JP2014013693A - Lithium ion secondary battery and manufacturing method therefor - Google Patents

Lithium ion secondary battery and manufacturing method therefor Download PDF

Info

Publication number
JP2014013693A
JP2014013693A JP2012150609A JP2012150609A JP2014013693A JP 2014013693 A JP2014013693 A JP 2014013693A JP 2012150609 A JP2012150609 A JP 2012150609A JP 2012150609 A JP2012150609 A JP 2012150609A JP 2014013693 A JP2014013693 A JP 2014013693A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
insulating layer
porous insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012150609A
Other languages
Japanese (ja)
Inventor
Shigeru Aihara
茂 相原
Hisatoshi Fukumoto
久敏 福本
Keisuke Ogasawara
圭佑 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012150609A priority Critical patent/JP2014013693A/en
Publication of JP2014013693A publication Critical patent/JP2014013693A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery capable of achieving difficult short-circuit between electrodes even in an event such as overcharging because a porous resin layer can be robustly formed.SOLUTION: The lithium ion secondary battery includes: a positive electrode with a positive active material layer and a positive electrode collector; a negative electrode with a negative active material layer and a negative electrode collector; a separator that is disposed between the positive electrode and the negative electrode and retains electrolyte containing lithium ions; and a porous insulator layer disposed on at least either one of areas between the positive layer and the separator and between the negative layer and the separator. The porous insulator layer is formed from fine-particular filler and adhesive layer, and the adhesive resin is formed from emulsion polymerization polyvinylidene fluoride.

Description

この発明はリチウムイオン二次電池およびその製造方法、特に過充電時等の電池温度上昇時の電極間短絡を生じ難くさせたものに関する。   The present invention relates to a lithium ion secondary battery and a method for manufacturing the same, and particularly to a battery that makes it difficult to cause a short circuit between electrodes when the battery temperature rises during overcharging.

リチウムイオン二次電池は携帯電話やノートパソコン等の小型機器の主電源として、小容量タイプのものが多く使用されてきたが、近年では電気自動車やハイブリッド自動車、家庭用蓄電池等用に向けた大容量タイプのものが多く開発され、搭載され始めている。   Lithium-ion rechargeable batteries have often been used as the main power source for small devices such as mobile phones and laptop computers, but in recent years they have been widely used for electric vehicles, hybrid vehicles, household storage batteries, etc. Many of the capacity types have been developed and are beginning to be installed.

リチウムイオン二次電池は正極と負極の間に絶縁及び電解質保持の機能を持つセパレータを配置している。このセパレータは電池の温度上昇時にセパレータ自身の電解液を保持するための微細孔が目詰まりを起こし、電流を遮断するシャットダウン機能を有することが一般的であるが、その素材の融点を超える温度まで電池が昇温してしまうと、セパレータ自体が収縮してしまい、正極と負極が接触し、短絡してしまうという問題があった。   In a lithium ion secondary battery, a separator having functions of insulation and electrolyte retention is disposed between a positive electrode and a negative electrode. This separator generally has a shut-down function that blocks the micropores that hold the electrolyte of the separator itself when the temperature of the battery rises, and shuts off the current. When the temperature of the battery rises, the separator itself contracts, causing a problem that the positive electrode and the negative electrode come into contact with each other and short-circuit.

その現象を回避するために、正極または負極とセパレータの間に絶縁層を設ける技術が下記特許文献1、2に開示されている。   In order to avoid this phenomenon, techniques for providing an insulating layer between a positive electrode or negative electrode and a separator are disclosed in Patent Documents 1 and 2 below.

下記特許文献1では、電極表面に多孔性保護膜を形成しており、多孔性保護膜は粒径が0.1〜50μmの範囲にあるアルミナまたはシリカを用いており、これを樹脂結着剤と共に0.1〜200μm厚に膜形成している。   In Patent Document 1 below, a porous protective film is formed on the electrode surface, and the porous protective film uses alumina or silica having a particle size in the range of 0.1 to 50 μm, which is used as a resin binder. In addition, a film is formed to a thickness of 0.1 to 200 μm.

下記特許文献2では、ポリプロピレンセパレータ上に多孔質電子絶縁層を形成しており、多孔質電子絶縁層は無機酸化物フィラーと結着剤で構成され、無機酸化物としては0.3〜1μmのα-アルミナが好ましいとされている。   In the following Patent Document 2, a porous electronic insulating layer is formed on a polypropylene separator, the porous electronic insulating layer is composed of an inorganic oxide filler and a binder, and the inorganic oxide is 0.3 to 1 μm. α-alumina is preferred.

特許第3371301号公報Japanese Patent No. 3371301 特許第4667373号公報Japanese Patent No. 4667373

正極または負極とセパレータの間に多孔性絶縁層を形成する場合、絶縁性能を有して、電池性能を維持させるには、多孔性絶縁層の気孔度(ポロシティ)をできるだけ高くする必要がある。更に多孔性絶縁層の気孔(ポア)の中に電解液を十分に充たしておく必要がある。これらの条件を満たすために使用するフィラーとしては可能な限り細かい方が好ましい。そこで、前記先行技術よりも粒径の細かいフィラーを用いて多孔性絶縁層を形成するには結着剤において、従来電極形成に一般的に用いていたポリフッ化ビニリデンを用いたのでは、接着性に劣り、層形状を維持することが困難であることがわかった。   When a porous insulating layer is formed between the positive electrode or the negative electrode and the separator, it is necessary to make the porosity of the porous insulating layer as high as possible in order to maintain the battery performance with the insulating performance. Furthermore, it is necessary to sufficiently fill the electrolyte in pores (pores) of the porous insulating layer. The filler that is used to satisfy these conditions is preferably as fine as possible. Therefore, in order to form a porous insulating layer using a filler having a particle size smaller than that of the prior art, if polyvinylidene fluoride that has been generally used for electrode formation is used as a binder, adhesiveness It was found that it was difficult to maintain the layer shape.

この発明は、上記の課題を解決するためになされたものであり、多孔性樹脂層が強固に形成可能なため、過充電時などにおいても電極間短絡の生じ難いリチウムイオン二次電池等を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a lithium ion secondary battery and the like that are unlikely to cause short-circuiting between electrodes even during overcharging because the porous resin layer can be formed firmly. The purpose is to do.

この発明は、正極活物質層と正極集電体を有する正極と、負極活物質層と負極集電体を有する負極と、前記正極と負極間に配置され、リチウムイオンを含む電解液を保持するセパレータと、前記正極とセパレータ間および負極とセパレータ間の少なくとも一方に配置された多孔性絶縁層と、を備え、前記多孔性絶縁層は微粒子フィラーと接着性樹脂とからなり、前記接着性樹脂が乳化重合ポリフッ化ビニリデンからなることを特徴とするリチウムイオン二次電池にある。   The present invention holds a positive electrode having a positive electrode active material layer and a positive electrode current collector, a negative electrode having a negative electrode active material layer and a negative electrode current collector, and an electrolyte containing lithium ions disposed between the positive electrode and the negative electrode. A separator, and a porous insulating layer disposed between at least one of the positive electrode and the separator and between the negative electrode and the separator, the porous insulating layer comprising a fine particle filler and an adhesive resin, wherein the adhesive resin is A lithium ion secondary battery comprising an emulsion-polymerized polyvinylidene fluoride.

この発明では、多孔性樹脂層が強固に形成可能なため、過充電時などにおいても電極間短絡の生じ難いリチウムイオン二次電池等を提供可能となる。   In the present invention, since the porous resin layer can be formed firmly, it is possible to provide a lithium ion secondary battery or the like that is unlikely to cause a short-circuit between electrodes even during overcharging.

この発明に係るリチウムイオン二次電池の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the lithium ion secondary battery which concerns on this invention. この発明に係るリチウムイオン二次電池の構造の別の例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the structure of the lithium ion secondary battery which concerns on this invention. この発明に係るリチウムイオン二次電池の構造のさらに別の例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the structure of the lithium ion secondary battery which concerns on this invention. この発明に係るリチウムイオン二次電池の各実施例および比較例での評価結果を示す図である。It is a figure which shows the evaluation result in each Example and comparative example of the lithium ion secondary battery which concerns on this invention.

以下、この発明によるリチウムイオン二次電池等を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。   Hereinafter, a lithium ion secondary battery and the like according to the present invention will be described with reference to the drawings according to each embodiment. In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

実施の形態1.
図1はこの発明に係るリチウムイオン二次電池の構造の一例を模式的に示す断面図である。リチウムイオン二次電池1aは、正極活物質層21と正極集電体22を有する正極2と、負極活物質層31と負極集電体32を有する負極3と、正極2と負極3間に配置され、リチウムイオンを含む電解液を保持するセパレータ4と、負極3とセパレータ4間に配置された多孔性絶縁層5とを備える。なお、多孔性絶縁層5は図2に示すリチウムイオン二次電池1bように正極2とセパレータ4間に設けてもよく、さらに図3に示すリチウムイオン二次電池1cように正極2とセパレータ4間および負極3とセパレータ4間にそれぞれ正極側多孔性絶縁層51、負極側多孔性絶縁層52として設けてもよい。
また、正極活物質層21は正極活物質と結着剤からなり、負極活物質層31は負極活物質と結着剤からなる。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view schematically showing an example of the structure of a lithium ion secondary battery according to the present invention. The lithium ion secondary battery 1 a is disposed between the positive electrode 2 having the positive electrode active material layer 21 and the positive electrode current collector 22, the negative electrode 3 having the negative electrode active material layer 31 and the negative electrode current collector 32, and the positive electrode 2 and the negative electrode 3. And a separator 4 holding an electrolytic solution containing lithium ions, and a porous insulating layer 5 disposed between the negative electrode 3 and the separator 4. The porous insulating layer 5 may be provided between the positive electrode 2 and the separator 4 like the lithium ion secondary battery 1b shown in FIG. 2, and the positive electrode 2 and the separator 4 like the lithium ion secondary battery 1c shown in FIG. A positive electrode side porous insulating layer 51 and a negative electrode side porous insulating layer 52 may be provided between the negative electrode 3 and the separator 4, respectively.
The positive electrode active material layer 21 is made of a positive electrode active material and a binder, and the negative electrode active material layer 31 is made of a negative electrode active material and a binder.

正極2と負極3の少なくとも一方とセパレータ4との間に配置される多孔性絶縁層5(51,52)は微粒子フィラーと接着性樹脂とからなるが、接着性樹脂としては電極成形用結着剤としてもよく用いられるポリフッ化ビニリデンを用いると電池内における化学的、電気化学的安定性があり、有用である。   The porous insulating layer 5 (51, 52) disposed between at least one of the positive electrode 2 and the negative electrode 3 and the separator 4 is composed of a fine particle filler and an adhesive resin. Use of polyvinylidene fluoride, which is often used as an agent, is useful because it has chemical and electrochemical stability in the battery.

しかし、従来の電極用バインダーとして用いられているポリフッ化ビニリデンは懸濁重合により製造されたポリフッ化ビニリデンであることが多く、懸濁重合により製造されたポリフッ化ビニリデンは形成される一次粒子径が約10〜100μmと大きいため、これを溶媒に溶解した後も、比較的ミクロンレベルで存在するため、電極用結着剤としては問題ないが、多孔性絶縁層に使用するフィラーは電極層の電極活物質より比表面積が大幅に大きく、粒径が細かいため不向きであることがわかった。   However, polyvinylidene fluoride used as a binder for conventional electrodes is often polyvinylidene fluoride produced by suspension polymerization, and the polyvinylidene fluoride produced by suspension polymerization has a primary particle size formed. Since it is as large as about 10 to 100 μm, it remains at a relatively micron level even after it is dissolved in a solvent, so there is no problem as a binder for electrodes, but the filler used for the porous insulating layer is an electrode of the electrode layer. It was found that the specific surface area is significantly larger than that of the active material and the particle size is small, which is not suitable.

一方、乳化重合により製造されたポリフッ化ビニリデンは形成される一次粒子径(これは存在する最小限の粒子サイズとして評価される)が約0.2〜0.3μmと細かいため、微粒子を用いる多孔性絶縁層5に使用する接着性樹脂として接着力が高まることがわかった。特に温度230℃、ずり速度100sec−1における溶融粘度の平均値が2kPas以上である乳化重合ポリフッ化ビニリデンは樹脂の中でも比較的接着力の低いポリフッ化ビニリデンにおいても接着力を高められるのでより好ましい。 On the other hand, the polyvinylidene fluoride produced by emulsion polymerization has a fine primary particle size (which is evaluated as the minimum particle size present) of about 0.2 to 0.3 μm, so that it uses fine particles. It was found that the adhesive strength of the adhesive resin used for the conductive insulating layer 5 is increased. In particular, an emulsion-polymerized polyvinylidene fluoride having an average melt viscosity of 2 kPas or more at a temperature of 230 ° C. and a shear rate of 100 sec −1 is more preferable because it can increase the adhesive force even among resins having relatively low adhesive strength.

なお、本明細書では、例えば「約A」「約A〜B」の記載は特別な注釈がない限りそれぞれ「A」「A〜B」を含み、「A〜B」は「A以上B以下」を意味する。   In this specification, for example, the description of “about A” and “about AB” includes “A” and “AB” unless otherwise noted, and “AB” means “A or more and B or less” "Means.

多孔性絶縁層5に使用するセラミクスからなるフィラーとしては比表面積が5〜200m/gのものを用いることにより、多孔性樹脂層がより細かな空孔を有することになり、電解液保持性が高まり、長期間電池特性を維持可能となる。比表面積が5m/g未満では比表面積が小さいため、乳化重合ポリフッ化ビニリデンと懸濁重合ポリフッ化ビニリデンとの差異が小さく、比表面積が200m/gより大きいフィラーでは比表面積が大きすぎて接着力を維持することが難しくなる。 As the filler made of ceramics used for the porous insulating layer 5, the porous resin layer has fine pores by using a filler having a specific surface area of 5 to 200 m 2 / g. The battery characteristics can be maintained for a long time. Since the specific surface area is small when the specific surface area is less than 5 m 2 / g, the difference between the emulsion-polymerized polyvinylidene fluoride and the suspension-polymerized polyvinylidene fluoride is small, and the specific surface area is too large for the filler having a specific surface area larger than 200 m 2 / g. It becomes difficult to maintain the adhesive strength.

多孔性絶縁層5に使用するフィラーの材質としては耐熱性の高いセラミクスが好ましく、例えばアルミナ(Al)、シリカ(SiO)、チタニア(TiO)、ジルコニア(ZrO2)、リチウムアルミネート(LiAlO2)、CeO2、Y等の酸化物や、SiC,B4C,ZrC等の炭化物や、SiN,BN,TiN等の窒化物等が挙げられる。中でもアルミナは電気化学的に安定しており、絶縁性も高いため、より好ましく、アルミナのセラミクス微粒子が好ましい。 As the material of the filler used for the porous insulating layer 5, ceramics having high heat resistance is preferable. For example, alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), lithium aluminum Examples thereof include oxides such as nate (LiAlO 2 ), CeO 2 , and Y 2 O 3 , carbides such as SiC, B 4 C, and ZrC, and nitrides such as SiN, BN, and TiN. Among these, alumina is more preferable because it is electrochemically stable and has high insulation, and ceramic fine particles of alumina are preferable.

多孔性絶縁層5に使用するフィラーと接着性樹脂の比率は使用するフィラーの種類や比表面積、接着性樹脂の種類により最適値が異なるが、接着性樹脂を1としたときのフィラーの重量比として、0.8〜20が好ましい。重量比が小さすぎると接着性樹脂量が多くなりすぎて、空孔が減少し、電池特性が低下する。重量比が大きすぎると接着性樹脂量が少なくなりすぎて、多孔性絶縁層の強度が低下する。   The ratio between the filler and the adhesive resin used for the porous insulating layer 5 varies depending on the type of filler used, the specific surface area, and the type of adhesive resin, but the weight ratio of the filler when the adhesive resin is 1. As for 0.8-20, it is preferable. When the weight ratio is too small, the amount of the adhesive resin is excessively increased, the pores are reduced, and the battery characteristics are deteriorated. When the weight ratio is too large, the amount of the adhesive resin is too small, and the strength of the porous insulating layer is lowered.

多孔性絶縁層5に使用するフィラーの形状については特に限定はしないが、球形状、楕円状、ファイバー状、鱗片状等が挙げられる。球形状であれば、充填密度が上げられるので、接着性樹脂層を薄くすることができる。楕円状、ファイバー状、鱗片状であれば比表面積を大きく取ることができるので、接着性樹脂層の空孔体積を多く取ることができる。
接着性樹脂の塗布方法としては特に限定しないが、目的の厚み、塗布形態に合った方法が望ましい。塗布方法として例を挙げるとスクリーン印刷法、バーコート法、ロールコート法、リバースコート法、グラビア印刷法、ドクターブレード法、スリットダイコート法、キスコート法等が挙げられる。
The shape of the filler used for the porous insulating layer 5 is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a fiber shape, and a scale shape. If it is spherical, the packing density can be increased, so that the adhesive resin layer can be made thin. Since the specific surface area can be increased if the shape is oval, fiber, or scaly, the pore volume of the adhesive resin layer can be increased.
The method for applying the adhesive resin is not particularly limited, but a method suitable for the target thickness and application mode is desirable. Examples of the coating method include screen printing method, bar coating method, roll coating method, reverse coating method, gravure printing method, doctor blade method, slit die coating method, kiss coating method and the like.

多孔性絶縁層5は正極2上に形成してもよいし、負極3上に形成してもよいし、セパレータ4上に形成してもよい。また、多孔性絶縁層5を単独膜として形成して正極2とセパレータ4間および負極3とセパレータ4間の少なくとも一方に配置してもよい。更には多孔性絶縁層を電極(正極2、負極3)上に直接形成する場合は、形成する電極(正極活物質層21、負極活物質層31)に用いる結着剤として、ポリフッ化ビニリデンを用いていない電極上に塗布形成することが望ましい。特に電極結着剤としてSBRゴムまたはアクリルゴム等のゴム系樹脂、または、カルボキシメチルセルロースまたはポリアクリル酸またはポリビニルアルコール等の水溶性樹脂を用い、これを含む水系スラリーによって成形した電極上に塗布形成することにより、電極への影響を少なくすることが可能となる。   The porous insulating layer 5 may be formed on the positive electrode 2, may be formed on the negative electrode 3, or may be formed on the separator 4. Alternatively, the porous insulating layer 5 may be formed as a single film and disposed between at least one of the positive electrode 2 and the separator 4 and between the negative electrode 3 and the separator 4. Furthermore, when the porous insulating layer is directly formed on the electrodes (the positive electrode 2 and the negative electrode 3), polyvinylidene fluoride is used as a binder for the electrodes to be formed (the positive electrode active material layer 21 and the negative electrode active material layer 31). It is desirable to form a coating on an unused electrode. In particular, a rubber-based resin such as SBR rubber or acrylic rubber, or a water-soluble resin such as carboxymethylcellulose, polyacrylic acid, or polyvinyl alcohol is used as an electrode binder, and the coating is formed on an electrode formed with an aqueous slurry containing the same. As a result, the influence on the electrode can be reduced.

この発明における正極2及び負極3は、正極活物質または負極活物質に導電剤や結着剤等を混合した活物質合剤(正極活物質層21、負極活物質層31を構成する)を、集電体(正極集電体22、負極集電体32を構成する)上に塗着したものが用いられる。塗着する方法としては乾式や湿式等適用できる方法であれば特に限定はされない。   The positive electrode 2 and the negative electrode 3 in the present invention are a positive electrode active material or an active material mixture obtained by mixing a negative electrode active material with a conductive agent, a binder, or the like (constituting the positive electrode active material layer 21 and the negative electrode active material layer 31), What was coated on the current collector (which constitutes the positive electrode current collector 22 and the negative electrode current collector 32) is used. The method of applying is not particularly limited as long as it can be applied by a dry method or a wet method.

正極活物質は、例えばコバルト、マンガン、ニッケル等の遷移金属のリチウム複合酸化物、及び各種の添加元素を含有するもの、銅、鉄、クロム、チタン、アルミニウム等の金属のリチウム複合酸化物、及び各種の添加元素を含有するもの、リチウムとバナジウム、モリブデン、カルコゲン等の複合化合物及び各種の添加元素を有するもの、オリビン型LiMPO(M:Fe、Ni,Co,Mn等)、LiMPOF(M:Fe、Ni,Co,Mn等)、LiMsiO(M:Fe、Ni,Co,Mn等)、ポリピロール、ポリアニリン、ポリジサルファイド等の複合ポリマー等が限定されることなく使用可能である。その平均粒径は0.05μm〜100μmのものが使用可能である。特に好ましくは0.1μmから50μmのものである。 The positive electrode active material includes, for example, lithium composite oxides of transition metals such as cobalt, manganese, and nickel, and those containing various additive elements, lithium composite oxides of metals such as copper, iron, chromium, titanium, and aluminum, and Those containing various additive elements, composite compounds such as lithium and vanadium, molybdenum and chalcogen and those containing various additive elements, olivine type LiMPO 4 (M: Fe, Ni, Co, Mn, etc.), Li 2 MPO 4 Composite polymers such as F (M: Fe, Ni, Co, Mn, etc.), Li 2 MsiO 4 (M: Fe, Ni, Co, Mn, etc.), polypyrrole, polyaniline, polydisulfide, etc. can be used without limitation. It is. An average particle diameter of 0.05 μm to 100 μm can be used. Particularly preferred is 0.1 to 50 μm.

負極活物質は、易黒鉛化炭素、難黒鉛化炭素、天然黒鉛、人造黒鉛、ポリアセン等の炭素質材料が好ましく用いられるが、その他SiO、Li22Si等のシリコン系、V−Sn,Cu−Sn,Fe−Sn,Sn−S,SnOなどのすず系の合金化合物やホウ素系の酸化物、Li2.6Co0.4Nなどの窒化物、チタン酸リチウムなど、この発明の電池においては、化学的特性に関わらず用いることができる。 As the negative electrode active material, carbonaceous materials such as graphitizable carbon, non-graphitizable carbon, natural graphite, artificial graphite, and polyacene are preferably used, but other silicon-based materials such as SiO and Li 22 Si 5 , V-Sn, Cu -Sn, Fe-Sn, Sn-S 2 , SnO and other tin-based alloy compounds, boron-based oxides, nitrides such as Li 2.6 Co 0.4 N, lithium titanate, etc. Can be used regardless of chemical properties.

活物質の形状は粒状、鱗片状のものが主に用いられる。その平均粒径は0.05μm〜100μmのものが使用可能である。特に好ましくは0.1μmから50μmのものである。粒径が小さすぎる場合には活物質表面積が大きくなりすぎて、導電剤との接触が悪くなり、電池特性が低下してしまう。粒径が大きすぎる場合、薄膜化が容易でなく、また、充填密度が低下するのみならず、形成された電極表面の凹凸が大きくなり接着剤によるセパレータ4との接合が良好に行われないため好ましくない。   The active material is mainly granular or scaly. An average particle diameter of 0.05 μm to 100 μm can be used. Particularly preferred is 0.1 to 50 μm. When the particle size is too small, the active material surface area becomes too large, the contact with the conductive agent becomes worse, and the battery characteristics are deteriorated. If the particle size is too large, it is not easy to make a thin film, and not only the packing density is lowered, but also the unevenness of the surface of the formed electrode is increased and the bonding with the separator 4 by the adhesive is not performed well. It is not preferable.

正極活物質または負極活物質の導電性を補う電子導電性材料(導電剤もしくは導電助剤とも言う)としてはアセチレンブラックやケッチェンブラック、人造黒鉛等の炭素材、及び金属及び導電性を有する金属化合物、もしくは導電性を有する高分子等が用いられる。   Electroconductive materials that supplement the conductivity of the positive electrode active material or the negative electrode active material (also referred to as a conductive agent or conductive aid) include carbon materials such as acetylene black, ketjen black, artificial graphite, and metals and conductive metals. A compound or a polymer having conductivity is used.

結着剤としては、例としてフッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド、アクリル酸などの単独重合体、共重合体等や、スチレン−ブタジエン−ゴム(SBR)、アクリル系ゴム等の結着性を有する材質が使用可能である。特にこの発明の多孔性絶縁層を形成する正極もしくは負極に用いる結着剤としては、NMPに対して膨潤しにくい結着剤を用いた電極であることが好ましく、特に水系で電極スラリーを作製したSBR系やアクリル系ゴム等のゴム系樹脂、ポリアクリル酸やポリビニルアルコール等の水溶性樹脂をバインダーとして用いた電極はNMPに膨潤しにくいため、より好ましい。   Examples of the binder include homopolymers and copolymers such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide and acrylic acid, and binders such as styrene-butadiene rubber (SBR) and acrylic rubber. A material having wearability can be used. In particular, the binder used for the positive electrode or the negative electrode forming the porous insulating layer of the present invention is preferably an electrode using a binder that does not easily swell with respect to NMP, and an electrode slurry was prepared in an aqueous system. An electrode using a rubber-based resin such as SBR or acrylic rubber, or a water-soluble resin such as polyacrylic acid or polyvinyl alcohol as a binder is more preferable because it hardly swells in NMP.

集電体は電池内で安定な金属であれば使用可能であるが、正極用には薄い板状のアルミニウム、負極用では薄い板状の銅が好ましく用いられる。集電体の形状は箔、網状、エクスパンドメタル等いずれのものでも使用可能である。集電体の厚みは5μm〜100μmのものが使用可能であり、好ましくは5μm〜25μmである。これは薄すぎると強度が弱くなり、電気抵抗も上昇してしまう。厚すぎると電極体の重量が重くなるので好ましくない。   The current collector can be used as long as it is a stable metal in the battery, but thin plate-like aluminum is preferably used for the positive electrode and thin plate-like copper is used for the negative electrode. The shape of the current collector can be any of foil, mesh, expanded metal and the like. A current collector having a thickness of 5 μm to 100 μm can be used, preferably 5 μm to 25 μm. If this is too thin, the strength will be weakened and the electrical resistance will also increase. If it is too thick, the weight of the electrode body becomes heavy, which is not preferable.

この発明は電池の構造について特に限定はしないが、正極及び負極と、セパレータと、これらの正極と負極の少なくとも一方とセパレータの間に配置される多孔性絶縁層とを有する電池体を備えた電池に適用される。よって、電池体としては、正極とセパレータと負極とが各々単層からなる電極体構成のものでも構わないし、上記電極体を複数個積層した積層体からなる電極体構成のものでも適用できる。このような積層体構成からなる電池体を備えた電池に適用すれば、高性能で、かつ電池容量の大きなものが得られる。   Although this invention does not specifically limit about the structure of a battery, The battery provided with the battery body which has a positive electrode, a negative electrode, a separator, the porous insulating layer arrange | positioned between at least one of these positive electrodes and negative electrodes, and a separator. Applies to Therefore, the battery body may have an electrode body configuration in which the positive electrode, the separator, and the negative electrode each have a single layer, or may have an electrode body configuration in which a plurality of the electrode bodies are stacked. When applied to a battery including a battery body having such a laminate structure, a battery with high performance and a large battery capacity can be obtained.

また、上記積層体を形成するために、切り離した複数の正極・セパレータ・負極・多孔性絶縁層(電池体)を積層してもよいし、連続した1組あるいは複数組の正極・セパレータ・負極・多孔性絶縁層(電池体)を巻回したり、折り畳んだりしてもよい。   Further, in order to form the laminate, a plurality of separated positive electrodes, separators, negative electrodes, and porous insulating layers (battery bodies) may be laminated, or one or more sets of positive electrodes, separators, and negative electrodes that are continuous. -The porous insulating layer (battery body) may be wound or folded.

以下、実施例によりこの発明の詳細を説明するが、勿論これらによりこの発明が限定されるものではない。
なお図4に、各実施例および比較例における、乳化重合ポリフッ化ビニリデンの温度230℃、ずり速度100sec−1の条件下での溶融粘度の平均値、90度ピール試験法により測定した多孔性絶縁層/負極間のピール強度(密着強度)、作製した電池セルを1Cにて充放電させた電池特性としての放電容量の各評価結果を示す。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
FIG. 4 shows the average value of the melt viscosity of each emulsion polymerization polyvinylidene fluoride under the conditions of 230 ° C. and shear rate of 100 sec −1 in each example and comparative example, and the porous insulation measured by a 90 ° peel test method. The peel strength (adhesion strength) between the layer and the negative electrode and the evaluation results of the discharge capacity as the battery characteristics obtained by charging and discharging the produced battery cell at 1C are shown.

実施例1.
(正極の作製)
最初に正極2および負極3は、図1−3の正極集電体、負極集電体(22,32)に両面に正極スラリーまたは負極スラリーをそれぞれ塗工して形成される。
平均粒径約10μmのLiCoO粉末(日本化学工業製)を91重量部、アセチレンブラック粉末(電気化学工業製)を3重量部、ポリフッ化ビニリデン(クレハ製)を6重量部とをN−メチルピロリドン(NMP)を溶媒としてプラネタリーミキサーを用いて混合することにより正極スラリー(正極活物質、結着剤を含む)を作製した。
この正極スラリーを集電体(正極集電体22)としての20μm厚のアルミニウム箔の両面にコンマロールコータを用いて塗工を行い、溶媒を乾燥させることにより、シート成形を行い、更にホットロールプレス機により厚み調整を行い、電極層(正極2)として片面70μmの正極シートを作製した。
(負極の作製)
平均粒径20μmの人造黒鉛(日立化成製)を97重量部とカルボキシメチルセルロース(ダイセル化学工業製)を1重量部と結着剤としてSBR(日本ゼオン製)を2重量部とを水を溶媒としてプラネタリーミキサーを用いて混合することにより負極スラリー(負極活物質、結着剤を含む)を作製した。
この負極スラリーを集電体(負極集電体32)としての20μm厚の銅箔の両面にコンマロールコータを用いて塗工を行い、溶媒を乾燥させることにより、シート成形を行い、更にホットロールプレス機により厚み調整を行い、負極層(負極3)として片面40μmの負極シートを作製した。
(多孔性絶縁層の形成)
比表面積の値が約100m/gのアルミナ微粒子(エボニック製)を70重量部と、溶融粘度の平均値が約3.2kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を30重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔質絶縁層スラリー(微粒子フィラー、接着性樹脂を含む)を作製した。
この多孔性絶縁層のスラリーを負極板(負極3)上にロールコータを用いて塗布・乾燥させることにより、乾燥後厚み約5μmの多孔性絶縁層(5,51,52)を形成した。
Example 1.
(Preparation of positive electrode)
First, the positive electrode 2 and the negative electrode 3 are formed by coating the positive electrode current collector and the negative electrode current collector (22, 32) of FIGS.
91 parts by weight of LiCoO 2 powder having an average particle size of about 10 μm (manufactured by Nippon Kagaku Kogyo), 3 parts by weight of acetylene black powder (manufactured by Denki Kagaku Kogyo), 6 parts by weight of polyvinylidene fluoride (manufactured by Kureha) and N-methyl A positive electrode slurry (including a positive electrode active material and a binder) was prepared by mixing pyrrolidone (NMP) as a solvent using a planetary mixer.
The positive electrode slurry is coated on both sides of a 20 μm thick aluminum foil as a current collector (positive electrode current collector 22) using a comma roll coater, and the solvent is dried to form a sheet. The thickness was adjusted by a press machine, and a positive electrode sheet having a single side of 70 μm was prepared as an electrode layer (positive electrode 2).
(Preparation of negative electrode)
97 parts by weight of artificial graphite having an average particle size of 20 μm (manufactured by Hitachi Chemical), 1 part by weight of carboxymethylcellulose (manufactured by Daicel Chemical Industries) and 2 parts by weight of SBR (manufactured by Nippon Zeon) using water as a solvent A negative electrode slurry (including a negative electrode active material and a binder) was prepared by mixing using a planetary mixer.
The negative electrode slurry is coated on both sides of a 20 μm-thick copper foil as a current collector (negative electrode current collector 32) using a comma roll coater, and the solvent is dried to form a sheet. Further, a hot roll The thickness was adjusted with a press machine to prepare a negative electrode sheet having a single side of 40 μm as a negative electrode layer (negative electrode 3).
(Formation of porous insulating layer)
Emulsion polymerization polyfluorination having 70 parts by weight of alumina fine particles (manufactured by Evonik) having a specific surface area value of about 100 m 2 / g and an average melt viscosity of about 3.2 kPas (temperature 230 ° C., shear rate 100 sec −1 ). A porous insulating layer slurry (including fine particle filler and adhesive resin) was prepared by mixing 30 parts by weight of vinylidene (manufactured by ARKEMA) with a planetary mixer using N-methylpyrrolidone as a solvent.
The porous insulating layer slurry (5, 51, 52) having a thickness of about 5 μm was formed by applying and drying the slurry of the porous insulating layer on the negative electrode plate (negative electrode 3) using a roll coater.

(セルの作製、評価)
正極(2)を50mm×50mm(10mm角タブ付き)、負極(3)を52mm×52mm(10mm角タブ付き)、セパレータ(4)を55mm×55mmに切り出し、正極及び負極のタブ部に集電端子を溶着させ、中心が重なるようにそれぞれを積層させ、アルミラミネート外装に挿入し、電解液を注液して封口した。作製したセルを1Cにて、充放電させて、電池特性としてこのときの放電容量を測定した。
(多孔性絶縁層の強度評価)
作製した多孔性絶縁層(5)/負極(3)間の密着強度を90度ピール試験法により測定した。
(Production and evaluation of cells)
Cut the positive electrode (2) into 50 mm x 50 mm (with 10 mm square tabs), the negative electrode (3) into 52 mm x 52 mm (with 10 mm square tabs), and the separator (4) into 55 mm x 55 mm, and collect current at the tabs of the positive and negative electrodes The terminals were welded and laminated so that the centers overlap each other, inserted into the aluminum laminate exterior, and the electrolyte was injected and sealed. The produced cell was charged and discharged at 1C, and the discharge capacity at this time was measured as battery characteristics.
(Strength evaluation of porous insulation layer)
The adhesion strength between the produced porous insulating layer (5) / negative electrode (3) was measured by a 90 degree peel test method.

実施例2.
多孔性絶縁層(5,51,52)のスラリーとして、比表面積の値が約100m/gのアルミナ微粒子(エボニック製)を60重量部と溶融粘度の平均値が約2.6kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を40重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 2
As a slurry of the porous insulating layer (5, 51, 52), 60 parts by weight of alumina fine particles (Evonik) having a specific surface area value of about 100 m 2 / g and an average melt viscosity of about 2.6 kPas (temperature 230 ° C., to produce a porous insulating layer slurry by mixing using a planetary mixer and the emulsion polymerization of polyvinylidene fluoride is a shear rate 100 sec -1) (manufactured by ARKEMA) 40 parts by weight of N- methylpyrrolidone as a solvent . Others were produced and evaluated in the same manner as in Example 1.

実施例3.
多孔性絶縁層(5,51,52)のスラリーとして、比表面積の値が約100m/gのアルミナ微粒子(エボニック製)を85重量部と溶融粘度の平均値が約5.0kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を15重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 3
As a slurry of the porous insulating layer (5, 51, 52), 85 parts by weight of alumina fine particles (Evonik) having a specific surface area value of about 100 m 2 / g and an average value of melt viscosity of about 5.0 kPas (temperature 230 ° C., to produce a porous insulating layer slurry by mixing using a planetary mixer and shear rate 100 sec -1) at which the emulsion polymerization of polyvinylidene fluoride (manufactured by ARKEMA) 15 parts by weight of N- methylpyrrolidone as a solvent . Others were produced and evaluated in the same manner as in Example 1.

実施例4.
多孔性絶縁層(5,51,52)のスラリーとして、比表面積の値が約65m/gのアルミナ微粒子(エボニック製)を75重量部と溶融粘度の平均値が約3.2kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を25重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 4
As a slurry of the porous insulating layer (5, 51, 52), 75 parts by weight of alumina fine particles (manufactured by Evonik) having a specific surface area of about 65 m 2 / g and an average value of melt viscosity of about 3.2 kPas (temperature 230 ° C., to produce a porous insulating layer slurry by mixing using a planetary mixer and the emulsion polymerization of polyvinylidene fluoride is a shear rate 100 sec -1) (manufactured by ARKEMA) 25 parts by weight of N- methylpyrrolidone as a solvent . Others were produced and evaluated in the same manner as in Example 1.

実施例5.
多孔性絶縁層(5,51,52)のスラリーとして、比表面積の値が約65m/gのアルミナ微粒子(エボニック製)を90重量部と溶融粘度の平均値が約5.0kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を10重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 5 FIG.
As a slurry of the porous insulating layer (5, 51, 52), 90 parts by weight of alumina fine particles (Evonik) having a specific surface area of about 65 m 2 / g and an average value of melt viscosity of about 5.0 kPas (temperature 230 ° C., to produce a porous insulating layer slurry by mixing using a planetary mixer and the emulsion polymerization of polyvinylidene fluoride is a shear rate 100 sec -1) (manufactured by ARKEMA) 10 parts by weight of N- methylpyrrolidone as a solvent . Others were produced and evaluated in the same manner as in Example 1.

実施例6.
多孔性絶縁層(5,51,52)のスラリーとして、比表面積の値が約130m/gのアルミナ微粒子(エボニック製)を65重量部と溶融粘度の平均値が約3.2kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を35重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 6
As a slurry of the porous insulating layer (5, 51, 52), 65 parts by weight of alumina fine particles (manufactured by Evonik) having a specific surface area value of about 130 m 2 / g and an average value of melt viscosity of about 3.2 kPas (temperature 230 ° C., to produce a porous insulating layer slurry by mixing using a planetary mixer and 35 parts by weight of the emulsion polymerization of polyvinylidene fluoride is a shear rate 100 sec -1) (manufactured by ARKEMA) the N- methylpyrrolidone as a solvent . Others were produced and evaluated in the same manner as in Example 1.

実施例7.
多孔性絶縁層(5,51,52)のスラリーとして、比表面積の値が約200m/gのシリカ微粒子(エボニック製)を60重量部と溶融粘度の平均値が約3.2kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を40重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 7
As a slurry of the porous insulating layer (5, 51, 52), 60 parts by weight of silica fine particles (manufactured by Evonik) having a specific surface area value of about 200 m 2 / g and an average value of melt viscosity of about 3.2 kPas (temperature 230 ° C., to produce a porous insulating layer slurry by mixing using a planetary mixer and the emulsion polymerization of polyvinylidene fluoride is a shear rate 100 sec -1) (manufactured by ARKEMA) 40 parts by weight of N- methylpyrrolidone as a solvent . Others were produced and evaluated in the same manner as in Example 1.

実施例8.
多孔性絶縁層(5,51,52)のスラリーとして、比表面積の値が約100m/gのアルミナ微粒子(エボニック製)を65重量部と溶融粘度の平均値が約0.9kPas(温度230℃、ずり速度100sec−1)である乳化重合ポリフッ化ビニリデン(ARKEMA製)を35重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 8 FIG.
As a slurry of the porous insulating layer (5, 51, 52), 65 parts by weight of alumina fine particles (Evonik) having a specific surface area value of about 100 m 2 / g and an average value of melt viscosity of about 0.9 kPas (temperature 230 ° C., to produce a porous insulating layer slurry by mixing using a planetary mixer and 35 parts by weight of the emulsion polymerization of polyvinylidene fluoride is a shear rate 100 sec -1) (manufactured by ARKEMA) the N- methylpyrrolidone as a solvent . Others were produced and evaluated in the same manner as in Example 1.

実施例9.
負極(3)として、平均粒径20μmの人造黒鉛(日立化成製)を90重量部と結着剤として懸濁重合ポリフッ化ビニリデン(クレハ製)を10重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより負極スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Example 9
As the negative electrode (3), 90 parts by weight of artificial graphite (manufactured by Hitachi Chemical Co., Ltd.) having an average particle size of 20 μm and 10 parts by weight of suspension-polymerized polyvinylidene fluoride (manufactured by Kureha) as a binder and N-methylpyrrolidone as a solvent A negative electrode slurry was prepared by mixing using a planetary mixer. Others were produced and evaluated in the same manner as in Example 1.

実施例10.
正極(2)の製法として、平均粒径約10μmのLiCoO粉末(日本化学工業製)を94重量部、アセチレンブラック粉末(電気化学工業製)を4重量部、水溶性バインダーを2重量部とを水を溶媒としてプラネタリーミキサーを用いて混合することにより正極スラリーを作製した。
この正極スラリーを集電体として20μm厚のアルミニウム箔の両面にコンマロールコータを用いて塗工を行い、溶媒を乾燥させることにより、シート成形を行い、更にホットロールプレス機により厚み調整を行い、電極層として片面70μmの正極シートを作製した。
多孔性絶縁層のスラリーを正極板上にロールコータを用いて塗布・乾燥させることにより、乾燥後厚み約5μmの多孔性絶縁層を形成した。その他は上記実施例1と同様に作製し、評価を行った。
Example 10
As a method for producing the positive electrode (2), 94 parts by weight of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd.) having an average particle diameter of about 10 μm, 4 parts by weight of acetylene black powder (manufactured by Denki Kagaku Kogyo), and 2 parts by weight of water-soluble binder Was mixed using a planetary mixer using water as a solvent to prepare a positive electrode slurry.
Using this positive electrode slurry as a current collector, coating is performed on both sides of an aluminum foil having a thickness of 20 μm using a comma roll coater, and the solvent is dried, thereby forming a sheet, and further adjusting the thickness with a hot roll press machine, A positive electrode sheet having a single side of 70 μm was prepared as an electrode layer.
A porous insulating layer having a thickness of about 5 μm was formed after drying by applying and drying the slurry of the porous insulating layer on the positive electrode plate using a roll coater. Others were produced and evaluated in the same manner as in Example 1.

実施例11.
多孔性絶縁層のスラリーを負極板上及び正極板上にロールコータを用いて塗布・乾燥させることにより、乾燥後厚み約5μmの多孔性絶縁層(5,51,52)を形成した。以外は上記実施例1と同様に作製し、評価を行った。
Example 11
A porous insulating layer (5, 51, 52) having a thickness of about 5 μm was formed after drying by applying and drying the slurry of the porous insulating layer on the negative electrode plate and the positive electrode plate using a roll coater. Except for the above, it was produced and evaluated in the same manner as in Example 1.

比較例1.
多孔性絶縁層のスラリーとして、比表面積の値が約100m/gのアルミナ微粒子(エボニック製)を70重量部と懸濁重合ポリフッ化ビニリデン(クレハ製)を30重量部とをN−メチルピロリドンを溶媒としてプラネタリーミキサーを用いて混合することにより多孔性絶縁層スラリーを作製した。その他は上記実施例1と同様に作製し、評価を行った。
Comparative Example 1
As a slurry for the porous insulating layer, 70 parts by weight of alumina fine particles (Evonik) having a specific surface area of about 100 m 2 / g and 30 parts by weight of suspension-polymerized polyvinylidene fluoride (Kureha) are added to N-methylpyrrolidone. Was mixed using a planetary mixer as a solvent to prepare a porous insulating layer slurry. Others were produced and evaluated in the same manner as in Example 1.

実施例1と比較例1より多孔性絶縁層の接着性樹脂として乳化重合により製造されたポリフッ化ビニリデンを用いることにより、密着性に優れた多孔性絶縁層を形成でき、放電特性の良い電池を作製できることがわかる。実施例1から実施例8より多孔性絶縁層の接着性樹脂として乳化重合により製造されたポリフッ化ビニリデンのうち温度230℃、ずり速度100sec−1における溶融粘度の平均値が2kPas以上であれば密着性に優れた多孔性絶縁層を形成でき、放電特性の良い電池を作製できることがわかる。なお、溶融粘度の平均値はより厳密には、図4より、少なくとも2.6kPas以上5kPas以下の範囲であればよいことが分かる。
実施例1と実施例9より多孔性絶縁層の形成する電極として、電極結着剤としてポリフッ化ビニリデンを用いない、特に水系スラリー用結着剤を用いた電極上に形成することにより、放電特性のよい電池を作製することが可能となる。
実施例1、10,11より多孔性絶縁層は負極面上でも、正極面上でも、両極同時に設置されてもよいことがわかる。
By using polyvinylidene fluoride produced by emulsion polymerization as the adhesive resin of the porous insulating layer from Example 1 and Comparative Example 1, a porous insulating layer having excellent adhesion can be formed, and a battery having good discharge characteristics can be formed. It can be seen that it can be produced. If the average value of the melt viscosity at a temperature of 230 ° C. and a shear rate of 100 sec −1 is 2 kPas or more among the polyvinylidene fluoride produced by emulsion polymerization as the adhesive resin of the porous insulating layer from Example 1 to Example 8, it is in close contact It can be seen that a porous insulating layer having excellent properties can be formed, and a battery having good discharge characteristics can be produced. In addition, it can be understood from FIG. 4 that the average value of the melt viscosity may be in the range of at least 2.6 kPas to 5 kPas.
From Example 1 and Example 9, as an electrode for forming a porous insulating layer, discharge characteristics were not formed by using polyvinylidene fluoride as an electrode binder, particularly on an electrode using a binder for aqueous slurry. A good battery can be manufactured.
From Examples 1, 10, and 11, it can be seen that the porous insulating layer may be disposed on the negative electrode surface, the positive electrode surface, or both electrodes simultaneously.

1 リチウムイオン二次電池、2 正極、3 負極、4 セパレータ、5 多孔性絶縁層、21 正極活物質層、22 正極集電体、31 負極活物質層、32 負極集電体、 51 正極側多孔性絶縁層 52 負極側多孔性絶縁層。   1 lithium ion secondary battery, 2 positive electrode, 3 negative electrode, 4 separator, 5 porous insulating layer, 21 positive electrode active material layer, 22 positive electrode current collector, 31 negative electrode active material layer, 32 negative electrode current collector, 51 positive electrode side porous Conductive insulating layer 52 Negative electrode side porous insulating layer.

Claims (8)

正極活物質層と正極集電体を有する正極と、負極活物質層と負極集電体を有する負極と、前記正極と負極間に配置され、リチウムイオンを含む電解液を保持するセパレータと、前記正極とセパレータ間および負極とセパレータ間の少なくとも一方に配置された多孔性絶縁層と、を備え、前記多孔性絶縁層は微粒子フィラーと接着性樹脂とからなり、前記接着性樹脂が乳化重合ポリフッ化ビニリデンからなることを特徴とするリチウムイオン二次電池。   A positive electrode having a positive electrode active material layer and a positive electrode current collector, a negative electrode having a negative electrode active material layer and a negative electrode current collector, a separator disposed between the positive electrode and the negative electrode and holding an electrolyte containing lithium ions, A porous insulating layer disposed between at least one of the positive electrode and the separator and between the negative electrode and the separator, the porous insulating layer comprising a fine particle filler and an adhesive resin, wherein the adhesive resin is an emulsion polymerization polyfluoride A lithium ion secondary battery comprising vinylidene. 前記乳化重合ポリフッ化ビニリデンは、温度230℃、ずり速度100sec−1における溶融粘度の平均値が2kPas以上であることを特徴とする請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein the emulsion-polymerized polyvinylidene fluoride has an average melt viscosity of 2 kPas or more at a temperature of 230 ° C. and a shear rate of 100 sec −1 . 前記多孔性絶縁層の微粒子フィラーがアルミナ(Al)、シリカ(SiO)、チタニア(TiO)、ジルコニア(ZrO2)、リチウムアルミネート(LiAlO2)、CeO2、Yを含む酸化物、SiC,B4C,ZrCを含む炭化物、SiN,BN,TiNを含む窒化物、のうちのいずれか1つのセラミクス微粒子であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。 The fine particle filler of the porous insulating layer is alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), lithium aluminate (LiAlO 2 ), CeO 2 , Y 2 O 3. 3. The ceramic fine particles according to claim 1, wherein the ceramic fine particles are any one of oxides containing SiC, carbides containing SiC, B 4 C, and ZrC, and nitrides containing SiN, BN, and TiN. Lithium ion secondary battery. 前記多孔性絶縁層の微粒子フィラーがアルミナ(Al)のセラミクス微粒子であることを特徴とする請求項3に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 3, wherein the fine particle filler of the porous insulating layer is ceramic fine particles of alumina (Al 2 O 3 ). 前記正極活物質層が正極活物質と結着剤を含み、前記負極活物質層が負極活物質と結着剤を含み、前記多孔性絶縁層が設けられた側の正極活物質層、負極活物質層の前記結着剤がSBRゴムまたはアクリルゴムのゴム系樹脂を含むことを特徴とする請求項1から4までのいずれか1項に記載のリチウムイオン二次電池。   The positive electrode active material layer includes a positive electrode active material and a binder, the negative electrode active material layer includes a negative electrode active material and a binder, and the positive electrode active material layer on the side where the porous insulating layer is provided; The lithium ion secondary battery according to any one of claims 1 to 4, wherein the binder of the material layer includes a rubber-based resin of SBR rubber or acrylic rubber. 前記正極活物質層が正極活物質と結着剤を含み、前記負極活物質層が負極活物質と結着剤を含み、前記多孔性絶縁層が設けられた側の正極活物質層、負極活物質層の前記結着剤がカルボキシメチルセルロースまたはポリアクリル酸またはポリビニルアルコールの水溶性樹脂を含むことを特徴とする請求項1から4までのいずれか1項に記載のリチウムイオン二次電池。   The positive electrode active material layer includes a positive electrode active material and a binder, the negative electrode active material layer includes a negative electrode active material and a binder, and the positive electrode active material layer on the side where the porous insulating layer is provided; The lithium ion secondary battery according to any one of claims 1 to 4, wherein the binder of the material layer includes a water-soluble resin of carboxymethyl cellulose, polyacrylic acid, or polyvinyl alcohol. 正極活物質層と正極集電体を有する正極、負極活物質層と負極集電体を有する負極、前記正極と負極間に配置されリチウムイオンを含む電解液を保持するセパレータ、および前記正極とセパレータ間および負極とセパレータ間の少なくとも一方に多孔性絶縁層を形成するリチウムイオン二次電池の製造方法において、前記多孔性絶縁層を乳化重合ポリフッ化ビニリデンからなる接着性樹脂で形成することを特徴とするリチウムイオン二次電池の製造方法。   A positive electrode having a positive electrode active material layer and a positive electrode current collector, a negative electrode having a negative electrode active material layer and a negative electrode current collector, a separator disposed between the positive electrode and the negative electrode and holding an electrolyte containing lithium ions, and the positive electrode and the separator In the method for producing a lithium ion secondary battery in which a porous insulating layer is formed between the anode and at least one between the negative electrode and the separator, the porous insulating layer is formed of an adhesive resin made of emulsion-polymerized polyvinylidene fluoride. To manufacture a lithium ion secondary battery. 正極および負極からなる電極上の少なくとも一方に多孔性絶縁層を形成するリチウムイオン二次電池の製造方法であって、前記多孔性絶縁層を形成する電極の結着剤としてSBRゴムまたはアクリルゴムのゴム系樹脂、またはカルボキシメチルセルロースまたはポリアクリル酸またはポリビニルアルコールの水溶性樹脂を含む材料を用い、該電極上に乳化重合ポリフッ化ビニリデンからなる多孔性絶縁層を塗布形成することを特徴とするリチウムイオン二次電池の製造方法。   A method of manufacturing a lithium ion secondary battery in which a porous insulating layer is formed on at least one of an electrode composed of a positive electrode and a negative electrode, wherein an SBR rubber or an acrylic rubber is used as a binder for the electrode forming the porous insulating layer. Lithium ions characterized by coating and forming a porous insulating layer made of an emulsion-polymerized polyvinylidene fluoride on a rubber resin or a material containing a water-soluble resin such as carboxymethylcellulose, polyacrylic acid or polyvinyl alcohol A method for manufacturing a secondary battery.
JP2012150609A 2012-07-04 2012-07-04 Lithium ion secondary battery and manufacturing method therefor Pending JP2014013693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150609A JP2014013693A (en) 2012-07-04 2012-07-04 Lithium ion secondary battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150609A JP2014013693A (en) 2012-07-04 2012-07-04 Lithium ion secondary battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2014013693A true JP2014013693A (en) 2014-01-23

Family

ID=50109260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150609A Pending JP2014013693A (en) 2012-07-04 2012-07-04 Lithium ion secondary battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2014013693A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018436A1 (en) * 2015-07-28 2017-02-02 日本電気株式会社 Lithium-ion secondary battery
KR20180035912A (en) 2015-08-10 2018-04-06 주식회사 쿠라레 A binder composition for a nonaqueous electrolyte battery, and a slurry composition for a nonaqueous electrolyte battery using the same, a nonaqueous electrolyte battery negative electrode, and a nonaqueous electrolyte battery
KR20180035892A (en) 2015-08-06 2018-04-06 주식회사 쿠라레 Slurry compositions for nonaqueous electrolyte battery electrodes, and nonaqueous electrolyte battery positive and nonaqueous electrolyte batteries using the same
WO2018181243A1 (en) * 2017-03-30 2018-10-04 三井化学株式会社 Lithium ion secondary battery
US10297864B2 (en) 2014-12-19 2019-05-21 Samsung Electronics Co., Ltd. Composite electrolyte and lithium battery including the electrolyte
KR20190082977A (en) 2016-11-29 2019-07-10 주식회사 쿠라레 A binder composition for a nonaqueous electrolyte battery electrode, a hydrogel using the same, and a slurry composition for a nonaqueous electrolyte battery electrode using the same, a nonaqueous electrolyte battery negative electrode, and a nonaqueous electrolyte battery
KR20200014888A (en) 2017-06-07 2020-02-11 주식회사 쿠라레 Binder composition for nonaqueous electrolyte batteries, aqueous binder solution for nonaqueous electrolyte batteries, slurry composition for nonaqueous electrolyte batteries, electrodes for nonaqueous electrolyte batteries, and nonaqueous electrolyte batteries using the same
CN113314694A (en) * 2021-06-08 2021-08-27 江西安驰新能源科技有限公司 High-rate lithium ion battery positive plate and preparation method thereof, and lithium ion battery
CN114026722A (en) * 2020-06-30 2022-02-08 宁德新能源科技有限公司 Separator, electrochemical device comprising same, and electronic device
CN114512633A (en) * 2022-01-13 2022-05-17 珠海冠宇电池股份有限公司 Negative plate and battery comprising same
CN114975856A (en) * 2022-06-17 2022-08-30 珠海冠宇电池股份有限公司 Electrode plate, battery and battery preparation method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297864B2 (en) 2014-12-19 2019-05-21 Samsung Electronics Co., Ltd. Composite electrolyte and lithium battery including the electrolyte
CN107851765A (en) * 2015-07-28 2018-03-27 日本电气株式会社 Lithium rechargeable battery
JPWO2017018436A1 (en) * 2015-07-28 2018-05-17 日本電気株式会社 Lithium ion secondary battery
JP7000856B2 (en) 2015-07-28 2022-01-19 日本電気株式会社 Lithium ion secondary battery
WO2017018436A1 (en) * 2015-07-28 2017-02-02 日本電気株式会社 Lithium-ion secondary battery
US10644307B2 (en) 2015-08-06 2020-05-05 Kuraray Co., Ltd. Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery positive electrode and non aqueous electrolyte battery using same
KR20180035892A (en) 2015-08-06 2018-04-06 주식회사 쿠라레 Slurry compositions for nonaqueous electrolyte battery electrodes, and nonaqueous electrolyte battery positive and nonaqueous electrolyte batteries using the same
KR20180035912A (en) 2015-08-10 2018-04-06 주식회사 쿠라레 A binder composition for a nonaqueous electrolyte battery, and a slurry composition for a nonaqueous electrolyte battery using the same, a nonaqueous electrolyte battery negative electrode, and a nonaqueous electrolyte battery
US10720646B2 (en) 2015-08-10 2020-07-21 Kuraray Co., Ltd. Non aqueous electrolyte battery binder composition, and non aqueous electrolyte battery slurry composition, non aqueous electrolyte battery negative electrode, and non aqueous electrolyte battery using same
KR20190082977A (en) 2016-11-29 2019-07-10 주식회사 쿠라레 A binder composition for a nonaqueous electrolyte battery electrode, a hydrogel using the same, and a slurry composition for a nonaqueous electrolyte battery electrode using the same, a nonaqueous electrolyte battery negative electrode, and a nonaqueous electrolyte battery
JPWO2018181243A1 (en) * 2017-03-30 2020-02-06 三井化学株式会社 Lithium ion secondary battery
WO2018181243A1 (en) * 2017-03-30 2018-10-04 三井化学株式会社 Lithium ion secondary battery
KR20200014888A (en) 2017-06-07 2020-02-11 주식회사 쿠라레 Binder composition for nonaqueous electrolyte batteries, aqueous binder solution for nonaqueous electrolyte batteries, slurry composition for nonaqueous electrolyte batteries, electrodes for nonaqueous electrolyte batteries, and nonaqueous electrolyte batteries using the same
US11581543B2 (en) 2017-06-07 2023-02-14 Kuraray Co., Ltd. Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non aqueous electrolyte battery each utilizing same
CN114026722A (en) * 2020-06-30 2022-02-08 宁德新能源科技有限公司 Separator, electrochemical device comprising same, and electronic device
CN113314694A (en) * 2021-06-08 2021-08-27 江西安驰新能源科技有限公司 High-rate lithium ion battery positive plate and preparation method thereof, and lithium ion battery
CN114512633A (en) * 2022-01-13 2022-05-17 珠海冠宇电池股份有限公司 Negative plate and battery comprising same
CN114975856A (en) * 2022-06-17 2022-08-30 珠海冠宇电池股份有限公司 Electrode plate, battery and battery preparation method

Similar Documents

Publication Publication Date Title
JP2014013693A (en) Lithium ion secondary battery and manufacturing method therefor
CN107925058B (en) Negative electrode for secondary battery, method for producing same, and secondary battery comprising same
KR102025033B1 (en) Batteries utilizing anode coating directly on nanoporous separators
JP4649993B2 (en) Lithium secondary battery and manufacturing method thereof
US10199623B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
TW201547085A (en) Sheet-laminated lithium ion secondary battery and method for producing sheet-laminated lithium ion secondary battery
JP2006351386A (en) Battery and its manufacturing method
JP2005276503A (en) Separator for battery and battery using the same
WO2013051416A1 (en) Electrical device
KR20080103847A (en) Electorde assembly and secondary battery using the same
US9847518B2 (en) Separator with heat-resistant insulation layer
KR20120079515A (en) Electrode assembly with asymmetricly coated separator and electrochemical device comprising the same
JP4140517B2 (en) Lithium ion secondary battery and its construction method
KR20160042662A (en) Aqueous slurry for separator coating, separator, secondary battery and method for manufacturing separator
JP2015069967A (en) Secondary battery
JP2007287390A (en) Lithium secondary battery
WO2018168607A1 (en) Electrode and capacitor
US20200280102A1 (en) All-solid-state battery and method for manufacturing the same
JP2020507188A (en) Separator and electrochemical device including the same
JP4952314B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery equipped with the same
JP2019140042A (en) Method for manufacturing all-solid battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR20160027364A (en) Electrode assembly for secondary battery
JP2014154446A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2013218926A (en) Separator and lithium-ion secondary battery using the same