JP2006012788A - Lithium ion secondary battery and its manufacturing method - Google Patents

Lithium ion secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2006012788A
JP2006012788A JP2005140251A JP2005140251A JP2006012788A JP 2006012788 A JP2006012788 A JP 2006012788A JP 2005140251 A JP2005140251 A JP 2005140251A JP 2005140251 A JP2005140251 A JP 2005140251A JP 2006012788 A JP2006012788 A JP 2006012788A
Authority
JP
Japan
Prior art keywords
porous film
electrode
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005140251A
Other languages
Japanese (ja)
Other versions
JP4657001B2 (en
Inventor
Shuji Tsutsumi
修司 堤
Kozo Watanabe
耕三 渡邉
Mitsuhiro Takeno
光弘 武野
Mikiya Shimada
幹也 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005140251A priority Critical patent/JP4657001B2/en
Publication of JP2006012788A publication Critical patent/JP2006012788A/en
Application granted granted Critical
Publication of JP4657001B2 publication Critical patent/JP4657001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery enhancing safety against danger derived from internal short circuit and overcharge. <P>SOLUTION: In the lithium ion secondary battery equipped with a positive electrode comprising a composite lithium oxide, a negative electrode, a separator, and a nonaqueous electrolyte, at least one of the positive electrode and the negative electrode has a porous film containing inorganic oxide fillers and a binder on the surface facing the other electrode, and the surface of the electrode partially has a projecting part. The projecting part may be a projecting part installed in the porous film itself, or may be a projecting part formed by installing the projecting part in a mix layer. Furthermore, the separator can be installed. Instead of the above porous film, a porous film can be installed in the separator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、過充電時の熱的安定性に優れたリチウムイオン二次電池およびその製造方法に関する。   The present invention relates to a lithium ion secondary battery excellent in thermal stability during overcharge and a method for producing the same.

近年、小型軽量な携帯機器が広範囲に用いられるようになり、その電源として利用されているリチウムイオン二次電池には、高いエネルギー密度と併せて優れた安全性、および信頼性が求められてきた。   In recent years, small and light portable devices have been widely used, and lithium ion secondary batteries used as power sources have been required to have high safety and reliability in combination with high energy density. .

リチウムイオン電池に、導電性を有する鋭利な突起物、例えば釘が刺さった場合、あるいは製造過程で導電性を有する異物、例えば大きな鉄粉が混入した場合、電池の内部短絡が起こり、そのエネルギー密度の高さゆえに過熱が発生する。ここで電解液の保持性のみを考慮してポリエチレン等のポリオレフィンからなる微多孔性薄膜シートを単独でセパレータとして用いた場合、上記微多孔性薄膜シートは、比較的低温で熱収縮するため、内部短絡部位が拡大し、さらなる過熱を誘発するという不具合が生じる。   If a lithium ion battery is pierced with sharp conductive projections, such as nails, or if foreign particles with conductivity, such as large iron powder, are mixed in the manufacturing process, an internal short circuit of the battery will occur and its energy density Overheating occurs because of the height. Here, when only a microporous thin film sheet made of polyolefin such as polyethylene is used alone as a separator considering only the retention of the electrolytic solution, the microporous thin film sheet is thermally shrunk at a relatively low temperature, The short circuit part expands and the malfunction of inducing further overheating arises.

そこで、短絡に関する安全性を向上させる技術として、電極上に多孔膜を形成する方法が提案されている(特許文献1参照)。また、多孔膜を電解液保持層として機能させ、放電容量を改善することも提案されている(特許文献2参照)。
特開平7−220759号公報 特開2002−8730号公報
Therefore, as a technique for improving safety related to short circuit, a method of forming a porous film on an electrode has been proposed (see Patent Document 1). It has also been proposed to improve the discharge capacity by causing the porous film to function as an electrolyte solution holding layer (see Patent Document 2).
Japanese Patent Laid-Open No. 7-220759 JP 2002-8730 A

従来技術の多孔膜を微多孔性薄膜シートと併用した場合、内部短絡による過熱を抑制することはできる。しかしながら、設計容量を超える過充電を行った場合の過熱を抑止するには至らない。   When a conventional porous membrane is used in combination with a microporous thin film sheet, overheating due to an internal short circuit can be suppressed. However, it does not prevent overheating when overcharging exceeding the design capacity is performed.

ここで過充電について詳述する。充電電源回路が故障した場合、電池は設計容量を超えても充電が終止せず、過充電反応を起こす。過充電反応により、正極活物質から過剰にリチウムが放出される。特に、LiCoO2の場合は、活物質の結晶構造が崩壊し、激しく発熱するため、電池全体での過熱が顕著に促進する。 Here, overcharge will be described in detail. If the charging power supply circuit breaks down, the battery will not stop charging even if it exceeds the design capacity, causing an overcharge reaction. Due to the overcharge reaction, excess lithium is released from the positive electrode active material. In particular, in the case of LiCoO 2 , since the crystal structure of the active material collapses and generates intense heat, overheating of the entire battery is significantly promoted.

過充電による過熱を抑制するためには、大きく2つの方法がある。1つは、セパレータの細孔を比較的低い温度で溶融により塞ぎ、イオン伝導性を消失させる方法である。もう1つは、正負極間に部分的な短絡箇所を故意に形成させ、見かけ上の過充電電流を短絡電流に置換する方法である。後者の方法を具現化させるためには、導電性化学種の析出、具体的には負極から析出したリチウムの針状結晶(デンドライト)、または正極活物質から溶解して負極上に析出した遷移金属を活用することになる。   There are two main methods for suppressing overheating due to overcharging. One is a method in which the pores of the separator are closed by melting at a relatively low temperature to lose ionic conductivity. The other is a method in which a partial short-circuit portion is intentionally formed between the positive and negative electrodes, and the apparent overcharge current is replaced with a short-circuit current. In order to embody the latter method, it is necessary to deposit conductive chemical species, specifically lithium needle crystals (dendrites) deposited from the negative electrode, or transition metals dissolved from the positive electrode active material and deposited on the negative electrode. Will be utilized.

ところが従来の多孔膜は、平坦な電極活物質表面に均一に形成するため、電極の反応性が均一となる。通常の充放電範囲においては好ましい形態であるが、過充電反応の抑止という観点からは、電極の全部位の過充電反応が相当に進行した後に、導電性析出物による短絡箇所形成が起こるため、過熱を抑止することは不可能である。   However, since the conventional porous film is uniformly formed on the surface of the flat electrode active material, the reactivity of the electrode becomes uniform. Although it is a preferred form in the normal charge and discharge range, from the viewpoint of suppressing the overcharge reaction, after the overcharge reaction of all the parts of the electrode has progressed considerably, the formation of a short-circuited portion due to the conductive precipitate occurs, It is impossible to suppress overheating.

本発明は、上記課題を解決するもので、内部短絡に関わる安全性を向上させるとともに、過充電反応の進行が浅い段階で上述した導電性化学種を析出させ、過充電の進行を回避できるリチウムイオン二次電池を提供することを目的とする。   The present invention solves the above-mentioned problem, and improves the safety related to internal short circuit, and deposits the above-mentioned conductive chemical species at a stage where the progress of overcharge reaction is shallow, thereby preventing the progress of overcharge. An object is to provide an ion secondary battery.

本発明は、複合リチウム酸化物からなる正極、リチウムを可逆的に吸蔵・放出しうる材料からなる負極、および非水電解液を具備し、正極と負極とを隔離する通常のセパレータを備えるリチウム二次電池、並びにセパレータを備えないリチウム二次電池に関するものであって、前記正極および負極の少なくと一方が、他方の電極と対向する面に、無機酸化物フィラーと結着剤を含む多孔膜を有し、当該電極表面が部分的に凸部を有していることを特徴とする。
さらに、本発明は、複合リチウム酸化物からなる正極、負極、セパレータ、および非水電解液を具備するリチウムイオン二次電池であって、前記セパレータ上の少なくとも片面には無機酸化物フィラーと結着剤を含む多孔膜を有し、当該多孔膜は部分的に形成された凸部を有することを特徴とする。
The present invention provides a positive electrode made of a composite lithium oxide, a negative electrode made of a material capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte, and a lithium separator provided with a normal separator that separates the positive electrode and the negative electrode. The present invention relates to a secondary battery and a lithium secondary battery not provided with a separator, wherein at least one of the positive electrode and the negative electrode has a porous film containing an inorganic oxide filler and a binder on the surface facing the other electrode. And the electrode surface partially has a convex portion.
Furthermore, the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte comprising a composite lithium oxide, wherein at least one surface on the separator is bound with an inorganic oxide filler. It has the porous film containing an agent, The said porous film has the convex part formed partially, It is characterized by the above-mentioned.

また、本発明は、複合リチウム酸化物からなる正極、負極、および非水電解液を具備し、正極と負極とを隔離する通常のセパレータを備えるリチウム二次電池、並びにセパレータを備えないリチウムイオン二次電池であって、前記正極および負極の一方が、他方の電極と対向する面に、無機酸化物フィラーと結着剤を含む平坦な多孔膜を有し、他方の電極の合剤層が、前記一方の電極と対向する面に、部分的に凸部を有することを特徴とするリチウムイオン二次電池を提供する。
さらに、本発明は、複合リチウム酸化物からなる正極、負極、セパレータ、および非水電解液を具備するリチウムイオン二次電池であって、前記セパレータの少なくとも片面には無機酸化物フィラーと結着剤を含む多孔膜を有し、前記多孔膜と対向する電極の合剤層が、その表面に部分的に凸部を有することを特徴とするリチウムイオン二次電池を提供する。
The present invention also provides a lithium secondary battery including a normal separator that separates the positive electrode and the negative electrode, and a lithium ion battery that does not include a separator. In the secondary battery, one of the positive electrode and the negative electrode has a flat porous film containing an inorganic oxide filler and a binder on the surface facing the other electrode, and the mixture layer of the other electrode is Provided is a lithium ion secondary battery characterized in that a convex portion is partially provided on a surface facing the one electrode.
Furthermore, the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte made of composite lithium oxide, wherein at least one side of the separator has an inorganic oxide filler and a binder. The lithium ion secondary battery is characterized in that the electrode mixture layer facing the porous film has a convex part on the surface thereof.

本発明によれば、内部短絡および過充電の双方に関わる安全性を向上させたリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery which improved the safety | security regarding both an internal short circuit and overcharge can be provided.

本発明のリチウムイオン二次電池は、正極および負極の少なくとも一方が、他方の電極と対向する面に、無機酸化物フィラーと結着剤を含む多孔膜を有し、当該電極表面が部分的に凸部を有している。   In the lithium ion secondary battery of the present invention, at least one of the positive electrode and the negative electrode has a porous film containing an inorganic oxide filler and a binder on the surface facing the other electrode, and the surface of the electrode is partially Has a convex part.

好ましい実施の形態において、前記凸部は、前記多孔膜の表面に部分的に形成された凸部からなる。
このような電極を製造する方法は、電極活物質、導電剤および結着剤を含む電極合剤層の表面に、多孔膜形成用塗料を塗布、乾燥して多孔膜を形成する工程、および前記多孔膜の上に、多孔膜形成用塗料を一定のパターンに塗布、乾燥して凸部を形成する工程を有する。
そのような電極を製造する他の方法は、電極活物質、導電剤および結着剤を含む電極合剤層の表面に、吐出量を部分的に増大させて多孔膜形成用塗料を塗布する塗工方法、例えばダイコーター工法により、部分的に凸部を有する多孔膜を形成する工程を有する。
In preferable embodiment, the said convex part consists of a convex part partially formed in the surface of the said porous film.
A method for producing such an electrode includes a step of applying a porous film-forming coating on the surface of an electrode mixture layer containing an electrode active material, a conductive agent and a binder, and drying to form a porous film, and On the porous film, there is a step of forming a convex portion by applying a porous film-forming paint in a certain pattern and drying.
Another method for producing such an electrode is to apply a coating for forming a porous film on the surface of an electrode mixture layer containing an electrode active material, a conductive agent and a binder by partially increasing the discharge rate. It has the process of forming the porous film which has a convex part partially by a construction method, for example, a die coater construction method.

他の好ましい実施の形態において、前記多孔膜を有する電極の合剤層が、部分的に凸部を有する。
この電極を製造する方法は、電極活物質、導電剤および結着剤を含む電極合剤層の表面に、凸部を刻印する工程、および前記凸部を刻印した電極合剤層の表面に多孔膜形成用塗料を塗布、乾燥して多孔膜を形成する工程を有する。
In another preferred embodiment, the mixture layer of the electrode having the porous film partially has a convex portion.
The method of manufacturing this electrode includes a step of marking a convex portion on the surface of an electrode mixture layer containing an electrode active material, a conductive agent and a binder, and a porous surface on the surface of the electrode mixture layer stamped with the convex portion. A step of forming a porous film by applying and drying a film-forming coating material;

本発明の他の実施の形態において、正極および負極の一方が、他方の電極と対向する面に、無機酸化物フィラーと結着剤を含む平坦な多孔膜を有し、他方の電極の合剤層が、前記一方の電極と対向する面に、部分的に凸部を有する。   In another embodiment of the present invention, one of the positive electrode and the negative electrode has a flat porous film containing an inorganic oxide filler and a binder on the surface facing the other electrode, and the mixture of the other electrode The layer partially has a convex portion on a surface facing the one electrode.

本発明によると、多孔膜あるいは電極の凸部と、対向する電極との間に隙間が生じる。この隙間は、他の部位より多く電解液を保持できるため、イオンのやりとりが活性化される。この部位において過充電時に集中的に過充電反応が進行し、電池全体としての過充電が余り進行しないうちに導電性化学種が析出する。このため、過充電の進行を抑制し、過熱という不具合を回避することができる。
さらに、過充電の際の高い電位や温度によって導電性高分子を生成する材料を電池の内部に加えておくと、導電性化学種の析出タイミングをより早めることができる。
なお、以上述べた作用効果は、多孔膜が電極上でなく、セパレータ上に形成されていても同様に発現する。
According to the present invention, a gap is formed between the convex portion of the porous film or electrode and the opposing electrode. Since this gap can hold more electrolytic solution than other parts, the exchange of ions is activated. At this site, the overcharge reaction proceeds intensively at the time of overcharge, and conductive chemical species are deposited before the overcharge as the whole battery progresses too much. For this reason, it is possible to suppress the progress of overcharging and avoid the problem of overheating.
Furthermore, if a material that generates a conductive polymer due to a high potential or temperature during overcharge is added to the inside of the battery, the timing of deposition of the conductive chemical species can be further advanced.
In addition, the effect mentioned above is similarly expressed even if the porous film is formed not on the electrode but on the separator.

以下に本発明の実施の形態について示すが、本発明はこれらに限定されるものではない。
まず、本発明の主構成要素である多孔膜について説明する。
多孔膜にフィラーとして用いられるのは、絶縁性の無機酸化物である。各種樹脂微粒子もフィラーとしては一般的に用いられる。しかし、前述のように耐熱性が必要である上に、リチウムイオン電池の使用範囲内における電気化学的安定性や、電解液への耐溶解性を高く保つ必要がある。これら要件を満たし、かつ塗料化に適する材料としては無機酸化物が選択される。具体的には、アルミナ粉末、シリカ粉末等があげられる。特に、電気化学的安定性の観点から、アルミナが好適である。
Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
First, the porous membrane which is the main component of the present invention will be described.
An insulating inorganic oxide is used as a filler in the porous film. Various resin fine particles are also generally used as fillers. However, as described above, heat resistance is required, and in addition, it is necessary to maintain high electrochemical stability within the range of use of the lithium ion battery and high resistance to dissolution in the electrolytic solution. An inorganic oxide is selected as a material that satisfies these requirements and is suitable for coating. Specific examples include alumina powder and silica powder. In particular, alumina is preferable from the viewpoint of electrochemical stability.

無機酸化物の多孔膜に占める含有率は、50重量%以上99重量%以下であることが好ましい。無機酸化物の含有率が50重量%を下回る結着剤過多な場合、無機酸化物の粒子間の隙間で構成される細孔構造の制御が困難になる。無機酸化物の含有率が99重量%を上回る結着剤過少な場合、多孔膜の電極に対する密着性が低下するため、脱落による機能の損失が引き起こされる。この無機酸化物は、複数種を混合して用いてもよい。あるいは多孔膜を多層にし、それぞれに異なる無機酸化物を用いてもよい。特に、メディアン径の異なる同一種の無機酸化物を混合して用いることは、より緻密な多孔膜を得るために好ましい態様の1つである。   The content of the inorganic oxide in the porous film is preferably 50% by weight or more and 99% by weight or less. When the content of the inorganic oxide is excessively less than 50% by weight, it is difficult to control the pore structure constituted by the gaps between the inorganic oxide particles. When the content of the inorganic oxide exceeds 99% by weight, the adhesiveness of the porous film to the electrode is lowered, and thus loss of function due to dropping off is caused. A plurality of these inorganic oxides may be mixed and used. Alternatively, the porous film may be multilayered and different inorganic oxides may be used for each. In particular, the use of a mixture of the same kind of inorganic oxides having different median diameters is one of preferred embodiments for obtaining a denser porous film.

多孔膜のフィラーを固定する結着剤としては、多孔膜を形成する電極電位で安定なものであれば特に限定されず、通常正極あるいは負極に用いられるものを使うことができる。
多孔膜の厚みは特に限定されないが、正負極間にセパレータを備えない場合、前述した多孔膜の効用を発揮しつつ設計容量を維持する観点から、0.5〜30μmであることが好ましい。より好ましくは1〜20μmである。また、セパレータを備える場合には、セパレータと多孔膜との合計厚みが5.5〜60μmであることが好ましく、より好ましくは、9〜45μmである。ここでいう多孔膜の厚みとは、多孔膜自体が部分的な凸部を有する場合は、その凸部を除いた平均値とする。厚みはシックネスゲージや表面荒さ測定機、電極断面のSEM写真などによって測定することができる。
The binder for fixing the porous membrane filler is not particularly limited as long as it is stable at the electrode potential for forming the porous membrane, and those usually used for the positive electrode or the negative electrode can be used.
The thickness of the porous film is not particularly limited, but when the separator is not provided between the positive and negative electrodes, it is preferably 0.5 to 30 μm from the viewpoint of maintaining the design capacity while exhibiting the effect of the porous film described above. More preferably, it is 1-20 micrometers. Moreover, when providing a separator, it is preferable that the total thickness of a separator and a porous membrane is 5.5-60 micrometers, More preferably, it is 9-45 micrometers. The thickness of the porous film referred to here is an average value excluding the convex portion when the porous film itself has a partial convex portion. The thickness can be measured by a thickness gauge, a surface roughness measuring machine, an SEM photograph of an electrode cross section, or the like.

本発明の効果である過充電安定性を向上させるためには、電極間に他の部位より多く電解液を保持できる隙間を設ける必要がある。その隙間は、部分的な凸部により出現し、その高さは、1〜20μmであることが好ましい。その具現策は以下の3通りである。   In order to improve the overcharge stability, which is an effect of the present invention, it is necessary to provide a gap between the electrodes that can hold the electrolytic solution more than other parts. The gap appears due to a partial convex portion, and the height is preferably 1 to 20 μm. The implementation measures are as follows.

第1の方法は、正極および負極の少なくとも一方またはセパレータ上に、部分的に凸部を有する多孔膜を接着形成する方法である。多孔膜に部分的に凸部を形成させる方法としては、ダイコーターやグラビアコーターなどの方法で、通常の平坦な多孔膜を形成させた後、同じくダイコーターやグラビアコーター、または凹版転写印刷やスクリーン印刷などを用いて、多孔膜上に凸部を形成する方法である。あるいは平坦な電極合剤層またはセパレータの上に、ダイコーターにて吐出量をパルス的に増大させて、多孔膜塗料を塗布することにより、部分的に凸部を有する多孔膜を形成する方法がある。   The first method is a method in which a porous film having a convex portion is bonded and formed on at least one of a positive electrode and a negative electrode or a separator. As a method for forming convex portions partially on the porous film, after forming a normal flat porous film by a method such as a die coater or gravure coater, the die coater or gravure coater, or intaglio transfer printing or screen This is a method of forming a convex portion on a porous film using printing or the like. Alternatively, a method of forming a porous film partially having a convex part by applying a porous film paint on a flat electrode mixture layer or separator by increasing the discharge amount in a pulse manner with a die coater. is there.

第2の方法は、正極および負極の少なくとも一方の電極合剤層に部分的に凸部を形成し、部分的に凸部を有した多孔膜一体型電極となるよう、電極合剤層の凹凸に沿うようにほぼ同じ厚みの多孔膜を接着形成する方法である。電極合剤層に部分的に凸部を形成させる方法としては、表面に凹凸が設けられた回転ローラーによる圧延や刻印などがあげられる。回転ローラーの凹凸は、例えば梨地、粗面、溝付き(回転方向に平行、垂直または斜めなどの溝付き)、エンボス加工、ハチの巣状、突起付きなどがあげられる。また、圧延ローラー表面の材質は、金属、セラミックス、ゴムなどがあげられる。さらには、ローラーと電極間に凹版フィルムを設置して部分的に凸部を形成することもできる。   The second method is to form a convex part on at least one of the positive electrode and negative electrode electrode mixture layers, and to form a porous membrane-integrated electrode having a convex part. In this method, a porous film having substantially the same thickness is formed by bonding. Examples of a method for forming a convex part partially on the electrode mixture layer include rolling or engraving using a rotating roller having a surface provided with irregularities. The unevenness of the rotating roller includes, for example, a textured surface, a rough surface, a groove (with a groove such as parallel, perpendicular or oblique to the rotation direction), embossing, a honeycomb shape, and a protrusion. Examples of the material of the rolling roller surface include metals, ceramics, and rubber. Furthermore, an intaglio film can be installed between a roller and an electrode, and a convex part can also be formed partially.

第3の方法は、正極または負極の一方またはセパレータ上に平坦な多孔膜を接着形成し、多孔膜に対向する電極合剤層に部分的に凸部を形成する方法である。平坦な多孔膜を形成する方法は、上記第1の方法を用いることができる。電極合剤層に部分的に凸部を形成する方法は、上記第2の方法を用いることができる。   The third method is a method in which a flat porous film is bonded and formed on one of the positive electrode and the negative electrode or on the separator, and a convex portion is partially formed on the electrode mixture layer facing the porous film. As a method for forming a flat porous film, the first method can be used. The second method can be used as a method of partially forming a convex portion in the electrode mixture layer.

上記の凸部のパターンは、凸部および相対的に凹部となる部分のいずれの比率が多くてもかまわない。また、極板平面上での位置、形状、図柄はどのようなものでもよい。具体的な凹凸パターンを図1〜5に示す。   The ratio of the convex part pattern to the convex part and the relatively concave part may be large. Further, any position, shape, and pattern on the electrode plate plane may be used. A specific uneven pattern is shown in FIGS.

図1Aおよび図1Bに示す電極板10は、電極合剤層13の表面に、凸部15を有する多孔膜14を形成した例である。上に説明したように、多孔膜を形成した後に、凸部を形成しても良いし、凸部と一体に多孔膜を形成しても良い。ここでは、凸部15は、電極板の長手方向に等間隔に設けられている。11は電極の芯材、12は集電リードを表す。   The electrode plate 10 shown in FIGS. 1A and 1B is an example in which a porous film 14 having convex portions 15 is formed on the surface of the electrode mixture layer 13. As described above, after forming the porous film, the convex portion may be formed, or the porous film may be formed integrally with the convex portion. Here, the convex portions 15 are provided at equal intervals in the longitudinal direction of the electrode plate. 11 represents an electrode core, and 12 represents a current collecting lead.

図2Aおよび図2Bに示す電極板20は、電極の合剤層23に凸部27を設け、その合剤層23の上にほぼ同じ厚みの多孔膜24を形成した例である。合剤層23の凸部に対応する部分25が凸部となっている。
図3Aおよび図3Bに示す電極板30は、合剤層13上に、電極の長手方向に伸びた凸部35を有する多孔膜34を形成した例である。
図4Aおよび図4Bに示す電極板40は、合剤層43に、長手方向に伸びる凸部47を形成し、その合剤層の上に多孔膜44を形成した例である。合剤層43の凸部に対応する部分が凸部45となっている。
The electrode plate 20 shown in FIGS. 2A and 2B is an example in which a convex portion 27 is provided on an electrode mixture layer 23 and a porous film 24 having substantially the same thickness is formed on the mixture layer 23. A portion 25 corresponding to the convex portion of the mixture layer 23 is a convex portion.
The electrode plate 30 shown in FIGS. 3A and 3B is an example in which a porous film 34 having convex portions 35 extending in the longitudinal direction of the electrode is formed on the mixture layer 13.
The electrode plate 40 shown in FIGS. 4A and 4B is an example in which a convex portion 47 extending in the longitudinal direction is formed on the mixture layer 43 and a porous film 44 is formed on the mixture layer. A portion corresponding to the convex portion of the mixture layer 43 is a convex portion 45.

図5Aおよび図5Bに示す電極板50は、合剤層53上に長手方向に等間隔に凸部57を設けたものである。この電極板50は、図6に示すように、合剤層63上に均一な多孔膜64を形成した電極板60を相手極として使用される。図6において、61は電極の芯材、62は集電リードである。   The electrode plate 50 shown in FIGS. 5A and 5B is obtained by providing convex portions 57 on the mixture layer 53 at equal intervals in the longitudinal direction. As shown in FIG. 6, this electrode plate 50 uses an electrode plate 60 in which a uniform porous film 64 is formed on a mixture layer 63 as a counter electrode. In FIG. 6, 61 is an electrode core, and 62 is a current collecting lead.

本発明で用いる正極活物質としては、コバルト酸リチウムおよびその変性体、例えばアルミニウムやマグネシウムを固溶させたもの、ニッケル酸リチウムおよびその変性体、例えばニッケルの一部をコバルトで置換させたもの、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。結着剤としては、ポリテトラフルオロエチレン、変性アクリロニトリルゴム粒子バインダー(例えば、日本ゼオン(株)製BM−500Bなど)を増粘効果のあるカルボキシメチルセルロース、ポリエチレンオキシド、可溶性変性アクリロニトリルゴム(例えば、日本ゼオン(株)製BM−720Hなど)などと組み合わせても良く、また単一で結着性および増粘性の双方を有するポリフッ化ビニリデンおよびその変性体を単独または組み合わせて用いても良い。導電剤としては、アセチレンブラック、ケッチェンブラック、各種グラファイトを単独あるいは組み合わせて用いて良い。   As the positive electrode active material used in the present invention, lithium cobaltate and a modified product thereof, for example, a solid solution of aluminum or magnesium, lithium nickelate and a modified product thereof, for example, a part of nickel substituted with cobalt, Examples include composite oxides such as lithium manganate and modified products thereof. Examples of the binder include polytetrafluoroethylene, modified acrylonitrile rubber particle binder (for example, BM-500B manufactured by Nippon Zeon Co., Ltd.), carboxymethyl cellulose having a thickening effect, polyethylene oxide, soluble modified acrylonitrile rubber (for example, Japan BM-720H manufactured by Zeon Co., Ltd.) and the like, and a single polyvinylidene fluoride having both binding properties and thickening properties and a modified product thereof may be used alone or in combination. As the conductive agent, acetylene black, ketjen black, and various graphites may be used alone or in combination.

負極活物質としては、各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料およびスズなどを含む各種合金組成材料を用いることができる。結着剤としては、ポリフッ化ビニリデンおよびその変性体をはじめ各種バインダーを用いることができる。リチウムイオン受入れ性向上の観点から、SBRおよびその変性体をカルボキシメチルセルロースをはじめとするセルロース系樹脂と併用または少量添加するのがより好ましい。   As the negative electrode active material, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials including tin can be used. As the binder, various binders such as polyvinylidene fluoride and modified products thereof can be used. From the viewpoint of improving lithium ion acceptability, it is more preferable to use SBR and a modified product thereof together with a cellulose resin such as carboxymethyl cellulose or to add a small amount.

セパレータについては、リチウムイオン電池の使用範囲に耐えうる組成であれば特に限定されない。ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的である。このセパレータの厚みは特に限定されないが、前述した多孔膜の効用を発揮しつつ設計容量を維持する観点から、5〜30μmであることが好ましい。より好ましくは8〜25μmである。
また、短絡部分の形成には、過充電状態で導電性を有する分解物を生成し、これがセパレータを貫通して微少短絡を引き起こすように、シクロアルキルベンゼン誘導体などの過充電添加剤を電解液に加えておくこともあわせて行うとより効果的である。
About a separator, if it is a composition which can endure the use range of a lithium ion battery, it will not specifically limit. Generally, a microporous film of an olefin resin such as polyethylene or polypropylene is used singly or in combination. The thickness of the separator is not particularly limited, but is preferably 5 to 30 μm from the viewpoint of maintaining the design capacity while exhibiting the effect of the porous film described above. More preferably, it is 8-25 micrometers.
In addition, in order to form a short circuit part, an overcharge additive such as a cycloalkylbenzene derivative is added to the electrolyte so that a decomposition product having conductivity in an overcharged state is generated and this causes a slight short circuit through the separator. It is more effective if it is done together.

電解液については、溶質としてLiPF6およびLiBF4などの各種リチウム塩を用いることができる。溶媒としては、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを単独および組み合わせて用いることができる。さらには正負極上に良好な皮膜を形成させるために、ビニレンカーボネートやその変性体を加えることも可能である。 The electrolyte may be any of various lithium salts such as LiPF 6 and LiBF 4 as a solute. As the solvent, ethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, or the like can be used alone or in combination. Furthermore, in order to form a good film on the positive and negative electrodes, it is also possible to add vinylene carbonate or a modified product thereof.

ここで本発明の特徴である過充電安全性を向上させるために、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、シクロペンチルベンゼン、ピロール、N−メチルピロール、チオフェン、フラン、インドール、3−クロロチオフェン、3−ブロモチオフェン、3−フルオロチオフェン、1,2−ジメトキシべンゼン、1−メチル−3−ピリジニウムテトラフルオロボーレート、クメン、1,3−ジイソプロピルベンゼン、1,4−ジイソプロピルベンゼン、1−メチルプロピルベンゼン、1,3−ビス(1−メチルプロピル)ベンゼン、1,4−ビス(1−メチルプロピル)ベンゼンなどを電解液に加えておくことが効果的である。これらの化合物は、過充電時に分解し、正負極間における導電性化学種の析出を促進する作用があるため、本発明の効果を顕著にする観点から好ましい。   Here, in order to improve the overcharge safety that is a feature of the present invention, cyclohexylbenzene, biphenyl, diphenyl ether, cyclopentylbenzene, pyrrole, N-methylpyrrole, thiophene, furan, indole, 3-chlorothiophene, 3-bromothiophene. , 3-fluorothiophene, 1,2-dimethoxybenzene, 1-methyl-3-pyridinium tetrafluoroborate, cumene, 1,3-diisopropylbenzene, 1,4-diisopropylbenzene, 1-methylpropylbenzene, 1,3 It is effective to add -bis (1-methylpropyl) benzene, 1,4-bis (1-methylpropyl) benzene or the like to the electrolytic solution. These compounds are preferable from the viewpoint of making the effects of the present invention remarkable because they have an action of decomposing during overcharge and promoting the precipitation of conductive chemical species between the positive and negative electrodes.

以下、本発明の実施例を説明する。
《比較例1》
まず、正極板は以下のように作製した。
コバルト酸リチウム3kgを、ポリフッ化ビニリデンのN−メチル−2−ピロリドン(以下NMPで表す)溶液(呉羽化学(株)製PVDF#1320、固形分12重量%)1kg、アセチレンブラック90gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極合剤塗料を作製した。この塗料を15μm厚のアルミニウム箔の両面に塗布、乾燥し、総厚が160μmとなるように圧延した後、電池サイズが直径18mm、高さ65mmの18650円筒型電池のケースに挿入可能な幅および長さに切断、加工して、正極板を得た。
Examples of the present invention will be described below.
<< Comparative Example 1 >>
First, the positive electrode plate was produced as follows.
3 kg of lithium cobaltate, 1 kg of a solution of polyvinylidene fluoride in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) (PVDF # 1320 manufactured by Kureha Chemical Co., Ltd., 12 wt% solids), 90 g of acetylene black and an appropriate amount of NMP At the same time, the mixture was stirred with a double-arm kneader to prepare a positive electrode mixture paint. This paint is applied to both sides of a 15 μm thick aluminum foil, dried, rolled to a total thickness of 160 μm, and then inserted into a case of an 18650 cylindrical battery having a diameter of 18 mm and a height of 65 mm. The positive electrode plate was obtained by cutting and processing into lengths.

一方、負極板は、人造黒鉛3kgを、スチレン−ブタジエン共重合体ゴム粒子結着剤(日本ゼオン(株)製BM−400B(固形分40重量%))75g、カルボキシメチルセルロース30gおよび適量の水とともに双腕式練合機にて攪拌し、負極塗料を作製した。この塗料を10μm厚の銅箔の両面に塗布、乾燥し、総厚が180μmとなるように圧延した後、18650円筒型電池ケースに挿入可能な幅および長さに切断、加工して、負極板を得た。   On the other hand, the negative electrode plate comprises 3 kg of artificial graphite, 75 g of styrene-butadiene copolymer rubber particle binder (BM-400B (solid content: 40% by weight) manufactured by Nippon Zeon Co., Ltd.), 30 g of carboxymethyl cellulose and an appropriate amount of water. The mixture was stirred with a double arm kneader to prepare a negative electrode paint. This paint is applied to both sides of a 10 μm thick copper foil, dried, rolled to a total thickness of 180 μm, cut into a width and length that can be inserted into a 18650 cylindrical battery case, and processed into a negative electrode plate. Got.

これらの正負極板を、20μm厚のポリエチレン製微多孔フィルムからなるセパレータとともに渦巻き状に捲回して電池ケース内に挿入した。次いで、エチレンカーボネートとエチルメチルカーボネートとを体積比1:3の割合で混合した溶媒にLiPF6を1mol/l溶解させた電解液を5.5g注入して封口し、18650円筒型リチウムイオン電池を作製した。 These positive and negative electrode plates were spirally wound together with a separator made of a polyethylene microporous film having a thickness of 20 μm and inserted into the battery case. Next, 5.5 g of an electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3 was injected and sealed, and a 18650 cylindrical lithium ion battery was obtained. Produced.

《比較例2》
メディアン径0.3μmのアルミナ970gを、ポリアクリロニトリル変性ゴム結着剤(日本ゼオン(株)製BM−720H(固形分8重量%))375gおよび適量のNMPとともに双腕式練合機にて攪拌し、多孔膜塗料を作製した。この塗料を、図6に示すように、比較例1の正極合剤上にグラビアコーターで片側5μm厚みずつ塗布、乾燥した。このほかは比較例1と同様にして電池を作製した。
<< Comparative Example 2 >>
970 g of alumina having a median diameter of 0.3 μm was stirred with a double-arm kneader together with 375 g of a polyacrylonitrile-modified rubber binder (BM-720H (solid content 8 wt%) manufactured by Nippon Zeon Co., Ltd.) and an appropriate amount of NMP. Then, a porous film paint was prepared. As shown in FIG. 6, this paint was applied to the positive electrode mixture of Comparative Example 1 by a gravure coater with a thickness of 5 μm on one side and dried. A battery was fabricated in the same manner as in Comparative Example 1 except for the above.

《比較例3》
比較例2の多孔膜塗料を比較例1の負極合剤上にグラビアコーターで片側5μm厚みずつ塗布乾燥した。このほかは比較例1と同様にして電池を作製した。
<< Comparative Example 3 >>
The porous film coating material of Comparative Example 2 was applied to the negative electrode mixture of Comparative Example 1 by a gravure coater and dried 5 μm thick on each side. A battery was fabricated in the same manner as in Comparative Example 1 except for the above.

《実施例1》
比較例2で作製した、多孔膜を塗布した正極上に、上記多孔膜塗料をさらに5μmの厚み、幅1cm、塗工ピッチ10cmで間欠的に塗工することで、図1Aおよび図1Bに示すように、部分的に凸部が形成されている多孔膜を形成した。この正極を用いたほかは比較例1と同様にして電池を作製した。
Example 1
On the positive electrode produced in Comparative Example 2 and coated with a porous film, the porous film paint is further intermittently applied at a thickness of 5 μm, a width of 1 cm, and a coating pitch of 10 cm, as shown in FIGS. 1A and 1B. Thus, the porous film in which the convex part was partially formed was formed. A battery was fabricated in the same manner as in Comparative Example 1 except that this positive electrode was used.

《実施例2》
比較例3で作製した、多孔膜を塗布した負極上に、上記多孔膜塗料をさらに5μmの厚み、幅1cm、塗工ピッチ10cmで間欠的に塗工することで、図1Aおよび図1Bに示すように、部分的に凸部が形成されている多孔膜を形成した。この負極を用いたほかは比較例1と同様にして電池を作製した。
Example 2
1A and 1B are shown in FIG. 1B by intermittently applying the porous film paint with a thickness of 5 μm, a width of 1 cm, and a coating pitch of 10 cm on the negative electrode prepared in Comparative Example 3 and coated with the porous film. Thus, the porous film in which the convex part was partially formed was formed. A battery was fabricated in the same manner as in Comparative Example 1 except that this negative electrode was used.

《実施例3》
比較例1で作製した負極上に、上記多孔膜塗料をダイコーターにて吐出量をパルス的に増大させて塗工することで、図1Aおよび図1Bに示すように、部分的に凸部が形成されている多孔膜を形成した。この負極を用いたほかは比較例1と同様にして電池を作製した。
Example 3
By applying the porous film paint on the negative electrode produced in Comparative Example 1 with a die coater while increasing the discharge amount in a pulse manner, as shown in FIG. 1A and FIG. The formed porous film was formed. A battery was fabricated in the same manner as in Comparative Example 1 except that this negative electrode was used.

《実施例4》
比較例1で作製した正極板を圧延する際に、溝付きの回転圧延ローラーを用いることで、図2Aおよび図2Bに示すように、合剤層に約5μmの高さの凸部を形成した。凸部の幅は1.5cm、ピッチは9.5cmであった。その上に上記多孔膜塗料を5μmの厚みで塗工して、部分的に凸部を形成した。この正極板を用いたほかは比較例1と同様にして電池を作製した。
Example 4
When rolling the positive electrode plate produced in Comparative Example 1, by using a grooved rotary rolling roller, a convex portion having a height of about 5 μm was formed on the mixture layer as shown in FIGS. 2A and 2B. . The width of the convex portion was 1.5 cm, and the pitch was 9.5 cm. On top of that, the porous film paint was applied in a thickness of 5 μm to partially form convex portions. A battery was fabricated in the same manner as in Comparative Example 1 except that this positive electrode plate was used.

《実施例5》
比較例1で作製した負極板を圧延する際に、溝付きの回転圧延ローラーを用いることで、図2Aおよび図2Bに示すように、合剤層に約7μmの高さの凸部を形成した。凸部の幅は1.5cm、ピッチは9.5cmであった。その上に上記多孔膜塗料を5μmの厚みで塗工して、部分的に凸部を形成した。この負極板を用いたほかは比較例1と同様にして電池を作製した。
Example 5
When rolling the negative electrode plate produced in Comparative Example 1, by using a grooved rotary rolling roller, a convex portion having a height of about 7 μm was formed in the mixture layer as shown in FIGS. 2A and 2B. . The width of the convex portion was 1.5 cm, and the pitch was 9.5 cm. On top of that, the porous film paint was applied in a thickness of 5 μm to partially form convex portions. A battery was fabricated in the same manner as in Comparative Example 1 except that this negative electrode plate was used.

《実施例6》
図6に示すように、比較例2と同様に平坦な多孔膜を塗布した正極板と、実施例4の様に溝付きの回転圧延ローラーを用いて、図5Aおよび図5Bに示すように、合剤層に約7μmの高さの凸部を形成した負極板を用いたほかは比較例1と同様にして電池を作製した。
Example 6
As shown in FIG. 6, as shown in FIGS. 5A and 5B, using a positive electrode plate coated with a flat porous film as in Comparative Example 2 and a rotary rolling roller with a groove as in Example 4, A battery was fabricated in the same manner as in Comparative Example 1 except that a negative electrode plate having convex portions with a height of about 7 μm formed on the mixture layer was used.

《実施例7》
比較例3と同様に平坦な多孔膜層を塗布した負極板と、実施例3の様に溝付きの回転圧延ローラーを用いて、合剤層に約5μmの高さの凸部を形成した正極板を用いたほかは比較例1と同様にして電池を作製した。
Example 7
As in Comparative Example 3, a negative electrode plate coated with a flat porous film layer and a grooved rotary rolling roller as in Example 3 were used to form a convex portion having a height of about 5 μm on the mixture layer. A battery was produced in the same manner as in Comparative Example 1 except that the plate was used.

《実施例8〜14》
実施例1〜7と同様に作製した極板を用いて、電池を作製した。ただし、電解液には、エチレンカーボネートとエチルメチルカーボネートとを体積比1:3の割合で混合した溶媒に、シクロヘキシルベンゼンを0.5wt%、LiPF6を1mol/l溶解させたものを用いた。これらの電池をそれぞれ実施例8〜14とする。
<< Examples 8 to 14 >>
A battery was produced using the electrode plate produced in the same manner as in Examples 1-7. However, as the electrolytic solution, 0.5 wt% cyclohexylbenzene and 1 mol / l LiPF 6 were dissolved in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3. These batteries are referred to as Examples 8 to 14, respectively.

《実施例15》
比較例2の多孔膜塗料を比較例1の負極合剤上にグラビアコーターで片側10μmの厚みに塗布乾燥した。形成した多孔膜上に、実施例2と同様の方法で、図1Aおよび図1Bに示すように、前記と同じ多孔膜塗料を塗工して、部分的に凸部を形成した。この負極を用いたこと、およびセパレータを用いない他は、比較例1と同様にして電池を作製した。
Example 15
The porous film paint of Comparative Example 2 was applied on the negative electrode mixture of Comparative Example 1 to a thickness of 10 μm on one side with a gravure coater and dried. On the formed porous film, the same porous film paint as described above was applied as shown in FIGS. 1A and 1B in the same manner as in Example 2 to partially form convex portions. A battery was fabricated in the same manner as in Comparative Example 1 except that this negative electrode was used and no separator was used.

《実施例16》
多孔膜の厚みを片側15μmの厚みに変更した他は実施例15と同様にして電池を作製した。
《実施例17》
多孔膜の厚みを片側20μmの厚みに変更した他は、実施例15と同様にして電池を作製した。
《実施例18》
多孔膜の厚みを片側20μmの厚みに変更した他は、実施例15と同様にして電池を作製した。
《実施例19》
多孔膜の厚みを片側30μmの厚みに変更した他は、実施例15と同様にして電池を作製した。
Example 16
A battery was fabricated in the same manner as in Example 15 except that the thickness of the porous film was changed to 15 μm on one side.
Example 17
A battery was fabricated in the same manner as in Example 15 except that the thickness of the porous film was changed to 20 μm on one side.
Example 18
A battery was fabricated in the same manner as in Example 15 except that the thickness of the porous film was changed to 20 μm on one side.
Example 19
A battery was fabricated in the same manner as in Example 15 except that the thickness of the porous film was changed to 30 μm on one side.

《実施例20》
凸部を形成した負極合剤層上に塗工する多孔膜の厚みを片側20μmにしたこと、およびセパレータを除いた他は実施例5と同様にして電池を作製した。
Example 20
A battery was fabricated in the same manner as in Example 5, except that the thickness of the porous film to be coated on the negative electrode mixture layer on which the convex portion was formed was 20 μm on one side and the separator was removed.

《実施例21》
比較例2の正極合剤上に塗布乾燥して形成した多孔膜の厚みを片側20μmの厚みに変更した。この正極上に、前記と同じ多孔膜塗料を塗工して、部分的に凸部を形成した。この正極を用いたこと、およびセパレータを用いない他は、比較例1と同様にして電池を作製した。
<< Example 21 >>
The thickness of the porous film formed by applying and drying on the positive electrode mixture of Comparative Example 2 was changed to a thickness of 20 μm on one side. On the positive electrode, the same porous film paint as described above was applied to form a convex part partially. A battery was fabricated in the same manner as in Comparative Example 1 except that this positive electrode was used and no separator was used.

《実施例22》
比較例2の多孔膜塗料を20μm厚のポリエチレン製微多孔フィルムからなるセパレータ上にグラビアコーターで片側のみ20μmの厚みとなるよう塗布乾燥した。このセパレータの多孔膜上に、前記と同じ多孔膜塗料を、5μmの厚み、幅1cm、塗工ピッチ10cmで間欠的に塗工することで、部分的に凸部が形成されている多孔膜を形成した。このセパレータをその多孔膜が正極と対向するように正負極間に介在させて渦巻状に捲回した以外は、比較例1と同様にして電池を作製した。
なお、セパレータの多孔膜は、負極に対向させても構わない。
Example 22
The porous film paint of Comparative Example 2 was applied onto a separator made of a polyethylene microporous film having a thickness of 20 μm and dried with a gravure coater so as to have a thickness of 20 μm only on one side. On the porous film of this separator, the same porous film paint as described above is intermittently applied with a thickness of 5 μm, a width of 1 cm, and a coating pitch of 10 cm, whereby a porous film partially formed with convex portions is obtained. Formed. A battery was fabricated in the same manner as in Comparative Example 1 except that this separator was interposed between the positive and negative electrodes so that the porous film was opposed to the positive electrode and wound in a spiral shape.
The separator porous film may be opposed to the negative electrode.

《実施例23》
比較例2の多孔膜塗料を20μm厚のポリエチレン製微多孔フィルムからなるセパレータ上にグラビアコーターで片側のみ20μmの厚みとなるよう塗布、乾燥した。さらに実施例7で作成した凸部を有する正極板を用い、セパレータの多孔膜を正極と対向させて渦巻状に捲回した以外は、比較例1と同様にして電池を作製した。
<< Example 23 >>
The porous film paint of Comparative Example 2 was applied onto a separator made of a polyethylene microporous film having a thickness of 20 μm, and dried with a gravure coater so as to have a thickness of 20 μm only on one side. Further, a battery was fabricated in the same manner as in Comparative Example 1 except that the positive electrode plate having the convex portion prepared in Example 7 was used and the separator porous film was wound in a spiral shape so as to face the positive electrode.

上記の比較例および実施例で用いた電極の凹部や多孔膜の厚みは、電極板をエポキシ樹脂に埋め込んで切断した断面を研磨して撮影したSEM像より求めた。以上の様にして作製した18650円筒形電池の容量はいずれも約1750mAhであった。
上記の各電池は、まず350mAの定電流にて3.0〜4.2Vの電圧範囲で3サイクルの充放電を行った。3.0Vまで放電した状態で、過充電試験に供した。試験は、環境温度25℃で、1225mAの定電流で連続3時間の過充電を行った。市販電池では、安全機構の一つとして、温度、内圧等により作動する電流遮断機構(CID)を有した封口板が使われている。そのCID作動の有無、電圧降下が始まった充電深度、および試験中の電池の最高到達温度によって効果を比較した。結果を表1に示す。
The thicknesses of the recesses and the porous film of the electrodes used in the above comparative examples and examples were determined from SEM images obtained by polishing and photographing a cross section obtained by embedding an electrode plate in an epoxy resin. The capacity of the 18650 cylindrical battery produced as described above was about 1750 mAh.
Each of the batteries described above was charged and discharged for 3 cycles in a voltage range of 3.0 to 4.2 V at a constant current of 350 mA. The battery was subjected to an overcharge test while being discharged to 3.0V. In the test, overcharging was continuously performed for 3 hours at a constant current of 1225 mA at an environmental temperature of 25 ° C. In a commercially available battery, a sealing plate having a current interruption mechanism (CID) that operates by temperature, internal pressure, etc. is used as one of safety mechanisms. The effect was compared by the presence or absence of the CID operation, the charging depth at which the voltage drop started, and the maximum temperature of the battery under test. The results are shown in Table 1.

Figure 2006012788
Figure 2006012788

3時間連続過充電試験中の電圧挙動と温度挙動の一例を、図7を用いて説明する。実施例1の電池は、比較例1の電池と比べて、過充電深度が浅いところで内部短絡が発生して電圧の降下が始まっている。これは上述したように、正負極間に導電性化学種が析出し、内部短絡が起こっている証拠である。このように過充電中に故意に内部短絡を起こさせることにより、電池温度の過度な上昇を抑制できる。よって高電圧かつ高温という電解液の分解を促進する領域が回避でき、CIDという物理的な回路切断という最終手段を残した状態で過充電安全性を保証することができる。   An example of voltage behavior and temperature behavior during the 3-hour continuous overcharge test will be described with reference to FIG. Compared with the battery of Comparative Example 1, the battery of Example 1 has an internal short circuit where the overcharge depth is shallow and a voltage drop has begun. As described above, this is evidence that conductive chemical species are deposited between the positive and negative electrodes, causing an internal short circuit. Thus, an excessive increase in battery temperature can be suppressed by intentionally causing an internal short circuit during overcharging. Therefore, it is possible to avoid the high voltage and high temperature region that promotes the decomposition of the electrolytic solution, and it is possible to guarantee overcharge safety in a state where the final means of physical circuit disconnection called CID is left.

表1の結果はこの差異を示したものであり、実施例1〜14の最高到達温度が概ね55℃以下であるためCID作動を回避できたのに対し、比較例1〜3の最高到達温度は概ね65℃を上回ったため、CIDという最終手段の助けを借りて過充電を停止せざるを得なかった。
これらの結果から、本発明により、過充電時の安全性と信頼性を向上させたリチウムイオン二次電池を提供することができることが明らかとなった。
The results in Table 1 show this difference, and the maximum attainable temperature of Examples 1 to 14 was approximately 55 ° C. or less, so that CID operation could be avoided, whereas the maximum attainment temperature of Comparative Examples 1 to 3 was avoided. Since the temperature generally exceeded 65 ° C., overcharge was forced to be stopped with the help of the last means of CID.
From these results, it became clear that the present invention can provide a lithium ion secondary battery with improved safety and reliability during overcharge.

本発明のリチウムイオン二次電池は、特に、高レベルの安全性が求められるポータブル電源として有用である。   The lithium ion secondary battery of the present invention is particularly useful as a portable power source that requires a high level of safety.

本発明の一実施例における電極板の平面図である。It is a top view of the electrode plate in one Example of this invention. 図1Aの1B−1B’線断面図である。1B is a cross-sectional view taken along line 1B-1B 'of FIG. 1A. 本発明の他の実施例における電極板の平面図である。It is a top view of the electrode plate in the other Example of this invention. 図2Aの2B−2B’線断面図である。It is 2B-2B 'sectional view taken on the line of FIG. 2A. 本発明のさらに他の実施例における電極板の平面図である。It is a top view of the electrode plate in the further another Example of this invention. 図3Aの3B−3B’線断面図である。It is 3B-3B 'sectional view taken on the line of FIG. 3A. 本発明の他の実施例における電極板の平面図である。It is a top view of the electrode plate in the other Example of this invention. 図4Aの4B−4B’線断面図である。FIG. 4B is a sectional view taken along line 4B-4B ′ of FIG. 4A. 本発明のさらに他の実施例における電極板の平面図である。It is a top view of the electrode plate in the further another Example of this invention. 図5Aの5B−5B’線断面図である。FIG. 5B is a cross-sectional view taken along line 5B-5B 'of FIG. 5A. 本発明のさらに他の実施例における電極板の平面図である。It is a top view of the electrode plate in the further another Example of this invention. 本発明の実施例および比較例の電池の過充電試験における電池電圧と充電電流の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the battery voltage and charging current in the overcharge test of the battery of the Example of this invention, and a comparative example.

符号の説明Explanation of symbols

11、61 極板芯材
12、62 集電リード
13、23、43、53、63 合剤層
14、24、34、44、64 多孔膜
15、25、35、45 凸部
27、47、57 合剤層の凸部
11, 61 Electrode plate core material 12, 62 Current collecting leads 13, 23, 43, 53, 63 Mixture layers 14, 24, 34, 44, 64 Porous membranes 15, 25, 35, 45 Protrusions 27, 47, 57 Convex part of the mixture layer

Claims (11)

複合リチウム酸化物からなる正極、負極、および非水電解液を具備するリチウムイオン二次電池であって、前記正極および負極の少なくとも一方が、他方の電極と対向する面に、無機酸化物フィラーと結着剤を含む多孔膜を有し、当該電極表面が部分的に凸部を有していることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising a positive electrode comprising a composite lithium oxide, a negative electrode, and a non-aqueous electrolyte, wherein at least one of the positive electrode and the negative electrode faces the other electrode and an inorganic oxide filler A lithium ion secondary battery comprising a porous film containing a binder and the electrode surface partially having a convex portion. さらに、前記正極と負極との間にセパレータを備える請求項1記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, further comprising a separator between the positive electrode and the negative electrode. 前記凸部が、前記多孔膜の表面に部分的に形成された凸部からなる請求項1または2記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the convex portion is a convex portion partially formed on a surface of the porous film. 前記多孔膜を有する電極の合剤層が、部分的に凸部を有する請求項1または2記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1 or 2, wherein a mixture layer of the electrode having the porous film partially has a convex portion. 複合リチウム酸化物からなる正極、負極、セパレータ、および非水電解液を具備するリチウムイオン二次電池であって、前記セパレータの少なくとも片面には無機酸化物フィラーと結着剤を含む多孔膜を有し、当該多孔膜は部分的に形成された凸部を有することを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte comprising a composite lithium oxide, wherein at least one surface of the separator has a porous film containing an inorganic oxide filler and a binder. And the said porous film has a convex part formed partially, The lithium ion secondary battery characterized by the above-mentioned. 複合リチウム酸化物からなる正極、負極、および非水電解液を具備するリチウムイオン二次電池であって、前記正極および負極の一方が、他方の電極と対向する面に、無機酸化物フィラーと結着剤を含む多孔膜を有し、他方の電極の合剤層が、前記一方の電極と対向する面に、部分的に凸部を有することを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising a positive electrode comprising a composite lithium oxide, a negative electrode, and a non-aqueous electrolyte, wherein one of the positive electrode and the negative electrode is bonded to an inorganic oxide filler on the surface facing the other electrode. A lithium ion secondary battery comprising a porous film containing an adhesive, wherein the mixture layer of the other electrode has a convex portion partially on a surface facing the one electrode. さらに、前記正極と負極との間にセパレータを備える請求項6記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 6, further comprising a separator between the positive electrode and the negative electrode. 複合リチウム酸化物からなる正極、負極、セパレータ、および非水電解液を具備するリチウムイオン二次電池であって、前記セパレータの少なくとも片面には無機酸化物フィラーと結着剤を含む多孔膜を有し、前記多孔膜と対向する電極の合剤層が、その表面に部分的に凸部を有することを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte comprising a composite lithium oxide, wherein at least one surface of the separator has a porous film containing an inorganic oxide filler and a binder. The lithium ion secondary battery is characterized in that the electrode mixture layer facing the porous film has a convex portion partially on the surface thereof. 電極活物質、導電剤および結着剤を含む電極合剤層の表面に、多孔膜形成用塗料を塗布、乾燥して多孔膜を形成する工程、および前記多孔膜の上に、多孔膜形成用塗料を一定のパターンに塗布、乾燥して凸部を形成する工程を有する請求項3記載のリチウムイオン二次電池の製造方法。   A step of forming a porous film by applying a coating material for forming a porous film on the surface of an electrode mixture layer containing an electrode active material, a conductive agent and a binder, and drying, and forming a porous film on the porous film The method for producing a lithium ion secondary battery according to claim 3, further comprising a step of applying a paint in a certain pattern and drying to form a convex portion. 電極活物質、導電剤および結着剤を含む電極合剤層の表面に、吐出量を部分的に増大させて多孔膜形成用塗料を塗布するダイコーター工法により、部分的に凸部を有する多孔膜を形成する請求項3記載のリチウムイオン二次電池の製造方法。   Porous partly having a convex part by a die coater method in which a coating for forming a porous film is applied by partially increasing the discharge amount on the surface of an electrode mixture layer containing an electrode active material, a conductive agent and a binder. The method for producing a lithium ion secondary battery according to claim 3, wherein a film is formed. 電極活物質、導電剤および結着剤を含む電極合剤層の表面に、凸部を刻印する工程、および前記凸部を刻印した電極合剤層の表面に多孔膜形成用塗料を塗布、乾燥して多孔膜を形成する工程を有する請求項4記載のリチウムイオン二次電池の製造方法。
A step of imprinting convex portions on the surface of the electrode mixture layer containing an electrode active material, a conductive agent and a binder, and a porous film-forming paint is applied to the surface of the electrode mixture layer imprinted with the convex portions and dried. The method for producing a lithium ion secondary battery according to claim 4, further comprising a step of forming a porous film.
JP2005140251A 2004-05-25 2005-05-12 Lithium ion secondary battery and manufacturing method thereof Expired - Fee Related JP4657001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140251A JP4657001B2 (en) 2004-05-25 2005-05-12 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004154510 2004-05-25
JP2005140251A JP4657001B2 (en) 2004-05-25 2005-05-12 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006012788A true JP2006012788A (en) 2006-01-12
JP4657001B2 JP4657001B2 (en) 2011-03-23

Family

ID=35779753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140251A Expired - Fee Related JP4657001B2 (en) 2004-05-25 2005-05-12 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4657001B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2008204788A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2009001502A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Nonaqueous secondary battery, battery pack, power supply system, and electrical device
WO2009013890A1 (en) * 2007-07-20 2009-01-29 Panasonic Corporation Electrode plate for battery, electrode plate group for battery, lithium secondary battery, and method for manufacturing electrode plate for battery
JP2010186738A (en) * 2009-01-14 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
US7842418B2 (en) 2007-07-20 2010-11-30 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, method for producing electrode plate for battery and apparatus for producing electrode plate for battery
US7951487B2 (en) 2009-01-16 2011-05-31 Panasonic Corporation Electrode group for nonaqueous battery and method for producing the same, and cylindrical nonaqueous secondary battery and method for producing the same
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2012190547A (en) * 2011-03-08 2012-10-04 Gs Yuasa Corp Separator for secondary battery and secondary battery, as well as manufacturing method of separator for secondary battery
JP2012190805A (en) * 2004-07-07 2012-10-04 Lg Chem Ltd Organic/inorganic composite porous film, and electrochemical device comprising the same
JP2013069582A (en) * 2011-09-22 2013-04-18 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013105680A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Secondary battery
JP2014509777A (en) * 2011-04-06 2014-04-21 エルジー・ケム・リミテッド Separator and electrochemical device including the same
JP2014127374A (en) * 2012-12-26 2014-07-07 Nippon Soken Inc Secondary battery and battery pack
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
US9276247B2 (en) 2011-04-06 2016-03-01 Lg Chem, Ltd. Separator and electrochemical device comprising the same
JP2017084683A (en) * 2015-10-30 2017-05-18 日立オートモティブシステムズ株式会社 Secondary battery
WO2020184502A1 (en) * 2019-03-08 2020-09-17 積水化学工業株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2022133086A (en) * 2021-03-01 2022-09-13 プライムプラネットエナジー&ソリューションズ株式会社 Method for producing electrode for secondary battery, and electrode
CN115394953A (en) * 2022-09-02 2022-11-25 湖北亿纬动力有限公司 Concave-convex array thick electrode and preparation method and application thereof
EP4246706A1 (en) * 2022-03-17 2023-09-20 Ricoh Company, Ltd. Electrode, electrode element, electrochemical element, and power storage device
WO2023189226A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
WO2023189234A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Cylindrical secondary battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JPH09237622A (en) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd Organic battery
JPH10116633A (en) * 1996-08-22 1998-05-06 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH1180395A (en) * 1997-09-09 1999-03-26 Nitto Denko Corp Porous film and separator for nonaqueous electrolyte cell or battery
JPH11185734A (en) * 1997-12-24 1999-07-09 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte and manufacture thereof
JP2000123828A (en) * 1998-10-12 2000-04-28 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
JP2002515637A (en) * 1998-05-08 2002-05-28 エヴァレディー バッテリー カンパニー インコーポレイテッド Breakdown control mechanism for electrochemical cells
JP2003059486A (en) * 2001-08-10 2003-02-28 Matsushita Electric Ind Co Ltd Stacked type battery and its manufacturing method
JP2003142078A (en) * 2001-11-02 2003-05-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004127541A (en) * 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd Electrode group for battery, and nonaqueous electrolyte secondary battery using the same
JP2005507138A (en) * 2001-08-08 2005-03-10 エナールワン バッテリー カンパニー Solid polymer electrolyte lithium battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
WO1997001870A1 (en) * 1995-06-28 1997-01-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JPH09237622A (en) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd Organic battery
JPH10116633A (en) * 1996-08-22 1998-05-06 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JPH1180395A (en) * 1997-09-09 1999-03-26 Nitto Denko Corp Porous film and separator for nonaqueous electrolyte cell or battery
JPH11185734A (en) * 1997-12-24 1999-07-09 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte and manufacture thereof
JP2002515637A (en) * 1998-05-08 2002-05-28 エヴァレディー バッテリー カンパニー インコーポレイテッド Breakdown control mechanism for electrochemical cells
JP2000123828A (en) * 1998-10-12 2000-04-28 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte secondary battery and its manufacture
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
JP2005507138A (en) * 2001-08-08 2005-03-10 エナールワン バッテリー カンパニー Solid polymer electrolyte lithium battery
JP2003059486A (en) * 2001-08-10 2003-02-28 Matsushita Electric Ind Co Ltd Stacked type battery and its manufacturing method
JP2003142078A (en) * 2001-11-02 2003-05-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004127541A (en) * 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd Electrode group for battery, and nonaqueous electrolyte secondary battery using the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190805A (en) * 2004-07-07 2012-10-04 Lg Chem Ltd Organic/inorganic composite porous film, and electrochemical device comprising the same
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
WO2007072595A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2008204788A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8399127B2 (en) 2007-02-20 2013-03-19 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2009001502A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Nonaqueous secondary battery, battery pack, power supply system, and electrical device
WO2009013890A1 (en) * 2007-07-20 2009-01-29 Panasonic Corporation Electrode plate for battery, electrode plate group for battery, lithium secondary battery, and method for manufacturing electrode plate for battery
US7842418B2 (en) 2007-07-20 2010-11-30 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, method for producing electrode plate for battery and apparatus for producing electrode plate for battery
US7695864B2 (en) 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
JP4672079B2 (en) * 2009-01-14 2011-04-20 パナソニック株式会社 Non-aqueous battery negative electrode plate, non-aqueous battery electrode group and manufacturing method thereof, cylindrical non-aqueous secondary battery and manufacturing method thereof
JP2010186738A (en) * 2009-01-14 2010-08-26 Panasonic Corp Anode plate for nonaqueous battery, electrode group for nonaqueous battery and its manufacturing method, and cylindrical nonaqueous secondary battery and its manufacturing method
US7951487B2 (en) 2009-01-16 2011-05-31 Panasonic Corporation Electrode group for nonaqueous battery and method for producing the same, and cylindrical nonaqueous secondary battery and method for producing the same
JP2012190547A (en) * 2011-03-08 2012-10-04 Gs Yuasa Corp Separator for secondary battery and secondary battery, as well as manufacturing method of separator for secondary battery
US9276247B2 (en) 2011-04-06 2016-03-01 Lg Chem, Ltd. Separator and electrochemical device comprising the same
JP2014509777A (en) * 2011-04-06 2014-04-21 エルジー・ケム・リミテッド Separator and electrochemical device including the same
JP2016026371A (en) * 2011-04-06 2016-02-12 エルジー・ケム・リミテッド Separator and electrochemical element including the same
JP2013069582A (en) * 2011-09-22 2013-04-18 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013105680A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Secondary battery
JP2014127374A (en) * 2012-12-26 2014-07-07 Nippon Soken Inc Secondary battery and battery pack
JP2017084683A (en) * 2015-10-30 2017-05-18 日立オートモティブシステムズ株式会社 Secondary battery
WO2020184502A1 (en) * 2019-03-08 2020-09-17 積水化学工業株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2022133086A (en) * 2021-03-01 2022-09-13 プライムプラネットエナジー&ソリューションズ株式会社 Method for producing electrode for secondary battery, and electrode
JP7334202B2 (en) 2021-03-01 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 METHOD FOR MANUFACTURING ELECTRODE FOR SECONDARY BATTERY AND SAME ELECTRODE
EP4246706A1 (en) * 2022-03-17 2023-09-20 Ricoh Company, Ltd. Electrode, electrode element, electrochemical element, and power storage device
WO2023189226A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
WO2023189234A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
CN115394953A (en) * 2022-09-02 2022-11-25 湖北亿纬动力有限公司 Concave-convex array thick electrode and preparation method and application thereof

Also Published As

Publication number Publication date
JP4657001B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4657001B2 (en) Lithium ion secondary battery and manufacturing method thereof
US7875391B2 (en) Lithium ion secondary battery and method for manufacturing same
US7759004B2 (en) Electrode for lithium ion secondary batteries, lithium ion secondary battery using the same, and method for manufacturing the battery
US7575606B2 (en) Method for producing lithium ion secondary battery
CN103155220B (en) Diaphragm for non-water system secondary battery and non-aqueous secondary battery
JP5061417B2 (en) Lithium ion secondary battery
JP5213158B2 (en) Multilayer porous membrane production method, lithium ion battery separator and lithium ion battery
CN103155217A (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2006196248A (en) Lithium secondary battery and method for manufacturing same
JP6876880B2 (en) Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
US20210057732A1 (en) Lithium ion secondary battery electrode, production method for same, and lithium ion secondary battery
JP2007287390A (en) Lithium secondary battery
WO2020184502A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2005285605A (en) Lithium ion battery
JP2005190912A (en) Lithium secondary battery and its manufacturing method
JP4453667B2 (en) Lithium ion secondary battery
JP3822550B2 (en) Lithium secondary battery
KR100749626B1 (en) Secondary battery
JP2008004441A (en) Lithium secondary battery, separator for lithium secondary battery, electrode for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, and armor for lithium secondary battery
JP2006179205A (en) Nonaqueous electrolytic solution battery
JP2013191345A (en) Lithium secondary battery and manufacturing method thereof
JP6876879B2 (en) Method for manufacturing electrodes for lithium ion secondary batteries, lithium ion secondary batteries and electrodes for lithium ion secondary batteries
JP7177210B2 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008004440A (en) Lithium secondary battery and its using method
WO2020067378A1 (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees