状物を形成した。   On the other hand, a laminated film (manufactured by Nippon Steel Chemical Co., Ltd.) comprising a liquid crystal polymer film having a thickness of 50 μm and a copper foil having a thickness of 12 μm bonded to the liquid crystal polymer film is prepared, and the copper foil is formed into a predetermined shape. Patterned. Next, the patterned copper foil was subjected to nickel plating and gold plating to form a sheet-like material in which a wiring layer was formed on one main surface of the liquid crystal polymer film.

次に、半導体素子の素子電極と、配線層を構成する複数の配線のうちの所定の配線の第1端とが重なるように、シート状物を半導体素子上に配置した。次いで、超音波を印加しながら平板ツールでシート状物を加熱および加圧して、半導体素子の素子電極と配線とを電気的に接続した。   Next, the sheet-like object was arranged on the semiconductor element so that the element electrode of the semiconductor element and a first end of a predetermined wiring among the plurality of wirings constituting the wiring layer overlapped. Next, the sheet-like material was heated and pressurized with a flat tool while applying ultrasonic waves to electrically connect the element electrodes of the semiconductor elements and the wiring.

次に、配線基板の配線層上の所定の位置に、導電性接着剤(ナミックス株式会社製)を印刷した。その後、配線基板の凹部内に半導体素子を収容し、シート状物の所定の配線の第2端を、配線基板の配線層の所定の位置に重ね合わせた。次いで、上記所定の配線の第2端と配線層とが接した部分を、加圧しながら加熱して導電性接着剤を硬化させ、上記所定の配線の第2端と、配線基板の配線層とを電気接続した。以上のようにして、半導体装置を得た。   Next, a conductive adhesive (manufactured by NAMICS Co., Ltd.) was printed at a predetermined position on the wiring layer of the wiring board. Thereafter, the semiconductor element was accommodated in the concave portion of the wiring board, and the second end of the predetermined wiring of the sheet-like material was superposed on a predetermined position of the wiring layer of the wiring board. Next, the portion where the second end of the predetermined wiring is in contact with the wiring layer is heated while being pressurized to cure the conductive adhesive, and the second end of the predetermined wiring, the wiring layer of the wiring substrate, The electrical connection. A semiconductor device was obtained as described above.

次に、半導体装置を、温度30℃、湿度60%の恒温恒湿槽内に192時間放置し、その後、ピーク温度を260℃とするリフロー試験を行った。リフロー試験後、素子電極とシート状物の配線との接続部分、配線基板の配線層とシート状物の配線との接続部分に、異常は認められなかった。また、リフロー試験後に、半導体装置を、−65℃の雰囲気中に30分間放置し、続いて150℃の雰囲気中に30分間放置するという1サイクルの操作を、1000回行った後、接続抵抗を測定した。接続抵抗の変動は、10%以内であり、良好な電気接続が保たれていることが確認できた。   Next, the semiconductor device was left in a constant temperature and humidity chamber having a temperature of 30 ° C. and a humidity of 60% for 192 hours, and then a reflow test was performed with a peak temperature of 260 ° C. After the reflow test, no abnormality was observed in the connection portion between the element electrode and the sheet-like wiring and the connection portion between the wiring layer of the wiring board and the sheet-like wiring. In addition, after the reflow test, the semiconductor device was left in an atmosphere at −65 ° C. for 30 minutes and then left in an atmosphere at 150 ° C. for 30 minutes. It was measured. The fluctuation of the connection resistance was within 10%, and it was confirmed that a good electrical connection was maintained.

本発明によれば、WB法、FC法またはTAB法を採用した半導体装置が抱えていた不都合が軽減された半導体装置を提供できる。例えば、生産性が良い半導体装置を提供できるので、本発明の半導体装置およびその製造方法は有用である。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device with which the trouble which the semiconductor device which employ | adopted WB method, FC method, or TAB method had was reduced can be provided. For example, since a semiconductor device with good productivity can be provided, the semiconductor device and the manufacturing method thereof of the present invention are useful.

本発明の実施形態1の半導体装置の一例を模式的に示す断面図Sectional drawing which shows typically an example of the semiconductor device of Embodiment 1 of this invention 図1Aの半導体装置を模式的に示す上面図FIG. 1A is a top view schematically showing the semiconductor device of FIG. 1A. 図1Aの半導体装置を模式的に示す斜視図FIG. 1A is a perspective view schematically showing the semiconductor device of FIG. 1A. 本発明の実施形態1の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 1 of this invention typically 実施形態1の半導体装置の製造方法の一例を説明する工程断面図Process sectional drawing explaining an example of the manufacturing method of the semiconductor device of Embodiment 1 実施形態1の半導体装置の製造方法の一例を説明する工程断面図Process sectional drawing explaining an example of the manufacturing method of the semiconductor device of Embodiment 1 実施形態1の半導体装置の製造方法の一例を説明する工程断面図Process sectional drawing explaining an example of the manufacturing method of the semiconductor device of Embodiment 1 実施形態1の半導体装置の製造方法の一例を説明する工程断面図Process sectional drawing explaining an example of the manufacturing method of the semiconductor device of Embodiment 1 実施形態1の半導体装置の製造方法の一例を説明する工程断面図Process sectional drawing explaining an example of the manufacturing method of the semiconductor device of Embodiment 1 実施形態1の半導体装置の製造方法の一例を説明する工程断面図Process sectional drawing explaining an example of the manufacturing method of the semiconductor device of Embodiment 1 本発明の実施形態1の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 1 of this invention typically 本発明の実施形態1の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 1 of this invention typically 本発明の実施形態1の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 1 of this invention typically 本発明の実施形態1の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 1 of this invention typically 本発明の実施形態1の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 1 of this invention typically 本発明の実施形態1の半導体装置の他の例の一部の拡大図Partial enlarged view of another example of the semiconductor device of Embodiment 1 of the present invention 本発明の実施形態2の半導体装置の一例を模式的に示す断面図Sectional drawing which shows typically an example of the semiconductor device of Embodiment 2 of this invention 本発明の実施形態2の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 2 of this invention typically 本発明の実施形態2の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 2 of this invention typically 本発明の実施形態2の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 2 of this invention typically 本発明の実施形態2の半導体装置の他の例を模式的に示す断面図Sectional drawing which shows the other example of the semiconductor device of Embodiment 2 of this invention typically 半導体チップとリードフレームとがボンディングワイヤにより接続された状態を説明する上面図Top view for explaining a state in which a semiconductor chip and a lead frame are connected by a bonding wire 図17AのA−A断面図AA sectional view of FIG. 17A WB法を採用した従来の半導体装置の一例を示す断面図Sectional drawing which shows an example of the conventional semiconductor device which employ | adopted WB method FC法を採用した従来の半導体装置の一例を示す断面図Sectional drawing which shows an example of the conventional semiconductor device which employ | adopted FC method TAB法を採用した従来の半導体装置の一例を示した断面図Sectional drawing which showed an example of the conventional semiconductor device which employ | adopted TAB method 図20に示した半導体装置を実装基板に実装した状態を説明する断面図Sectional drawing explaining the state which mounted the semiconductor device shown in FIG. 20 on the mounting board | substrate. TAB法を用いた従来の半導体装置の他の例を示す断面図Sectional drawing which shows the other example of the conventional semiconductor device using TAB method 図22に示した従来の半導体装置を実装基板に実装した状態を説明する断面図Sectional drawing explaining the state which mounted the conventional semiconductor device shown in FIG. 22 on the mounting board | substrate.

符号の説明Explanation of symbols

101A 第1の半導体素子
101B 第2の半導体素子
10 第1の素子本体部
11 第2の素子本体部
10a 第1面
10b 第2面
12a 第1の素子電極
12b 第2の素子電極
20 第1のフィルム
21 金属層
22 第1の配線
24 電磁波遮蔽層
301 配線基板
30 絶縁性基板
32 第1の配線層
25 第2の配線層
36 第3の配線層
35 凹部
37 金属層
100、200 半導体装置
50' シート状物
101A 1st semiconductor element 101B 2nd semiconductor element 10 1st element main-body part 11 2nd element main-body part 10a 1st surface 10b 2nd surface 12a 1st element electrode 12b 2nd element electrode 20 1st Film 21 Metal layer 22 First wiring 24 Electromagnetic wave shielding layer 301 Wiring substrate 30 Insulating substrate 32 First wiring layer 25 Second wiring layer 36 Third wiring layer 35 Recess 37 Metal layer 100, 200 Semiconductor device 50 ′ Sheet

Claims (30)

第1面と前記第1面に対向する第2面とを有する第1の素子本体部と、前記第1面に設けられた第1の素子電極とを含む第1の半導体素子と、
絶縁性基板と前記絶縁性基板の一方の主面に形成された第1の配線層とを含み、前記一方の主面が前記第1の素子本体部の前記第2面と向かい合うように配置された配線基板と、
前記第1の半導体素子の前記第1の素子電極の表面を含む面の少なくとも一部と、前記配線基板の前記第1の半導体素子側の面の少なくとも一部とを覆う第1のフィルムと、
前記第1のフィルムの前記配線基板側の面に形成され、第1端と第2端とを有する第1の配線を含む第2の配線層と、を備え、
前記第1の配線の前記第1端と前記第1の素子電極とが接合され、前記第1の配線の前記第2端と前記第1の配線層の一部とが接合された半導体装置。
A first semiconductor element including a first element body having a first surface and a second surface facing the first surface; and a first element electrode provided on the first surface;
An insulating substrate and a first wiring layer formed on one main surface of the insulating substrate, wherein the one main surface is disposed to face the second surface of the first element body. Wiring board,
A first film that covers at least a part of a surface of the first semiconductor element including a surface of the first element electrode and at least a part of a surface of the wiring board on the first semiconductor element side;
A second wiring layer formed on a surface of the first film on the wiring board side and including a first wiring having a first end and a second end;
A semiconductor device in which the first end of the first wiring and the first element electrode are joined, and the second end of the first wiring and a part of the first wiring layer are joined.
前記第1のフィルムは、実質的に透明である請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first film is substantially transparent. 前記第1の半導体素子と前記絶縁性基板とが、接合材を介して接合された請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first semiconductor element and the insulating substrate are bonded via a bonding material. 前記第1のフィルムの前記配線基板側の面の反対面に形成された電磁波遮蔽層をさらに含む請求項1に記載の半導体装置。   The semiconductor device according to claim 1, further comprising an electromagnetic wave shielding layer formed on a surface opposite to the surface on the wiring board side of the first film. 前記第1のフィルムと前記第2の配線層とからなる積層体の前記第2の配線層側の面の一部が、前記第1の半導体素子の前記第1の素子電極の表面を含む面に、直接または間接的に密着した請求項1に記載の半導体装置。   A part of a surface on the second wiring layer side of the laminate composed of the first film and the second wiring layer includes a surface of the first element electrode of the first semiconductor element. The semiconductor device according to claim 1, wherein the semiconductor device is in direct or indirect contact. 前記積層体の前記第2の配線層側の面の前記一部とは異なる他の一部と、第1の素子本体部の側面とが、直接または間接的に密着した請求項5に記載の半導体装置。   The other part different from the part of the surface on the second wiring layer side of the laminated body and the side surface of the first element body part are in direct or indirect contact. Semiconductor device. 前記第1のフィルムと前記第2の配線層とからなる積層体の前記配線基板側の面が、前記第1の半導体素子および前記配線基板に直接または間接的に接合されて、前記第1の半導体素子が、前記積層体と前記配線基板によって囲われる密閉空間内に配置された請求項1に記載の半導体装置。   The surface on the wiring board side of the laminate composed of the first film and the second wiring layer is directly or indirectly bonded to the first semiconductor element and the wiring board, so that the first The semiconductor device according to claim 1, wherein the semiconductor element is disposed in a sealed space surrounded by the stacked body and the wiring board. 前記第1の配線の前記第1端と前記第1の素子電極とが接し、前記第1の配線の前記第2端と前記第1の配線層の前記一部とが接している請求項1に記載の半導体装置。   The first end of the first wiring and the first element electrode are in contact with each other, and the second end of the first wiring and the part of the first wiring layer are in contact with each other. A semiconductor device according to 1. 前記第1のフィルムの前記配線基板側の面の反対面に形成された第3の配線層をさらに含む請求項1に記載の半導体装置。   The semiconductor device according to claim 1, further comprising a third wiring layer formed on a surface opposite to the surface on the wiring board side of the first film. 第2の素子電極を有する第2の半導体素子をさらに含み、
前記第2の素子電極と前記第3の配線層とが接合された請求項9に記載の半導体装置。
A second semiconductor element having a second element electrode;
The semiconductor device according to claim 9, wherein the second element electrode and the third wiring layer are joined.
前記第1のフィルムの前記配線基板側の面の反対面は、前記第1の素子本体部の前記第1面と同面積以上の平面を含む請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein a surface opposite to the surface on the wiring board side of the first film includes a plane having the same area or more as the first surface of the first element main body. 第2の素子本体部と前記第2の素子本体部に設けられた第2の素子電極とを有する第2の半導体素子をさらに含み、
前記第2の素子本体部の前記第2の素子電極の表面を含む面の反対面と、前記第1のフィルムの前記平面とが向かい合うように、前記第1のフィルム上に前記第2の半導体素子が配置された請求項11に記載の半導体装置。
A second semiconductor element having a second element body and a second element electrode provided on the second element body;
The second semiconductor on the first film such that a surface opposite to the surface including the surface of the second element electrode of the second element body and the plane of the first film face each other. The semiconductor device according to claim 11, wherein an element is disposed.
前記第2の半導体素子の前記第2の素子電極の表面を含む面の少なくとも一部と、前記配線基板の前記第2の半導体素子側の面の少なくとも一部とを覆う第2のフィルムと、
前記第2フィルムの前記配線基板側の面に形成され、第1端と第2端とを有する第2の配線を含む第4の配線層とをさらに備え、
前記第2の配線の前記第1端と前記第2の素子電極とが接合され、
前記第1の配線の前記第2端が接合された前記第1の配線層の前記一部とは異なる前記第1の配線層の他の一部と、前記第2の配線の前記第2端とが接合された請求項12に記載の半導体装置。
A second film covering at least a part of a surface of the second semiconductor element including a surface of the second element electrode and at least a part of a surface of the wiring board on the second semiconductor element side;
A fourth wiring layer formed on a surface of the second film on the wiring board side and including a second wiring having a first end and a second end;
The first end of the second wiring and the second element electrode are joined,
Another part of the first wiring layer different from the part of the first wiring layer to which the second end of the first wiring is joined, and the second end of the second wiring And the semiconductor device according to claim 12.
前記絶縁性基板の前記第1の配線層が形成された面側に凹部が形成されており、
前記凹部内に、前記第1の半導体素子が配置された請求項1に記載の半導体装置。
A recess is formed on the surface of the insulating substrate on which the first wiring layer is formed,
The semiconductor device according to claim 1, wherein the first semiconductor element is disposed in the recess.
前記絶縁性基板の前記第1の配線層が形成された面と、前記第1の素子本体部の前記第1面とが、実質的に同一面内にある請求項14に記載の半導体装置。   The semiconductor device according to claim 14, wherein a surface of the insulating substrate on which the first wiring layer is formed and the first surface of the first element main body are substantially in the same plane. 前記第1のフィルムの前記配線基板側の面の反対面は、実質的に平面である請求項14に記載の半導体装置。   The semiconductor device according to claim 14, wherein a surface opposite to the surface on the wiring board side of the first film is a substantially flat surface. 第2の素子本体部と前記第2の素子本体部に設けられた第2の素子電極とを有する第2の半導体素子をさらに含み、
前記第2の半導体素子の前記第2の素子電極の表面を含む面の反対面と、前記第1のフィルムの前記平面とが向かい合うように、前記第2の半導体素子が前記第1のフィルム上に配置された請求項16に記載の半導体装置。
A second semiconductor element having a second element body and a second element electrode provided on the second element body;
The second semiconductor element is on the first film such that the opposite surface of the second semiconductor element including the surface of the second element electrode faces the plane of the first film. The semiconductor device according to claim 16, which is disposed in
前記第2の半導体素子の前記第2の素子電極の表面を含む面の少なくとも一部と、前記配線基板の前記第2の半導体素子側の面の少なくとも一部とを覆う第2のフィルムと、
前記第2フィルムの前記配線基板側の面に形成され、第1端と第2端とを有する第2の配線を含む第4の配線層と、をさらに備え、
前記第2の配線の前記第1端と前記第2の素子電極とが接合され、
前記第1の配線の前記第2端が接合された前記第1の配線層の前記一部とは異なる前記第1の配線層の他の一部と、前記第2の配線の前記第2端とが接合された請求項17に記載の半導体装置。
A second film covering at least a part of a surface of the second semiconductor element including a surface of the second element electrode and at least a part of a surface of the wiring board on the second semiconductor element side;
A fourth wiring layer formed on a surface of the second film on the wiring board side and including a second wiring having a first end and a second end;
The first end of the second wiring and the second element electrode are joined,
Another part of the first wiring layer different from the part of the first wiring layer to which the second end of the first wiring is joined, and the second end of the second wiring The semiconductor device according to claim 17, which is bonded to each other.
前記配線基板は、プリント基板またはガラス基板である請求項1〜18のいずれかの項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the wiring board is a printed board or a glass substrate. 第1の素子本体部と前記第1の素子本体部に設けられた第1の素子電極とを有する第1の半導体素子と、絶縁性基板と前記絶縁性基板の一方の主面に形成された第1の配線層とを含む配線基板とを、前記第1の素子本体部の前記第1の素子電極が設けられた面の反対面と、前記絶縁性基板の前記一方の主面とが向かい合うように重ね、フィルムと前記フィルムの一方の主面に形成され、第1端と第2端とを有する第1の配線を含む第2の配線層とを含むシート状物の、前記第1の配線の前記第1端と前記第1の素子電極とを接合し、前記第1の配線の前記第2端と前記第1の配線層の一部とを接合して、前記フィルムで、前記第1の半導体素子の前記第1の素子電極の表面を含む面の少なくとも一部と、前記配線基板の前記第1の半導体素子側の面の少なくとも一部とを覆う実装工程を含む半導体装置の製造方法。   A first semiconductor element having a first element body and a first element electrode provided on the first element body, and formed on one main surface of the insulating substrate and the insulating substrate. A wiring board including a first wiring layer faces a surface opposite to the surface of the first element body portion on which the first element electrode is provided, and the one main surface of the insulating substrate. The first and second sheets of the sheet including the film and the second wiring layer including the first wiring having the first end and the second end formed on one main surface of the film. Bonding the first end of the wiring and the first element electrode, bonding the second end of the first wiring and a part of the first wiring layer, the film, At least a portion of a surface of the first semiconductor element including the surface of the first element electrode, and the first semiconductor element of the wiring substrate. The method of manufacturing a semiconductor device including a mounting step of covering at least a portion of the surface. 前記実装工程において、前記第1の半導体素子と前記配線基板とを接合する請求項20に記載の半導体装置の製造方法。   21. The method of manufacturing a semiconductor device according to claim 20, wherein, in the mounting step, the first semiconductor element and the wiring board are joined. 前記実装工程において、前記第1の半導体素子と前記配線基板とを接合した後、前記第1の配線の前記第1端と前記第1の素子電極とを接合し、前記第1の配線の前記第2端と前記第1の配線層の一部とを接合する請求項21に記載の半導体装置の製造方法。   In the mounting step, after the first semiconductor element and the wiring substrate are bonded, the first end of the first wiring and the first element electrode are bonded, and the first wiring of the first wiring is connected. The method for manufacturing a semiconductor device according to claim 21, wherein a second end is joined to a part of the first wiring layer. 前記実装工程において、前記第1の配線の前記第1端と前記第1の素子電極とを接合した後、前記第1の半導体素子と前記配線基板とを接合する請求項21に記載の半導体装置の製造方法。   The semiconductor device according to claim 21, wherein, in the mounting step, the first semiconductor element and the wiring substrate are joined after joining the first end of the first wiring and the first element electrode. Manufacturing method. 前記実装工程において、超音波振動を用いて、前記第1の配線の前記第1端と前記第1の素子電極とを接合し、前記第1の配線の前記第2端と前記第1の配線層の一部とを接合する請求項20に記載の半導体装置の製造方法。   In the mounting step, the first end of the first wiring and the first element electrode are joined using ultrasonic vibration, and the second end of the first wiring and the first wiring 21. The method of manufacturing a semiconductor device according to claim 20, wherein a part of the layer is bonded. 前記実装工程において、前記シート状物の前記第2の配線層側の面の一部を、前記第1の半導体素子の前記第1の素子電極の表面を含む面に、直接または間接的に密着させる請求項20に記載の半導体装置の製造方法。   In the mounting step, a part of the surface of the sheet-like material on the second wiring layer side is directly or indirectly adhered to a surface including the surface of the first element electrode of the first semiconductor element. The method for manufacturing a semiconductor device according to claim 20. 前記フィルムは樹脂を含み、
前記実装工程において、前記フィルムを加熱して熱収縮させることにより、前記シート状物を、前記第1の半導体素子の前記第1の素子電極の表面を含む面に密着させる請求項25に記載の半導体装置の製造方法。
The film includes a resin;
The said mounting process WHEREIN: The said sheet-like thing is closely_contact | adhered to the surface including the surface of the said 1st element electrode of a said 1st semiconductor element by heating the said film and carrying out heat shrink. A method for manufacturing a semiconductor device.
前記実装工程において、前記フィルムを加熱し、加圧して、前記フィルムの前記第2の配線層側の面の反対面を平面とする請求項20に記載の半導体装置の製造方法。   21. The method of manufacturing a semiconductor device according to claim 20, wherein in the mounting step, the film is heated and pressed to make a surface opposite to the surface on the second wiring layer side of the film flat. 前記フィルムは未硬化状態の熱硬化性樹脂を含み、
前記実装工程において、前記シート状物を所定の形状に加工した後、加熱により前記熱硬化性樹脂を硬化して、前記シート状物を前記第1の半導体素子の前記第1の素子電極の表面を含む面の少なくとも一部と、前記配線基板の前記第1の半導体素子側の面の少なくとも一部とを覆うことができる形状に加工した後、前記第1の配線の前記第1端と前記第1の素子電極とを接合し、前記第1の配線の前記第2端と前記第1の配線層の一部とを接合する請求項20に記載の半導体装置の製造方法。
The film includes an uncured thermosetting resin,
In the mounting step, after the sheet-like material is processed into a predetermined shape, the thermosetting resin is cured by heating, and the sheet-like material is formed on the surface of the first element electrode of the first semiconductor element. And processing to a shape that can cover at least a part of the surface including the first semiconductor element side surface of the wiring substrate, and the first end of the first wiring 21. The method of manufacturing a semiconductor device according to claim 20, wherein a first element electrode is bonded, and the second end of the first wiring and a part of the first wiring layer are bonded.
前記絶縁性基板の前記第1の配線層が形成された面側に凹部が形成されており、
前記実装工程において、前記第1の半導体素子を、前記凹部内に配置する請求項20に記載の半導体装置の製造方法。
A recess is formed on the surface of the insulating substrate on which the first wiring layer is formed,
21. The method of manufacturing a semiconductor device according to claim 20, wherein in the mounting step, the first semiconductor element is disposed in the recess.
前記実装工程の後に、前記フィルムの前記第2の配線層が形成された面の反対面上に、第2の素子電極を有する第2の半導体素子を配置する工程をさらに含み、
前記工程において、前記第2の半導体素子の前記第2の素子電極の表面を含む面の反対面と前記フィルムの前記平面とが向かい合うように、第2の半導体素子を前記フィルム上に配置する請求項27に記載の半導体装置の製造方法。
After the mounting step, the method further includes a step of disposing a second semiconductor element having a second element electrode on the surface opposite to the surface on which the second wiring layer of the film is formed,
2nd semiconductor element is arrange | positioned on the said film so that the surface opposite to the surface containing the surface of the said 2nd element electrode of the said 2nd semiconductor element and the said plane of the said film may face in the said process. Item 28. A method for manufacturing a semiconductor device according to Item 27.
JP2005148357A 2004-05-26 2005-05-20 Semiconductor device and its manufacturing method Withdrawn JP2006013465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148357A JP2006013465A (en) 2004-05-26 2005-05-20 Semiconductor device and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004156631 2004-05-26
JP2005148357A JP2006013465A (en) 2004-05-26 2005-05-20 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006013465A true JP2006013465A (en) 2006-01-12

Family

ID=35780270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148357A Withdrawn JP2006013465A (en) 2004-05-26 2005-05-20 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006013465A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173214A (en) * 2004-12-14 2006-06-29 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
WO2010087336A1 (en) * 2009-01-27 2010-08-05 パナソニック電工株式会社 Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, and three-dimensional structure, on the surface of which wiring is provided and fabrication method thereof
JP2010258284A (en) * 2009-04-27 2010-11-11 Panasonic Corp Mounting method and mounting structure of electronic component
JP2014197742A (en) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 Electronic device, electronic apparatus, mobile body, and method of manufacturing electronic device
US9070393B2 (en) 2009-01-27 2015-06-30 Panasonic Corporation Three-dimensional structure in which wiring is provided on its surface
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
JP2016012741A (en) * 2009-10-02 2016-01-21 アーカンソー パワー エレクトロニクス インターナショナル インコーポレイテッド Semiconductor device and formation method of the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619104B2 (en) * 2004-12-14 2011-01-26 パナソニック株式会社 Semiconductor device
JP2006173214A (en) * 2004-12-14 2006-06-29 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
US8759148B2 (en) 2009-01-27 2014-06-24 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
JPWO2010087336A1 (en) * 2009-01-27 2012-08-02 パナソニック株式会社 Semiconductor chip mounting method, semiconductor device obtained by using the method, semiconductor chip connection method, three-dimensional structure provided with wiring on the surface, and manufacturing method thereof
US8482137B2 (en) 2009-01-27 2013-07-09 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
TWI452641B (en) * 2009-01-27 2014-09-11 Panasonic Corp Semiconductor wafer packaging method, semiconductor wafer connection method and three-dimensional structure of the system method
US8901728B2 (en) 2009-01-27 2014-12-02 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
US9070393B2 (en) 2009-01-27 2015-06-30 Panasonic Corporation Three-dimensional structure in which wiring is provided on its surface
WO2010087336A1 (en) * 2009-01-27 2010-08-05 パナソニック電工株式会社 Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, and three-dimensional structure, on the surface of which wiring is provided and fabrication method thereof
US9795033B2 (en) 2009-01-27 2017-10-17 Panasonic Corporation Method of mounting semiconductor chips, semiconductor device obtained using the method, method of connecting semiconductor chips, three-dimensional structure in which wiring is provided on its surface, and method of producing the same
JP2010258284A (en) * 2009-04-27 2010-11-11 Panasonic Corp Mounting method and mounting structure of electronic component
JP2016012741A (en) * 2009-10-02 2016-01-21 アーカンソー パワー エレクトロニクス インターナショナル インコーポレイテッド Semiconductor device and formation method of the same
JP2014197742A (en) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 Electronic device, electronic apparatus, mobile body, and method of manufacturing electronic device

Similar Documents

Publication Publication Date Title
US7157789B2 (en) Semiconductor device and method for manufacturing the same
KR100430861B1 (en) Wiring substrate, semiconductor device and package stack semiconductor device
JP4759381B2 (en) Device-embedded circuit board and manufacturing method thereof
US20060091524A1 (en) Semiconductor module, process for producing the same, and film interposer
US20100140786A1 (en) Semiconductor power module package having external bonding area
JPH09298255A (en) Ceramic circuit board and semiconductor device using the board
JP2006013465A (en) Semiconductor device and its manufacturing method
JP2009141169A (en) Semiconductor device
JP5041593B2 (en) Manufacturing method of chip type semiconductor device
TWI592073B (en) Printed circuit board
JP2006165320A (en) Semiconductor lamination module and its manufacturing method
US20050280018A1 (en) Light-emitting diode
JP2007207802A (en) Electronic circuit module and method of manufacturing same
JP6280710B2 (en) WIRING BOARD, LIGHT EMITTING DEVICE AND WIRING BOARD MANUFACTURING METHOD
JP2008192853A (en) Semiconductor device equipped with two or more semiconductor elements, and manufacturing method of semiconductor device
KR101139084B1 (en) Multilayer printed circuit board and method of making same
JP2010050150A (en) Semiconductor device, and semiconductor module
JP2009135391A (en) Electronic device and method of manufacturing the same
US20180163954A1 (en) Light-emitting-element mounting substrate, light emitting device, and light emitting module
US20070045864A1 (en) Semiconductor device including a plurality of semiconductor chips stacked three-dimensionally, and method of manufacturing the same
US20120181066A1 (en) Package carrier
JP2010040721A (en) Semiconductor module, semiconductor device, portable apparatus, and manufacturing method of semiconductor module, and manufacturing method of semiconductor device
JP4667154B2 (en) Wiring board, electrical element device and composite board
JP2620611B2 (en) Substrate for mounting electronic components
JP2013084803A (en) Light-emitting device, light-emitting element package and wiring board for mounting light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081022