JP2006007760A - Mending member for resin coated steel pipe and mending method of resin coated steel pipe - Google Patents

Mending member for resin coated steel pipe and mending method of resin coated steel pipe Download PDF

Info

Publication number
JP2006007760A
JP2006007760A JP2005152257A JP2005152257A JP2006007760A JP 2006007760 A JP2006007760 A JP 2006007760A JP 2005152257 A JP2005152257 A JP 2005152257A JP 2005152257 A JP2005152257 A JP 2005152257A JP 2006007760 A JP2006007760 A JP 2006007760A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin sheet
steel pipe
laser light
coated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152257A
Other languages
Japanese (ja)
Inventor
Takuji Okiayu
卓治 置鮎
Nobuhiro Nishikata
伸広 西方
Atsushi Sasaki
淳 佐々木
Takashi Imagawa
隆 今川
Hidetoshi Matsuura
秀登志 松浦
Takafumi Sugimoto
隆文 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Toho Gas Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005152257A priority Critical patent/JP2006007760A/en
Publication of JP2006007760A publication Critical patent/JP2006007760A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/06Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like around tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/04Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D using preformed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mending member for a resin coated steel pipe excellent in adhesion to the resin coated steel pipe and capable of shortening time required for mending. <P>SOLUTION: The mending member for a resin coated steel pipe 100 comprises a thermoplastic resin sheet 1 with an overall length larger than a circumference of a resin coated steel pipe 10, at least one single line of a laser beam absorbing part 2a, 2b and 2c formed at both long sides and one short side of the thermoplastic resin sheet 1, and the laser beam absorbing part 2a and 2b are formed inside of the long side edge of the thermoplastic resin sheet 1, and the laser beam absorbing part 2c is formed along the one short side edge of the thermoplastic resin sheet 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、既設管の防食被覆層の破損箇所や現地で溶接された樹脂被覆鋼管の溶接箇所などに被着される樹脂被覆鋼管用補修部材及びそれを用いた樹脂被覆鋼管の補修方法に関する。   The present invention relates to a repair member for a resin-coated steel pipe that is applied to a damaged part of an anticorrosive coating layer of an existing pipe, a welded part of a resin-coated steel pipe welded on site, and a repair method for a resin-coated steel pipe using the same.

埋設ガス配管において、地中に埋設された後の配管の腐食を防止するために、表面をポリエチレン、ポリプロピレン、ポリブテン等のオレフィン系樹脂などで被覆した鋼管が使用されている。特に樹脂被覆鋼管の内径が大きい場合には、取扱いの容易さの点から防食層の表面を例えばポリエチレンなどからなる保護層で被覆した樹脂被覆鋼管が使用されている。この樹脂被覆鋼管同士を接続する場合、鋼管の端部を覆う防食層ならびに保護層を所定の長さだけ剥離して鋼管を剥き出しにしてから溶接される。溶接後は、溶接部が剥き出しにされた鋼管の表面に防食機能を備えた部材を被覆することが行われている。例えば、特許文献1には、熱収縮可能な防食保護層とガス配管の外周面に接着可能な接着層からなり、ガス配管の周囲に巻き付けた時に、重ね代部を確保できるような長さを有し、防食保護層のみによって形成した重ね代部に電熱線を埋設した防食シュリンクシートが記載されている。この防食シュリンクシートは、電熱線に通電することにより、重ね代部において防食保護層同士を融着して一体化し、その後ガスバーナ等を用いて防食保護層の全体を加熱することにより、防食保護層を熱収縮させ、可塑化した接着層を防食保護層とガス配管との間に充填させることにより、優れた防食効果を得ようとするものである。しかるに特許文献1に記載された防食シュリンクシートによれば、防食シュリンクシートをガス配管に巻き付けてから、電熱線へ通電し、その後全体を加熱するので、施工時間が長くなるという問題がある。また、電熱線が埋設されていないシュリンクシートの端部では、隙間が生じて、この隙間から水分が浸透し、さらにこの隙間を起点とする剥がれが発生するという問題がある。   In the buried gas pipe, a steel pipe whose surface is coated with an olefin resin such as polyethylene, polypropylene, polybutene or the like is used in order to prevent corrosion of the pipe after being buried in the ground. In particular, when the inner diameter of the resin-coated steel pipe is large, a resin-coated steel pipe in which the surface of the anticorrosion layer is covered with a protective layer made of, for example, polyethylene is used from the viewpoint of ease of handling. When the resin-coated steel pipes are connected to each other, the anticorrosion layer and the protective layer covering the ends of the steel pipes are peeled off by a predetermined length, and the steel pipes are exposed before welding. After the welding, the surface of the steel pipe from which the welded portion is exposed is covered with a member having an anticorrosion function. For example, Patent Document 1 includes a heat-shrinkable anticorrosive protective layer and an adhesive layer that can be bonded to the outer peripheral surface of the gas pipe, and has a length that can secure an overlap margin when wrapped around the gas pipe. The anticorrosion shrink sheet | seat which has the heating wire embedded in the overlap margin part which it has and was formed only with the anticorrosion protective layer is described. This anticorrosion shrink sheet is formed by energizing the heating wire to fuse and integrate the anticorrosion protection layers at the overlapping portion, and then heating the entire anticorrosion protection layer using a gas burner or the like. By heat shrinking and filling the plasticized adhesive layer between the anticorrosive protective layer and the gas pipe, an excellent anticorrosive effect is obtained. However, according to the anticorrosion shrink sheet described in Patent Document 1, since the anticorrosion shrink sheet is wound around the gas pipe, the heating wire is energized, and then the whole is heated. In addition, there is a problem in that a gap is formed at the end of the shrink sheet where the heating wire is not embedded, moisture penetrates through the gap, and peeling occurs from the gap.

樹脂部材同士を接合する手法としては、上記の電熱線を埋め込んだ樹脂シートを使用する代わりに、積層された複数個の樹脂部材(例えば樹脂板)同士を重ね合せ、その上からレーザ光を照射することが検討されている。例えば、特許文献2には、レーザ光透過性材料で形成された3枚以上の樹脂板を積層し、重なり合う樹脂部材の間にレーザ光吸収材を、樹脂部材積層体の一方の最外層からの一方向のレーザ光により照射されるように部分的に配設し、樹脂部材積層体の一方の最外層からの一方向のレーザ光を各レーザ光吸収材に照射することが記載されている。
特開平11−207822号公報(第3〜5頁、図1、図2) 特開2003−136599号公報(第3〜5頁、図1、図2)
As a method of joining resin members, instead of using the resin sheet in which the heating wire is embedded, a plurality of laminated resin members (for example, resin plates) are overlapped with each other and irradiated with laser light. To be considered. For example, in Patent Document 2, three or more resin plates formed of a laser light transmitting material are laminated, and a laser light absorbing material is placed between the overlapping resin members from one outermost layer of the resin member laminate. It is described that it is partially disposed so as to be irradiated with a laser beam in one direction, and each laser light absorber is irradiated with a laser beam in one direction from one outermost layer of the resin member laminate.
Japanese Patent Laid-Open No. 11-207822 (pages 3 to 5, FIGS. 1 and 2) JP-A-2003-136599 (pages 3 to 5, FIGS. 1 and 2)

特許文献2に記載されたレーザ多層接合方法は、原理的には優れたものであるが、樹脂被覆鋼管の補修に適用するためには、いくつかの改良すべき点がある。すなわち、樹脂シートに設けるレーザ光吸収材の位置が適切でないと、施工時間が長くなり、しかも所定の接合強度が得られないという問題がある。またレーザ光吸収材の配列位置が適切でないと、レーザ光で溶着された部分の間に隙間が生じ、接合強度が低下するという問題がある。   The laser multilayer joining method described in Patent Document 2 is excellent in principle, but there are some points to be improved in order to apply it to the repair of resin-coated steel pipes. That is, if the position of the laser light absorbing material provided on the resin sheet is not appropriate, there is a problem that the construction time becomes long and a predetermined bonding strength cannot be obtained. Further, if the arrangement position of the laser beam absorbing material is not appropriate, there is a problem that a gap is generated between the portions welded by the laser beam, and the bonding strength is lowered.

従って、本発明の目的は、樹脂被覆鋼管との密着性が大で、しかも補修時間を短縮することができる樹脂被覆鋼管用補修部材を提供することである。   Accordingly, an object of the present invention is to provide a repair member for a resin-coated steel pipe that has high adhesion to the resin-coated steel pipe and can reduce the repair time.

従って、本発明の他の目的は、被補修箇所を速やかに使用可能な状態に修復することができる樹脂被覆鋼管の補修方法を提供することである。   Accordingly, another object of the present invention is to provide a method for repairing a resin-coated steel pipe capable of quickly repairing a repaired part into a usable state.

上記目的を達成するために、本発明の樹脂被覆鋼管用補修部材は、樹脂被覆鋼管の円周長よりも大なる全長を有する熱可塑性樹脂シートと、前記矩形の熱可塑性樹脂シートの3辺に、少なくとも1条のレーザ光吸収部を有することを特徴とするものである。   In order to achieve the above object, the resin-coated steel pipe repair member of the present invention comprises a thermoplastic resin sheet having a total length greater than the circumferential length of the resin-coated steel pipe, and three sides of the rectangular thermoplastic resin sheet. And having at least one laser beam absorbing portion.

本発明において、前記熱可塑性樹脂シートの巻回方向に設けられた前記レーザ光吸収部は、前記熱可塑性樹脂シートの端縁から内側よりに形成されているとともに、前記熱可塑性樹脂シートの軸線方向に設けられた前記レーザ光吸収部は、前記熱可塑性樹脂シートの端縁に沿って形成されていることが好ましい。   In the present invention, the laser light absorbing portion provided in the winding direction of the thermoplastic resin sheet is formed from the inner side from the edge of the thermoplastic resin sheet, and the axial direction of the thermoplastic resin sheet It is preferable that the laser light absorption part provided in is formed along an edge of the thermoplastic resin sheet.

本発明において、前記各レーザ光吸収部は、0.05〜1mmの幅と0.01〜0.4mmの厚さを有する複数の帯状体であり、かつ前記熱可塑性樹脂シートの各端縁から0.05〜0.4mmの間隔で形成されていてもよい。   In the present invention, each of the laser light absorbing portions is a plurality of strips having a width of 0.05 to 1 mm and a thickness of 0.01 to 0.4 mm, and from each edge of the thermoplastic resin sheet. It may be formed at intervals of 0.05 to 0.4 mm.

本発明において、前記熱可塑性樹脂シートは、重ね代部を形成する部分の厚さが端部に向って減少していることが好ましい。   In this invention, it is preferable that the thickness of the part which forms the overlap margin part is reducing the said thermoplastic resin sheet toward an edge part.

上記目的を達成するために、本発明の樹脂被覆鋼管の補修方法は、レーザ光が透過可能な熱可塑性樹脂シートを樹脂被覆鋼管に巻き付けて前記熱可塑性樹脂シートの端部同士を重ね合わせるとともに、前記矩形の熱可塑性樹脂シートの3辺側と前記樹脂被覆鋼管との間、及び/または前記樹脂被覆鋼管の被覆樹脂にレーザ光吸収部を形成し、前記熱可塑性樹脂シートを加圧しながら前記レーザ光吸収部に半導体レーザ光を照射することを特徴とするものである。   In order to achieve the above object, the method for repairing a resin-coated steel pipe according to the present invention is to wrap a thermoplastic resin sheet capable of transmitting laser light around the resin-coated steel pipe and overlap the ends of the thermoplastic resin sheet, A laser light absorbing portion is formed between the three sides of the rectangular thermoplastic resin sheet and the resin-coated steel pipe and / or a coating resin of the resin-coated steel pipe, and the laser is pressed while pressing the thermoplastic resin sheet. The light absorbing portion is irradiated with semiconductor laser light.

本発明の補修部材によれば、熱可塑性樹脂シートの巻き付け方向に沿った両端部においてこの樹脂シートと樹脂被覆鋼管とが密着し、さらに重ね合わせ部においても、熱可塑性樹脂シートの端部同士と樹脂被覆鋼管が相互に密着するので、補修部の水密性を確保することができる。   According to the repair member of the present invention, the resin sheet and the resin-coated steel pipe are in close contact with each other at both ends along the winding direction of the thermoplastic resin sheet, and the ends of the thermoplastic resin sheet are also in the overlapping portion. Since the resin-coated steel pipes are in close contact with each other, the water tightness of the repaired portion can be ensured.

本発明の補修方法によれば、レーザ光が透過可能な熱可塑性樹脂シートを樹脂被覆鋼管に巻き付け、かつ熱可塑性樹脂シートと樹脂被覆鋼管との間にレーザ光吸収部を介在させる。そして、熱可塑性樹脂シートを加圧しながらレーザ光を照射する簡便な作業を行うだけでよい。また、照射後の特別な作業は不要となり、被補修箇所を速やかに使用可能な状態(元の状態)に修復することができる。   According to the repairing method of the present invention, a thermoplastic resin sheet capable of transmitting laser light is wound around a resin-coated steel pipe, and a laser light absorbing portion is interposed between the thermoplastic resin sheet and the resin-coated steel pipe. And it is only necessary to perform a simple operation of irradiating the laser beam while pressing the thermoplastic resin sheet. Further, no special work after irradiation is required, and the repaired portion can be quickly restored to a usable state (original state).

以下本発明の詳細を添付図面により説明する。図1は本発明の第1実施の形態に係わる補修シートの平面図、図9は本発明の第2実施の形態に係わる補修シートの平面図、
図2は図1、図9のA−A線断面を拡大した図、図3は図1、図9の補修部材が巻回された樹脂被覆鋼管の一部を破断した正面図、図4は図3のB−B線断面図、図5は図1、図9の補修部材にレーザ光を照射した状態を模式的に示す断面図、図6は本発明の他の実施の形態に係わる補修部材の平面図、図7は図6のC−C線断面を拡大した図、図8は図6の補修部材にレーザ光を照射した状態を模式的に示す断面図である。また、図1の補修シートは、巻回方向が長辺側、軸線方向が短辺側に設けられている。図9の補修シートは、巻回方向が短辺側、軸線方向が長辺側に設けられている。鋼管の口径が小さい場合には、図9に示す巻回方向が短辺側の補修シートを使用する。鋼管の口径が大きい場合には、図1に示す巻回方向が長辺側の補修シートを使用する。
Details of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a plan view of a repair sheet according to the first embodiment of the present invention, FIG. 9 is a plan view of a repair sheet according to the second embodiment of the present invention,
2 is an enlarged view taken along the line AA in FIGS. 1 and 9, FIG. 3 is a front view in which a part of the resin-coated steel pipe around which the repair member in FIGS. 1 and 9 is wound, and FIG. 3 is a cross-sectional view taken along line BB in FIG. 3, FIG. 5 is a cross-sectional view schematically showing a state in which the repair member in FIGS. 1 and 9 is irradiated with laser light, and FIG. 6 is a repair according to another embodiment of the present invention. FIG. 7 is an enlarged view of a cross section taken along the line CC of FIG. 6, and FIG. 8 is a cross-sectional view schematically showing a state in which the repair member of FIG. 6 is irradiated with laser light. The repair sheet in FIG. 1 is provided with the winding direction on the long side and the axial direction on the short side. The repair sheet of FIG. 9 is provided with the winding direction on the short side and the axial direction on the long side. When the diameter of the steel pipe is small, a repair sheet having a short side in the winding direction shown in FIG. 9 is used. When the diameter of the steel pipe is large, a repair sheet having a long side in the winding direction shown in FIG. 1 is used.

本発明の補修部材100は、図1、図9に示すように、レーザ光を透過し得る材料からなる矩形状(例えば長方形)の熱可塑性樹脂シート1とその長辺方向及び一方の短辺方向に沿って伸びるレーザ光吸収部2a、2b、2cを有する。レーザ光吸収部2a、2bは、各々幅Wa1、Wa2(=Wa1)を有し、長辺側端縁から距離Wb1、Wb2(=Wb1)だけ内側に形成され、またレーザ光吸収部2cは、幅Wを有し、短辺側端縁に沿って形成されている。この熱可塑性樹脂シート1は、図2に示すように、樹脂被覆鋼管(不図示)に巻回された時に、重ね代部(長さL=L−樹脂被覆鋼管の円周長)が形成されるような円周方向の長さLを有すると共に、重ね代部の厚さが連続的(又は段階的)に減少するように形成されている。なお、熱可塑性樹脂シート1の管軸方向の長さ(=幅W)は、補修部(樹脂被覆鋼管の保護層が剥離される部分)の幅よりもやや短く設定される。図1、図9では、Wa2=Wa1、Wb2=Wb1に設定されているが、Wa2とWa1、Wb2とWb1は異なっていてもよい。 As shown in FIGS. 1 and 9, the repair member 100 of the present invention includes a rectangular (for example, rectangular) thermoplastic resin sheet 1 made of a material that can transmit laser light, its long side direction, and one short side direction. Laser light absorbing portions 2a, 2b, and 2c extending along the line. The laser light absorbing portions 2a and 2b have widths W a1 and W a2 (= W a1 ), respectively, and are formed on the inner side from the long side edge by distances W b1 and W b2 (= W b1 ). light absorbing portion 2c has a width W c, it is formed along the short side edge. As shown in FIG. 2, when the thermoplastic resin sheet 1 is wound around a resin-coated steel pipe (not shown), the overlap margin (length L t = L 1 -circumferential length of the resin-coated steel pipe) The circumferential length L 1 is formed, and the thickness of the overlap margin portion is continuously (or stepwise) reduced. The length (= width W 1 ) in the tube axis direction of the thermoplastic resin sheet 1 is set slightly shorter than the width of the repaired portion (the portion where the protective layer of the resin-coated steel tube is peeled off). In FIGS. 1 and 9, W a2 = W a1 and W b2 = W b1 are set, but W a2 and W a1 , and W b2 and W b1 may be different.

上記の熱可塑性樹脂シート1は、赤外領域(好ましくは近赤外領域)乃至可視領域にある波長を有するレーザ光が透過し得る材料であればよく、例えばポリエチレン(PE)、ポリプロピレン(PP)等のオレフィン樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂、ナイロン6、ナイロン66等のポリアミド樹脂、塩化ビニル樹脂、フッ素樹脂などの公知の樹脂で形成することができる。また、熱可塑性樹脂シート1は、例えば弾性率と厚さを適宜選定し、樹脂被覆鋼管に速やかに巻き付け可能なように形成され、特に鋼管を被覆する樹脂と同一または同系統の熱可塑性樹脂で形成することが好ましい。   The thermoplastic resin sheet 1 may be any material that can transmit laser light having a wavelength in the infrared region (preferably near infrared region) to visible region. For example, polyethylene (PE), polypropylene (PP) Olefin resins such as polyethylene terephthalate (PET), polyester resins such as polybutylene terephthalate (PBT), polyamide resins such as nylon 6 and nylon 66, vinyl chloride resins and fluororesins. The thermoplastic resin sheet 1 is formed so that it can be quickly wound around a resin-coated steel pipe, for example, by appropriately selecting an elastic modulus and thickness, and is made of the same or the same type of thermoplastic resin as that covering the steel pipe. It is preferable to form.

レーザ光吸収部2a、2b、2cは、レーザ光が吸収されるようにするために、可視領域(波長:380〜780nm)に波長をもつ光を選択的に吸収し得る化合物(染料及び顔料)、あるいは近赤外領域(波長:780〜30000nm)に波長をもつ光を吸収する性質の機能性色素が含有される。   The laser light absorption units 2a, 2b, and 2c are compounds (dyes and pigments) that can selectively absorb light having a wavelength in the visible region (wavelength: 380 to 780 nm) in order to absorb the laser light. Alternatively, a functional dye having a property of absorbing light having a wavelength in the near infrared region (wavelength: 780 to 30,000 nm) is contained.

具体的には、レーザ光吸収部2a、2b、2cを形成するために、熱可塑性樹脂中に以下の顔料、あるいは色素を添加することにより、レーザ光を吸収することが可能である。例えば、セラミックブラック、酸化鉄(無機顔料)、カーボンブラック、ボーンブラック(有機顔料)等の黒色顔料、クロムエロー、セラミックエロー、ジンククロメートエロー(無機顔料)、ニッケルアゾグリーンエロー(有機顔料)等の黄色顔料、ハイドロクロムオキサイドグリーン、クロムグリーン(無機顔料)、クロミウムオキサイドダルグリーン、フタロシアニングリーン(有機顔料)等の緑色顔料、色素としては黒色顔料、シアニン系色素、フタロシアニン系、チオールニッケル錯体系、インドフェノール金属錯体系、ナフトキノン系、アゾ系、トリアゾールメタン系、分子間型CT色素等の色素を使用することができる。   Specifically, the laser light can be absorbed by adding the following pigments or dyes to the thermoplastic resin in order to form the laser light absorbing portions 2a, 2b, and 2c. For example, black such as ceramic black, iron oxide (inorganic pigment), carbon black, bone black (organic pigment), yellow such as chrome yellow, ceramic yellow, zinc chromate yellow (inorganic pigment), nickel azo green yellow (organic pigment) Pigment, hydrochrome oxide green, chromium green (inorganic pigment), chromium oxide dull green, phthalocyanine green (organic pigment), etc. Dyes such as metal complex, naphthoquinone, azo, triazolemethane, and intermolecular CT dyes can be used.

上記の補修部材は、種々の手法で作成することができる。例えば、熱可塑性樹脂シートに、レーザ光吸収材料を含む熱可塑性樹脂からなるテープ(フィルム)を加熱圧着(ヒートプレス)することにより作成される。テープの寸法は、その厚さが0.01〜0.4mmで、その幅(Wa1、Wa2、W)が5〜20mm程度の範囲に収まるようにすればよい。あるいは、テープの代わりにレーザ光を吸収し得る着色剤を含む塗料をテープと同様の厚さ及び幅になるように熱可塑性樹脂シート1の表面にスプレー又は刷毛塗り等の手法により塗布するかあるいはスクリーン印刷などにより形成すればよい。この他、押出機で溶融した状態の熱可塑性樹脂(第1樹脂)をダイにより冷却ロールの上に押出する、溶融押出法により熱可塑性樹脂シートを形成する場合、第1樹脂に対して接着性のある第2樹脂(例えば第1樹脂と同一又は同系統の熱可塑性樹脂)に上記着色剤を配合した熱可塑性樹脂を別の押出機で溶融してから上記ダイの内部(又は出口)で合流する、共押出しの手法によりレーザ光吸収部2a、2b、2cを形成することが可能である。 The repair member can be created by various methods. For example, it is created by thermocompression bonding (heat press) a tape (film) made of a thermoplastic resin containing a laser light absorbing material to a thermoplastic resin sheet. The dimensions of the tape may be such that the thickness is 0.01 to 0.4 mm and the width (W a1 , W a2 , W c ) is within a range of about 5 to 20 mm. Alternatively, instead of the tape, a paint containing a colorant capable of absorbing laser light is applied to the surface of the thermoplastic resin sheet 1 by a technique such as spraying or brushing so as to have the same thickness and width as the tape, or It may be formed by screen printing or the like. In addition, when forming a thermoplastic resin sheet by a melt extrusion method in which a thermoplastic resin (first resin) melted in an extruder is extruded onto a cooling roll by a die, adhesion to the first resin is achieved. A second resin (for example, the same resin as the first resin or the same type of thermoplastic resin) is melted with another extruder and then merged inside (or at the outlet) the die. The laser light absorbing portions 2a, 2b and 2c can be formed by the coextrusion technique.

上記の補修部材100による樹脂被覆鋼管10の補修方法を図3〜図5により説明する。図3に示すように、一対の樹脂被覆鋼管10は、例えばポリエチレン被覆鋼管(PLP)の場合は、JIS G 3469で規定された通り、素管(鋼管)11の外周にポリエチレンからなる防食層12が被覆され、その外周に例えばポリエチレンからなる保護層13が被覆された2層被覆構造を有する。防食層12にはレーザ光吸収部2a、2b、2cと同様にレーザ光を吸収する能力を有するレーザ光吸収材料が含まれている。まず樹脂被覆鋼管10の非補修部において、防食層12を所定幅Wだけ剥離し、次いで保護層13を所定幅Wだけ剥離し(但し2W>W>2Wとする)、突き合せ溶接などの手法により素管(鋼管)11の端面同士が溶接部14で接続される。次いでこの溶接部14を覆いかつレーザ光吸収部2a、2b、2cが内側になるように樹脂被覆鋼管10に補修部材100を巻き付けることにより、図4に2点鎖線で示す補修部材100の自由端は他の端部の上に重ねられて、所定長さ(L:図2参照)の重ね合せ部が形成される。 A method of repairing the resin-coated steel pipe 10 using the repair member 100 will be described with reference to FIGS. As shown in FIG. 3, in the case of a pair of resin-coated steel pipes 10, for example, a polyethylene-coated steel pipe (PLP), as defined in JIS G 3469, an anticorrosion layer 12 made of polyethylene is formed on the outer periphery of the raw pipe (steel pipe) 11. Is coated, and has a two-layer coating structure in which a protective layer 13 made of, for example, polyethylene is coated on the outer periphery. The anticorrosion layer 12 contains a laser light absorbing material having the ability to absorb laser light, similar to the laser light absorbing portions 2a, 2b, and 2c. First, in the non-repaired portion of the resin-coated steel pipe 10, peeling off the anti-corrosion layer 12 by a predetermined width W g, and then the protective layer 13 is peeled off by a predetermined width W h (and where 2W h> W 1> 2W g ), butt The end surfaces of the raw pipes (steel pipes) 11 are connected to each other by a welded portion 14 by a technique such as mating welding. Next, the repair member 100 is wrapped around the resin-coated steel pipe 10 so as to cover the welded portion 14 and the laser light absorbing portions 2a, 2b, and 2c are inside, thereby free ends of the repair member 100 indicated by a two-dot chain line in FIG. Are overlaid on the other end to form an overlapped portion of a predetermined length (L t : see FIG. 2).

補修部材100の周囲に配置されたレーザトーチ3を、そのスポット径をWa2と同等の大きさになるように設定して、その対応する部分にレーザ光を照射しながら円周方向に走査することにより、熱可塑性樹脂シート1を透過したレーザ光が熱可塑性樹脂シート1と防食層12との界面に到達すると、防食層12にレーザ光が吸収されて溶着部が形成される。次いで、レーザトーチ3を熱可塑性樹脂シート1の内側に移動させる。そして、レーザトーチ3を、そのスポット径がWa2と同等の大きさになるように設定して、レーザ光吸収部2aに対応する部分にレーザ光を照射しながら円周方向に走査することにより、熱可塑性樹脂シート1を透過したレーザ光がレーザ光吸収部2aに到達すると、そこにレーザ光が吸収されて溶着部が形成される。
次いで、熱可塑性樹脂シート1の他方の長辺側(レーザ光吸収部2b側)も同様の操作により熱可塑性樹脂シート1と防食層12との溶着部が形成される。
なお、熱可塑性樹脂シート1の長辺側(2a、2b側)の重ね代部においては、図5に示すように、上層の熱可塑性樹脂シート1の内部を透過したレーザ光が下層の熱可塑性樹脂シート1に設けられたレーザ光吸収部2a(2b)(図1、図9参照)に到達することにより、熱可塑性樹脂シート1と防食層12との界面に溶着部20が形成され、さらに上層の熱可塑性樹脂シート1の内部を透過したレーザ光がその熱可塑性樹脂シート1に設けられたレーザ光吸収部2a(2b)(図1、図9参照)に到達することにより、熱可塑性樹脂シート1同士の界面に溶着部20が形成される。この時、重ね代部Lの長さにわたってその部分の厚さが先端になるほど薄くしているため、上層の熱可塑性樹脂シート1に照射されたレーザ光は、下層の熱可塑性樹脂シート2を通してレーザ光吸収部に容易に吸収され、被覆樹脂12と補修部材100及び補修部材100同士が溶着される。
The laser torch 3 arranged around the repair member 100 is set so that its spot diameter is the same size as W a2, and the corresponding portion is scanned in the circumferential direction while irradiating the laser beam. Thus, when the laser light transmitted through the thermoplastic resin sheet 1 reaches the interface between the thermoplastic resin sheet 1 and the anticorrosion layer 12, the anticorrosion layer 12 absorbs the laser light to form a welded portion. Next, the laser torch 3 is moved to the inside of the thermoplastic resin sheet 1. Then, the laser torch 3 is set so that its spot diameter is equal to W a2, and scanning in the circumferential direction while irradiating the laser light to the portion corresponding to the laser light absorbing portion 2a, When the laser beam that has passed through the thermoplastic resin sheet 1 reaches the laser beam absorbing portion 2a, the laser beam is absorbed therein to form a welded portion.
Subsequently, the welding part of the thermoplastic resin sheet 1 and the anticorrosion layer 12 is formed by the same operation also on the other long side of the thermoplastic resin sheet 1 (laser light absorption part 2b side).
Note that, in the overlap margin portion on the long side (2a, 2b side) of the thermoplastic resin sheet 1, as shown in FIG. 5, the laser light transmitted through the inside of the upper thermoplastic resin sheet 1 is the lower thermoplasticity. laser light absorbing portion 2a provided on the resin sheet 1 (2b) (Fig. 1, see FIG. 9) by reaching the welding portion 20 1 is formed at the interface between the thermoplastic resin sheet 1 and the sacrificial layer 12, Further, the laser beam that has passed through the inside of the upper thermoplastic resin sheet 1 reaches the laser beam absorbing portion 2a (2b) (see FIGS. 1 and 9) provided on the thermoplastic resin sheet 1, thereby allowing thermoplasticity. welded portion 20 2 is formed at the interface of the resin sheet 1 to each other. At this time, since the thickness of the overlap portion L t is made thin as it reaches the tip, the laser light applied to the upper thermoplastic resin sheet 1 passes through the lower thermoplastic resin sheet 2. It is easily absorbed by the laser light absorbing portion, and the coating resin 12, the repair member 100, and the repair member 100 are welded together.

次いで、熱可塑性樹脂シート1の重ね代部においては、レーザトーチ3を、そのスポット径がWと同等の大きさになるように設定し、レーザ光吸収部2cに対応する部分にレーザ光を照射しながら軸方向に走査する。その結果として、上層の熱可塑性樹脂シート1を透過したレーザ光がレーザ吸収部2cに到達すると、レーザ光がレーザ光吸収部2cに吸収されて発熱し、上層と下層の熱可塑性樹脂シート1が溶着される。 Then, in the overlap margin portion of the thermoplastic resin sheet 1, irradiating the laser torch 3, the spot diameter is set to be the size of the equivalent W c, the portions corresponding to the laser light absorption unit 2c laser light While scanning in the axial direction. As a result, when the laser light transmitted through the upper thermoplastic resin sheet 1 reaches the laser absorbing portion 2c, the laser light is absorbed by the laser light absorbing portion 2c to generate heat, and the upper and lower thermoplastic resin sheets 1 are formed. Welded.

上述したようにレーザ光照射により、熱可塑性樹脂シート1同士及び熱可塑性樹脂シート1と樹脂被覆鋼管10の防食層12とが溶着され、溶接部14に巻き付けられた補修部材100は、その両端部と重ね合せ部とが樹脂被覆鋼管10に融着・一体化されるので、補修部の水密性を確保することができる。   As described above, the thermoplastic resin sheets 1 and the thermoplastic resin sheet 1 and the anticorrosion layer 12 of the resin-coated steel pipe 10 are welded to each other by the laser light irradiation, and the repair member 100 wound around the welded portion 14 has both ends thereof. And the overlapped portion are fused and integrated with the resin-coated steel pipe 10, so that the watertightness of the repaired portion can be ensured.

上記のレーザ光照射過程では、補修部材100に、レーザ光がしきい値以上の照射強度で照射されることにより、次のような現象が生じて熱可塑性樹脂シート1同士の融着及び最下層にある熱可塑性樹脂シート1と鋼管10の防食層12との融着が行われると推察される。すなわち、樹脂の分子は熱可塑性樹脂シート1同士の界面及びその近傍、また、最下層にある熱可塑性樹脂シート1と鋼管10の防食層12との界面及びその近傍で、レーザ光のエネルギーを吸収して熱に変わり、防食層並びに熱可塑性樹脂が溶融して上記界面の融着(溶融加工)が行われると推察される。   In the above laser beam irradiation process, the repair member 100 is irradiated with the laser beam with an irradiation intensity equal to or higher than a threshold value, and the following phenomenon occurs, and the thermoplastic resin sheets 1 are fused to each other and the lowermost layer. It is assumed that the thermoplastic resin sheet 1 and the anticorrosion layer 12 of the steel pipe 10 are fused together. That is, the resin molecules absorb the energy of the laser beam at and near the interface between the thermoplastic resin sheets 1 and at the interface between the thermoplastic resin sheet 1 in the lowermost layer and the anticorrosion layer 12 of the steel pipe 10. Then, it is presumed that the anticorrosion layer and the thermoplastic resin are melted and heat fusion (melt processing) at the interface is performed by changing to heat.

上記のレーザとしては、He−Neレーザ及びCu蒸気レーザなどの中性原子の電子エネルギー振動準位を用い、近赤外領域〜可視光領域に発振波長をもつ気体レーザ、例えばルビー(発振波長:0.694μm)、YAG(発振波長:1.064μm)またはガラス(発振波長:1.06μm)などを主体とする母体中の遷移金属または希土類イオンを活性イオンとして、光励起することでレーザ光を発振する固体レーザ、あるいは半導体結晶中の伝導帯と等価電子帯の間の電子遷移に伴う発光を利用する半導体レーザなどを使用することが可能である。これらのレーザの中では、小型でまた駆動電流の制御が高速で光出力の制御が可能な、また発振に必要な電流や電圧を小さくできる半導体レーザが好ましい。   As the above-mentioned laser, an electron energy oscillation level of neutral atoms such as a He-Ne laser and a Cu vapor laser is used, and a gas laser having an oscillation wavelength in the near infrared region to the visible light region, for example, ruby (oscillation wavelength: 0.694μm), YAG (oscillation wavelength: 1.064μm), glass (oscillation wavelength: 1.06μm), etc. It is possible to use a solid-state laser that emits light, or a semiconductor laser that utilizes light emission associated with electronic transition between a conduction band and an equivalent electronic band in a semiconductor crystal. Among these lasers, a semiconductor laser that is small in size, can control the drive current at high speed, can control the optical output, and can reduce the current and voltage required for oscillation is preferable.

半導体レーザには、InCa1−xN、CdCe、InGa1−xAs、InGe1−xAs、GeAl1−xAs、InAs、InSb、PbSn1−xTe等の化合物半導体材料が使用される。そして、組成を変えることにより可視光全域から遠赤外領域(30〜100μm)まで及ぶ発振波長をもつ半導体材料が得られる。現用の半導体レーザは、電流注入により発振されるので、レーザ発振を生じさせるための電流密度を低減させるために、活性層の両側がバンドギャップの大きなクラッド層でサンドイッチされた、ダブルヘテロ構造を備えている。この種の半導体レーザとしては、赤外高出力タイプ(波長:808nmあるいは940nm、出力:〜2kW)、高出力タイプ(波長:780nm、出力:30mWからさらにWオーダーのもの)、また接合寸法が小さい組合せの場合など、数種類の可視光タイプ(波長:635nm、出力:5mWからさらにWオーダーのもの)、(波長:650nm、出力:3mWからさらにWオーダーのもの)、(波長:670nm、出力:10mWからさらにWオーダーのもの)が市販されているので、これらの内から使用条件に適した装置を選定することが可能である。尚、半導体レーザの高出力化は例えば単一素子そのものの出力を高める方法や単一素子を複数スタックして必要な出力にして高める方法などがあり、被接合材料に最適な波長と出力の装置を選定することが可能である。 The semiconductor laser, In x Ca 1-x N , CdCe, In x Ga 1-x As, In x Ge 1-x As, Ge x Al 1-x As, InAs, InSb, Pb x Sn 1-x Te Compound semiconductor materials such as are used. By changing the composition, a semiconductor material having an oscillation wavelength ranging from the entire visible light region to the far infrared region (30 to 100 μm) can be obtained. Since current semiconductor lasers are oscillated by current injection, they have a double heterostructure in which both sides of the active layer are sandwiched by clad layers with a large band gap in order to reduce the current density for causing laser oscillation. ing. As this type of semiconductor laser, an infrared high-power type (wavelength: 808 nm or 940 nm, output: up to 2 kW), a high-power type (wavelength: 780 nm, output: 30 mW to further W order), and a small junction size Several types of visible light (wavelength: 635 nm, output: 5 mW to W order), (wavelength: 650 nm, output: 3 mW to W order), (wavelength: 670 nm, output: 10 mW) Furthermore, it is possible to select a device suitable for the use conditions from these. For example, there is a method for increasing the output of a semiconductor laser, such as a method for increasing the output of a single element itself or a method for increasing the output of a single element by stacking a plurality of single elements. Can be selected.

レーザ光を補修シートに照射する場合、補修シート及び樹脂被覆鋼管の防食層のレーザ光吸収係数、表面状態などに応じて、レーザ光の性質(波長、出力、ビームモードなど)や照射条件(加工レンズの焦点距離、焦点スポットのサイズや深度、ノズルの径及び位置、アシストガスの種類や圧力など)を適宜設定すればよい。例えば、照射パワー密度は10〜10(W/m)で、レーザトーチの走査速度は2〜30(mm/s)となるように設定することが好ましい。ビームモードは、シングルモード、低次マルチモード、高次マルチモード、リングモードあるいはピュアモードの中から選択することが好ましい。またビームの形状も、レーザ光の種類によって異なり、直径1〜50mm程度の円形及び楕円形、数十mm角の長方形など多岐にわたっているが、凹凸レンズやプリズムなどを使用して、ビームの拡大あるいは絞込みを行うことにより、実用的な大きさに整えればよい。 When irradiating a repair sheet with laser light, the properties (wavelength, output, beam mode, etc.) of the laser light and irradiation conditions (processing) depending on the laser light absorption coefficient and surface state of the anticorrosion layer of the repair sheet and resin-coated steel pipe The focal length of the lens, the size and depth of the focal spot, the diameter and position of the nozzle, the type and pressure of the assist gas, etc. may be set as appropriate. For example, the irradiation power density is preferably set to 10 4 to 10 8 (W / m 2 ), and the scanning speed of the laser torch is preferably set to 2 to 30 (mm / s). The beam mode is preferably selected from a single mode, a low-order multimode, a high-order multimode, a ring mode, or a pure mode. The shape of the beam also varies depending on the type of laser light, and ranges from 1 to 50 mm in diameter, such as a circle and an ellipse, and a tens of mm square. What is necessary is just to arrange in a practical size by narrowing down.

本発明の補修部材100は、図6及び図7に示す構成にすることができる。例えば、鋼管を被覆する樹脂と同一または同系統の熱可塑性樹脂からなる矩形状(例えば長方形)の熱可塑性樹脂シート1と、その長辺側端縁に沿って形成された幅Wd1、Wd2(=Wd1)を有するレーザ光吸収部2a、2bと、その一方の短辺側端縁に沿って形成された幅Wを有するレーザ光吸収部2cを有する。図7に示すように、各レーザ光吸収部2a、2b、2cは、幅Pを有するバンド状のレーザ光吸収部21、21、…21が所定間隔Pで形成され、平面からみてレーザ光吸収部21、21、…21とレーザ光透過部22、22、…22が交互に並ぶように配置されている。レーザ光吸収部21、21、…21は、例えば0.05〜1mmの幅と0.01〜0.4mmの厚さを有する複数の帯状体である。 The repair member 100 of the present invention can be configured as shown in FIGS. For example, a rectangular (for example, rectangular) thermoplastic resin sheet 1 made of the same or the same type of thermoplastic resin as the resin covering the steel pipe, and the widths W d1 and W d2 formed along the long side edge. a laser light absorbing portion 2a, 2b, the laser light absorption portions 2c having a width W e, which is formed along the short side edge of the one having a (= W d1). As shown in FIG. 7, each of the laser light absorbing portions 2a, 2b, 2c is formed by forming band-shaped laser light absorbing portions 21 1 , 21 2 ,... 21 n having a width P 1 at a predetermined interval P 2. laser-absorbing unit 21 1 as viewed from, 21 2, ... 21 n and the laser beam interruption unit 22 1, 22 2, ... 22 n are alternately arranged. The laser light absorbing portions 21 1 , 21 2 ,... 21 n are a plurality of strips having a width of 0.05 to 1 mm and a thickness of 0.01 to 0.4 mm, for example.

この熱可塑性樹脂シート1も、樹脂被覆鋼管(不図示)に巻回された時に、重ね代部(長さL=L−鋼管の全長)が形成されるような円周方向の長さLと補修部の幅に応じて定められる幅(管軸方向の長さ)Wを有すると共に、図3に示すように、重ね代部の厚さが連続的(又は段階的)に減少するように形成することが可能である。この熱可塑性樹脂シート2も、図1及び図2に示すものと同様の材料及び手法で形成することができる。さらにレーザ光吸収部21、21、…21の幅Pは、例えば0.05〜1mmで、その間隔P(レーザ光透過部22、22、…22の幅)は、例えば0.05〜0.4mmとなるように設定することが好ましい。図6では、Wd2=Wd1に設定されているが、Wd2とWd1は異なっていてもよい。 The thermoplastic resin sheet 1 also has a circumferential length such that an overlap margin (length L t = L 1 -the total length of the steel pipe) is formed when the thermoplastic resin sheet 1 is wound around a resin-coated steel pipe (not shown). L 1 and the width (length in the tube axis direction) W 1 determined according to the width of the repaired portion, and as shown in FIG. 3, the thickness of the overlap margin portion decreases continuously (or stepwise). It is possible to form as follows. This thermoplastic resin sheet 2 can also be formed by the same material and method as those shown in FIGS. Furthermore laser light absorption portions 21 1, 21 2, the width P 1 of ... 21 n, for example at 0.05 to 1 mm, the interval P 2 (laser beam transmitting portion 22 1, 22 2, ... width of 22 n) is For example, it is preferably set to be 0.05 to 0.4 mm. In FIG. 6, W d2 = W d1 is set, but W d2 and W d1 may be different.

上記の補修部材100によれば、図3及び図4に示すと同様に樹脂被覆鋼管10に補修部材100を巻き付けた後に、図8に示すようにレーザ光吸収部の全幅(Wd1、Wd2、W)にわたってレーザ光線が照射されるようにスポット径を設定することにより、レーザトーチ3を円周方向に1回ずつ走査を行い、かつ補修部材1の幅方向に走査を行うことで、補修部材1の両端部全周と重ね代部の全幅にわたって2段の融着部20、20を形成することができる。 According to the repair member 100 described above, after the repair member 100 is wound around the resin-coated steel pipe 10 as shown in FIGS. 3 and 4, the entire width (W d1 , W d2) of the laser light absorbing portion is obtained as shown in FIG. 8. , W e ) by setting the spot diameter so that the laser beam is irradiated, the laser torch 3 is scanned once in the circumferential direction, and the repair member 1 is scanned in the width direction. Two-stage fused portions 20 3 and 20 4 can be formed over the entire circumference of both ends of the member 1 and the entire width of the overlap margin.

また、本発明によれば、レーザ光を透過し得る材料のみからなる樹脂シートと樹脂被覆鋼管との間にレーザ光吸収性を有するテープを介在させた状態で樹脂被覆鋼管に巻き付け、次いで加圧しながらレーザ光吸収部にレーザ光線が到達するように、レーザ光を照射することによっても補修部材と樹脂被覆鋼管との融着を行うことができる。
さらに、レーザ光吸収部を被覆樹脂の表面、又は内部に設けた樹脂被覆鋼管を使用して補修部材と樹脂被覆鋼管との融着を行うこともできる。
Further, according to the present invention, a resin-coated steel pipe is wound around a resin-coated steel pipe with a laser light-absorbing tape interposed between the resin sheet made of only a material that can transmit laser light and the resin-coated steel pipe, and then pressed. However, the repair member and the resin-coated steel pipe can be fused together by irradiating the laser beam so that the laser beam reaches the laser beam absorbing portion.
Further, the repair member and the resin-coated steel pipe can be fused by using a resin-coated steel pipe having a laser light absorbing portion provided on the surface or inside of the coating resin.

本発明の実施の形態に係わる補修部材の平面図である。It is a top view of the repair member concerning embodiment of this invention. 図1、図9のA−A線断面を拡大した模式図である。It is the schematic diagram which expanded the AA line cross section of FIG. 1, FIG. 図1、図9の補修部材が巻回された樹脂被覆鋼管の一部を模式的に示す断面図であるFIG. 10 is a cross-sectional view schematically showing a part of a resin-coated steel pipe around which the repair member of FIGS. 1 and 9 is wound. 図3のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 図1、図9の補修部材が巻回された樹脂被覆鋼管にレーザ光を照射した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which irradiated the laser beam to the resin coating steel pipe around which the repair member of FIG. 1, FIG. 9 was wound. 本発明の他の実施の形態に係わる補修部材の平面図である。It is a top view of the repair member concerning other embodiment of this invention. 図1のC−C線断面を拡大した模式図である。It is the schematic diagram which expanded the CC line cross section of FIG. 図6の補修部材が巻回された樹脂被覆鋼管にレーザ光を照射した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which irradiated the laser beam to the resin-coated steel pipe around which the repair member of FIG. 6 was wound. 本発明の第2実施の形態に係わる補修部材の平面図である。It is a top view of the repair member concerning 2nd Embodiment of this invention.

符号の説明Explanation of symbols

100:補修部材、1:熱可塑性樹脂シート、2a、2b、2c、21〜21:レーザ光吸収部、22、22、…22:レーザ光透過部、3:レーザトーチ、10:樹脂被覆鋼管、11:鋼管、12:防食層、13:保護層、14:溶接部 100: Repair member, 1: Thermoplastic resin sheet, 2a, 2b, 2c, 21 1 to 21 n : Laser light absorption part, 22 1 , 22 2 ,... 22 n : Laser light transmission part, 3: Laser torch, 10: Resin-coated steel pipe, 11: steel pipe, 12: anticorrosion layer, 13: protective layer, 14: welded part

Claims (5)

樹脂被覆鋼管の円周長よりも大なる全長を有する熱可塑性樹脂シートと、前記矩形の熱可塑性樹脂シートの3辺に、少なくとも1条のレーザ光吸収部を有することを特徴とする防食鋼管用補修部材。 A thermoplastic resin sheet having a total length larger than the circumferential length of the resin-coated steel pipe, and at least one laser light absorbing portion on three sides of the rectangular thermoplastic resin sheet, for a corrosion-resistant steel pipe Repair material. 前記熱可塑性樹脂シートの巻回方向に設けられた前記レーザ光吸収部は、前記熱可塑性樹脂シートの端縁から内側よりに形成されているとともに、前記熱可塑性樹脂シートの軸線方向に設けられた前記レーザ光吸収部は、前記熱可塑性樹脂シートの端縁に沿って形成されていることを特徴とする請求項1に記載の防食鋼管用補修部材。 The laser light absorbing portion provided in the winding direction of the thermoplastic resin sheet is formed from the inner side to the inner edge from the edge of the thermoplastic resin sheet, and is provided in the axial direction of the thermoplastic resin sheet. The said laser beam absorption part is formed along the edge of the said thermoplastic resin sheet, The repair member for corrosion-resistant steel pipes of Claim 1 characterized by the above-mentioned. 前記各レーザ光吸収部は、0.05〜1mmの幅と0.01〜0.4mmの厚さを有する複数の帯状体であり、かつ前記熱可塑性樹脂シートの各端縁から0.05〜0.4mmの間隔で形成されていることを特徴とする請求項1に記載の防食鋼管用補修部材。 Each of the laser light absorbing portions is a plurality of strips having a width of 0.05 to 1 mm and a thickness of 0.01 to 0.4 mm, and 0.05 to 0.05 mm from each edge of the thermoplastic resin sheet. The repair member for a corrosion-resistant steel pipe according to claim 1, wherein the repair member is formed at intervals of 0.4 mm. 前記熱可塑性樹脂シートは、重ね代部が形成される部分の厚さが端部に向って減少していることを特徴とする請求項1〜3のいずれかに記載の防食鋼管用補修部材。 The said thermoplastic resin sheet is a repair member for corrosion-resistant steel pipes according to any one of claims 1 to 3, wherein the thickness of the portion where the overlap margin portion is formed decreases toward the end portion. レーザ光が透過可能な熱可塑性樹脂シートを樹脂被覆鋼管に巻き付けて前記熱可塑性樹脂シートの端部同士を重ね合わせるとともに、前記矩形の熱可塑性樹脂シートの3辺側と前記樹脂被覆鋼管との間、及び/または前記樹脂被覆鋼管の被覆樹脂にレーザ光吸収部を形成し、前記熱可塑性樹脂シートを加圧しながら前記レーザ光吸収部に半導体レーザ光を照射することを特徴とする樹脂被覆鋼管の補修方法。 A thermoplastic resin sheet capable of transmitting laser light is wound around a resin-coated steel pipe and the ends of the thermoplastic resin sheet are overlapped with each other, and between the three sides of the rectangular thermoplastic resin sheet and the resin-coated steel pipe And / or forming a laser light absorbing portion in a coating resin of the resin-coated steel tube, and irradiating the laser light absorbing portion with semiconductor laser light while pressing the thermoplastic resin sheet. Repair method.
JP2005152257A 2004-05-26 2005-05-25 Mending member for resin coated steel pipe and mending method of resin coated steel pipe Pending JP2006007760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152257A JP2006007760A (en) 2004-05-26 2005-05-25 Mending member for resin coated steel pipe and mending method of resin coated steel pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004156577 2004-05-26
JP2005152257A JP2006007760A (en) 2004-05-26 2005-05-25 Mending member for resin coated steel pipe and mending method of resin coated steel pipe

Publications (1)

Publication Number Publication Date
JP2006007760A true JP2006007760A (en) 2006-01-12

Family

ID=35775513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152257A Pending JP2006007760A (en) 2004-05-26 2005-05-25 Mending member for resin coated steel pipe and mending method of resin coated steel pipe

Country Status (1)

Country Link
JP (1) JP2006007760A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952316A1 (en) * 2009-11-06 2011-05-13 Valeo Vision Laser welding two structures made of plastic material for forming a headlight or a projector of a motor vehicle, generating a laser beam using a static laser source, and welding the two structures by forming a weld cordon
US11207919B2 (en) 2016-06-21 2021-12-28 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US11697306B2 (en) 2016-12-15 2023-07-11 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
US11697260B2 (en) 2016-06-30 2023-07-11 Bridgestone Americas Tire Operations, Llc Methods for treating inner liners, inner liners resulting therefrom and tires containing such inner liners
US11794430B2 (en) 2016-12-15 2023-10-24 Bridgestone Americas Tire Operations, Llc Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952316A1 (en) * 2009-11-06 2011-05-13 Valeo Vision Laser welding two structures made of plastic material for forming a headlight or a projector of a motor vehicle, generating a laser beam using a static laser source, and welding the two structures by forming a weld cordon
US11207919B2 (en) 2016-06-21 2021-12-28 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US11697260B2 (en) 2016-06-30 2023-07-11 Bridgestone Americas Tire Operations, Llc Methods for treating inner liners, inner liners resulting therefrom and tires containing such inner liners
US11697306B2 (en) 2016-12-15 2023-07-11 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
US11794430B2 (en) 2016-12-15 2023-10-24 Bridgestone Americas Tire Operations, Llc Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners

Similar Documents

Publication Publication Date Title
US6596122B1 (en) Simultaneous butt and lap joints
US20020100540A1 (en) Simultaneous butt and lap joints
US5888331A (en) Joining bodies of thermoplastic material
JP2006007760A (en) Mending member for resin coated steel pipe and mending method of resin coated steel pipe
JP4435352B2 (en) Welding method for heat-meltable synthetic resin
ATE383937T1 (en) METHOD FOR LASER BEAM WELDING OF PLASTIC PARTS
JP4766589B2 (en) Coating apparatus and coating method for connecting part of resin-coated steel pipe
JP4113752B2 (en) Joining device
US9908069B2 (en) Method of manufacturing a filter element and filter element
JP2002337236A (en) Method for welding resin member
JP4883690B2 (en) Resin-coated steel pipe connection part protecting method and resin-coated steel pipe connection part protecting structure
US20110143069A1 (en) Method of Fabricating A Device Such As A Coupling By Laser Welding, The Device Fabricated By Such Method, And An Element Of Such Device For Implementing The Method
JP4805049B2 (en) Transparent resin welding method
JP4273217B2 (en) Assembly method and plastic composite pipe
JP2006334617A (en) Automatic welding apparatus of coated steel tube, and its connection method
JP6669510B2 (en) Method for housing wiring and piping material in hollow cylinder and hollow cylinder structure
JP2006200290A (en) Non open-cut jacking method
JPH10146892A (en) Fluid transport pipe
JP2006250183A (en) Resin coated steel pipe, coating member at connection part of resin coated steel pipe and coating structure at connection part of resin coated steel pipe
JP6563829B2 (en) Hollow cylinder structure manufacturing method, hollow cylinder structure and hollow cylinder structure
JP4396823B2 (en) Resin welding equipment
JP2005220987A (en) Repairing member and method for anti-corrosive steel pipe
JP2007056904A (en) Method for fusion-bonding thermoplastic resin
WO2004026522A1 (en) Method for laser working a film material and film material to be worked using that method.
JP2009125963A (en) Melt-sticking method of thermoplastic resin member