JP2006010115A - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP2006010115A
JP2006010115A JP2004184544A JP2004184544A JP2006010115A JP 2006010115 A JP2006010115 A JP 2006010115A JP 2004184544 A JP2004184544 A JP 2004184544A JP 2004184544 A JP2004184544 A JP 2004184544A JP 2006010115 A JP2006010115 A JP 2006010115A
Authority
JP
Japan
Prior art keywords
hot water
storage tank
temperature
water storage
mixing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004184544A
Other languages
Japanese (ja)
Other versions
JP4359340B2 (en
Inventor
Kiyoshi Fukuzawa
清 福澤
Noboru Kubo
登 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2004184544A priority Critical patent/JP4359340B2/en
Publication of JP2006010115A publication Critical patent/JP2006010115A/en
Application granted granted Critical
Publication of JP4359340B2 publication Critical patent/JP4359340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of large undershoot and to prevent the hot water from staying in a hot water storage tank for a long time in a hot water supply system having the hot water storage tank, a mixing valve and an auxiliary heat source. <P>SOLUTION: This exhaust heat recovering hot water supply system comprises an exhaust heat source 11, a heat exchanger 12, the hot water storage tank 20, the mixing valve 30 for mixing the hot water from the hot water storage tank 20 with the water in a water supply passage 50, and a gas water heater 40 (auxiliary heat source). A tank temperature sensor 86 is mounted on a lower position separated from a top end of the hot water storage tank 20 by a specific distance. A control means 70 controls a tapping temperature to remain an intermediate transition layer Wb in the hot water storage tank 20 by using the tank temperature sensor 86, and prevents the undershoot. Further the intermediate transition layer Wb can be diluted by supplying the hot water from the heat exchanger 12 to a side part of the hot water storage tank 20 by switching and controlling a three-way valve 90. When a detection temperature of a tank temperature sensor 87 rises to a threshold value, the three-way valve 90 is switched to supply the hot water of the heat exchanger 12 to a top part of the hot water storage tank 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば燃料電池,ガスエンジン,ソーラー等の排熱源(熱発生源)で生じる熱を給湯用の熱エネルギーとして利用する給湯システムに関する。   The present invention relates to a hot water supply system that uses heat generated from an exhaust heat source (heat generation source) such as a fuel cell, a gas engine, or a solar as heat energy for hot water supply.

近年、家庭や小規模事業所等のためのコジェネレーションシステムとして排熱回収給湯システムが開発されている。このシステムは、燃料電池,ガスエンジン,ソーラー等の小型発電機で電力を発生させるとともに、この発電機で発生した排熱を回収して給湯に供給するため、エネルギーを有効利用することができるものであり、普及が期待されている。   In recent years, an exhaust heat recovery hot water supply system has been developed as a cogeneration system for homes and small-scale offices. This system generates power with a small generator such as a fuel cell, gas engine, solar, etc., and recovers exhaust heat generated by this generator and supplies it to hot water supply, so that energy can be used effectively It is expected to spread.

特許文献1に示すように、排熱源と、熱交換器と、貯湯タンクと、ミキシングバルブと、補助熱源と、これらミキシングバルブと補助熱源を制御する制御手段とを備えている排熱回収給湯システムは公知である。また、特許文献1と同じ構成要素を備えているが、ミキシングバルブと補助熱源の配置が異なる給湯システムも公知である。以下、この後者の給湯システムについて詳述する。   As shown in Patent Document 1, an exhaust heat recovery hot water supply system including an exhaust heat source, a heat exchanger, a hot water storage tank, a mixing valve, an auxiliary heat source, and a control means for controlling the mixing valve and the auxiliary heat source. Is known. Also, a hot water supply system having the same components as in Patent Document 1 but having a different arrangement of the mixing valve and the auxiliary heat source is also known. Hereinafter, this latter hot water supply system will be described in detail.

上記公知の給湯システムは、排熱源(熱発生源)からの熱を熱交換器が受け、貯湯タンクの底部からの水をこの熱交換器で加熱し、貯湯タンクの頂部へと供給するようになっている。貯湯タンクの底部には給水路の下流端が接続され、貯湯タンクに給水圧力を付与している。貯湯タンクの頂部には給湯路の上流端が接続されており、給湯路の下流端に設けられた給湯栓をあけると、貯湯タンクの湯が出湯されるようになっている。上記給湯路の中途部には、貯湯タンクからの湯と上記給水路の水とを混合するミキシングバルブと、その下流側のガス給湯器(補助熱源)が設けられている。制御手段は、ミキシングバルブとガス給湯器を制御して設定温度の湯を出湯させるようになっている。   In the known hot water supply system, the heat exchanger receives heat from the exhaust heat source (heat generation source), heats the water from the bottom of the hot water storage tank with this heat exchanger, and supplies it to the top of the hot water storage tank. It has become. The bottom end of the hot water storage tank is connected to the downstream end of the water supply channel to apply a water supply pressure to the hot water storage tank. The top end of the hot water storage tank is connected to the upstream end of the hot water supply passage. When the hot water tap provided at the downstream end of the hot water supply passage is opened, the hot water in the hot water storage tank is discharged. A mixing valve that mixes hot water from the hot water storage tank with water in the water supply channel and a gas water heater (auxiliary heat source) on the downstream side thereof are provided in the middle of the water supply channel. The control means controls the mixing valve and the gas water heater to discharge hot water having a set temperature.

上記公知の給湯システムの作用を説明する。上記貯湯タンク内では殆ど対流がなく、同一温度の湯が層をなし、頂部から底部に向かって低くなる温度勾配をなしている。より詳しくは、図5に示すように、大別して上側の高温層Waと中間の遷移層Wbと下側の低温層Wcとを有している。高温層Waは、熱交換器からの湯温がほぼ一定のため、一定の温度Ta(例えば60℃)に維持されている。また、低温層Wcの温度Tcは給水温度(例えば15°C)と同じである。中間遷移層Wbは、温度TaからTcまでの急な温度勾配を有している。   The operation of the known hot water supply system will be described. In the hot water storage tank, there is almost no convection, and hot water of the same temperature forms a layer and forms a temperature gradient that decreases from the top to the bottom. More specifically, as shown in FIG. 5, it roughly comprises an upper high temperature layer Wa, an intermediate transition layer Wb, and a lower low temperature layer Wc. Since the hot water temperature from the heat exchanger is substantially constant, the high temperature layer Wa is maintained at a constant temperature Ta (for example, 60 ° C.). The temperature Tc of the low temperature layer Wc is the same as the water supply temperature (for example, 15 ° C.). The intermediate transition layer Wb has a steep temperature gradient from the temperature Ta to Tc.

上記制御手段は排熱の有効活用を図るため、基本的にはミキシングバルブを制御してその混合温度を設定温度にし、ガス給湯器を停止させておく。ミキシングバルブの制御だけでは出湯温度を設定温度にできない状況では、ガス給湯器の燃焼を実行して出湯温度を設定温度に維持する。以下、詳述する。   In order to make effective use of exhaust heat, the control means basically controls the mixing valve to set the mixing temperature to the set temperature, and stops the gas water heater. In a situation where the hot water temperature cannot be set to the set temperature only by controlling the mixing valve, combustion of the gas water heater is executed to maintain the hot water temperature at the set temperature. Details will be described below.

貯湯タンクの頂部に高温層Waの湯がある時には、図6に示すように、貯湯タンクからミキシングバルブに供給される湯の温度Tin(以下、入側温度と称す。)は、高温Taとなっている。この時、ミキシングバルブにより貯湯タンクからの湯と給水路からの水とが混合され、ミキシングバルブから出る混合湯の温度Tmix(以下、出側温度ないしは混合温度と称す)が設定温度Tsに維持される。上述したように、高温層Waはほぼ一定の温度Taであり、給水温度Tcも安定しているので、貯湯タンクからの湯の割合は、ほぼ一定に維持される。図6における時点t1’以前の期間参照。   When hot water of the high temperature layer Wa is present at the top of the hot water storage tank, as shown in FIG. 6, the temperature Tin of the hot water supplied from the hot water storage tank to the mixing valve (hereinafter referred to as inlet temperature) becomes high temperature Ta. ing. At this time, the mixing valve mixes the hot water from the hot water storage tank with the water from the water supply channel, and the temperature Tmix (hereinafter referred to as the outlet side temperature or mixing temperature) of the hot water coming out of the mixing valve is maintained at the set temperature Ts. The As described above, the high temperature layer Wa has a substantially constant temperature Ta and the feed water temperature Tc is also stable, so that the ratio of hot water from the hot water storage tank is maintained substantially constant. Refer to the period before time t1 'in FIG.

なお、ここで用いられるミキシングバルブにおいて、タンク側開度と給水側の開度は一方が増大する時には他方が減少するようになっており、タンク側開度は上記貯湯タンクからの湯の割合と一対一の対応関係にある。タンク側開度が全開のときには、給水側開度が全閉となり、貯湯タンク側の湯の割合が100%で、給水側の水の割合が0%となる。また、タンク側開度が全閉のときには給水側開度が全開となり、貯湯タンク側の湯の割合が0%で給水側の水の割合が100%となる。後述する本発明の実施形態で用いられるミキシングバルブも同様である。   In the mixing valve used here, the opening on the tank side and the opening on the water supply side are such that when one increases, the other decreases, and the tank side opening indicates the ratio of hot water from the hot water storage tank. There is a one-to-one correspondence. When the tank side opening is fully open, the water supply side opening is fully closed, the ratio of hot water on the hot water storage tank side is 100%, and the ratio of water on the water supply side is 0%. When the tank side opening is fully closed, the water supply side opening is fully open, the ratio of hot water on the hot water storage tank side is 0%, and the ratio of water on the water supply side is 100%. The same applies to a mixing valve used in an embodiment of the present invention described later.

貯湯タンクに高温層Waの湯がなくなった時(時点t1’)から、中間遷移層Wbの湯がミキシングバルブに供給される。したがって、入側温度Tinは低下を開始し、これに応じてミキシングバルブは混合温度Tmixを設定温度Tsに維持するためにタンク側開度を増大させる。図6における時点t1’〜t2’の期間参照.   The hot water of the intermediate transition layer Wb is supplied to the mixing valve from the time when the hot water of the high temperature layer Wa runs out of the hot water storage tank (time point t1 '). Accordingly, the inlet side temperature Tin starts to decrease, and in response to this, the mixing valve increases the tank side opening degree in order to maintain the mixing temperature Tmix at the set temperature Ts. Refer to the period from time t1 'to t2' in FIG.

上記入側温度Tinが低下して、閾値(例えば設定温度Tsより所定温度分例えば2℃だけ高い温度)に達した時点t2’で、ミキシングバルブのタンク側開度を急速に減じ、これと同時にガス給湯器を点火して燃焼を開始する。ガス給湯器は、安定した燃焼を確保するため最小限の供給熱量以上でしか燃焼を継続できないが、この最小限の燃焼を実行する。ミキシングバルブのタンク側開度は、上記ガス給湯器での最小限の供給熱量を考慮して、決定される。すなわち、最小限の供給熱量をQminとしたとき、混合温度Tmixが次式を満足するように開度が決定される。
Tmix=Ts−Qmin/F …(1)
ただし、Fは給湯器を流れる流量である。
したがって、上記点火時点T2’で、混合温度Tmixは設定温度Tinより温度差ΔT=Qmin/Fだけ低下する。この温度差ΔTはガス給湯器の最小限の燃焼により得られる温度上昇分に相当する。
At the time point t2 ′ when the inlet side temperature Tin decreases and reaches a threshold value (for example, a temperature higher than the set temperature Ts by a predetermined temperature, for example, 2 ° C.), the tank side opening of the mixing valve is rapidly decreased, and at the same time. Ignite the gas water heater and start combustion. The gas water heater can continue combustion only with a minimum supply heat amount to ensure stable combustion, but performs this minimum combustion. The tank side opening of the mixing valve is determined in consideration of the minimum amount of heat supplied by the gas water heater. That is, the opening degree is determined so that the mixing temperature Tmix satisfies the following equation when the minimum amount of heat supplied is Qmin.
Tmix = Ts−Qmin / F (1)
However, F is the flow volume which flows through a water heater.
Therefore, at the ignition time T2 ′, the mixing temperature Tmix is lower than the set temperature Tin by a temperature difference ΔT = Qmin / F. This temperature difference ΔT corresponds to the temperature rise obtained by the minimum combustion of the gas water heater.

上記点火時点t2’以降、ミキシングバルブの開度制御により混合温度Tmixは設定温度Tsより温度差ΔTだけ低い温度に維持される。このようにガス給湯器に入る湯の温度すなわち混合温度Tmixが安定しているので、ガス給湯器の燃焼による出湯温度制御を安定して行なうことができる。   After the ignition time t2 ', the mixing temperature Tmix is maintained at a temperature lower than the set temperature Ts by a temperature difference ΔT by controlling the opening of the mixing valve. Since the temperature of hot water entering the gas water heater, that is, the mixing temperature Tmix is stable in this manner, the temperature control of the hot water by the combustion of the gas water heater can be performed stably.

上記のように、点火時点t2’以降では、ガス給湯器が上記最小限の熱量で燃焼を実行している状態で、ミキシングバルブは、上記式(1)で求められる混合温度Tmixを維持するように制御される。式(1)の混合温度Tmixは給湯栓を操作したり設定温度Tsを変えないかぎり一定であるから、上述したように入側温度Tinが低下している状況ではミキシングバルブのタンク側開度が増大していく。図6の時点t2’〜t3’の期間参照。   As described above, after the ignition time t2 ′, the mixing valve maintains the mixing temperature Tmix obtained by the above equation (1) while the gas water heater is performing the combustion with the minimum amount of heat. Controlled. Since the mixing temperature Tmix in the formula (1) is constant unless the hot water tap is operated or the set temperature Ts is changed, the tank side opening of the mixing valve is reduced in the situation where the inlet temperature Tin is lowered as described above. It will increase. Refer to the period from time t2 'to t3' in FIG.

さらに出湯を続けると、上記式(1)を満足するためにミキシングバルブのタンク側開度が増大し続け、時点t3’で全開に達し、それ以降は、ミキシングバルブのタンク側開度が全開に維持される。入側温度Tinは、貯湯タンク内の中間遷移層Wbの温度勾配に応じて急激に低下するが、上記のようにミキシングバルブのタンク側開度が全開になると、この温度低下が緩和されることなく、そのまま混合温度Tmixとなって現れる。そのため、ガス給湯器では最小限の供給熱量から、供給熱量を急激に増大させて入側温度Tinの急激な温度低下を補償し、出湯温度を設定温度Tsに維持しようとする。さらに出湯を続けると、入側温度Tinは給水温度Tcと一致し、ほぼ一定となる。この状況ではミキシングバルブのタンク側開度が全開のまま維持され、ガス給湯器の供給熱量もほぼ一定となる。
特開2002−364918号公報
If the hot water is further continued, the opening of the mixing valve on the tank side continues to increase to satisfy the above formula (1), reaches the full opening at time t3 ′, and thereafter, the opening of the mixing valve on the tank side opens fully. Maintained. The inlet side temperature Tin rapidly decreases in accordance with the temperature gradient of the intermediate transition layer Wb in the hot water storage tank. However, when the opening of the mixing valve on the tank side is fully opened as described above, this temperature decrease is alleviated. It appears as the mixing temperature Tmix as it is. Therefore, in the gas water heater, from the minimum supply heat amount, the supply heat amount is rapidly increased to compensate for the rapid temperature drop of the entry side temperature Tin, and the hot water temperature is maintained at the set temperature Ts. When the hot water is further continued, the inlet side temperature Tin coincides with the feed water temperature Tc and becomes substantially constant. In this situation, the opening of the mixing valve on the tank side is maintained fully open, and the amount of heat supplied to the gas water heater is substantially constant.
JP 2002-364918 A

しかし、上記公知の給湯システムでは、ミキシングバルブのタンク側開度が全開となっった時点t3’から混合温度Tmixすなわちガス給湯器に入る湯の温度が急速に低下するため、ガス給湯器がこれに対応して供給熱量を増大させても間に合わず、大きなアンダーシュートが生じる欠点があった。図6のt3’以降の出湯温度参照。   However, in the known hot water supply system, since the mixing temperature Tmix, that is, the temperature of hot water entering the gas water heater, rapidly decreases from the time t3 ′ when the opening of the mixing valve on the tank side is fully opened, the gas water heater is However, even if the amount of heat supplied is increased in response to this, there is a drawback that a large undershoot is generated in time. Refer to the tapping temperature after t3 'in FIG.

本発明は上記課題を解決するためになされたもので、
(a)熱発生源と、
(b)上記熱発生源からの熱を受ける熱交換器と、
(c)貯湯タンクと、
(d)上記貯湯タンクの底部から熱交換器を経て貯湯タンクへと水を循環させる循環路と、
(e)下流端が上記貯湯タンクの底部に接続された給水路と、
(f)上流端が上記貯湯タンクの頂部に接続された給湯路と、
(g)上記給湯路の中途部に設けられ、上記貯湯タンクからの湯と上記給水路の水とを混合するミキシングバルブと、
(h)上記給湯路において上記ミキシングバルブの下流側に設けられた補助熱源と、
(i)上記ミキシングバルブと補助熱源を制御することにより、上記給湯路の下流端から設定温度の湯を出湯させる制御手段と、
を備えた給湯システムにおいて、
上記循環路は上記熱交換器から貯湯タンクの頂部へ向かう第1分岐路とこれより下方の貯湯タンクの側部へ向かう第2分岐路に分岐され、これら第1,第2の分岐路の交差部に切替弁手段が設けられ、
上記貯湯タンク内には熱交換器からの高温の湯からなる高温層と給水温度の水からなる低温層と温度勾配を有する中間遷移層とが貯えられるようになっており、
上記制御手段は、中間遷移層の湯を貯湯タンクに残すようにして上記ミキシングバルブと補助熱源を制御して、出湯温度を設定温度に維持し、
さらに制御手段は、上記切替弁手段を、通常時には上記熱交換器からの湯を第1分岐路を介して貯湯タンクの頂部にのみ供給する第1の状態にし、必要に応じて、上記熱交換器からの湯の少なくとも一部を上記第2分岐路に供給する第2の状態にすることを特徴とする。
The present invention has been made to solve the above problems,
(A) a heat generation source;
(B) a heat exchanger that receives heat from the heat generation source;
(C) a hot water storage tank;
(D) a circulation path for circulating water from the bottom of the hot water storage tank to the hot water storage tank through a heat exchanger;
(E) a water supply channel whose downstream end is connected to the bottom of the hot water storage tank;
(F) a hot water supply path whose upstream end is connected to the top of the hot water storage tank;
(G) a mixing valve which is provided in the middle of the hot water supply channel and mixes hot water from the hot water storage tank and water of the water supply channel;
(H) an auxiliary heat source provided on the downstream side of the mixing valve in the hot water supply path;
(I) control means for discharging hot water at a set temperature from the downstream end of the hot water supply path by controlling the mixing valve and the auxiliary heat source;
In the hot water supply system with
The circulation path is branched into a first branch path from the heat exchanger to the top of the hot water storage tank and a second branch path to the side of the hot water storage tank below the first branch path, and the intersection of the first and second branch paths. Switching valve means is provided in the section,
In the hot water storage tank, a high temperature layer made of high temperature hot water from a heat exchanger, a low temperature layer made of water having a feed water temperature, and an intermediate transition layer having a temperature gradient are stored.
The control means controls the mixing valve and the auxiliary heat source so as to leave hot water of the intermediate transition layer in the hot water storage tank, and maintains the hot water temperature at a set temperature,
Further, the control means sets the switching valve means to a first state in which the hot water from the heat exchanger is normally supplied only to the top of the hot water storage tank via the first branch passage, and the heat exchange is performed as necessary. In the second state, at least part of hot water from the vessel is supplied to the second branch passage.

上記構成では、中間遷移層の湯がミキシングバルブに供給されずに貯湯タンクに残るように制御することにより、ミキシングバルブからの混合湯の急激な低下を防ぎ、出湯温度のアンダーシュートを回避することができる。
上記制御において熱交換器からの高温の湯が貯湯タンクの頂部に補充されると、上記中間遷移層は下方に移動する。再出湯時にはこの高温の湯だけミキシングバルブへ供給され、中間遷移層が残ることになる。この繰り返しにより中間遷移層の湯が貯湯タンクに長期にわたって滞留する可能性がある。そこで、切替弁手段を作動させて熱交換器からの高温の湯を第2分岐路を介して貯湯タンクの側部に供給し、貯湯タンク内で対流を起こさせる。これにより、比較的狭い中間遷移層が広い領域に拡散して希釈され、長期にわたって貯湯タンク内に滞留するのを回避することができる。
In the above configuration, the hot water of the intermediate transition layer is controlled so that it remains in the hot water storage tank without being supplied to the mixing valve, thereby preventing a sudden drop in the hot water from the mixing valve and avoiding an undershoot of the tapping temperature. Can do.
In the above control, when the hot water from the heat exchanger is replenished to the top of the hot water storage tank, the intermediate transition layer moves downward. At the time of re-heating, only this hot water is supplied to the mixing valve, and the intermediate transition layer remains. By repeating this, hot water in the intermediate transition layer may stay in the hot water storage tank for a long time. Therefore, the switching valve means is operated to supply hot hot water from the heat exchanger to the side of the hot water storage tank via the second branch path, thereby causing convection in the hot water storage tank. As a result, it is possible to avoid a relatively narrow intermediate transition layer from being diffused and diluted in a wide area and staying in the hot water storage tank for a long time.

(a)熱発生源と、
(b)上記熱発生源からの熱を受ける熱交換器と、
(c)貯湯タンクと、
(d)上記貯湯タンクの底部から熱交換器を経て貯湯タンクへと水を循環させる循環路と、
(e)下流端が上記貯湯タンクの底部に接続された給水路と、
(f)上流端が上記貯湯タンクの頂部に接続された給湯路と、
(g)上記給湯路の中途部に設けられ、上記貯湯タンクからの湯と上記給水路の水とを混合するミキシングバルブと、
(h)上記給湯路において上記ミキシングバルブの下流側に設けられた補助熱源と、
(i)上記ミキシングバルブと補助熱源を制御することにより、上記給湯路の下流端から設定温度の湯を出湯させる制御手段と、
を備えた給湯システムにおいて、
上記貯湯タンクの頂端から所定距離下方の位置に、貯湯タンク内の湯温を測定するタンク温度センサが設けられ、上記循環路は上記熱交換器から貯湯タンクの頂部へ向かう第1分岐路とこれより下方の貯湯タンクの側部へ向かう第2分岐路に分岐され、これら第1,第2の分岐路の交差部に切替弁手段が設けられ、
上記制御手段は、
(ア)上記タンク温度センサの検出温度が閾値より上回っている状況では、補助熱源を停止したままミキシングバルブを制御することにより、ミキシングバルブからの混合湯の温度を設定温度に維持し、
(イ)上記検出温度が低下して閾値に達した時には、最小限の熱量を供給するように補助熱源の作動を開始するとともに、この最小限の熱量供給に対応して貯湯タンクからの湯の割合を減じるようにミキシングバルブを制御することにより、出湯温度を設定温度に維持し、
(ウ)上記ミキシングバルブによる貯湯タンクからの湯の割合を、上記補助熱源の作動開始時に減じた値から、徐々に減じて実質的にゼロにし、上記ミキシングバルブからの混合湯の温度の低下を補助熱源の供給熱量の増大により補償して、出湯温度を設定温度に維持し、
(エ)上記切替弁手段を、通常時には上記熱交換器からの湯を第1分岐路を介して貯湯タンクの頂部にのみ供給する第1の状態にし、上記ミキシングバルブで貯湯タンクからの湯の割合を実質的にゼロにした後では、上記熱交換器からの湯の少なくとも一部を上記第2分岐路に供給する第2の状態にすることを特徴とする。
(A) a heat generation source;
(B) a heat exchanger that receives heat from the heat generation source;
(C) a hot water storage tank;
(D) a circulation path for circulating water from the bottom of the hot water storage tank to the hot water storage tank through a heat exchanger;
(E) a water supply channel whose downstream end is connected to the bottom of the hot water storage tank;
(F) a hot water supply path whose upstream end is connected to the top of the hot water storage tank;
(G) a mixing valve which is provided in the middle of the hot water supply channel and mixes hot water from the hot water storage tank and water of the water supply channel;
(H) an auxiliary heat source provided on the downstream side of the mixing valve in the hot water supply path;
(I) control means for discharging hot water at a set temperature from the downstream end of the hot water supply path by controlling the mixing valve and the auxiliary heat source;
In the hot water supply system with
A tank temperature sensor for measuring the temperature of the hot water in the hot water storage tank is provided at a position below a predetermined distance from the top end of the hot water storage tank, and the circulation path is a first branch path from the heat exchanger to the top of the hot water storage tank. Branched to a second branch path toward the side of the lower hot water storage tank, and switching valve means is provided at the intersection of these first and second branch paths,
The control means includes
(A) In the situation where the detected temperature of the tank temperature sensor is higher than the threshold value, the temperature of the mixed hot water from the mixing valve is maintained at the set temperature by controlling the mixing valve while the auxiliary heat source is stopped.
(B) When the detected temperature decreases and reaches a threshold value, the auxiliary heat source is started to supply a minimum amount of heat, and the hot water from the hot water storage tank is supplied in response to the minimum amount of heat supply. By controlling the mixing valve to reduce the rate, the tapping temperature is maintained at the set temperature,
(C) The ratio of hot water from the hot water storage tank by the mixing valve is gradually reduced from the value reduced at the start of operation of the auxiliary heat source to substantially zero, and the temperature of the mixed hot water from the mixing valve is reduced. Compensating by increasing the amount of heat supplied from the auxiliary heat source, maintaining the tapping temperature at the set temperature,
(D) The switching valve means is normally set to a first state in which hot water from the heat exchanger is supplied only to the top of the hot water storage tank via the first branch passage, and the mixing valve is used to supply hot water from the hot water storage tank. After the ratio is substantially zero, the second state in which at least a part of the hot water from the heat exchanger is supplied to the second branch path is set.

上記構成では、補助熱源の作動開始後に、混合バルブによる貯湯タンクからの湯の割合を徐々に減じ、ミキシングバルブからの湯の温度を徐々に給水温度に近づけ,補助熱源での供給熱量は徐々に増大して、ミキシングバルブからの湯の温度の低下を補償することにより、出湯温度を設定温度に維持する。このようにすれば、公知の給湯システムのようにミキシングバルブが貯湯タンクからの湯の割合を100%にした後に生じる混合湯の温度の急激な低下が生じず、出湯温度に大きなアンダーシュートが生じるのを回避することができる。
上記の制御では、中間遷移層の湯がミキシングバルブに供給されずに貯湯タンクに残る。熱交換器からの高温の湯が貯湯タンクの頂部に補充されると、この中間遷移層は下方に移動する。再出湯時にはこの高温の湯だけミキシングバルブへ供給され、中間遷移層が残ることになる。この繰り返しにより中間遷移層の湯が貯湯タンクに長期にわたって滞留する可能性がある。そこで、上記のようにミキシングバルブにより貯湯タンクからの湯の割合を実質的にゼロにした後では、切替弁手段を作動させて熱交換器からの高温の湯を第2分岐路を介して貯湯タンクの側部に供給し、貯湯タンク内で対流を起こさせる。これにより、比較的狭い中間遷移層が広い領域に拡散して希釈され、長期にわたって貯湯タンク内に滞留するのを回避することができる。
In the above configuration, after the operation of the auxiliary heat source is started, the ratio of hot water from the hot water storage tank by the mixing valve is gradually reduced, the temperature of the hot water from the mixing valve is gradually brought closer to the water supply temperature, and the amount of heat supplied from the auxiliary heat source is gradually increased. By increasing and compensating for the drop in the temperature of the hot water from the mixing valve, the hot water temperature is maintained at the set temperature. In this way, the temperature of the mixed hot water generated after the mixing valve has made the ratio of hot water from the hot water storage tank 100% as in the known hot water supply system does not occur, and a large undershoot occurs in the tapping temperature. Can be avoided.
In the above control, the hot water in the intermediate transition layer remains in the hot water storage tank without being supplied to the mixing valve. When hot water from the heat exchanger is replenished to the top of the hot water storage tank, this intermediate transition layer moves downward. At the time of re-heating, only this hot water is supplied to the mixing valve, and the intermediate transition layer remains. By repeating this, hot water in the intermediate transition layer may stay in the hot water storage tank for a long time. Therefore, after the ratio of hot water from the hot water storage tank is made substantially zero by the mixing valve as described above, the switching valve means is operated to supply hot hot water from the heat exchanger via the second branch passage. Supply to the side of the tank to cause convection in the hot water storage tank. As a result, it is possible to avoid a relatively narrow intermediate transition layer from being diffused and diluted in a wide area and staying in the hot water storage tank for a long time.

好ましくは、上記の貯湯タンクからの湯の割合を徐々に減じる制御は、混合湯の温度を管理してこの混合湯の温度を時間の経過にしたがって徐々に下げるミキシングバルブの制御である。これにより、出湯量の影響を受けずに混合湯の温度すなわち補助熱源に供給される湯の温度を管理できるため、補助熱源による供給熱量の安定した制御を確保でき、ひいては出湯温度をより一層安定化することができる。
好ましくは、上記制御手段は、上記ミキシングバルブによる貯湯タンクの湯の割合を補助熱源の作動開始時点で減じた後、混合湯の温度を一定に維持するようにミキシングバルブを制御し、この混合湯の温度が上記タンク温度センサの検出温度と一致した時から、混合湯の温度を徐々に下げるようにミキシングバルブを制御する。これにより、補助熱源の作動開始直後における補助熱源の安定した制御を確保でき、出湯温度をより一層安定させることができる。
好ましくは、上記給湯路において上記ミキシングバルブの上流側に電磁開閉弁が設けられ、上記制御手段は、上記ミキシングバルブが貯湯タンクからの湯の割合を実質的にゼロにした時に、上記電磁開閉弁を閉じる。これにより、貯湯タンクから補助熱源への湯の供給を確実に遮断することができる。
Preferably, the control for gradually reducing the ratio of the hot water from the hot water storage tank is a control of a mixing valve that manages the temperature of the mixed hot water and gradually lowers the temperature of the mixed hot water over time. As a result, the temperature of the mixed hot water, that is, the temperature of the hot water supplied to the auxiliary heat source can be managed without being affected by the amount of the hot water, so that stable control of the amount of heat supplied by the auxiliary heat source can be ensured, and the hot water temperature can be further stabilized. Can be
Preferably, the control means controls the mixing valve so as to maintain the temperature of the mixed hot water after the ratio of hot water in the hot water storage tank by the mixing valve is reduced at the start of operation of the auxiliary heat source, and the mixed hot water. The mixing valve is controlled so as to gradually lower the temperature of the mixed hot water when the temperature of the water reaches the temperature detected by the tank temperature sensor. Thereby, stable control of the auxiliary heat source immediately after the operation of the auxiliary heat source can be secured, and the tapping temperature can be further stabilized.
Preferably, an electromagnetic on-off valve is provided on the upstream side of the mixing valve in the hot water supply path, and the control means has the electromagnetic on-off valve when the mixing valve makes the ratio of hot water from the hot water storage tank substantially zero. Close. Thereby, the supply of hot water from the hot water storage tank to the auxiliary heat source can be reliably shut off.

一つの態様では、上記切替弁手段が三方弁であり、上記第2の状態が上記熱交換器からの湯を上記第2分岐路のみに供給する状態である。この場合には、上記希釈効果を最大限発揮することができ、しかも構造が簡単である。
他の態様では、上記切替弁手段が他のミキシングバルブであり、上記第2の状態が上記熱交換器からの湯を第1,第2の分岐路の両方に供給する状態である。この場合には、上記希釈効果を得るとともに、貯湯タンクの湯をミキシングバルブへ供給可能な状態に早く達することができ、熱交換器からの熱エネルギーを有効に活用できる。
In one aspect, the switching valve means is a three-way valve, and the second state is a state in which hot water from the heat exchanger is supplied only to the second branch passage. In this case, the dilution effect can be maximized and the structure is simple.
In another aspect, the switching valve means is another mixing valve, and the second state is a state in which hot water from the heat exchanger is supplied to both the first and second branch paths. In this case, the above-described dilution effect can be obtained, and it is possible to quickly reach a state where the hot water in the hot water storage tank can be supplied to the mixing valve, and the heat energy from the heat exchanger can be effectively utilized.

好ましくは、上記貯湯タンクには、上記タンク温度センサの下方において貯湯タンク内の湯の温度を測定する他のタンク温度センサを備え、当該他の温度センサでの検出温度が上記閾値より低い他の閾値を上回ったときに、上記制御手段は上記切替弁手段を上記第2の状態から上記第1の状態に復帰させる。これにより、滞留層の希釈が十分に行なわれたことを検知でき、熱交換器からの湯の貯湯タンクの頂部への供給に切り替えて、熱交換器からの熱エネルギーを有効に活用できる。
好ましくは、上記熱発生源が排熱源であり、上記補助熱源がガス給湯器である。これにより、熱エネルギーを有効に利用することができる。
Preferably, the hot water storage tank includes another tank temperature sensor that measures the temperature of hot water in the hot water storage tank below the tank temperature sensor, and the temperature detected by the other temperature sensor is lower than the threshold value. When the threshold value is exceeded, the control means returns the switching valve means from the second state to the first state. Thereby, it can be detected that the staying layer has been sufficiently diluted, and the heat energy from the heat exchanger can be effectively utilized by switching to supplying the hot water from the heat exchanger to the top of the hot water storage tank.
Preferably, the heat generation source is an exhaust heat source, and the auxiliary heat source is a gas water heater. Thereby, thermal energy can be used effectively.

本発明によれば、貯湯タンクからの湯と給水路の水とを混合するミキシングバルブとその下流側の補助熱源を有する給湯システムにおいて、出湯温度に大きなアンダーシュートが発生するのを回避することができる。しかも、貯湯タンク内で滞留層が長期にわたって残るのを回避することができる。   According to the present invention, in a hot water supply system having a mixing valve for mixing hot water from a hot water storage tank and water in a water supply channel and an auxiliary heat source downstream thereof, it is possible to avoid occurrence of a large undershoot in the hot water temperature. it can. Moreover, it is possible to avoid the staying layer from remaining in the hot water storage tank for a long time.

以下、本発明の第1実施形態について図1,図2を参照しながら説明する。図1に示すように、給湯システムは、燃料電池等の発電機10と、貯湯タンク20と、ミキシングバルブ30とガス給湯器40(補助熱源)とを主たる構成要素として備えている。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the hot water supply system includes a generator 10 such as a fuel cell, a hot water storage tank 20, a mixing valve 30, and a gas water heater 40 (auxiliary heat source) as main components.

上記発電機10は、ハウジング10a内に、排熱源11(熱発生源)と、熱交換器12と、熱媒体循環路13と、2台のポンプ14,15とを備えてユニット化されている。熱媒体循環路13は排熱源11と熱交換器12とを通っており、この熱媒体循環路13に設けられたポンプ14の駆動により熱媒体(例えば水)が排熱源11と熱交換器12との間を循環するようになっている。   The generator 10 is unitized in a housing 10a with an exhaust heat source 11 (heat generation source), a heat exchanger 12, a heat medium circulation path 13, and two pumps 14 and 15. . The heat medium circulation path 13 passes through the exhaust heat source 11 and the heat exchanger 12, and the heat medium (for example, water) is driven by the pump 14 provided in the heat medium circulation path 13 so that the heat medium (for example, water). Circulates between and.

上記貯湯タンク20の底壁20a(底端)と頂壁20b(頂端)との間には、水循環路25が接続されている。この水循環路25は上記熱交換器12を通っており、この水循環路25に設けられた上記ポンプ15の駆動により、貯湯タンク20の底端20aの水が熱交換器12を通り、この過程で熱交換器12を流れる熱媒体からの熱を受けて湯となり、貯湯タンク20の頂端20bに供給されるようになっている。なお、本明細書で貯湯タンク20の底部とは底壁20aまたはその近傍部を言い、頂部とは頂壁20bまたはその近傍部を言う。   A water circulation path 25 is connected between the bottom wall 20 a (bottom end) and the top wall 20 b (top end) of the hot water storage tank 20. The water circulation path 25 passes through the heat exchanger 12, and the water at the bottom end 20 a of the hot water storage tank 20 passes through the heat exchanger 12 by the driving of the pump 15 provided in the water circulation path 25. Hot water is received from the heat medium flowing through the heat exchanger 12 and is supplied to the top end 20 b of the hot water storage tank 20. In the present specification, the bottom of the hot water storage tank 20 refers to the bottom wall 20a or the vicinity thereof, and the top refers to the top wall 20b or the vicinity thereof.

前述したように上記貯湯タンク20内では殆ど対流がなく、上側の高温層Waと中間の遷移層Wbと下側の低温層Wcとを有している。高温層Waは、熱交換器12からの湯温がほぼ一定のため、一定の温度Ta(例えば60℃)に維持されている。また、低温層Wcの温度Tcは給水温度(例えば15°C)と同じである。中間遷移層Wbは、温度TaからTcまでの急な温度勾配を有している。   As described above, there is almost no convection in the hot water storage tank 20, and it has an upper high temperature layer Wa, an intermediate transition layer Wb, and a lower low temperature layer Wc. Since the hot water temperature from the heat exchanger 12 is substantially constant, the high temperature layer Wa is maintained at a constant temperature Ta (for example, 60 ° C.). The temperature Tc of the low temperature layer Wc is the same as the water supply temperature (for example, 15 ° C.). The intermediate transition layer Wb has a steep temperature gradient from the temperature Ta to Tc.

上記貯湯タンク20の底壁20aには給水路50の下流端が接続され、常時給水圧力が加わるようになっている。また、貯湯タンク20の頂壁20bには給湯路60の上流端が接続されており、この給湯路60の下流端には給湯栓61が設けられている。この給湯栓61を開くと、貯湯タンク20に貯えられていた湯が上記給水圧力を受けて給湯栓61から出湯するようになっている。   The bottom wall 20a of the hot water storage tank 20 is connected to the downstream end of the water supply channel 50 so that a constant water supply pressure is applied. An upstream end of the hot water supply path 60 is connected to the top wall 20 b of the hot water storage tank 20, and a hot water supply tap 61 is provided at the downstream end of the hot water supply path 60. When the hot water tap 61 is opened, the hot water stored in the hot water storage tank 20 receives the above-mentioned water supply pressure and is discharged from the hot water tap 61.

上記給湯路60には上流側から下流側に向かって順に上記ミキシングバルブ30と給湯器40が設けられている。ミキシングバルブ30は、貯湯タンク20から給湯路60を経た湯と、給水路50の分岐部51からの水との混合割合を調節するものである。給湯路60においてミキシングバルブ30の上流側には電磁開閉弁35が設けられている。   The hot water supply path 60 is provided with the mixing valve 30 and the hot water heater 40 in order from the upstream side to the downstream side. The mixing valve 30 adjusts the mixing ratio of hot water that has passed through the hot water supply path 60 from the hot water storage tank 20 and water from the branch portion 51 of the water supply path 50. An electromagnetic opening / closing valve 35 is provided on the upstream side of the mixing valve 30 in the hot water supply path 60.

上記ガス給湯器40は、ガス燃焼部41と、その上に位置する熱交換器42を有しており、熱交換器42を上記給湯路60が通っており、給湯路60の湯または水が熱交換器42を通過する際にガス燃焼部41での燃焼熱を受けるようになっている。   The gas water heater 40 includes a gas combustion unit 41 and a heat exchanger 42 positioned thereon, and the hot water supply path 60 passes through the heat exchanger 42, and hot water or water in the hot water supply path 60 is supplied. When passing through the heat exchanger 42, the combustion heat in the gas combustion section 41 is received.

給湯システムは、さらに制御ユニット70(制御手段)と種々のセンサを有している。詳述すると、ミキシングバルブ30の上流側で電磁開閉弁35の下流側には、貯湯タンク20からミキシングバルブ30に入る湯の温度を検出する入側温度センサ81が設けられている。また、ミキシングバルブ30の上流側に位置する給水路50の分岐部51には、給水温度を検出する給水温度センサ82が設けられている。   The hot water supply system further includes a control unit 70 (control means) and various sensors. More specifically, an inlet-side temperature sensor 81 that detects the temperature of hot water entering the mixing valve 30 from the hot water storage tank 20 is provided upstream of the mixing valve 30 and downstream of the electromagnetic opening / closing valve 35. In addition, a water supply temperature sensor 82 that detects a water supply temperature is provided at the branch portion 51 of the water supply passage 50 located on the upstream side of the mixing valve 30.

給湯路60においてミキシングバルブ30の下流側でガス給湯器40の上流側には、ミキシングバルブ30で混合された湯の温度を検出する混合温度センサ83が設けられている。給湯路60にはガス給湯器40の熱交換器42の下流側に位置する出湯温度センサ84が設けられている。さらに、給湯路60には、ミキシングバルブ30とガス給湯器40との間において、流量を検出するためのフローセンサ85が設けられている。   A mixing temperature sensor 83 that detects the temperature of the hot water mixed by the mixing valve 30 is provided downstream of the mixing valve 30 and upstream of the gas water heater 40 in the hot water supply path 60. The hot water supply path 60 is provided with a hot water temperature sensor 84 located on the downstream side of the heat exchanger 42 of the gas water heater 40. Further, the hot water supply path 60 is provided with a flow sensor 85 for detecting the flow rate between the mixing valve 30 and the gas water heater 40.

上述の構成は、公知の給湯システムとほぼ等しい。本実施形態では、新規に貯湯タンク20の頂部の側壁にタンク温度センサ86を設けている。このタンク温度センサ86は、貯湯タンク20の頂壁20bから所定距離Dだけ下方に位置する貯湯タンク20内の湯の温度を検出するものである。この距離Dは、センサ86の設置位置と頂壁20bとの間で例えば10リットル程度の湯が貯えられるように設定する。このタンク温度センサ86よりさらに所定距離下方における貯湯タンク20の側壁には、他のタンク温度センサ87が設けられている。   The above-described configuration is almost the same as a known hot water supply system. In the present embodiment, a tank temperature sensor 86 is newly provided on the top side wall of the hot water storage tank 20. The tank temperature sensor 86 detects the temperature of the hot water in the hot water storage tank 20 located below the top wall 20b of the hot water storage tank 20 by a predetermined distance D. This distance D is set so that, for example, about 10 liters of hot water can be stored between the installation position of the sensor 86 and the top wall 20b. Another tank temperature sensor 87 is provided on the side wall of the hot water storage tank 20 below the tank temperature sensor 86 by a predetermined distance.

上記循環路25は、熱交換器12から貯湯タンク20に向かって2股に分岐しており、第1分岐路25aが前述したように貯湯タンク20の頂端20bに接続され、第2分岐路25bが貯湯タンク20の側壁に中間高さの位置で接続されている。この第2分岐路25bの接続位置は、第1分岐路25aの接続位置および底端20aから上下方向に十分離れていればよい。好ましくは、上記タンク温度センサ86より所定距離下方で、貯湯タンク20の中央より高い位置にあり、上記タンク温度センサ87とほぼ同じ高さにある。   The circulation path 25 is bifurcated from the heat exchanger 12 toward the hot water storage tank 20, and the first branch path 25a is connected to the top end 20b of the hot water storage tank 20 as described above, and the second branch path 25b. Is connected to the side wall of the hot water storage tank 20 at an intermediate height position. The connection position of the second branch path 25b may be sufficiently separated from the connection position of the first branch path 25a and the bottom end 20a in the vertical direction. Preferably, it is at a position lower than the tank temperature sensor 86 by a predetermined distance and higher than the center of the hot water storage tank 20, and substantially at the same height as the tank temperature sensor 87.

上記第1,第2の分岐路25a,25bの交差部に電磁三方弁90が設けられている。この三方弁90は、熱交換器12からの湯を第1分岐路25aのみに供給する第1の状態と、第2分岐路25bにのみ供給する第2の状態とに切り替え可能である。   An electromagnetic three-way valve 90 is provided at the intersection of the first and second branch paths 25a and 25b. The three-way valve 90 can be switched between a first state in which hot water from the heat exchanger 12 is supplied only to the first branch 25a and a second state in which only the second branch 25b is supplied.

上記制御ユニット70は、上記センサ81〜86の検出情報に基づいて、給湯栓61からの出湯温度がユーザーによる設定温度になるように、ミキシングバルブ30と、開閉弁35と、ガス給湯器40の制御を行なう。以下、詳述する。   Based on the detection information of the sensors 81 to 86, the control unit 70 sets the mixing valve 30, the on-off valve 35, and the gas water heater 40 so that the hot water temperature from the hot water tap 61 becomes a temperature set by the user. Take control. Details will be described below.

ミキシングバルブ30は、出湯停止時にタンク側開度を全閉で給水側を全開にし、この状態で待機している。給湯栓61を開けると、フローセンサ85でこれを検出し、制御ユニット70は、この検出信号に応答してタンク温度センサ86での検出温度Tdが閾値以上か未満かを判断する。なお、閾値は設定温度より所定温度分例えば2℃高い温度に設定されている。この閾値は通常、中間遷移層Wbの温度範囲内にある。   The mixing valve 30 is in a standby state in which the tank side opening is fully closed and the water supply side is fully opened when hot water is stopped. When the hot-water tap 61 is opened, this is detected by the flow sensor 85, and the control unit 70 determines whether the detected temperature Td at the tank temperature sensor 86 is equal to or higher than a threshold value in response to this detection signal. The threshold is set to a temperature that is higher by a predetermined temperature, for example, 2 ° C. than the set temperature. This threshold is usually in the temperature range of the intermediate transition layer Wb.

制御ユニット70は、検出温度Tdが閾値以上であると判断したときには、第1の制御ルーチンを実行する。この場合、タンク温度センサ86は貯湯タンク20の頂壁20bより距離Dだけ下方に位置しているので、頂壁20bでの湯の温度は、閾値以上である。通常は貯湯タンク20の頂部に高温層Waの湯が蓄えられている。検出温度が高温層Waの湯の温度Taである場合を例にとり、第1制御ルーチンについて図3を参照しながら説明する。   When the control unit 70 determines that the detected temperature Td is equal to or higher than the threshold value, the control unit 70 executes the first control routine. In this case, since the tank temperature sensor 86 is located below the top wall 20b of the hot water storage tank 20 by a distance D, the temperature of the hot water on the top wall 20b is equal to or higher than the threshold value. Usually, hot water of the high temperature layer Wa is stored at the top of the hot water storage tank 20. Taking the case where the detected temperature is the hot water temperature Ta of the high temperature layer Wa as an example, the first control routine will be described with reference to FIG.

ガス給湯器30は停止状態を維持される。ミキシングバルブ30は、貯湯タンク20からの湯と給水路50からの水を混合して、混合温度Tmixが設定温度Tsになるように制御を行なう。詳述すると、入側温度センサ81で検出される貯湯タンク20の湯の温度Tinと、給水温度センサ82で検出される給水温度Tcと、フローセンサ85で検出される流量と,設定温度Tsに基づき、フィードフォワード制御を行なうとともに、混合温度センサ83で検出される混合温度Tmixと設定温度Tsに基づいてフィードバック制御を行なう。したがって、ミキシングバルブ30により設定温度Tsとなった混合湯はガス給湯器30で加熱されずに給湯栓61から出湯される。なお、高温層Waの湯温Taはほぼ一定であるから、設定温度Tsが変化せず出湯量も変化しない限り、ミキシングバルブ30での混合割合はほぼ一定である。図3の時点t1以前の期間参照。   The gas water heater 30 is maintained in a stopped state. The mixing valve 30 mixes the hot water from the hot water storage tank 20 and the water from the water supply channel 50 and performs control so that the mixing temperature Tmix becomes the set temperature Ts. More specifically, the hot water temperature Tin of the hot water storage tank 20 detected by the inlet temperature sensor 81, the feed water temperature Tc detected by the feed water temperature sensor 82, the flow rate detected by the flow sensor 85, and the set temperature Ts. Based on the feedforward control, feedback control is performed based on the mixing temperature Tmix detected by the mixing temperature sensor 83 and the set temperature Ts. Therefore, the mixed hot water that has reached the set temperature Ts by the mixing valve 30 is not heated by the gas water heater 30 and is discharged from the hot water tap 61. Since the hot water temperature Ta of the high temperature layer Wa is substantially constant, the mixing ratio in the mixing valve 30 is substantially constant as long as the set temperature Ts does not change and the amount of discharged hot water does not change. Refer to the period before time t1 in FIG.

貯湯タンク20の湯が消費され続けると、やがて中間遷移層Wbがタンク温度センサ86に達するため、このタンク温度センサ86による検出温度Tdが低下し始める。ただし、タンク温度センサ86は貯湯タンク20の頂端20bより所定距離D下方に位置しているので、貯湯タンク20から出る湯の温度すなわちミキシングバルブ30に入る湯の温度Tin(入側温度)はまだ高温Taを維持されている。   If the hot water in the hot water storage tank 20 continues to be consumed, the intermediate transition layer Wb eventually reaches the tank temperature sensor 86, and the temperature Td detected by the tank temperature sensor 86 begins to decrease. However, since the tank temperature sensor 86 is located below the top end 20b of the hot water storage tank 20 by a predetermined distance D, the temperature of the hot water coming out of the hot water storage tank 20, that is, the temperature Tin of the hot water entering the mixing valve 30 (inlet temperature) is still present. High temperature Ta is maintained.

上記タンク温度センサ86の検出温度Tdがさらに低下して閾値に達した時点t1で、ガス給湯器40を点火して最小限の供給熱量Qminを湯に供給するとともに、ミキシングバルブ30のタンク側開度を急速に減じる。ミキシングバルブ30のタンク側開度は、混合温度Tmixが前述した式(1)を満足するように決定される。したがって、上記点火時点t1で、混合温度Tmixは設定温度Tsより温度差ΔT=Qmin/Fだけ低下する。   At a time t1 when the detected temperature Td of the tank temperature sensor 86 further decreases and reaches a threshold value, the gas water heater 40 is ignited to supply the minimum supply heat amount Qmin to the hot water, and the mixing valve 30 is opened on the tank side. Decrease rapidly. The tank side opening of the mixing valve 30 is determined so that the mixing temperature Tmix satisfies the above-described equation (1). Therefore, at the ignition time t1, the mixing temperature Tmix is lower than the set temperature Ts by a temperature difference ΔT = Qmin / F.

点火時点t1で急低下した混合温度Tmixは、そのまま、すなわち設定温度Tsより温度差ΔTだけ低い温度のまま一定に維持され、上記検出温度Tdが混合温度Tmixに達するまで継続される。この時のミキシングバルブ30の制御は、前述したと同様にフィードフォワード制御とフィードバック制御により実行される。なお、タンク温度センサ86が頂壁20bより所定距離Dだけ下方に位置しており、その検出温度Tdが閾値に達してガス給湯器40が点火した時点t1では、まだ貯湯タンク20に高温層Waが残っており、入側温度Tinはまだ高温Taを維持しているので、混合温度Tmixを一定に維持する制御では、ミキシングバルブ30の開度が微調整されるだけでほぼ一定に維持されることになる。このように混合温度Tmixが一定に維持されるので、ガス給湯器40での点火直後の制御を安定して行なえる。図3における時点t1〜t2の期間参照。   The mixing temperature Tmix rapidly decreased at the ignition time t1 is maintained as it is, that is, at a temperature lower by the temperature difference ΔT than the set temperature Ts, and is continued until the detected temperature Td reaches the mixing temperature Tmix. The control of the mixing valve 30 at this time is executed by feedforward control and feedback control as described above. It should be noted that the tank temperature sensor 86 is positioned below the top wall 20b by a predetermined distance D, and at the time t1 when the detected temperature Td reaches the threshold value and the gas water heater 40 is ignited, the hot water tank 20 still has the high temperature layer Wa. Since the inlet temperature Tin is still maintained at the high temperature Ta, in the control for maintaining the mixing temperature Tmix at a constant level, the opening of the mixing valve 30 is maintained at a substantially constant level only by fine adjustment. It will be. Thus, since the mixing temperature Tmix is maintained constant, the control immediately after ignition in the gas water heater 40 can be stably performed. Refer to the period from time t1 to time t2 in FIG.

検出温度Tdが混合温度Tmixに達した時点t2で、混合温度Tmixが時間の経過にしたがって徐々に減じるようにミキシングバルブ30を制御する。これに伴い、ミキシングバルブ30のタンク側開度は徐々に減少する。ガス給湯器40では、混合温度センサ83の検出温度Tmixと設定温度Tsとフローセンサ85での検出流量に基づくフィードフォワード制御と、出湯温度センサ84の検出温度と設定温度Tsに基づくフィードバック制御により、供給熱量を制御し、出湯温度を設定温度Tsに維持する。この供給熱量は、上記混合温度Tmixの低下に伴い増大する。混合温度Tmixが徐々に低下するので、ガス給湯器40による供給熱量の増大が良好に追随でき、大きなアンダーシュートが生じることはない。なお、混合温度Tmixの温度を時間経過にしたがって減少するようにしているので、流量の過多に影響されずに、ガス給湯器40の安定した制御を行なうことができる。図3における時点t2〜t3の期間参照。   At the time t2 when the detected temperature Td reaches the mixing temperature Tmix, the mixing valve 30 is controlled so that the mixing temperature Tmix gradually decreases as time passes. Along with this, the tank side opening of the mixing valve 30 gradually decreases. In the gas water heater 40, feedforward control based on the detected temperature Tmix and set temperature Ts of the mixed temperature sensor 83 and the detected flow rate of the flow sensor 85, and feedback control based on the detected temperature of the hot water temperature sensor 84 and the set temperature Ts, The amount of heat supplied is controlled to maintain the tapping temperature at the set temperature Ts. The amount of heat supplied increases as the mixing temperature Tmix decreases. Since the mixing temperature Tmix gradually decreases, the increase in the amount of heat supplied by the gas water heater 40 can be followed well, and a large undershoot does not occur. In addition, since the temperature of the mixing temperature Tmix is decreased as time elapses, the gas water heater 40 can be stably controlled without being affected by an excessive flow rate. Refer to the period of time t2 to t3 in FIG.

さらに出湯を続けると、時点t3でミキシングバルブ30のタンク側開度が実質的に全閉になる。これと同時に電磁開閉弁35を閉じる。この時点t3で、ミキシングバルブ30の給水側の開度が全開となり、ミキシングバルブ30からの混合温度Tmixは給水温度Tcと一致する。この後、貯湯タンク20の湯の供給が停止されたまま、ガス給湯器40の供給熱量を給水路50からの水に付与することにより、設定温度の出湯を維持する。   If the hot water is further continued, the tank side opening of the mixing valve 30 is substantially fully closed at time t3. At the same time, the electromagnetic opening / closing valve 35 is closed. At this time t3, the opening on the water supply side of the mixing valve 30 is fully opened, and the mixing temperature Tmix from the mixing valve 30 coincides with the water supply temperature Tc. Thereafter, the hot water supply at the set temperature is maintained by giving the heat supplied from the gas water heater 40 to the water from the water supply channel 50 while the supply of hot water from the hot water storage tank 20 is stopped.

上記のように、ミキシングバルブ30からの混合温度Tmixを徐々に低下させて給水温度Tcにするため、公知の給湯システムのように混合温度Tmixの急激な低下が生じることはなく、その結果、ガス給湯器40での供給熱量の増加が追い付かずに出湯温度にアンダーシュートが生じる現象は生じない。   As described above, since the mixing temperature Tmix from the mixing valve 30 is gradually decreased to the feed water temperature Tc, the mixing temperature Tmix does not rapidly decrease as in the known hot water supply system. The increase in the amount of heat supplied by the water heater 40 does not catch up with the phenomenon of undershooting in the hot water temperature.

給湯栓61を締めることにより、出湯が停止されると、フローセンサ85がこれを検出し、この検出信号に応答して、上記ガス給湯器40の燃焼が停止される。図3における時点t4参照。なお、この第1制御ルーチンにおいて、時点t1〜時点t3の期間で出湯停止になった時には、上記ガス給湯器40の燃焼が停止され、ミキシングバルブ30はタンク側開度が全閉で給水側開度が全開となるように制御される。また、時点t1前に出湯停止になった時にはミキシングバルブ30は、タンク側開度が全閉で給水側開度が全開となるように制御される。   When hot water is stopped by tightening the hot-water tap 61, the flow sensor 85 detects this, and in response to this detection signal, the combustion of the gas water heater 40 is stopped. See time t4 in FIG. In this first control routine, when the hot water supply is stopped during the period from the time point t1 to the time point t3, the combustion of the gas water heater 40 is stopped, and the mixing valve 30 is fully closed and the water supply side opening is opened. The degree is controlled to be fully open. When the hot water supply is stopped before time t1, the mixing valve 30 is controlled so that the tank side opening is fully closed and the water supply side opening is fully open.

出湯開始時に、タンク温度センサ86による検出温度Tdが閾値未満と判断したときには、制御ユニット70は、第2の制御ルーチンを実行する。すなわち、ミキシングバルブ30のタンク側開度を全閉にし電磁弁35を閉じたまま、貯湯タンク20からの湯を使わずに給水路50からの水をガス給湯器40で加熱して、設定温度の出湯を維持する。   When it is determined that the temperature Td detected by the tank temperature sensor 86 is less than the threshold at the start of hot water supply, the control unit 70 executes a second control routine. That is, while the opening of the mixing valve 30 on the tank side is fully closed and the solenoid valve 35 is closed, the water from the water supply passage 50 is heated by the gas water heater 40 without using the hot water from the hot water storage tank 20, and the set temperature is reached. Maintaining hot spring water.

上記電磁開閉弁35は、ミキシングバルブ30のタンク側開度が全閉の時に閉じるが、混合湯温度センサ83の故障時にも閉じて貯湯タンク20からの湯の供給を停止し、高温の湯が給湯栓61から供給されるのを禁じる。   The electromagnetic opening / closing valve 35 is closed when the opening of the mixing valve 30 on the tank side is fully closed, but is also closed when the mixed hot water temperature sensor 83 fails, and the supply of hot water from the hot water storage tank 20 is stopped. It is forbidden to be supplied from the hot water tap 61.

上記制御ユニット70は、上記出湯温度制御の他に三方弁90の制御を行なう。通常時には三方弁90は図1の状態(第1の状態)に維持されている。この状態では、熱交換器12からの高温の湯は第1分岐路25aを介して貯湯タンク20の頂部に供給される。そのため、高温の湯を有効活用し、ガス給湯器40の使用機会を減じることができる。   The control unit 70 controls the three-way valve 90 in addition to the hot water temperature control. Normally, the three-way valve 90 is maintained in the state shown in FIG. 1 (first state). In this state, hot water from the heat exchanger 12 is supplied to the top of the hot water storage tank 20 via the first branch path 25a. Therefore, it is possible to effectively use high-temperature hot water and reduce the opportunity to use the gas water heater 40.

前述したように、図3に示す第1の制御ルーチンが実行されて時点t3に至った場合には、電磁弁35の閉じ動作とほぼ同期して、上記三方弁90を図2の状態(第2の状態)に切り替える。この状態では、熱交換器12からの高温の湯が第2分岐路25bを介して貯湯タンク20の側部に供給される。前述したように貯湯タンク20の頂部は中間遷移層Wbとなっているので、第2分岐路25bの接続位置では中間遷移層Wbか低温層Wcとなっている。そのため、第2分岐路25bに供給された高温の湯は貯湯タンク20内で上昇し、その過程で熱を奪われる。この対流により中間遷移層Wbは、帯域を広げられ、貯湯タンク20の底部から熱交換器12を経た新鮮な水で希釈される。その結果、中間遷移層Wbに属する湯が置換されずに長期にわたって貯湯タンク20に滞留するのを回避できる。   As described above, when the first control routine shown in FIG. 3 is executed and the time point t3 is reached, the three-way valve 90 is moved to the state shown in FIG. 2 state). In this state, hot water from the heat exchanger 12 is supplied to the side of the hot water storage tank 20 via the second branch path 25b. As described above, since the top of the hot water storage tank 20 is the intermediate transition layer Wb, the intermediate transition layer Wb or the low temperature layer Wc is formed at the connection position of the second branch path 25b. Therefore, the hot water supplied to the second branch 25b rises in the hot water storage tank 20, and heat is taken away in the process. Due to this convection, the intermediate transition layer Wb is widened and diluted with fresh water from the bottom of the hot water storage tank 20 via the heat exchanger 12. As a result, the hot water belonging to the intermediate transition layer Wb can be prevented from staying in the hot water storage tank 20 for a long time without being replaced.

上記三方弁90の第2の状態は、下方のタンク温度センサ87の検出温度が閾値に達するまで継続される。この閾値は給水温度より所定温度例えば5℃高い温度に設定されており、出湯制御時のタンク温度センサ86に対する閾値より低い。そして、タンク温度センサ87がこの閾値に達した時に、三方弁90を第2の状態から第1の状態に切り替える。これにより、再び熱交換器12からの高温の湯を第1分岐路25aを介して貯湯タンク20の頂部に供給することができ、高温の湯を有効活用することができる。なお、この切り替え時に電磁開閉弁35を開く。   The second state of the three-way valve 90 is continued until the temperature detected by the lower tank temperature sensor 87 reaches a threshold value. This threshold value is set to a predetermined temperature, for example, 5 ° C. higher than the water supply temperature, and is lower than the threshold value for the tank temperature sensor 86 during hot water control. When the tank temperature sensor 87 reaches this threshold, the three-way valve 90 is switched from the second state to the first state. Thereby, the hot water from the heat exchanger 12 can be supplied again to the top of the hot water storage tank 20 via the first branch passage 25a, and the hot water can be effectively utilized. Note that the electromagnetic on-off valve 35 is opened at the time of switching.

次に、本発明の第2実施形態について図4を参照しながら説明する。この実施形態では、第1実施形態の三方弁90の代わりにミキシングバルブ91が用いられる。ミキシングバルブ91は第1の状態で熱交換器12の湯を第1分岐路25aにのみ供給し、第2の状態で熱交換器12の湯を第1分岐路25aと第2分岐路25bの両方に供給する。この場合には、上記希釈効果を得るとともに、貯湯タンク20の湯をミキシングバルブ30へ供給可能な状態に早く達することができ、熱交換器12からの熱エネルギーを有効に活用できる。
上記分岐路25a,25bへの分配割合は固定でもよいし、可変にしてもよい。可変の場合には、時間の経過やタンク温度センサ87での検出温度の上昇に伴い、第1分岐路25aへの分配割合を増大させるようにしてもよい。他の制御は第1実施形態と同様であるので、説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, a mixing valve 91 is used instead of the three-way valve 90 of the first embodiment. The mixing valve 91 supplies the hot water of the heat exchanger 12 only to the first branch 25a in the first state, and supplies the hot water of the heat exchanger 12 to the first branch 25a and the second branch 25b in the second state. Supply to both. In this case, the above-described dilution effect can be obtained, and it is possible to quickly reach a state where the hot water in the hot water storage tank 20 can be supplied to the mixing valve 30, and the thermal energy from the heat exchanger 12 can be effectively utilized.
The distribution ratio to the branch paths 25a and 25b may be fixed or variable. In the case of being variable, the distribution ratio to the first branch 25a may be increased as time passes or the temperature detected by the tank temperature sensor 87 increases. Since other control is the same as that of the first embodiment, description thereof is omitted.

本発明は上記実施形態に制約されず、種々の態様が可能である。出湯温度制御は、中間遷移層を残して出湯温度にアンダーシュートが生じない制御であれば、どのような制御でも採用可能である。   The present invention is not limited to the above-described embodiments, and various aspects are possible. The hot water temperature control can be any control as long as the hot water temperature does not cause an undershoot while leaving the intermediate transition layer.

本発明の一実施形態をなす排熱回収給湯システムの概略図であり、熱交換器からの湯を貯湯タンクの頂部に供給する状態を示す。It is the schematic of the waste heat recovery hot water supply system which makes one Embodiment of this invention, and shows the state which supplies the hot water from a heat exchanger to the top part of a hot water storage tank. 同システムの要部概略図であり、熱交換器の湯を貯湯タンクの側部に供給する状態を示す要部概略図である。It is principal part schematic of the system, and is principal part schematic which shows the state which supplies the hot water of a heat exchanger to the side part of a hot water storage tank. 同システムでの出湯制御を示すタイムチャートである。It is a time chart which shows the hot water control in the system. 本発明の他の実施形態を示す給湯システムの要部概略図である。It is a principal part schematic of the hot water supply system which shows other embodiment of this invention. 本発明および公知のシステムの貯湯タンクにおける温度勾配を示す図である。It is a figure which shows the temperature gradient in the hot water storage tank of this invention and a well-known system. 従来の給湯システムにおける制御のタイムチャートを示す図である。It is a figure which shows the time chart of the control in the conventional hot water supply system.

符号の説明Explanation of symbols

10 発電機
11 排熱源(熱発生源)
12 熱交換器
20 貯湯タンク
30 ミキシングバルブ
40 ガス給湯器(補助熱源)
50 給水路
60 給湯路
70 制御ユニット(制御手段)
86 タンク温度センサ
87 他のタンク温度センサ
90 三方弁(切替弁手段)
91 他のミキシングバルブ(切替弁手段)
10 Generator 11 Waste heat source (Heat generation source)
12 Heat exchanger 20 Hot water storage tank 30 Mixing valve 40 Gas water heater (auxiliary heat source)
50 Water supply path 60 Hot water supply path 70 Control unit (control means)
86 Tank temperature sensor 87 Other tank temperature sensor 90 Three-way valve (switching valve means)
91 Other mixing valves (switching valve means)

Claims (9)

(a)熱発生源と、
(b)上記熱発生源からの熱を受ける熱交換器と、
(c)貯湯タンクと、
(d)上記貯湯タンクの底部から熱交換器を経て貯湯タンクへと水を循環させる循環路と、
(e)下流端が上記貯湯タンクの底部に接続された給水路と、
(f)上流端が上記貯湯タンクの頂部に接続された給湯路と、
(g)上記給湯路の中途部に設けられ、上記貯湯タンクからの湯と上記給水路の水とを混合するミキシングバルブと、
(h)上記給湯路において上記ミキシングバルブの下流側に設けられた補助熱源と、
(i)上記ミキシングバルブと補助熱源を制御することにより、上記給湯路の下流端から設定温度の湯を出湯させる制御手段と、
を備えた給湯システムにおいて、
上記循環路は上記熱交換器から貯湯タンクの頂部へ向かう第1分岐路とこれより下方の貯湯タンクの側部へ向かう第2分岐路に分岐され、これら第1,第2の分岐路の交差部に切替弁手段が設けられ、
上記貯湯タンク内には熱交換器からの高温の湯からなる高温層と給水温度の水からなる低温層と温度勾配を有する中間遷移層とが貯えられるようになっており、
上記制御手段は、中間遷移層の湯を貯湯タンクに残すようにして上記ミキシングバルブと補助熱源を制御して、出湯温度を設定温度に維持し、
さらに制御手段は、上記切替弁手段を、通常時には上記熱交換器からの湯を第1分岐路を介して貯湯タンクの頂部にのみ供給する第1の状態にし、必要に応じて、上記熱交換器からの湯の少なくとも一部を上記第2分岐路に供給する第2の状態にすることを特徴とする給湯システム。
(A) a heat generation source;
(B) a heat exchanger that receives heat from the heat generation source;
(C) a hot water storage tank;
(D) a circulation path for circulating water from the bottom of the hot water storage tank to the hot water storage tank through a heat exchanger;
(E) a water supply channel whose downstream end is connected to the bottom of the hot water storage tank;
(F) a hot water supply path whose upstream end is connected to the top of the hot water storage tank;
(G) a mixing valve provided in the middle of the hot water supply channel for mixing hot water from the hot water storage tank and water of the water supply channel;
(H) an auxiliary heat source provided on the downstream side of the mixing valve in the hot water supply path;
(I) control means for discharging hot water at a set temperature from the downstream end of the hot water supply path by controlling the mixing valve and the auxiliary heat source;
In the hot water supply system with
The circulation path is branched into a first branch path from the heat exchanger to the top of the hot water storage tank and a second branch path to the side of the hot water storage tank below the first branch path, and the intersection of the first and second branch paths. Switching valve means is provided in the section,
In the hot water storage tank, a high temperature layer made of high temperature hot water from a heat exchanger, a low temperature layer made of water having a feed water temperature, and an intermediate transition layer having a temperature gradient are stored.
The control means controls the mixing valve and the auxiliary heat source so as to leave hot water of the intermediate transition layer in the hot water storage tank, and maintains the hot water temperature at a set temperature,
Further, the control means sets the switching valve means to a first state in which hot water from the heat exchanger is normally supplied only to the top of the hot water storage tank via the first branch passage, and the heat exchange is performed as necessary. A hot water supply system, wherein a second state is set in which at least a part of hot water from the vessel is supplied to the second branch passage.
(a)熱発生源と、
(b)上記熱発生源からの熱を受ける熱交換器と、
(c)貯湯タンクと、
(d)上記貯湯タンクの底部から熱交換器を経て貯湯タンクへと水を循環させる循環路と、
(e)下流端が上記貯湯タンクの底部に接続された給水路と、
(f)上流端が上記貯湯タンクの頂部に接続された給湯路と、
(g)上記給湯路の中途部に設けられ、上記貯湯タンクからの湯と上記給水路の水とを混合するミキシングバルブと、
(h)上記給湯路において上記ミキシングバルブの下流側に設けられた補助熱源と、
(i)上記ミキシングバルブと補助熱源を制御することにより、上記給湯路の下流端から設定温度の湯を出湯させる制御手段と、
を備えた給湯システムにおいて、
上記貯湯タンクの頂端から所定距離下方の位置に、貯湯タンク内の湯温を測定するタンク温度センサが設けられ、上記循環路は上記熱交換器から貯湯タンクの頂部へ向かう第1分岐路とこれより下方の貯湯タンクの側部へ向かう第2分岐路に分岐され、これら第1,第2の分岐路の交差部に切替弁手段が設けられ、
上記制御手段は、
(ア)上記タンク温度センサの検出温度が閾値より上回っている状況では、補助熱源を停止したままミキシングバルブを制御することにより、ミキシングバルブからの混合湯の温度を設定温度に維持し、
(イ)上記検出温度が低下して閾値に達した時には、最小限の熱量を供給するように補助熱源の作動を開始するとともに、この最小限の熱量供給に対応して貯湯タンクからの湯の割合を減じるようにミキシングバルブを制御することにより、出湯温度を設定温度に維持し、
(ウ)上記ミキシングバルブによる貯湯タンクからの湯の割合を、上記補助熱源の作動開始時に減じた値から、徐々に減じて実質的にゼロにし、上記ミキシングバルブからの混合湯の温度の低下を補助熱源の供給熱量の増大により補償して、出湯温度を設定温度に維持し、
(エ)上記切替弁手段を、通常時には上記熱交換器からの湯を第1分岐路を介して貯湯タンクの頂部にのみ供給する第1の状態にし、上記ミキシングバルブで貯湯タンクからの湯の割合を実質的にゼロにした後では、上記熱交換器からの湯の少なくとも一部を上記第2分岐路に供給する第2の状態にすることを特徴とする給湯システム。
(A) a heat generation source;
(B) a heat exchanger that receives heat from the heat generation source;
(C) a hot water storage tank;
(D) a circulation path for circulating water from the bottom of the hot water storage tank to the hot water storage tank through a heat exchanger;
(E) a water supply channel whose downstream end is connected to the bottom of the hot water storage tank;
(F) a hot water supply path whose upstream end is connected to the top of the hot water storage tank;
(G) a mixing valve which is provided in the middle of the hot water supply channel and mixes hot water from the hot water storage tank and water of the water supply channel;
(H) an auxiliary heat source provided on the downstream side of the mixing valve in the hot water supply path;
(I) control means for discharging hot water at a set temperature from the downstream end of the hot water supply path by controlling the mixing valve and the auxiliary heat source;
In the hot water supply system with
A tank temperature sensor for measuring the temperature of the hot water in the hot water storage tank is provided at a position below the top end of the hot water storage tank by a predetermined distance, and the circulation path is a first branch path from the heat exchanger to the top of the hot water storage tank. Branched to a second branch path toward the side of the lower hot water storage tank, and switching valve means is provided at the intersection of these first and second branch paths,
The control means includes
(A) In the situation where the temperature detected by the tank temperature sensor is higher than the threshold value, the temperature of the mixed hot water from the mixing valve is maintained at the set temperature by controlling the mixing valve while the auxiliary heat source is stopped.
(A) When the detected temperature decreases and reaches a threshold value, the auxiliary heat source is started to supply a minimum amount of heat, and hot water from the hot water storage tank is supplied corresponding to the minimum amount of heat supply. By controlling the mixing valve to reduce the rate, the tapping temperature is maintained at the set temperature,
(C) The ratio of hot water from the hot water storage tank by the mixing valve is gradually reduced from the value reduced at the start of operation of the auxiliary heat source to substantially zero, and the temperature of the mixed hot water from the mixing valve is reduced. Compensating by increasing the amount of heat supplied from the auxiliary heat source, maintaining the tapping temperature at the set temperature,
(D) The switching valve means is in a first state in which hot water from the heat exchanger is normally supplied only to the top of the hot water storage tank via the first branch passage, and the mixing valve is used to supply hot water from the hot water storage tank. After the ratio is substantially zero, the hot water supply system is in a second state in which at least part of the hot water from the heat exchanger is supplied to the second branch passage.
上記の貯湯タンクからの湯の割合を徐々に減じる制御は、混合湯の温度を管理してこの混合湯の温度を時間の経過にしたがって徐々に下げるミキシングバルブの制御であることを特徴とする請求項2に記載の給湯システム。   The control for gradually reducing the ratio of the hot water from the hot water storage tank is a mixing valve control for managing the temperature of the mixed hot water and gradually lowering the temperature of the mixed hot water over time. Item 3. A hot water supply system according to item 2. 上記制御手段は、上記ミキシングバルブによる貯湯タンクの湯の割合を補助熱源の作動開始時点で減じた後、混合湯の温度を一定に維持するようにミキシングバルブを制御し、この混合湯の温度が上記タンク温度センサの検出温度と一致した時から、混合湯の温度を徐々に下げるようにミキシングバルブを制御することを特徴とする請求項3に記載の給湯システム。   The control means controls the mixing valve so that the temperature of the mixed hot water is kept constant after the ratio of hot water in the hot water storage tank by the mixing valve is reduced at the start of operation of the auxiliary heat source, and the temperature of the mixed hot water is controlled. 4. The hot water supply system according to claim 3, wherein the mixing valve is controlled so as to gradually lower the temperature of the mixed hot water when it coincides with the temperature detected by the tank temperature sensor. 上記給湯路において上記ミキシングバルブの上流側に電磁開閉弁が設けられ、上記制御手段は、上記ミキシングバルブが貯湯タンクからの湯の割合を実質的にゼロにした時に、上記電磁開閉弁を閉じることを特徴とする請求項2〜4のいずれかに記載の給湯システム。   An electromagnetic on-off valve is provided on the upstream side of the mixing valve in the hot water supply path, and the control means closes the electromagnetic on-off valve when the mixing valve makes the ratio of hot water from the hot water storage tank substantially zero. The hot water supply system according to any one of claims 2 to 4. 上記切替弁手段が三方弁であり、上記第2の状態が上記熱交換器からの湯を上記第2分岐路のみに供給する状態であることを特徴とする請求項2〜5のいずれかに記載の給湯システム。   The switching valve means is a three-way valve, and the second state is a state in which hot water from the heat exchanger is supplied only to the second branch passage. The hot water supply system described. 上記切替弁手段が他のミキシングバルブであり、上記第2の状態が上記熱交換器からの湯を第1,第2の分岐路の両方に供給する状態であることを特徴とする請求項2〜5のいずれかに記載の給湯システム。   3. The switching valve means is another mixing valve, and the second state is a state in which hot water from the heat exchanger is supplied to both the first and second branch passages. The hot water supply system in any one of -5. 上記貯湯タンクには、上記タンク温度センサの下方において貯湯タンク内の湯の温度を測定する他のタンク温度センサを備え、当該他の温度センサでの検出温度が上記閾値より低い他の閾値を上回ったときに、上記制御手段は上記切替弁手段を上記第2の状態から上記第1の状態に復帰させることを特徴とする請求項2〜7のいずれかに記載の給湯システム。   The hot water storage tank is provided with another tank temperature sensor for measuring the temperature of hot water in the hot water storage tank below the tank temperature sensor, and the temperature detected by the other temperature sensor exceeds another threshold value lower than the threshold value. The hot water supply system according to any one of claims 2 to 7, wherein the control means returns the switching valve means from the second state to the first state. 上記熱発生源が排熱源であり、上記補助熱源がガス給湯器であることを特徴とする請求項1〜8のいずれかに記載の給湯システム。   The hot water supply system according to any one of claims 1 to 8, wherein the heat generation source is an exhaust heat source, and the auxiliary heat source is a gas water heater.
JP2004184544A 2004-06-23 2004-06-23 Hot water system Expired - Fee Related JP4359340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184544A JP4359340B2 (en) 2004-06-23 2004-06-23 Hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184544A JP4359340B2 (en) 2004-06-23 2004-06-23 Hot water system

Publications (2)

Publication Number Publication Date
JP2006010115A true JP2006010115A (en) 2006-01-12
JP4359340B2 JP4359340B2 (en) 2009-11-04

Family

ID=35777564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184544A Expired - Fee Related JP4359340B2 (en) 2004-06-23 2004-06-23 Hot water system

Country Status (1)

Country Link
JP (1) JP4359340B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013335A (en) * 2010-07-01 2012-01-19 Rinnai Corp Hot water supply system
CN107246735A (en) * 2017-07-28 2017-10-13 广东万和新电气股份有限公司 A kind of multiple-energy-source hot-water heating system and its control method
KR20230078046A (en) * 2021-11-26 2023-06-02 라온이즈 주식회사 Instant water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013335A (en) * 2010-07-01 2012-01-19 Rinnai Corp Hot water supply system
CN107246735A (en) * 2017-07-28 2017-10-13 广东万和新电气股份有限公司 A kind of multiple-energy-source hot-water heating system and its control method
CN107246735B (en) * 2017-07-28 2023-07-14 广东万和新电气股份有限公司 Multi-energy hot water system and control method thereof
KR20230078046A (en) * 2021-11-26 2023-06-02 라온이즈 주식회사 Instant water heater
KR102592729B1 (en) * 2021-11-26 2023-10-23 라온이즈 주식회사 Instant water heater

Also Published As

Publication number Publication date
JP4359340B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4912792B2 (en) Hot water storage unit
JP4359341B2 (en) Hot water system
KR20130060155A (en) Storage type hot water supply system
JP4359339B2 (en) Hot water system
JP4712608B2 (en) Hot water storage hot water supply system
JP4359340B2 (en) Hot water system
JP5708975B2 (en) Water heater
JP4546273B2 (en) Hot water system
JP5140634B2 (en) Hot water storage hot water supply system and cogeneration system
JP2018173228A (en) Heat source device
JP4064940B2 (en) Hot water system
JP4488884B2 (en) Hot water system
JP4875923B2 (en) Hot water storage hot water supply system
JP4095046B2 (en) Hot water system
JP6228881B2 (en) Heat source equipment
JP4292115B2 (en) Hot water system
JP4198522B2 (en) Cogeneration system
JP4076939B2 (en) Hot water system
JP2008045842A (en) Hot water storage type hot water supply system and cogeneration system
JP2005226954A (en) Fuel oil heating device
JP2005249340A (en) Hot-water supply system
JP4440721B2 (en) Hot water system
JP4145758B2 (en) Hot water system
JP4102279B2 (en) Hot water system
JP4016006B2 (en) Hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees