JP2012190547A - Separator for secondary battery and secondary battery, as well as manufacturing method of separator for secondary battery - Google Patents

Separator for secondary battery and secondary battery, as well as manufacturing method of separator for secondary battery Download PDF

Info

Publication number
JP2012190547A
JP2012190547A JP2011050519A JP2011050519A JP2012190547A JP 2012190547 A JP2012190547 A JP 2012190547A JP 2011050519 A JP2011050519 A JP 2011050519A JP 2011050519 A JP2011050519 A JP 2011050519A JP 2012190547 A JP2012190547 A JP 2012190547A
Authority
JP
Japan
Prior art keywords
inorganic
base layer
porous base
separator
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011050519A
Other languages
Japanese (ja)
Other versions
JP5794464B2 (en
Inventor
Akihiko Miyazaki
明彦 宮崎
Sumio Mori
森  澄男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2011050519A priority Critical patent/JP5794464B2/en
Publication of JP2012190547A publication Critical patent/JP2012190547A/en
Application granted granted Critical
Publication of JP5794464B2 publication Critical patent/JP5794464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a secondary battery capable of suppressing peeling of an inorganic layer from a porous base layer and maintaining heat resistance and durability.SOLUTION: The separator for the secondary battery includes a porous base layer having electric insulation and an inorganic layer laminated on the porous base layer, the inorganic layer containing a plurality of inorganic particles and a binder for binding inorganic particles together, and being adhered to the porous base layer by adhesiveness of the binder. In the separator, the organic base layer is characterized in that a density of the inorganic particle becomes higher as the position of the particle becomes closer to the porous base layer in a lamination direction with respect to the porous base layer.

Description

本発明は、充放電可能な二次電池用のセパレータ、及び二次電池、並びに二次電池用のセパレータの製造方法に関する。   The present invention relates to a chargeable / dischargeable secondary battery separator, a secondary battery, and a method for producing a secondary battery separator.

従来から、充放電可能な二次電池として、種々タイプのものが提供されているが、近年、携帯電話等の携帯電気機器や、電気自動車、ハイブリッド電気自動車等の各種機器の高出力化や高性能化に伴って大容量の電力を供給する必要があるとして、電気容量の大きなリチウムイオン二次電池等の非水電解二次電池が広く一般的に普及している。   Conventionally, various types of secondary batteries that can be charged and discharged have been provided, but in recent years, higher output and higher output of portable electric devices such as mobile phones, and various devices such as electric vehicles and hybrid electric vehicles. Non-aqueous electrolytic secondary batteries such as lithium ion secondary batteries having a large electric capacity are widely and widely used as it is necessary to supply a large amount of electric power as performance increases.

この種の二次電池は、図7に示す如く、発電要素2’と、発電要素2’を収容した箱状の電池ケース3’と、該電池ケース3’の外側に配設された出力端子4’,5’とを備えており、発電要素2’と出力端子4’,5’との間で通電可能になっている。   As shown in FIG. 7, this type of secondary battery includes a power generation element 2 ′, a box-shaped battery case 3 ′ housing the power generation element 2 ′, and an output terminal disposed outside the battery case 3 ′. 4 'and 5', and electricity can be applied between the power generation element 2 'and the output terminals 4' and 5 '.

前記発電要素2’は、図8に示す如く、導電性基材(図示しない)上に正極活物質層(図示しない)が形成された正極板20’と、導電性基材(図示しない)上に負極活物質層(図示しない)が形成された負極板21’とが電気絶縁性を有するセパレータ22’を挟んで積層されたもので、正極板20’(正極活物質層)と負極板21’(負極活物質層)との間で電荷(金属系イオン)が移動できるようになっている。すなわち、上記構成の発電要素2’は、正極板20’と負極板21’に挟まれたセパレータ22’を電荷が通過できるようになっている。   As shown in FIG. 8, the power generating element 2 ′ includes a positive electrode plate 20 ′ having a positive electrode active material layer (not shown) formed on a conductive base material (not shown) and a conductive base material (not shown). A negative electrode plate 21 ′ on which a negative electrode active material layer (not shown) is formed is laminated with an electrically insulating separator 22 ′ sandwiched between the positive electrode plate 20 ′ (positive electrode active material layer) and the negative electrode plate 21. Charges (metal ions) can move between '(negative electrode active material layer). In other words, the power generating element 2 ′ having the above-described configuration is configured such that charges can pass through the separator 22 ′ sandwiched between the positive electrode plate 20 ′ and the negative electrode plate 21 ′.

ところで、従来の二次電池1’は、セパレータ22’に電気絶縁性を有する樹脂フィルムが採用されていたが、樹脂フィルムのみでセパレータ22’を構成すると、熱による収縮が起こりやすく、また場合により電析によって生成される析出物が貫通して正極板20’と負極板21’とが微小短絡したりする可能性があるとして、耐熱性や耐久性を向上させたセパレータが提供されつつある。   By the way, in the conventional secondary battery 1 ′, a resin film having electrical insulation is employed for the separator 22 ′. However, if the separator 22 ′ is composed only of the resin film, heat shrinkage is likely to occur. A separator with improved heat resistance and durability is being provided as there is a possibility that the precipitate produced by electrodeposition may penetrate and the positive electrode plate 20 ′ and the negative electrode plate 21 ′ may be slightly short-circuited.

かかるセパレータ22’は、図9に示す如く、電気絶縁性を有する多孔質基層(多孔質樹脂フィルム)220a’と、該多孔質基層220a’上に積層された無機質層220b’とを備えている。   As shown in FIG. 9, the separator 22 ′ includes an electrically insulating porous base layer (porous resin film) 220a ′ and an inorganic layer 220b ′ laminated on the porous base layer 220a ′. .

前記無機質層220b’は、多数の無機粒子P’と、無機粒子P’同士を繋ぐバインダB’とを含んでいる。すなわち、無機質層220b’は、無機粒子P’とバインダB’との混合材料により形成されており、前記バインダB’の接着性によって多孔質基層220a’に接着されている。   The inorganic layer 220b 'includes a large number of inorganic particles P' and a binder B 'that connects the inorganic particles P'. That is, the inorganic layer 220b 'is formed of a mixed material of the inorganic particles P' and the binder B ', and is bonded to the porous base layer 220a' by the adhesive property of the binder B '.

そして、この種のセパレータ22’は、無機質層220b’において無機粒子P’,P’間に微小間隙(採番しない)が形成されており、該微小間隙が多孔質基層(多孔質フィルム)220a’の微孔(図示しない)と連通した状態になっている。すなわち、無機粒子P’とバインダB’とを混合すると、バインダB’が無機粒子P’,P’の外周面に略一定の膜厚で付着した状態になるため、隣り合う無機粒子P’,P’の外周面に付着したバインダB’同士が部分的に密着して無機粒子P’,P’間に微小隙間が形成されるとともに、多孔質基層220a’と隣り合う無機粒子P’の外周に付着したバインダB’が多孔質基層220a’に対して部分的に密着して当該多孔質基層220a’の微孔と前記微小隙間とが連続した状態になっている。   In this type of separator 22 ′, a minute gap (not numbered) is formed between the inorganic particles P ′ and P ′ in the inorganic layer 220b ′, and the minute gap is formed in the porous base layer (porous film) 220a. It is in a state of communicating with a 'hole (not shown). That is, when the inorganic particles P ′ and the binder B ′ are mixed, the binder B ′ is attached to the outer peripheral surface of the inorganic particles P ′ and P ′ with a substantially constant film thickness. The binder B ′ adhering to the outer peripheral surface of P ′ is partly adhered to form a minute gap between the inorganic particles P ′ and P ′, and the outer periphery of the inorganic particle P ′ adjacent to the porous base layer 220a ′. The binder B ′ adhering to the part is in close contact with the porous base layer 220a ′, and the micropores of the porous base layer 220a ′ and the micro gaps are continuous.

これにより、上記構成のセパレータ22’は、正極板20’と負極板21’との間で行き来する電荷が多孔質基層220a’の微孔と無機質層220b’の微小隙間を通るようになっている。そして、該セパレータ22’は、多孔質基層220a’上に無機質層220b’が形成されることで、耐熱性や耐久性(強度)が増しているため、電池が高温環境に暴露された時に延びや劣化が生じたり、電析によって生成される析出物が貫通して正極板20’と負極板21’とが微小短絡したりすることを防止できるとされている。   As a result, the separator 22 ′ having the above-described configuration allows the electric charge traveling between the positive electrode plate 20 ′ and the negative electrode plate 21 ′ to pass through the micropores of the porous base layer 220 a ′ and the inorganic layer 220 b ′. Yes. The separator 22 ′ has an increased heat resistance and durability (strength) due to the formation of the inorganic layer 220b ′ on the porous base layer 220a ′. Therefore, the separator 22 ′ extends when the battery is exposed to a high temperature environment. It is supposed that it is possible to prevent the electrode plate 20 'and the negative electrode plate 21' from being short-circuited due to the occurrence of deterioration or deterioration, or the deposit generated by electrodeposition.

特開2010−146839号公報JP 2010-146839 A

しかしながら、従来のセパレータ22’は、多孔質基層220a’に対する無機質層220b’の接着性が悪く、無機質層220b’が多孔質基層220a’から剥離し易いといった問題がある。   However, the conventional separator 22 ′ has a problem that the inorganic layer 220 b ′ has poor adhesion to the porous base layer 220 a ′, and the inorganic layer 220 b ′ is easily peeled off from the porous base layer 220 a ′.

より具体的に説明すると、前記無機質層220b’は、図10(a)に示す如く、無機粒子P’及びバインダB’を含んだ無機溶液ML’(バインダB’を液状化させる溶媒S’を含む溶液ML’)を多孔質基層220a’上に塗布した上で、図10(b)に示す如く、多孔質基層220a’上の無機溶液ML’に熱風を吹き付けて該無機溶液ML’を乾燥させる(溶液ML’から溶媒S’を揮発させる)ことで形成されている。   More specifically, as shown in FIG. 10A, the inorganic layer 220b ′ includes an inorganic solution ML ′ containing inorganic particles P ′ and a binder B ′ (a solvent S ′ for liquefying the binder B ′). The solution ML ′ containing is applied onto the porous base layer 220a ′, and then, as shown in FIG. 10B, hot air is blown onto the inorganic solution ML ′ on the porous base layer 220a ′ to dry the inorganic solution ML ′. (Solvent S ′ is volatilized from solution ML ′).

そのため、前記無機質層220b’は、図9に示す如く、多孔質基層220a’側に比べて表面側に多くの無機粒子P’と各無機粒子P’に付着したバインダB’とが存在した状態になっている。   Therefore, as shown in FIG. 9, the inorganic layer 220b ′ has more inorganic particles P ′ on the surface side than the porous base layer 220a ′ side and a binder B ′ attached to each inorganic particle P ′. It has become.

すなわち、図10(b)に示す如く、無機溶液ML’を乾燥させるに当り、無機溶液ML’の表面に熱風を吹き付けると、無機溶液ML’内の溶媒S’が該無機溶液ML’の表面側から揮発する(温度の高い表面側に移動して揮発する)ことになる。そのため、無機溶液ML’中で分散していた無機粒子P’(図10(a)参照)も無機溶液ML’内の溶媒S’の表面側への移動に伴って表面側に移動することになり、溶媒S’が揮発してバインダB’が固化する(接着性能を発揮する)ことで表面側に移動した多数の無機粒子P’が表面側に固定されてしまう。   That is, as shown in FIG. 10B, when drying the inorganic solution ML ′, when hot air is blown onto the surface of the inorganic solution ML ′, the solvent S ′ in the inorganic solution ML ′ is changed to the surface of the inorganic solution ML ′. It volatilizes from the side (it moves to the high temperature surface side and volatilizes). Therefore, the inorganic particles P ′ (see FIG. 10A) dispersed in the inorganic solution ML ′ also move to the surface side as the solvent S ′ in the inorganic solution ML ′ moves to the surface side. Thus, the solvent S ′ is volatilized and the binder B ′ is solidified (exhibits adhesive performance), so that a large number of inorganic particles P ′ moved to the surface side are fixed on the surface side.

その結果、無機質層220b’は、図9に示す如く、多孔質基層220a’側で無機粒子P’及びこれを覆うバインダB’が表面側よりも少なくなり、多孔質基層220a’に対する接着性能が低いだけでなく、多孔質基層220a’側に多くの空隙が形成されてしまう。   As a result, as shown in FIG. 9, the inorganic layer 220b ′ has less inorganic particles P ′ and a binder B ′ covering the inorganic particles P ′ on the porous base layer 220a ′ side than the surface side, and has an adhesion performance to the porous base layer 220a ′. In addition to being low, many voids are formed on the porous base layer 220a ′ side.

そのため、従来のセパレータ22’は、バインダB’の少ない部分(表面側よりも多孔質基層220a’側)で多くの無機粒子P’を含む無機質層220b’の表面側が剥離したり、多孔質基層220a’との界面で無機質層220b’全体が剥離したりする虞があった。   Therefore, in the conventional separator 22 ′, the surface side of the inorganic layer 220b ′ containing many inorganic particles P ′ is peeled off at a portion with a small amount of the binder B ′ (the porous base layer 220a ′ side than the surface side), or the porous base layer There is a possibility that the entire inorganic layer 220b ′ may be peeled off at the interface with 220a ′.

特に、セパレータ22’が巻回型の発電要素2’(正極板20’及び負極板21’を渦巻き状に巻回して形成された発電要素2’)に採用される場合、セパレータ22’が正極板20’と負極板21’との間で湾曲した態様になるため、無機質層220b’が剥離する可能性が高くなる。   In particular, when the separator 22 ′ is employed in a winding type power generation element 2 ′ (a power generation element 2 ′ formed by spirally winding the positive electrode plate 20 ′ and the negative electrode plate 21 ′), the separator 22 ′ is used as the positive electrode. Since it becomes the aspect curved between board 20 'and negative electrode plate 21', possibility that inorganic layer 220b 'will peel becomes high.

このように、従来のセパレータ22’は、耐熱性や耐久性を高めるべく無機質層220b’が設けられたものであるが、無機質層220b’が多孔質基層220a’から剥離し易く、必要な耐熱性や耐久性を確保できなくなるといった問題があった。   As described above, the conventional separator 22 ′ is provided with the inorganic layer 220b ′ in order to enhance heat resistance and durability, but the inorganic layer 220b ′ is easily peeled off from the porous base layer 220a ′, and the necessary heat resistance is obtained. There is a problem that it becomes impossible to secure the durability and durability.

そこで、本発明は、斯かる実情に鑑み、多孔質基層から無機質層が剥離することを抑制することができ、耐熱性や耐久性を維持することのできる二次電池用のセパレータ、及び二次電池、並びに、二次電池用のセパレータの製造方法を提供することを課題とする。   Therefore, in view of such a situation, the present invention can suppress separation of the inorganic layer from the porous base layer, and can maintain a heat resistance and durability, and a secondary battery separator, and a secondary battery It is an object to provide a battery and a method for manufacturing a separator for a secondary battery.

本発明に係る二次電池用のセパレータは、電気絶縁性を有する多孔質基層と、該多孔質基層上に積層された無機質層とを備え、前記無機質層が多数の無機粒子と無機粒子同士を繋ぐバインダとを含んだ二次電池用のセパレータにおいて、前記無機質層は、無機粒子の密度が多孔質基層に対する積層方向で該多孔質基層側ほど高くなっていることを特徴とする。   A separator for a secondary battery according to the present invention includes a porous base layer having electrical insulation and an inorganic layer laminated on the porous base layer, and the inorganic layer includes a large number of inorganic particles and inorganic particles. In the separator for a secondary battery including a binder to be joined, the inorganic layer has a feature that the density of the inorganic particles is higher toward the porous base layer side in the stacking direction with respect to the porous base layer.

上記構成の二次電池用のセパレータによれば、前記無機質層は、無機粒子の密度が多孔質基層に対する積層方向で該多孔質基層側ほど高くなっているため、多孔質基層上により多くのバインダが存在することになり、多孔質基層に対する無機質層の接着力が高くなる。すなわち、バインダは、各無機粒子の外周面に沿って付着した状態になるため、多孔質基層上にある無機粒子同士がバインダを介して接着されることは勿論のこと、多孔質基層上にある多数の無機粒子がバインダを介して該多孔質基層に接着された状態になる。これにより、上記構成の二次電池用のセパレータは、多孔質基層から無機質層が剥離することが抑制されるため、必要な耐熱性や耐久性を確保することができる。また、上記構成の二次電池用のセパレータは、無機粒子とバインダとの両方が無機質層に存在し、表面側の疎な部分(無機粒子の密度が低い部分)における無機粒子の表面にもバインダが付着しているため、多孔質基層と無機質層との界面付近での剥離防止だけでなく、表面付近の欠けも抑制することができる。   According to the separator for a secondary battery having the above-described configuration, the inorganic layer has a higher density of inorganic particles on the porous base layer side in the stacking direction with respect to the porous base layer. As a result, the adhesive strength of the inorganic layer to the porous base layer is increased. That is, since the binder is in a state of adhering along the outer peripheral surface of each inorganic particle, the inorganic particles on the porous base layer are naturally bonded to each other through the binder. A large number of inorganic particles are bonded to the porous base layer through a binder. Thereby, since the separator for secondary batteries of the said structure suppresses that an inorganic layer peels from a porous base layer, it can ensure required heat resistance and durability. Moreover, the separator for a secondary battery having the above-described configuration has both inorganic particles and a binder in the inorganic layer, and the binder is also present on the surface of the inorganic particles in the sparse part (part where the density of the inorganic particles is low) on the surface side. Therefore, not only peeling prevention near the interface between the porous base layer and the inorganic layer but also chipping near the surface can be suppressed.

そして、上記構成の二次電池用のセパレータは、無機質層において無機粒子間に微小間隙が形成され、該微小間隙が多孔質基層(多孔質フィルム)の微孔と連通した状態になる。すなわち、上述の如く、各無機粒子の外周面に沿って付着したバインダによって隣り合う無機粒子同士が部分的に接着されることで、無機粒子間(無機粒子の外周に沿って付着したバインダ)間に多孔質基層の微孔と連通した微小隙間が形成された状態になり、正極板と負極板との間での電荷の移動を許容することができる。   In the separator for a secondary battery having the above-described configuration, minute gaps are formed between the inorganic particles in the inorganic layer, and the minute gaps communicate with the micropores of the porous base layer (porous film). That is, as described above, adjacent inorganic particles are partially bonded together by a binder attached along the outer peripheral surface of each inorganic particle, so that between inorganic particles (binder attached along the outer periphery of the inorganic particles). Thus, a minute gap communicating with the pores of the porous base layer is formed, and the movement of electric charge between the positive electrode plate and the negative electrode plate can be allowed.

本発明に係る二次電池は、正極板と負極板とがセパレータを挟んで積層された発電要素を備え、前記セパレータは、電気絶縁性を有する多孔質基層と、該多孔質基層上に積層された無機質層とを備え、前記無機質層が多数の無機粒子と無機粒子同士を繋ぐバインダとを含んだ二次電池において、前記無機質層は、無機粒子の密度が多孔質基層に対する積層方向で該多孔質基層側ほど高くなっていることを特徴とする。   A secondary battery according to the present invention includes a power generation element in which a positive electrode plate and a negative electrode plate are stacked with a separator interposed therebetween, and the separator is stacked on an electrically insulating porous base layer and the porous base layer. A secondary battery including a plurality of inorganic particles and a binder that connects the inorganic particles, and the inorganic layer has a density of inorganic particles in the stacking direction with respect to the porous base layer. It is characterized by being higher toward the base layer side.

上記構成の二次電池によれば、セパレータの無機質層の無機粒子の密度が多孔質基層に対する積層方向で該多孔質基層側ほど高くなっているため、多孔質基層上により多くのバインダが存在することになり、多孔質基層に対する無機質層の接着力が高くなる。すなわち、バインダは、各無機粒子の外周面に沿って付着した状態になるため、多孔質基層上にある無機粒子同士がバインダを介して接着されることは勿論のこと、多孔質基層上にある多数の無機粒子がバインダを介して該多孔質基層に接着された状態になる。これにより、上記構成の二次電池用のセパレータは、多孔質基層から無機質層が剥離することが抑制されるため、必要な耐熱性や耐久性を確保することができる。   According to the secondary battery having the above configuration, since the density of the inorganic particles in the separator inorganic layer is higher toward the porous base layer in the stacking direction with respect to the porous base layer, more binder exists on the porous base layer. As a result, the adhesive strength of the inorganic layer to the porous base layer is increased. That is, since the binder is in a state of adhering along the outer peripheral surface of each inorganic particle, the inorganic particles on the porous base layer are naturally bonded to each other through the binder. A large number of inorganic particles are bonded to the porous base layer through a binder. Thereby, since the separator for secondary batteries of the said structure suppresses that an inorganic layer peels from a porous base layer, it can ensure required heat resistance and durability.

また、上記構成の二次電池は、セパレータの無機質層において無機粒子間に微小間隙が形成され、該微小間隙が多孔質基層(多孔質フィルム)の微孔と連通した状態になる。すなわち、上述の如く、各無機粒子の外周面に沿って付着したバインダによって隣り合う無機粒子同士が部分的に接着されることで、無機粒子(無機粒子の外周に沿って付着したバインダ)間に多孔質基層の微孔と連通した微小隙間が形成された状態になり、正極板と負極板との間での電荷の移動を許容することができる。   In the secondary battery having the above-described configuration, a minute gap is formed between the inorganic particles in the inorganic layer of the separator, and the minute gap is in communication with the minute hole of the porous base layer (porous film). That is, as described above, the adjacent inorganic particles are partially bonded together by the binder attached along the outer peripheral surface of each inorganic particle, so that the inorganic particles (binder attached along the outer periphery of the inorganic particle) are bonded. A minute gap communicating with the micropores of the porous base layer is formed, and charge movement between the positive electrode plate and the negative electrode plate can be allowed.

本発明に係る二次電池用のセパレータの製造方法は、電気絶縁性を有する多孔質基層と、該多孔質基層上に積層された無機質層とを備え、前記無機質層が多数の無機粒子と無機粒子同士を繋ぐバインダとを含んだ二次電池用のセパレータの製造方法において、無機粒子及びバインダを含んだ無機溶液を多孔質基層上に塗布する溶液塗布工程と、多孔質基層の無機溶液の塗布された面とは反対側の面に対して熱風を吹き付けて無機溶液を乾燥させる乾燥工程とを備えていることを特徴とする。   A method of manufacturing a separator for a secondary battery according to the present invention includes a porous base layer having electrical insulation and an inorganic layer laminated on the porous base layer, and the inorganic layer includes a large number of inorganic particles and inorganic layers. In a method for producing a separator for a secondary battery including a binder that connects particles, a solution coating step of coating an inorganic solution containing inorganic particles and a binder on the porous base layer, and coating of the inorganic solution of the porous base layer And a drying step of drying the inorganic solution by blowing hot air against the surface opposite to the surface.

上記二次電池用のセパレータの製造方法によれば、無機粒子及びバインダを含んだ無機溶液を多孔質基層上に塗布する溶液塗布工程と、多孔質基層の無機溶液の塗布された面とは反対側の面に対して熱風を吹き付けて無機溶液を乾燥させる乾燥工程とを備えているため、無機粒子の密度が多孔質基層に対する積層方向で該多孔質基層側ほど高くなった無機質層を備えたセパレータを製造することができる。   According to the method for manufacturing a separator for a secondary battery, the solution coating step of coating an inorganic solution containing inorganic particles and a binder on the porous base layer is opposite to the surface of the porous base layer coated with the inorganic solution. And a drying step of drying the inorganic solution by blowing hot air on the side surface, and thus provided with an inorganic layer in which the density of the inorganic particles is higher toward the porous base layer side in the stacking direction with respect to the porous base layer A separator can be manufactured.

より具体的に説明すると、溶液塗布工程で無機粒子及びバインダを含んだ無機溶液(バインダを液状化させる溶媒を含む溶液)を多孔質基層上に塗布した後に、乾燥工程で多孔質基層に熱風を吹き付けると、無機溶液内の溶媒が多孔質基層側から揮発する(温度の高い表面側に移動して揮発する)ことになる。そのため、無機溶液中で分散していた無機粒子も無機溶液内の溶媒の多孔質基層側への移動に伴って多孔質基層側に移動することになる。そして、溶媒が揮発してバインダが固化する(接着性能を発揮する)ことで、多孔質基層側に移動した多数の無機粒子が多孔質基層側で固定される。   More specifically, after applying an inorganic solution containing inorganic particles and a binder (a solution containing a solvent that liquefies the binder) on the porous base layer in the solution coating step, hot air is applied to the porous base layer in the drying step. When sprayed, the solvent in the inorganic solution volatilizes from the porous base layer side (moves to the surface side with higher temperature and volatilizes). Therefore, the inorganic particles dispersed in the inorganic solution also move to the porous base layer side as the solvent in the inorganic solution moves to the porous base layer side. Then, when the solvent is volatilized and the binder is solidified (exhibiting adhesive performance), a large number of inorganic particles that have moved to the porous base layer side are fixed on the porous base layer side.

その結果、無機質層は、無機粒子及びこれを覆うバインダが表面側よりも多孔質基層側で多くなるため、多孔質基層に対する接着性能が高まった状態で形成されることになる。   As a result, the inorganic layer and the binder covering the same are increased on the porous base layer side than on the surface side, so that the adhesion performance to the porous base layer is increased.

以上のように、本発明の二次電池用のセパレータによれば、多孔質基層から無機質層が剥離することを抑制することができ、耐熱性や耐久性を維持することができるという優れた効果を奏し得る。   As described above, according to the separator for a secondary battery of the present invention, it is possible to suppress separation of the inorganic layer from the porous base layer, and it is possible to maintain excellent heat resistance and durability. Can be played.

また、本発明の二次電池によれば、多孔質基層から無機質層が剥離することを抑制することができ、耐熱性や耐久性を維持することができるという優れた効果を奏し得る。   Moreover, according to the secondary battery of this invention, it can suppress that an inorganic layer peels from a porous base layer, and can show | play the outstanding effect that heat resistance and durability can be maintained.

また、本発明の二次電池用のセパレータの製造方法によれば、多孔質基層から無機質層が剥離することを抑制することができ、耐熱性や耐久性を維持可能なセパレータを製造することができるという優れた効果を奏し得る。   Further, according to the method for manufacturing a separator for a secondary battery of the present invention, it is possible to suppress the separation of the inorganic layer from the porous base layer, and to manufacture a separator capable of maintaining heat resistance and durability. An excellent effect of being able to do so can be achieved.

本発明の一実施形態に係る二次電池の全体斜視図を示す。The whole secondary battery perspective view concerning one embodiment of the present invention is shown. 同実施形態の係る二次電池を部分的に分解した斜視図を示す。The perspective view which decomposed | disassembled partially the secondary battery which concerns on the same embodiment is shown. 同実施形態に係る二次電池の分解斜視図を示す。The disassembled perspective view of the secondary battery which concerns on the same embodiment is shown. 同実施形態に係る発電要素の層構造を説明するための部分概略断面図を示す。The partial schematic sectional drawing for demonstrating the layer structure of the electric power generation element which concerns on the embodiment is shown. 同実施形態に係る発電要素に採用されるセパレータの部分拡大断面図を示す。The partial expanded sectional view of the separator employ | adopted as the electric power generation element which concerns on the embodiment is shown. 同実施形態に係るセパレータの製造方法を説明するための説明図であって、(a)は、無機粒子及びバインダの混合物である無機溶液を多孔性基層上に塗布した状態を示し、(b)は、多孔質基層に塗布した無機溶液を乾燥させる状態を示す。It is explanatory drawing for demonstrating the manufacturing method of the separator which concerns on the same embodiment, Comprising: (a) shows the state which apply | coated the inorganic solution which is a mixture of an inorganic particle and a binder on a porous base layer, (b) Indicates a state in which the inorganic solution applied to the porous base layer is dried. 従来の二次電池の全体斜視図を示す。An overall perspective view of a conventional secondary battery is shown. 従来の発電要素の層構造を説明するための部分概略断面図を示す。The fragmentary schematic sectional drawing for demonstrating the layer structure of the conventional electric power generation element is shown. 従来の二次電池の発電要素に採用されているセパレータの部分拡大断面図を示す。The partial expanded sectional view of the separator employ | adopted as the electric power generation element of the conventional secondary battery is shown. 従来のセパレータの製造方法を説明するための説明図であって、(a)は、無機粒子及びバインダの混合物である無機溶液を多孔性基層上に塗布した状態を示し、(b)は、多孔質基層に塗布した無機溶液を乾燥させる状態を示す。It is explanatory drawing for demonstrating the manufacturing method of the conventional separator, Comprising: (a) shows the state which apply | coated the inorganic solution which is a mixture of an inorganic particle and a binder on a porous base layer, (b) is porous The state which dries the inorganic solution apply | coated to the quality base layer is shown.

以下、本発明の一実施形態に係る二次電池について、添付図面を参照して説明する。   Hereinafter, a secondary battery according to an embodiment of the present invention will be described with reference to the accompanying drawings.

かかる二次電池は、ロッキングチェア型電池であり、本実施形態においては、リチウムイオン二次電池を対象としている。本実施形態に係る二次電池は、図1乃至図3に示す如く、発電要素2を備えている。より具体的には、本実施形態に係る二次電池1は、前記発電要素2と、該発電要素2を収容する電池ケース3と、電池ケース3の外側に配置された一対の出力端子4,5と、各出力端子4,5を発電要素2に対して電気的に接続するための一対の集電部材6,7とを備えている。   Such a secondary battery is a rocking chair type battery, and in the present embodiment, is intended for a lithium ion secondary battery. The secondary battery according to this embodiment includes a power generation element 2 as shown in FIGS. 1 to 3. More specifically, the secondary battery 1 according to the present embodiment includes the power generation element 2, a battery case 3 that houses the power generation element 2, and a pair of output terminals 4 disposed outside the battery case 3. 5 and a pair of current collecting members 6 and 7 for electrically connecting the output terminals 4 and 5 to the power generating element 2.

前記発電要素2は、図3及び図4に示す如く、正極板20と負極板21とがセパレータ22を挟んで積層されることで形成されている。本実施形態に係る発電要素2は、図3に示す如く、正極板20及び負極板21がセパレータ22を挟んだ状態で渦巻き状に巻回されて形成されている。すなわち、正極板20、負極板21、及びセパレータ22は、何れも帯状に形成されており、長手方向を一致させた状態で、正極板20、セパレータ22、負極板21、セパレータ22の順に積層した上で渦巻き状に巻回されることで発電要素2が形成されている。   As shown in FIGS. 3 and 4, the power generating element 2 is formed by laminating a positive electrode plate 20 and a negative electrode plate 21 with a separator 22 interposed therebetween. As shown in FIG. 3, the power generation element 2 according to the present embodiment is formed by winding a positive electrode plate 20 and a negative electrode plate 21 in a spiral shape with a separator 22 interposed therebetween. That is, the positive electrode plate 20, the negative electrode plate 21, and the separator 22 are all formed in a band shape, and the positive electrode plate 20, the separator 22, the negative electrode plate 21, and the separator 22 are laminated in this order in a state where the longitudinal directions are matched. The power generating element 2 is formed by being wound in a spiral shape.

本実施形態に係る発電要素2は、正極板20、負極板21、及びセパレータ22の巻回中心となる芯材23を備えている。該芯材23は、樹脂フィルムを筒状にしたもので、金属製巻芯(図示しない)が挿入された上で正極板20、負極板21、及びセパレータ22が外周に巻回される。そして、芯材23は、正極板20、負極板21、及びセパレータ22の巻回完了後に金属製巻芯が抜かれた上で正極板20、負極板21、及びセパレータ22とともに扁平状にされている。このように、芯材23を備えることで巻回状態にある正極板20、負極板21、及びセパレータ22を巻回中心方向(長手方向と直交する幅方向)に引き摺ることなく金属製巻芯をスムーズに引き抜くことができるため、金属製巻芯の引き抜き時にセパレータ22が変形して多孔質基層220aから無機質層220bが剥離したり、無機質層220bが欠損したりすることが防止される。また、本実施形態に係る発電要素2は、金属製巻芯を芯体23から引き抜く時に正極板20、負極板21、及びセパレータ22が巻回中心方向(長手方向と直交する幅方向)に引き摺られることがないため、正極板20、負極板21、及びセパレータ22が良好な積層状態で維持されている。   The power generating element 2 according to the present embodiment includes a core member 23 that is a winding center of the positive electrode plate 20, the negative electrode plate 21, and the separator 22. The core member 23 is made of a resin film in a cylindrical shape, and a positive electrode plate 20, a negative electrode plate 21, and a separator 22 are wound around an outer periphery after a metal winding core (not shown) is inserted. The core member 23 is flattened together with the positive electrode plate 20, the negative electrode plate 21, and the separator 22 after the metal core is removed after the winding of the positive electrode plate 20, the negative electrode plate 21, and the separator 22 is completed. . Thus, by providing the core material 23, the positive electrode plate 20, the negative electrode plate 21, and the separator 22 that are in the wound state are dragged in the winding center direction (the width direction orthogonal to the longitudinal direction). Since the metal core can be pulled out smoothly, it is possible to prevent the separator 22 from being deformed when the metal core is pulled out, and the inorganic layer 220b is peeled off from the porous base layer 220a or the inorganic layer 220b is lost. In the power generating element 2 according to the present embodiment, when the metal winding core is pulled out from the core body 23, the positive electrode plate 20, the negative electrode plate 21, and the separator 22 are dragged in the winding center direction (the width direction orthogonal to the longitudinal direction). Therefore, the positive electrode plate 20, the negative electrode plate 21, and the separator 22 are maintained in a good laminated state.

そして、該発電要素2は、セパレータ22の長手方向の長さが正極板20及び負極板21よりも長く設定されており、該セパレータ22の終端側が最も外側にある正極板20又は負極板21(本実施形態においては負極板21)を包み込んでいる。すなわち、該発電要素2は、最外周を除き、正極板20、セパレータ22、及び負極板21がその順序を守って積層されているが、正極板20及び負極板21の終端(巻き初めとなる先端とは反対側にある端部)から延出したセパレータ22を正極板20及び負極板21よりも多く巻回させることでセパレータ22が最外周に配置されている。   In the power generation element 2, the length of the separator 22 in the longitudinal direction is set to be longer than that of the positive electrode plate 20 and the negative electrode plate 21, and the positive electrode plate 20 or the negative electrode plate 21 ( In the present embodiment, the negative electrode plate 21) is enclosed. In other words, the power generating element 2 is formed by stacking the positive electrode plate 20, the separator 22, and the negative electrode plate 21 in the order except for the outermost periphery, but the end of the positive electrode plate 20 and the negative electrode plate 21 (beginning of winding). The separator 22 is arranged on the outermost periphery by winding more separators 22 extending from the end part on the side opposite to the tip than the positive electrode plate 20 and the negative electrode plate 21.

前記正極板20は、導電性基材(図示しない)上に正極活物質層(図示しない)が形成されたものであり、一方向(以下、本実施形態において幅方向という)の一端部に正極活物質層の非形成領域(導電性基材)からなる正極リード部L1が形成されている。   The positive electrode plate 20 has a positive electrode active material layer (not shown) formed on a conductive base material (not shown), and has a positive electrode at one end in one direction (hereinafter referred to as the width direction in the present embodiment). A positive electrode lead portion L1 made of a non-active region (conductive substrate) of the active material layer is formed.

前記正極板20の導電性基材は、導電性を有する材質であれば特に制限がなく、公知のものを任意に採用することができる。具体的には、前記正極板20の導電性基材には、アルミニウム、ニッケルメッキ鋼、チタン、タンタル、ニッケル等の金属材料、カーボンクロス、カーボンペーパー等の炭素質材料、導電性ポリマー、又は、導電性物質層を形成した樹脂等を採用することができ、中でもアルミニウムは、正極板20の導電性基材に好適である。また、前記正極板20の導電性基材の形態としては、箔等のシート体、発泡体、焼結多孔体、エキスパンド格子等を採用することができる。さらに、前記正極板20の導電性基材は、任意の形状の穴をあけたものも用いることもできる。   The conductive base material of the positive electrode plate 20 is not particularly limited as long as it is a conductive material, and a known material can be arbitrarily adopted. Specifically, the conductive substrate of the positive electrode plate 20 includes a metal material such as aluminum, nickel-plated steel, titanium, tantalum, and nickel, a carbonaceous material such as carbon cloth and carbon paper, a conductive polymer, or A resin or the like on which a conductive material layer is formed can be employed, and among these, aluminum is suitable for the conductive base material of the positive electrode plate 20. Moreover, as a form of the conductive base material of the positive electrode plate 20, a sheet body such as a foil, a foam body, a sintered porous body, an expanded lattice, or the like can be employed. Further, as the conductive base material of the positive electrode plate 20, one having a hole having an arbitrary shape can be used.

本実施形態に係る二次電池は、上述の如く、リチウムイオン二次電池であるため、前記正極活物質層は、リチウムイオンを吸蔵・放出できるものであれば特に制限はなく、任意の活物質を適宜使用することができ、例えば、LixMOy(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LixCoO2、LixNiO2、LixMn24、LixMnO3、LixNiyCo(1-y)2、LixNiy'Mny"Co(1-y'-y")2、LixNiyMn(2-y)4等)、或いは、LiwMex(XOyx(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V)で表されるポリアニオン化合物(LiNiPO4、LiCoPO4、Li32(PO43、Li2MnSiO4、Li2CoPO4F、LiFePO4等)から選択することができる。また、これらの化合物中の元素又はポリアニオンは、一部他の元素又はアニオン種で置換されていてもよい。さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラスチレン、ポリアセチレン、ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料等が挙げられるが、これに限定されるものではない。また、これらの化合物は単独で用いてもよく、二種以上を混合して用いてもよい。 Since the secondary battery according to this embodiment is a lithium ion secondary battery as described above, the positive electrode active material layer is not particularly limited as long as it can occlude and release lithium ions, and any active material. Can be used as appropriate, for example, complex oxides represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x MnO 3, Li x Ni y Co (1-y) O 2, Li x Ni y 'Mn y "Co (1-y'-y") O 2, Li x Ni y Mn (2-y) O 4 ), or Li w Me x (XO y ) x (Me represents at least one kind of transition metal, and X represents, for example, P, Si, B, V) (LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4) 3, Li 2 MnSiO 4, Li 2 CoPO 4 F, LiFe It may be selected from O 4, etc.). The elements or polyanions in these compounds may be partially substituted with other elements or anion species. Furthermore, conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparastyrene, polyacetylene, and polyacene materials, pseudographite-structured carbonaceous materials, and the like are exemplified, but the present invention is not limited thereto. Moreover, these compounds may be used independently and may be used in mixture of 2 or more types.

前記負極板21は、帯状の導電性基材(図示しない)上に負極活物質層(図示しない)が形成されたもので、幅方向の他端部に負極活物質層の非形成領域からなる負極リード部L2が形成されている。   The negative electrode plate 21 is formed by forming a negative electrode active material layer (not shown) on a strip-shaped conductive base material (not shown), and includes a non-formation region of the negative electrode active material layer at the other end in the width direction. A negative electrode lead portion L2 is formed.

前記負極板21の導電性基材は、導電性を有する材質であれば特に制限がなく、公知のものを任意に採用することができる。具体的には、前記負極板21の導電性基材には、アルミニウム、ニッケルメッキ銅、チタン、タンタル、銅、ニッケル、ステンレス鋼等の金属材料、カーボンクロス、カーボンペーパー等の炭素質材料、導電性ポリマー、又は、導電性物質層を形成した樹脂等を採用することができ、中でも銅は負極板21の導電性基材に好適である。また、前記負極板21の導電性基材の形態としては、箔等のシート体、発泡体、焼結多孔体、エキスパンド格子等を採用することができる。さらに、前記負極板21の導電性基材は、任意の形状の穴をあけたものも用いることもできる。   The conductive base material of the negative electrode plate 21 is not particularly limited as long as it is a conductive material, and a known material can be arbitrarily adopted. Specifically, the conductive substrate of the negative electrode plate 21 includes metal materials such as aluminum, nickel-plated copper, titanium, tantalum, copper, nickel, and stainless steel, carbonaceous materials such as carbon cloth and carbon paper, and conductive materials. A conductive polymer or a resin having a conductive material layer formed thereon can be employed, and copper is particularly suitable for the conductive base material of the negative electrode plate 21. Moreover, as a form of the electroconductive base material of the negative electrode plate 21, a sheet body such as a foil, a foam body, a sintered porous body, an expanded lattice, or the like can be employed. Further, as the conductive base material of the negative electrode plate 21, one having a hole having an arbitrary shape can be used.

前記負極活物質層は、金属イオンを吸蔵・放出する活物質で構成される。本実施形態に係る二次電池1に用いる負極活物質層としては、電気化学的に金属イオンを吸蔵・放出可能なものであれば、特に制限はなく、例えば、リチウムイオンを吸蔵・放出する負極活物質層としては、黒鉛や、易黒鉛化炭素、難黒鉛化炭素等の炭素質材料、SnOやSiO等の金属酸化物、チタン酸リチウム等のリチウム複合酸化物、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、一種を単独で用いても、二種以上を任意の組み合わせ及び比率で併用してもよい。なかでも炭素質材料又はリチウム複合酸化物を用いることが安全性の観点から好ましい。   The negative electrode active material layer is composed of an active material that absorbs and releases metal ions. The negative electrode active material layer used in the secondary battery 1 according to the present embodiment is not particularly limited as long as it can electrochemically occlude and release metal ions. For example, the negative electrode that occludes and releases lithium ions Examples of the active material layer include graphite, carbonaceous materials such as graphitizable carbon and non-graphitizable carbon, metal oxides such as SnO and SiO, lithium composite oxides such as lithium titanate, and lithium such as Sn and Si. Examples include metals that can form alloys. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Among these, it is preferable from the viewpoint of safety to use a carbonaceous material or a lithium composite oxide.

前記セパレータ22は、図5に示す如く、電気絶縁性を有する多孔質基層220aと、該多孔質基層220a上に積層された無機質層220bとを備えている。   As shown in FIG. 5, the separator 22 includes a porous base layer 220a having electrical insulation, and an inorganic layer 220b laminated on the porous base layer 220a.

前記多孔質基層220aは、多孔質樹脂フィルムであり、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−酢酸ビニル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、塩素化ポリエチレン等のポリオレフィン誘導体、エチレン−プロピレン共重合体等のポリオレフィン、ポリエチレンテレフタレートや共重合ポリエステル等のポリエステル、キュプラレーヨン、再生セルロース、セルロース等を採用することができ、耐電解液性や耐久性等の観点から、ポリエチレン、ポリプロピレンを採用することが好ましい。本実施形態において、多孔質基層220aは、0.5μm〜50μmの厚みに設定されている。なお、多孔質基層220aは、多孔質樹脂フィルム以外に柔細胞繊維、天然繊維などの有機繊維で構成することもできる。   The porous base layer 220a is a porous resin film, for example, polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, Polyolefin derivatives such as chlorinated polyethylene, polyolefins such as ethylene-propylene copolymer, polyesters such as polyethylene terephthalate and copolymerized polyester, cupra rayon, regenerated cellulose, cellulose, etc. can be adopted, and the resistance to electrolyte and durability From such a viewpoint, it is preferable to employ polyethylene and polypropylene. In the present embodiment, the porous base layer 220a is set to a thickness of 0.5 μm to 50 μm. In addition, the porous base layer 220a can be composed of organic fibers such as soft cell fibers and natural fibers in addition to the porous resin film.

前記無機質層220bは、多数の無機粒子Pと、無機粒子P同士を繋ぐバインダBとを含んでいる。前記無機粒子Pには、アルミナ、シリカ、ジルコニア、チタニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレイ、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム等、またこれらの化合物からなる複合化合物を採用することができる。そして、無機粒子Pは、なかでも、アルミナ、シリカ、チタニアが好ましく、これらのうち1種類以上を含むことが好ましい。かかる無機粒子Pは、平均粒子径が0.01μm〜5μmに設定される。   The inorganic layer 220b includes a large number of inorganic particles P and a binder B that connects the inorganic particles P to each other. The inorganic particles P include oxides such as alumina, silica, zirconia, titania, magnesia, ceria, yttria, zinc oxide and iron oxide, nitrides such as silicon nitride, titanium nitride and boron nitride, silicon carbide, calcium carbonate, Aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, etc. Moreover, the composite compound which consists of these compounds is employable. In particular, the inorganic particles P are preferably alumina, silica, and titania, and preferably contain one or more of these. Such inorganic particles P have an average particle diameter of 0.01 μm to 5 μm.

前記バインダBには、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素樹脂、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体等のフッ素ゴム、スチレン−ブタジエン共重合体及びその水素化物、アクリロニトリル−ブタジエン共重合体及びその水素化物、アクリロニトリル−ブタジエン−スチレン共重合体及びその水素化物、メタクリル酸エステル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体等の合成ゴム、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、およびカルボキシメチルセルロースのアンモニウム塩などのセルロース誘導体等のセルロース系樹脂、ポリエーテルイミド、ポリアミドイミド、ポリアミド及びその前駆体(ポリアミック酸等)等のポリイミド樹脂、エチレン−エチルアクリレート共重合体等のエチレン−アクリル酸共重合体、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリ酢酸ビニル、ポリウレタン、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエステル等を採用することができる。これらのバインダは、単独で用いてもよく、二種類以上を混合して用いてもよい。   The binder B includes a fluorine resin such as polyvinylidene fluoride and polytetrafluoroethylene, a fluorine rubber such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, a styrene-butadiene copolymer and a hydride thereof, and acrylonitrile. -Butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer Synthetic rubbers such as coalescence, cellulose resins such as carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC), and cellulose derivatives such as ammonium salts of carboxymethylcellulose; Polyimide resins such as polyamide, polyamideimide, polyamide and precursors thereof (polyamic acid, etc.), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymer, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl Pyrrolidone (PVP), polyvinyl acetate, polyurethane, polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyester and the like can be employed. These binders may be used alone or in combination of two or more.

本実施形態に係るセパレータ22は、無機粒子Pの平均粒子径が0.01〜5μmであることを前提に、無機質層220bの厚みが0.5μm〜50μmに設定されている。そして、無機質層220bの厚みが0.5μm〜12μmであり、多孔質基材層220aの厚みが10μm〜25μmであって、無機質層220bの厚みが多孔質基材層220aの厚みに対して30〜100%であると、熱収縮を充分に抑制することができる。特に、多孔質基材層220aの厚みが10μm以上、より好ましくは12μm以上であれば、セパレータ22の機械的強度が高くなるため、電池ケース3内(二次電池1)内に混入した不純物が多孔質基材層220aを貫通して微小短絡が発生することも抑制することができる。   In the separator 22 according to this embodiment, the thickness of the inorganic layer 220b is set to 0.5 μm to 50 μm on the assumption that the average particle diameter of the inorganic particles P is 0.01 to 5 μm. And the thickness of the inorganic layer 220b is 0.5 micrometer-12 micrometers, the thickness of the porous base material layer 220a is 10 micrometers-25 micrometers, Comprising: The thickness of the inorganic layer 220b is 30 with respect to the thickness of the porous base material layer 220a. Heat shrinkage can fully be suppressed as it is -100%. In particular, when the thickness of the porous base material layer 220a is 10 μm or more, more preferably 12 μm or more, the mechanical strength of the separator 22 is increased, so that impurities mixed in the battery case 3 (secondary battery 1) It is also possible to suppress the occurrence of a micro short circuit through the porous base material layer 220a.

そして、無機質層220bは、前記バインダBの接着性によって多孔質基層220aに接着されている。本実施形態に係るセパレータ22の無機質層220bは、無機粒子Pの密度が多孔質基層220aに対する積層方向で該多孔質基層220a側ほど高くなっている。すなわち、本実施形態において、前記無機質層220bは、内部の無機粒子P分布が表面側から多孔質基層220a側に向けて次第に増加するように形成されている。   The inorganic layer 220b is bonded to the porous base layer 220a by the adhesive property of the binder B. In the inorganic layer 220b of the separator 22 according to this embodiment, the density of the inorganic particles P is higher toward the porous base layer 220a side in the stacking direction with respect to the porous base layer 220a. That is, in the present embodiment, the inorganic layer 220b is formed so that the distribution of the inorganic particles P inside gradually increases from the surface side toward the porous base layer 220a side.

本実施形態に係るセパレータ22は、多孔質基層220aの一方の面における無機質層220bの積層される領域に多くのバインダBが存在している。   In the separator 22 according to the present embodiment, many binders B exist in a region where the inorganic layer 220b is laminated on one surface of the porous base layer 220a.

すなわち、本実施形態に係るセパレータ22は、各無機粒子Pの外周面にバインダBが略一定の膜厚で付着しているため、無機質層220bにおいて無機粒子Pの密度に対応して多孔質基層220aの一方の面に密着するバインダBの量が多くなっている。   That is, in the separator 22 according to this embodiment, since the binder B is adhered to the outer peripheral surface of each inorganic particle P with a substantially constant film thickness, the porous base layer corresponds to the density of the inorganic particles P in the inorganic layer 220b. The amount of the binder B in close contact with one surface of 220a is increased.

そして、該セパレータ22は、隣り合う無機粒子Pの外周面に付着したバインダB同士が部分的に結合するとともに、多層質基層220aと隣接する無機粒子Pの外周面に付着したバインダBが多層質基層220aに対して部分的に接着された状態になっている。これにより、本実施形態に係るセパレータ22は、無機粒子P、P間(無機粒子Pの外周に沿って付着したバインダB)間に多孔質基層220aの微孔と連通した微小隙間が形成され、正極板20と負極板21との間での電荷の移動を許容できるようになっている。   In the separator 22, the binder B attached to the outer peripheral surface of the adjacent inorganic particles P is partially bonded to each other, and the binder B attached to the outer peripheral surface of the inorganic particle P adjacent to the multilayer base layer 220a is multi-layered. It is in a state of being partially adhered to the base layer 220a. Thereby, as for the separator 22 which concerns on this embodiment, the micro clearance gap connected with the micropore of the porous base layer 220a is formed between the inorganic particles P and P (binder B adhering along the outer periphery of the inorganic particle P), The movement of electric charge between the positive electrode plate 20 and the negative electrode plate 21 can be allowed.

ここでセパレータ22の製造方法について説明すると、上記構成のセパレータ22は、図6(a)に示す如く、無機粒子P及びバインダBを含んだ無機溶液MLを多孔質基層220a上に塗布し(溶液塗布工程)、その後に、図6(b)に示す如く、多孔質基層220aの無機溶液MLの塗布された面とは反対側の面に対して熱風を吹き付けて無機溶液MLを乾燥させる(乾燥工程)ことで製造される。このようにすることで、上述のように、無機粒子Pの密度が多孔質基層220aに対する積層方向で該多孔質基層220a側ほど高くなった無機質層220bを備えたセパレータ22を製造することができる。ここで、無機溶液MLの乾燥工程を素早く行うと、無機粒子P上に形成されるバインダMの膜の厚みが積層方向で多孔質基層220a側ほど高くなった無機質層220bが得られる。そして、上述の如く、多孔質基層220a側から乾燥することで、無機粒子PとバインダBとがそれぞれ多孔質基層220a側に移動して、無機溶液ML中の(無機粒子P表面に付着していない)バインダBが多孔質基層220a側により集中し、結果として多孔質基層220a側のバインダBの膜厚が厚くなる。これにより、界面での接着力がより高くなり、界面付近での剥離が抑制される。   Here, the manufacturing method of the separator 22 will be described. As shown in FIG. 6A, the separator 22 having the above-described configuration is formed by applying an inorganic solution ML containing inorganic particles P and a binder B onto the porous base layer 220a (solution). Application step), and then, as shown in FIG. 6B, hot air is blown against the surface of the porous base layer 220a opposite to the surface to which the inorganic solution ML is applied to dry the inorganic solution ML (drying). Process). By doing so, as described above, the separator 22 including the inorganic layer 220b in which the density of the inorganic particles P is higher toward the porous base layer 220a in the stacking direction with respect to the porous base layer 220a can be manufactured. . Here, when the drying process of the inorganic solution ML is performed quickly, the inorganic layer 220b in which the thickness of the film of the binder M formed on the inorganic particles P is increased toward the porous base layer 220a in the stacking direction is obtained. Then, as described above, drying from the porous base layer 220a side causes the inorganic particles P and the binder B to move to the porous base layer 220a side, respectively (in the inorganic solution ML, adhering to the surface of the inorganic particles P). No) the binder B is concentrated on the porous base layer 220a side, and as a result, the thickness of the binder B on the porous base layer 220a side is increased. Thereby, the adhesive force in an interface becomes higher and peeling in the interface vicinity is suppressed.

より具体的に説明すると、図6(a)に示す如く、無機粒子P及びバインダBを含んだ無機溶液ML(バインダBを液状化させる溶媒Sを含む溶液ML)を多孔質基層220a上に塗布する(溶液塗布工程)。バインダBと混合する溶媒Sは、バインダBを溶解できる、又は分散できるものであれば特に限定されるものではないが、無機フィラーとバインダを均一且つ安定に分散又は溶解できるものが好ましい。例えば、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサン、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン等が用いられる。バインダが水溶性である場合、又は、無機フィラーとバインダとを含む溶液をエマルジョンとして使用する場合には、水を溶媒としてもよく、この際にメタノール、エタノール、イソプロパノール、エチレングリコール等のアルコール類を適宜加えて、界面張力を制御することもできる。バインダBとしては、フッ素樹脂、フッ素ゴム、アクリル酸エステル共重合体のうち少なくとも1種類を含むことが好ましく、これらを溶解できる、又はエマルジョン化できる溶媒が好ましい。そして、上記粒子径の無機粒子Pの外周面に略一定の膜厚のバインダBが付着することを前提に、前記無機溶液ML内には、無機粒子Pの全量の表面積に対してバインダBの膜厚(外周面に付着させるバインダBの膜厚)を乗じた量のバインダBが溶媒Sによって溶解されている。   More specifically, as shown in FIG. 6A, an inorganic solution ML containing inorganic particles P and a binder B (a solution ML containing a solvent S for liquefying the binder B) is applied on the porous base layer 220a. (Solution application process). The solvent S to be mixed with the binder B is not particularly limited as long as it can dissolve or disperse the binder B, but is preferably one that can uniformly and stably disperse or dissolve the binder and binder. For example, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, hexane, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone and the like are used. When the binder is water-soluble or when a solution containing an inorganic filler and a binder is used as an emulsion, water may be used as a solvent. In this case, alcohols such as methanol, ethanol, isopropanol, and ethylene glycol are used. In addition, the interfacial tension can also be controlled. Binder B preferably contains at least one of fluororesin, fluororubber, and acrylate copolymer, and a solvent that can dissolve or emulsify these is preferable. And on the assumption that the binder B having a substantially constant film thickness adheres to the outer peripheral surface of the inorganic particle P having the above particle diameter, the binder B is included in the inorganic solution ML with respect to the total surface area of the inorganic particles P. An amount of the binder B multiplied by the film thickness (the film thickness of the binder B attached to the outer peripheral surface) is dissolved by the solvent S.

ここで、無機質層220bを形成するために必要とされるバインダBの上限量(無機粒子Pの体積とバインダBの体積との和に対するバインダBの体積比Vbの上限)は、以下の式(1)で表される。 Here, the upper limit amount of the binder B required for forming the inorganic layer 220b (the upper limit of the volume ratio Vb of the binder B to the sum of the volume of the inorganic particles P and the volume of the binder B) is expressed by the following equation: It is represented by (1).

b≦(1/dfb−1/dfa)/(1/dfb)、好ましくは、Vb≦0.5×(1/dfb−1/dfa)/(1/dfb)、より好ましくはVb≦0.3×(1/dfb−1/dfa)/(1/dfb)…式(1)
ここで、dfbは、JIS Z2512に準じて測定される無機粒子のタップ密度(g/cm3)、dfaは、JIS R1620に準じて測定される無機粒子の見かけ密度(g/cm3)、Sfは、JIS M8511に準じた空気透過法により測定される無機粒子の比表面積(m2/g)、Rmは、粒子に内接する最大球の半径(μm)である。
V b ≦ (1 / d fb −1 / d fa ) / (1 / d fb ), preferably V b ≦ 0.5 × (1 / d fb −1 / d fa ) / (1 / d fb ) More preferably, V b ≦ 0.3 × (1 / d fb −1 / d fa ) / (1 / d fb ) (1)
Here, d fb is the tap density (g / cm 3 ) of inorganic particles measured according to JIS Z2512, and d fa is the apparent density (g / cm 3 ) of inorganic particles measured according to JIS R1620. , S f is the specific surface area (m 2 / g) of the inorganic particles measured by the air permeation method according to JIS M8511, and R m is the radius (μm) of the largest sphere inscribed in the particles.

無機質層220bを形成するために必要とされるバインダBの上限量(バインダBの濃度の上限)は、無機粒子Pの表面積に対して一定以上の厚みにならないこと、すなわち、無機粒子P,P間の空隙がバインダBで埋め尽くされないことが条件とされる。なお、ここでいう「無機粒子Pの表面積」とは、バインダB及び溶媒が入り込むことが可能な範囲であり、溶媒が入り込まないような小さい穴を除いた面積を意味する。   The upper limit amount of the binder B (upper limit of the concentration of the binder B) required for forming the inorganic layer 220b does not become a certain thickness or more with respect to the surface area of the inorganic particles P, that is, the inorganic particles P, P The condition is that the gaps between them are not filled with the binder B. The “surface area of the inorganic particles P” here is a range in which the binder B and the solvent can enter, and means an area excluding small holes where the solvent does not enter.

例えば、無機粒子Pが球状の場合、最密充填構造をとると、充填率は約0.74となる。この場合、バインダの体積比が0.25より大きくなると、バインダBが無機粒子P,P間の空隙を全て埋めてしまうため、イオン透過性の観点より好ましくない。従って、バインダの体積比率は、無機粒子Pを最も密に敷き詰めた場合の空隙率に対して半分以下となることが好ましく、無機粒子Pが球に近似できる場合はその体積比は0.13以下となることが好ましい。このような条件を数式化すれば、上記式(1)となる。   For example, when the inorganic particles P are spherical, the packing rate is about 0.74 when the closest packing structure is adopted. In this case, if the volume ratio of the binder is larger than 0.25, the binder B fills all the gaps between the inorganic particles P and P, which is not preferable from the viewpoint of ion permeability. Therefore, the volume ratio of the binder is preferably less than half of the porosity when the inorganic particles P are spread most densely, and when the inorganic particles P can approximate a sphere, the volume ratio is 0.13 or less. It is preferable that If such conditions are formulated into mathematical formulas, the above formula (1) is obtained.

これに対し、無機質層220bを形成するために必要とされるバインダBの下限量(無機粒子Pの体積とバインダBの体積との和に対するバインダBの体積比Vbの下限)は、以下の式(2)で表される。 On the other hand, the lower limit amount of the binder B required to form the inorganic layer 220b (the lower limit of the volume ratio Vb of the binder B to the sum of the volume of the inorganic particles P and the volume of the binder B) is as follows: It is represented by Formula (2).

Vb≧Sf×Rm×dfb×0.01、好ましくはVb≧Sf×Rm×dfb×0.03、より好ましくはVb≧Sf×Rm×dfb×0.05…式(2) Vb ≧ S f × R m × d fb × 0.01, preferably Vb ≧ S f × R m × d fb × 0.03, more preferably Vb ≧ S f × R m × d fb × 0.05. Formula (2)

無機質層220bを形成するために必要とされるバインダBの下限量(バインダBの濃度の下限)については、上述の如く、無機粒子Pの表面に一定以上の膜厚のバインダBを付着させる(バインダBの層を形成する)ことを前提に決定される。そして、無機粒子P,P同士の接着を実現させるには、無機粒子P,P同士の接点を一定面積以上にする必要があり、例えば、無機粒子Pの表面のラフネスが10%と仮定すると、粒子径100nm程度の粒子ではバインダBの厚みが10nm以上あることが好ましい。   Regarding the lower limit amount of the binder B (lower limit of the concentration of the binder B) required for forming the inorganic layer 220b, the binder B having a certain thickness or more is adhered to the surface of the inorganic particles P as described above ( (Binder B layer is formed). And in order to implement | achieve adhesion | attachment between inorganic particles P and P, it is necessary to make the contact of inorganic particles P and P into a fixed area or more, for example, when the roughness of the surface of the inorganic particle P is assumed to be 10%, In the case of particles having a particle diameter of about 100 nm, the thickness of the binder B is preferably 10 nm or more.

上記式(2)は、球状粒子だけでなく、板状粒子の場合にも使用できるが、あまりにアスペクト比が高いものには当てはまらないと考えられるため、アスペクト比が20以下、好ましくは10以下の無機粒子Pを対象とする場合にバインダBの下限量を規定することができる。このように、無機質層220bを形成するために必要とされるバインダBの上限量及び下限量が、上記式(1)及び(2)の範囲内にあることで、電池の出力性能と短絡時の安全性向上との両方の効果が得られる。   Although the above formula (2) can be used not only for spherical particles but also for plate-like particles, it is considered that this does not apply to those having an excessively high aspect ratio, so the aspect ratio is 20 or less, preferably 10 or less. When the inorganic particles P are targeted, the lower limit amount of the binder B can be defined. Thus, when the upper limit amount and the lower limit amount of the binder B required for forming the inorganic layer 220b are within the ranges of the above formulas (1) and (2), the output performance of the battery and the short circuit time are shorted. Both of the effects of improving safety can be obtained.

そして、無機溶液MLを多孔質基層220aに塗布した後に、図6(b)に示す如く、多孔質基層200aに熱風を吹き付ける(乾燥工程)。そうすると、無機溶液ML内の溶媒Sが多孔質基層200a側から揮発する(温度の高い表面側に移動して揮発する)ことになる。   And after apply | coating the inorganic solution ML to the porous base layer 220a, as shown in FIG.6 (b), a hot air is sprayed on the porous base layer 200a (drying process). Then, the solvent S in the inorganic solution ML is volatilized from the porous base layer 200a side (moves to the surface side having a higher temperature and volatilizes).

そのため、無機溶液ML中で分散していた無機粒子Pも無機溶液ML内の溶媒Sの多孔質基層200a側への移動(揮発)に伴って多孔質基層200a側に移動することになる。そして、溶媒aが揮発してバインダBが固化する(接着性能が発揮する)ことで、多孔質基層220a側に移動した多数の無機粒子Pが多孔質基層200a側で固定される。   Therefore, the inorganic particles P dispersed in the inorganic solution ML also move to the porous base layer 200a side as the solvent S in the inorganic solution ML moves (volatilizes) to the porous base layer 200a side. Then, the solvent a is volatilized and the binder B is solidified (adhesion performance is exerted), whereby a large number of inorganic particles P that have moved to the porous base layer 220a side are fixed on the porous base layer 200a side.

その結果、無機質層200bは、無機粒子P及びこれを覆うバインダBが表面側よりも多孔質基層200a側で多くなるため、多孔質基層200aに対する接着性能が高まった状態で形成されることになる。   As a result, the inorganic layer 200b is formed in a state where the adhesion performance to the porous base layer 200a is increased because the inorganic particles P and the binder B covering the inorganic particles P are increased on the porous base layer 200a side rather than the surface side. .

このように、本実施形態に係る二次電池1(セパレータ22)は、図5に示す如く、無機質層220bの無機粒子Pの密度が多孔質基層220aに対する積層方向で該多孔質基層220a側ほど高くなっているため、多孔質基層220a上により多くのバインダBが存在することになり、多孔質基層220aに対する無機質層220bの接着力が高くなる。すなわち、バインダBは、各無機粒子Pの外周面に沿って付着した状態になるため、多孔質基層220a上にある無機粒子P,P同士がバインダBを介して接着されることは勿論のこと、多孔質基層220a上にある多数の無機粒子PがバインダBを介して該多孔質基層220aに接着された状態になる。これにより、上記構成の二次電池1(セパレータ22)は、多孔質基層220aから無機質層220bが剥離することが抑制されることになり、必要な耐熱性や耐久性が確保されている。   Thus, in the secondary battery 1 (separator 22) according to this embodiment, as shown in FIG. 5, the density of the inorganic particles P of the inorganic layer 220b is closer to the porous base layer 220a side in the stacking direction with respect to the porous base layer 220a. Since the height is higher, more binder B is present on the porous base layer 220a, and the adhesive force of the inorganic layer 220b to the porous base layer 220a is increased. That is, since the binder B is attached along the outer peripheral surface of each inorganic particle P, the inorganic particles P and P on the porous base layer 220a are naturally bonded to each other through the binder B. Then, a large number of inorganic particles P on the porous base layer 220a are bonded to the porous base layer 220a through the binder B. Thereby, in the secondary battery 1 (separator 22) having the above-described configuration, the inorganic layer 220b is prevented from peeling from the porous base layer 220a, and necessary heat resistance and durability are ensured.

図3に戻り、本実施形態に係る発電要素2は、幅方向(正極板20及び負極板21の長手方向と直交する幅方向と対応する方向)の一端部に正極板20(正極リード部L1)のみの積層部分が形成され、幅方向(正極板20及び負極板21が長手方向と直交する幅方向と対応する方向)の他端部に負極板21(負極リード部L2)のみの積層部分が形成されている。そして、該二次電池1は、正極板20(正極リード部L1)のみの積層部分に一方の集電部材6が電気的に接続され、負極板21(負極リード部L2)のみの積層部分に他方の集電部材7が電気的に接続されている(図2参照)。   Returning to FIG. 3, the power generating element 2 according to the present embodiment has the positive electrode plate 20 (positive electrode lead portion L <b> 1) at one end in the width direction (the direction corresponding to the width direction orthogonal to the longitudinal direction of the positive electrode plate 20 and the negative electrode plate 21). ) And a laminated portion of only the negative electrode plate 21 (negative electrode lead portion L2) at the other end in the width direction (the direction corresponding to the width direction in which the positive electrode plate 20 and the negative electrode plate 21 are orthogonal to the longitudinal direction). Is formed. In the secondary battery 1, one current collecting member 6 is electrically connected to the laminated portion of only the positive electrode plate 20 (positive electrode lead portion L1), and the laminated portion of only the negative electrode plate 21 (negative electrode lead portion L2). The other current collecting member 7 is electrically connected (see FIG. 2).

前記電池ケース3は、一面を開放させた角形の箱状をなすケース本体30と、ケース本体30の開放部分を封止する蓋板31とを備えている。そして、該電池ケース3は、上述の如く、発電要素2以外に一対の集電部材6,7が収容されて電解液が充填されている。   The battery case 3 includes a case body 30 having a rectangular box shape with one surface open, and a cover plate 31 that seals an open portion of the case body 30. And as above-mentioned, this battery case 3 accommodates a pair of current collection members 6 and 7 other than the electric power generation element 2, and is filled with electrolyte solution.

一対の出力端子4,5は、それぞれ共通した構成であり、ケーブルやバスバー等の接続対象物(図示しない)を電気的に接続可能に形成されている。そして、一方の出力端子4は、一方の集電部材6に電気的に接続され、他方の出力端子5は、他方の集電部材7に電気的に接続されている。   The pair of output terminals 4 and 5 has a common configuration, and is formed so that a connection object (not shown) such as a cable or a bus bar can be electrically connected thereto. One output terminal 4 is electrically connected to one current collecting member 6, and the other output terminal 5 is electrically connected to the other current collecting member 7.

一対の集電部材6,7は、それぞれ共通した構成であり、蓋板31に固定されるベース60,70と、該ベース60,70の一端に連設されて発電要素2の幅方向の端部(正極リード部L1、負極リード部L2)に沿って配置される発電要素添設部61,71とを備えている。そして、一方の集電部材6は、発電要素2の一端部(正極リード部L1)に沿わせた発電要素添設部61が該発電要素2の一端部(正極リード部L1)とともにクリップ部材62に挟み込まれた状態で溶接され、他方の集電部材7は、発電要素2の他端部(負極リード部L2)に沿わせた発電要素添設部71が該発電要素2の他端部(負極リード部L2)とともにクリップ部材72に挟み込まれた状態で溶接される。   The pair of current collecting members 6, 7 has a common configuration, and includes bases 60, 70 fixed to the cover plate 31, and ends in the width direction of the power generation element 2 connected to one ends of the bases 60, 70. Power generation element attachment portions 61 and 71 disposed along the portions (the positive electrode lead portion L1 and the negative electrode lead portion L2). One power collecting member 6 has a power generation element attaching portion 61 along one end portion (positive electrode lead portion L1) of the power generation element 2 and a clip member 62 together with one end portion (positive electrode lead portion L1) of the power generation element 2. The other current collecting member 7 is welded in a state of being sandwiched between the power generating element 2 and the power generating element additional portion 71 along the other end (negative electrode lead portion L2) of the power generating element 2 is connected to the other end ( It welds in the state pinched | interposed into the clip member 72 with the negative electrode lead part L2).

そして、本実施形態に係る二次電池1は、図1乃至図3に示す如く、一対の出力端子4,5が電池ケース3(蓋板31)の外側で互いに対称的に配置されるとともに、一対の集電部材6,7が電池ケース3(ケース本体30)の内側で互いに対称的に配置され、一方の出力端子4が一方の集電部材6に対して間接的に接続されるとともに、他方の出力端子5が他方の集電部材7に間接的に接続されている。   In the secondary battery 1 according to the present embodiment, as shown in FIGS. 1 to 3, the pair of output terminals 4 and 5 are symmetrically arranged on the outside of the battery case 3 (lid plate 31), A pair of current collecting members 6 and 7 are symmetrically arranged inside the battery case 3 (case body 30), and one output terminal 4 is indirectly connected to one current collecting member 6, The other output terminal 5 is indirectly connected to the other current collecting member 7.

本実施形態に係る二次電池1は、一対の出力端子4,5のそれぞれの配置に対応した二カ所に蓋板31を内外から挟み込む絶縁パッキンG,Gを備えており、絶縁パッキンG,G及び蓋板31を貫通したリベット8を介して集電部材6,7と出力端子4,5とが電気的に接続されている。   The secondary battery 1 according to the present embodiment includes insulating packings G and G that sandwich the cover plate 31 from inside and outside at two locations corresponding to the arrangement of the pair of output terminals 4 and 5. The current collecting members 6, 7 and the output terminals 4, 5 are electrically connected via the rivet 8 penetrating the cover plate 31.

より具体的に説明すると、本実施形態に係る二次電池1は、短冊状の金属板からなる接続杆41,51を備えており、該接続杆41,51の長手方向の一端部に出力端子4,5が挿通されている。そして、該二次電池1は、蓋板31の外面上に重ね合わされた絶縁パッキンG上に接続杆41、51が配置されるとともに、蓋板31の内面に重ね合わされた絶縁パッキンG上に集電部材6,7のベース60,70が配置され、前記リベット8を接続杆41,51、絶縁パッキンG,G、蓋板31、及び集電部材6,7(ベース60,70)に貫通させて該リベット8をカシメ処理することで、リベット8及び接続杆41,51を介して出力端子4,5と集電部材6,7とが電池ケース3に固定されつつ互いに電気的に接続されている。   More specifically, the secondary battery 1 according to the present embodiment includes connection rods 41 and 51 made of strip-shaped metal plates, and an output terminal at one end portion in the longitudinal direction of the connection rods 41 and 51. 4 and 5 are inserted. Then, the secondary battery 1 has connecting rods 41 and 51 arranged on the insulating packing G superimposed on the outer surface of the lid plate 31 and is collected on the insulating packing G superimposed on the inner surface of the lid plate 31. The bases 60 and 70 of the electric members 6 and 7 are arranged, and the rivet 8 is passed through the connecting rods 41 and 51, the insulating packings G and G, the cover plate 31, and the current collecting members 6 and 7 (bases 60 and 70). By crimping the rivet 8, the output terminals 4, 5 and the current collecting members 6, 7 are electrically connected to each other while being fixed to the battery case 3 via the rivet 8 and the connecting rods 41, 51. Yes.

以上のように、本実施形態に係る二次電池1のセパレータ22は、電気絶縁性を有する多孔質基層220aと、該多孔質基層220a上に積層された無機質層220bとを備え、前記無機質層220bは、多数の無機粒子Pと、無機粒子P同士を繋ぐバインダBとを含み、該バインダBの接着性によって多孔質基層220aに接着された二次電池1用のセパレータ22において、前記無機質層220bは、無機粒子Pの密度が多孔質基層220aに対する積層方向で該多孔質基層220a側ほど高くなっているため、多孔質基層220a上により多くのバインダBが存在することになり、多孔質基層220aに対する無機質層220bの接着力が高くなる。   As described above, the separator 22 of the secondary battery 1 according to the present embodiment includes the porous base layer 220a having electrical insulation and the inorganic layer 220b laminated on the porous base layer 220a, and the inorganic layer 220b includes a large number of inorganic particles P and a binder B connecting the inorganic particles P, and the separator 22 for the secondary battery 1 adhered to the porous base layer 220a by the adhesive property of the binder B. In 220b, since the density of the inorganic particles P is higher toward the porous base layer 220a in the stacking direction with respect to the porous base layer 220a, more binder B is present on the porous base layer 220a. The adhesive force of the inorganic layer 220b with respect to 220a becomes high.

すなわち、バインダBは、各無機粒子Pの外周面に沿って付着した状態になるため、多孔質基層220a上にある無機粒子P同士がバインダBを介して部分的に接着されることは勿論のこと、多孔質基層220a上にある多数の無機粒子PがバインダBを介して該多孔質基層220aに部分的に接着された状態になる。   That is, since the binder B is attached along the outer peripheral surface of each inorganic particle P, the inorganic particles P on the porous base layer 220a are partly bonded through the binder B as a matter of course. In other words, a large number of inorganic particles P on the porous base layer 220a are partially bonded to the porous base layer 220a via the binder B.

これにより、本実施形態に係る二次電池1用のセパレータ22は、多孔質基層220aから無機質層220bが剥離することが抑制されるため、必要な耐熱性や耐久性を確保することができる。   Thereby, since the separator 22 for the secondary battery 1 according to the present embodiment is prevented from peeling off the inorganic layer 220b from the porous base layer 220a, it is possible to ensure necessary heat resistance and durability.

また、本実施形態に係る二次電池1用のセパレータ22は、無機質層220bにおいて無機粒子P,P間に微小間隙が形成され、該微小間隙が多孔質基層(多孔質フィルム)220aの微孔と連通した状態になる。すなわち、上述の如く、各無機粒子Pの外周面に沿って付着したバインダBによって隣り合う無機粒子P,P同士が接着されることで、無機質層220bにおいて、無機粒子P,P間(無機粒子Pの外周に沿って付着したバインダB)間に多孔質基層220aの微孔と連通した微小隙間が形成された状態になり、正極板20と負極板21との間で電荷の移動を許容できる。   Further, in the separator 22 for the secondary battery 1 according to this embodiment, a minute gap is formed between the inorganic particles P and P in the inorganic layer 220b, and the minute gap is a micropore of the porous base layer (porous film) 220a. It will be in the state of communicating with. That is, as described above, the adjacent inorganic particles P and P are bonded to each other by the binder B attached along the outer peripheral surface of each inorganic particle P, so that the inorganic layer 220b has an interval between the inorganic particles P and P (inorganic particles). A minute gap communicating with the micropores of the porous base layer 220a is formed between the binder B attached along the outer periphery of P, and the movement of electric charge between the positive electrode plate 20 and the negative electrode plate 21 can be allowed. .

そして、本実施形態に係る二次電池1用のセパレータ22の製造方法は、無機粒子P及びバインダBを含んだ無機溶液MLを多孔質基層220a上に塗布する溶液塗布工程と、多孔質基層220aの無機溶液MLの塗布された面とは反対側の面に対して熱風を吹き付けて無機溶液MLを乾燥させる乾燥工程とを備えているため、無機粒子Pの密度が多孔質基層220aに対する積層方向で該多孔質基層220a側ほど高くなった無機質層220bを備えたセパレータ22を製造することができる。   And the manufacturing method of the separator 22 for the secondary battery 1 which concerns on this embodiment is the solution application | coating process which apply | coats the inorganic solution ML containing the inorganic particle P and the binder B on the porous base layer 220a, and the porous base layer 220a. And a drying step of drying the inorganic solution ML by blowing hot air on the surface opposite to the surface on which the inorganic solution ML is applied, so that the density of the inorganic particles P is the stacking direction with respect to the porous base layer 220a. Thus, the separator 22 including the inorganic layer 220b that is higher toward the porous base layer 220a can be manufactured.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、適宜変更可能である。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.

上記実施形態において、正極板20及び負極板21を積層状態で巻回した巻回型の発電要素2を備えた二次電池1について説明したが、これに限定されるものではなく、枚葉状の正極板と枚葉状の負極板とをセパレータを挟んで交互に積層した積層型の発電要素を備えた二次電池であってもよい。   In the said embodiment, although the secondary battery 1 provided with the winding type electric power generation element 2 which wound the positive electrode plate 20 and the negative electrode plate 21 in the lamination | stacking state was demonstrated, it is not limited to this, A sheet-like shape It may be a secondary battery provided with a laminated power generation element in which positive plates and sheet-like negative plates are alternately laminated with a separator interposed therebetween.

上記実施形態において、リチウムイオン二次電池を一例に説明したが、例えば、ナトリウムイオン二次電池や、マグネシウムイオン二次電池、カルシウムイオン二次電池等のロッキングチェア型の二次電池、すなわち、正極板20と負極板21との間で電荷(金属系イオン)が移動することで充放電できる二次電池であればよい。   In the above embodiment, the lithium ion secondary battery has been described as an example. For example, a rocking chair type secondary battery such as a sodium ion secondary battery, a magnesium ion secondary battery, or a calcium ion secondary battery, that is, a positive electrode Any secondary battery that can be charged and discharged by the movement of electric charges (metal ions) between the plate 20 and the negative electrode plate 21 may be used.

1…二次電池、2…発電要素、3…電池ケース、4,5…出力端子、6,7…集電部材、8…リベット、20…正極板、21…負極板、22…セパレータ、30…ケース本体、31…蓋板、41,51…接続杆、60,70…ベース、61,71…発電要素添設部、62,72…クリップ部材、220a…多孔質基層、220b…無機質層、B…バインダ、L1…正極リード部、L2…負極リード部、ML…無機溶液、P…無機粒子、G…絶縁パッキン、S…溶媒   DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2 ... Power generation element, 3 ... Battery case, 4, 5 ... Output terminal, 6, 7 ... Current collecting member, 8 ... Rivet, 20 ... Positive electrode plate, 21 ... Negative electrode plate, 22 ... Separator, 30 ... Case body, 31 ... Cover plate, 41,51 ... Connection rod, 60,70 ... Base, 61,71 ... Power generation element attachment part, 62,72 ... Clip member, 220a ... Porous base layer, 220b ... Inorganic layer, B ... Binder, L1 ... Positive electrode lead part, L2 ... Negative electrode lead part, ML ... Inorganic solution, P ... Inorganic particle, G ... Insulating packing, S ... Solvent

Claims (3)

電気絶縁性を有する多孔質基層と、該多孔質基層上に積層された無機質層とを備え、前記無機質層が多数の無機粒子と無機粒子同士を繋ぐバインダとを含んだ二次電池用のセパレータにおいて、前記無機質層は、無機粒子の密度が多孔質基層に対する積層方向で該多孔質基層側ほど高くなっていることを特徴とする二次電池用のセパレータ。   A separator for a secondary battery comprising a porous base layer having electrical insulation and an inorganic layer laminated on the porous base layer, wherein the inorganic layer includes a plurality of inorganic particles and a binder that connects the inorganic particles. The separator for a secondary battery is characterized in that the inorganic layer has a density of inorganic particles that is higher toward the porous base layer in the stacking direction with respect to the porous base layer. 正極板と負極板とがセパレータを挟んで積層された発電要素を備え、前記セパレータは、電気絶縁性を有する多孔質基層と、該多孔質基層上に積層された無機質層とを備え、前記無機質層が多数の無機粒子と無機粒子同士を繋ぐバインダとを含んだ二次電池において、前記無機質層は、無機粒子の密度が多孔質基層に対する積層方向で該多孔質基層側ほど高くなっていることを特徴とする二次電池。   A power generation element in which a positive electrode plate and a negative electrode plate are stacked with a separator interposed therebetween, and the separator includes a porous base layer having electrical insulation and an inorganic layer stacked on the porous base layer, In the secondary battery in which the layer includes a large number of inorganic particles and a binder that connects the inorganic particles, the inorganic layer has a higher density of inorganic particles in the stacking direction with respect to the porous base layer toward the porous base layer side. A secondary battery characterized by. 電気絶縁性を有する多孔質基層と、該多孔質基層上に積層された無機質層とを備え、前記無機質層が多数の無機粒子と無機粒子同士を繋ぐバインダとを含んだ二次電池用のセパレータの製造方法において、無機粒子及びバインダを含んだ無機溶液を多孔質基層上に塗布する溶液塗布工程と、多孔質基層の無機溶液の塗布された面とは反対側の面に対して熱風を吹き付けて無機溶液を乾燥させる乾燥工程とを備えていることを特徴とする二次電池用のセパレータの製造方法。   A separator for a secondary battery comprising a porous base layer having electrical insulation and an inorganic layer laminated on the porous base layer, wherein the inorganic layer includes a plurality of inorganic particles and a binder that connects the inorganic particles. In the manufacturing method, a solution coating step of coating an inorganic solution containing inorganic particles and a binder on the porous base layer, and hot air is blown against the surface of the porous base layer opposite to the surface on which the inorganic solution is applied. And a drying step for drying the inorganic solution. A method for producing a separator for a secondary battery.
JP2011050519A 2011-03-08 2011-03-08 Secondary battery separator and secondary battery Active JP5794464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011050519A JP5794464B2 (en) 2011-03-08 2011-03-08 Secondary battery separator and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011050519A JP5794464B2 (en) 2011-03-08 2011-03-08 Secondary battery separator and secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015011440A Division JP5896045B2 (en) 2015-01-23 2015-01-23 SECONDARY BATTERY SEPARATOR, SECONDARY BATTERY, AND METHOD FOR PRODUCING SECONDARY BATTERY SEPARATOR

Publications (2)

Publication Number Publication Date
JP2012190547A true JP2012190547A (en) 2012-10-04
JP5794464B2 JP5794464B2 (en) 2015-10-14

Family

ID=47083525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050519A Active JP5794464B2 (en) 2011-03-08 2011-03-08 Secondary battery separator and secondary battery

Country Status (1)

Country Link
JP (1) JP5794464B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054966A (en) * 2011-09-05 2013-03-21 Nissan Motor Co Ltd Separator with heat resistant insulation layer
WO2013108511A1 (en) * 2012-01-19 2013-07-25 ソニー株式会社 Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
JP2014203583A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Secondary battery, and separator therefor
JP2015076289A (en) * 2013-10-09 2015-04-20 日立オートモティブシステムズ株式会社 Wound secondary battery
KR20160122646A (en) * 2015-04-14 2016-10-24 도요타지도샤가부시키가이샤 Separator for non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20160125921A (en) * 2015-04-22 2016-11-01 주식회사 엘지화학 Separator for lithium secondary battery and a method of making the same
JP2016536750A (en) * 2013-10-31 2016-11-24 エルジー・ケム・リミテッド Porous separation membrane for electrochemical device comprising porous substrate with inverted opal structure and method for producing the same
KR20170023788A (en) * 2014-06-27 2017-03-06 니폰 제온 가부시키가이샤 Composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, and nonaqueous secondary cell
KR20180023878A (en) * 2016-08-26 2018-03-07 주식회사 엘지화학 An electrode lead member for an electrochemical device
WO2019017213A1 (en) * 2017-07-21 2019-01-24 日本ゼオン株式会社 Layered product for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing non-aqueous secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012788A (en) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2007182067A (en) * 2005-12-08 2007-07-19 Toray Ind Inc Aromatic polyamide porous film complex, its manufacturing method, and air filter
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
JP2010146839A (en) * 2008-12-18 2010-07-01 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012788A (en) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
JP2007182067A (en) * 2005-12-08 2007-07-19 Toray Ind Inc Aromatic polyamide porous film complex, its manufacturing method, and air filter
JP2010146839A (en) * 2008-12-18 2010-07-01 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054966A (en) * 2011-09-05 2013-03-21 Nissan Motor Co Ltd Separator with heat resistant insulation layer
WO2013108511A1 (en) * 2012-01-19 2013-07-25 ソニー株式会社 Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
JPWO2013108511A1 (en) * 2012-01-19 2015-05-11 ソニー株式会社 Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US10263235B2 (en) 2012-01-19 2019-04-16 Murata Manufacturing Co., Ltd. Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2014203583A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Secondary battery, and separator therefor
JP2015076289A (en) * 2013-10-09 2015-04-20 日立オートモティブシステムズ株式会社 Wound secondary battery
US10115952B2 (en) 2013-10-31 2018-10-30 Lg Chem, Ltd. Porous separator having inverse opal structure for secondary battery and method for manufacturing the same
JP2016536750A (en) * 2013-10-31 2016-11-24 エルジー・ケム・リミテッド Porous separation membrane for electrochemical device comprising porous substrate with inverted opal structure and method for producing the same
KR20170023788A (en) * 2014-06-27 2017-03-06 니폰 제온 가부시키가이샤 Composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, and nonaqueous secondary cell
KR102422232B1 (en) * 2014-06-27 2022-07-15 니폰 제온 가부시키가이샤 Composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, and nonaqueous secondary cell
KR101888740B1 (en) * 2015-04-14 2018-08-14 도요타지도샤가부시키가이샤 Separator for non-aqueous electrolyte secondary battery and manufacturing method thereof
CN106058122A (en) * 2015-04-14 2016-10-26 丰田自动车株式会社 Separator for non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2016201327A (en) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 Separator for nonaqueous electrolyte secondary battery and manufacturing method for the same
KR20160122646A (en) * 2015-04-14 2016-10-24 도요타지도샤가부시키가이샤 Separator for non-aqueous electrolyte secondary battery and manufacturing method thereof
US10128482B2 (en) 2015-04-14 2018-11-13 Toyota Jidosha Kabushiki Kaisha Separator for non-aqueous electrolyte secondary battery and manufacturing method thereof
US10468652B2 (en) 2015-04-22 2019-11-05 Lg Chem, Ltd. Separator for lithium secondary battery and manufacturing method therefor
KR102018299B1 (en) * 2015-04-22 2019-11-14 주식회사 엘지화학 Separator for lithium secondary battery and a method of making the same
KR20160125921A (en) * 2015-04-22 2016-11-01 주식회사 엘지화학 Separator for lithium secondary battery and a method of making the same
JP2019502248A (en) * 2016-08-26 2019-01-24 エルジー・ケム・リミテッド Separation membrane for electrochemical device and electrochemical device including the separation membrane
KR20180023878A (en) * 2016-08-26 2018-03-07 주식회사 엘지화학 An electrode lead member for an electrochemical device
KR102016717B1 (en) * 2016-08-26 2019-10-14 주식회사 엘지화학 An electrode lead member for an electrochemical device
US10978766B2 (en) 2016-08-26 2021-04-13 Lg Chem, Ltd. Separator for electrochemical device and electrochemical device including the same
WO2019017213A1 (en) * 2017-07-21 2019-01-24 日本ゼオン株式会社 Layered product for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing non-aqueous secondary battery
JP7078046B2 (en) 2017-07-21 2022-05-31 日本ゼオン株式会社 A method for manufacturing a laminate for a non-aqueous secondary battery, a non-aqueous secondary battery, and a non-aqueous secondary battery.

Also Published As

Publication number Publication date
JP5794464B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5794464B2 (en) Secondary battery separator and secondary battery
JP6834139B2 (en) Power storage element
TWI466365B (en) An insulating layer with heat-resistant insulation
JP6076464B2 (en) Nonaqueous electrolyte secondary battery
JP5397711B2 (en) Method for manufacturing battery electrode
JP5966285B2 (en) Separator with heat-resistant insulation layer
JP2009283273A (en) Separator for electrochemical cell, and battery
JP2016509338A (en) Electrode assembly and electrochemical device including the same
JP2019021805A (en) Electrode body and electric storage device
JP2014013693A (en) Lithium ion secondary battery and manufacturing method therefor
JP2010102868A (en) Lithium secondary battery
JP2016103425A (en) Zigzag lamination body structure for secondary battery
JP2017135110A (en) Electrode assembly and electrochemical device including the same
JP2013080676A (en) Separator with heat-resistant insulating layer
JP2016066454A (en) Power storage element
JP5299721B2 (en) Battery separator manufacturing method
KR20160027364A (en) Electrode assembly for secondary battery
JP4699256B2 (en) Lithium secondary battery
WO2021131879A1 (en) Secondary battery
JP2017143003A (en) Power storage device
JP5896045B2 (en) SECONDARY BATTERY SEPARATOR, SECONDARY BATTERY, AND METHOD FOR PRODUCING SECONDARY BATTERY SEPARATOR
JP2018166139A (en) Electrochemical device
JPWO2019022063A1 (en) Electrode, storage element, and method for manufacturing electrode
WO2021131880A1 (en) Secondary battery
JP2016119316A (en) Separator for secondary battery, secondary battery, and manufacturing method of separator for secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150730

R150 Certificate of patent or registration of utility model

Ref document number: 5794464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150