JP2006005887A - マイクロ波伝送線路およびマイクロ波フィルタ - Google Patents

マイクロ波伝送線路およびマイクロ波フィルタ Download PDF

Info

Publication number
JP2006005887A
JP2006005887A JP2004183036A JP2004183036A JP2006005887A JP 2006005887 A JP2006005887 A JP 2006005887A JP 2004183036 A JP2004183036 A JP 2004183036A JP 2004183036 A JP2004183036 A JP 2004183036A JP 2006005887 A JP2006005887 A JP 2006005887A
Authority
JP
Japan
Prior art keywords
layer
transmission line
magnetic
microwave transmission
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004183036A
Other languages
English (en)
Other versions
JP3990386B2 (ja
Inventor
Toshie Sato
利江 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004183036A priority Critical patent/JP3990386B2/ja
Publication of JP2006005887A publication Critical patent/JP2006005887A/ja
Application granted granted Critical
Publication of JP3990386B2 publication Critical patent/JP3990386B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】金属磁性体を用いたより高周波域での利用が可能なマイクロ波伝送線路およびマイクロ波フィルタを提供すること。
【解決手段】マイクロ波伝送線路100は、半導体基板10上に、順に、接地層12、絶縁層14、磁性層20、導電層16が積層された構造を有する。ストリップラインは、絶縁層14、磁性層20、および、導電層16によって形成される。磁性層20は、非磁性層22を強磁性層21および強磁性層23で挟んだ積層膜であり、人工反強磁性体として機能する。
【選択図】 図1

Description

本発明は、マイクロ波集積回路(MMIC:Monolithic Microwave Integrated Circuit)等で用いられるマイクロ波伝送線路およびマイクロ波フィルタに関する。
マイクロ波帯での高透磁率材料として、YIG(yttrium iron garnet)に代表されるフェリ磁性絶縁体が専ら用いられてきた。しかしながら、YIGは、飽和磁化Msが小さいために磁気共鳴周波数が低く、5GHz以上の周波数帯域での利用が困難である。また、YIGは、半導体基板上に薄膜として形成することが困難なために、マイクロ波集積回路での利用も難しい。
現在では、YIGに替えてあらためて金属磁性体を利用することが見直されている。その理由は、マイクロ波集積回路の微細化に伴って電磁場が微小領域に集中し、これにより厚さ数μmのスキンデプス内のマイクロ波磁場と金属磁性層との間で大きな相互作用を得ることができるようになったからである。金属磁性体は、半導体基板上に容易に薄膜として形成することができ、特に、マイクロストリップライン型あるいはコプレナガイド型のマイクロ波伝送線路を構成する磁性材料として注目されている。これらマイクロ波伝送線路を用いることによって、高周波フィルタ、インピーダンス変換器、共振器、移相器、波長短縮型導波路などのマイクロ波デバイスを実現することができる。
金属磁性体を用いたマイクロ波伝送線路において、広帯域化やフィルタを実現するために、CoZrNbアモルファス合金磁性薄膜、Fe、パーマロイなどの金属磁性薄膜の利用が提案されている(例えば、非特許文献1,非特許文献2参照)。CoZrNb、Fe、パーマロイはYIGよりも大きな飽和磁化を持つため、磁気共鳴周波数が5〜6GHzと高く、磁気共鳴周波数以下の信号を伝送するマイクロ波集積回路や磁気共鳴によるフィルタに利用することができると考えられている。
5GHz帯以上の信号を伝送する場合、伝送損失を低減させるために、マイクロ波伝送線路の磁気共鳴周波数を信号周波数の2倍程度、すなわち10GHz以上に高める必要がある。しかしながら、上記した金属磁性薄膜では磁気共鳴周波数を10GHz以上とするには1Kエルステッド(Oe)以上の磁場を印加する必要がある。そのため、これら金属磁性薄膜を数GHz帯のマイクロ波伝送線路またはそれを用いたマイクロ波デバイスに用いるのは現実的ではない。例えば、現実的に印加可能な数100エルステッドの外部磁場の下での共鳴周波数は高々10GHz程度である。
そこで、マイクロ波伝送線路を形成する磁性層として、強磁性体/反強磁性体の積層膜を用いることが提案されている(特許文献1参照)。この積層膜は、強磁性層の磁化を固着させるために、磁気ヘッドなどで広く利用されている。強磁性体(例えば、Co)と反強磁性体(例えば、IrMn)の間には界面を介して交換相互作用が働くことが知られている。この交換相互作用によって、強磁性層に有効磁場を印加することができる。有効磁場を利用すると、原理的には強磁性層の共鳴周波数を高めることが可能となる。
特開2003−257739号公報 中山英俊,山本知広,佐藤敏郎,山沢清人,三浦義正,宗像誠,八木正昭,日本応用磁気学会誌,第28巻,第2号,157(2004) Bijoy Kuanr, Z. Celinski, R. E. Camley, Appl. Phys. Lett. 83, 3969 (2003)
しかしながら、強い有効磁場を印加するためには反強磁性体層の厚さを強磁性層の厚さよりも十分厚くする必要があり、かつ強磁性層の厚さを十分薄くしなければならない。このため、共鳴に関与しない反強磁性層の体積が大きくなり、実効的な飽和磁化が減少してしまう。すなわち、共鳴周波数を大幅に増大させることは困難となる。また、電気伝導度の低い反強磁性層の体積が大きいと、渦電流による損失が増大し素子特性が劣化する。NiOなどの絶縁性の反強磁性体を用いることも考えられるが、そのような遷移金属酸化物は一般に誘電損失が大きいため、この場合も素子特性が劣化する。以上の理由から、強磁性体/反強磁性体の積層膜を用いたとしても、10GHz以上の帯域で利用可能なマイクロ波デバイスを形成する手段としては有効ではないことが分かる。
本発明は、上記に鑑みてなされたものであって、金属磁性体を用いたより高周波域での利用が可能なマイクロ波伝送線路およびマイクロ波フィルタを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかるマイクロ波伝送線路は、共鳴周波数を決定する磁性層として、第1強磁性体、非磁性体、及び第2強磁性体を積層した積層膜を含み、前記第1強磁性体と前記第2強磁性体とが反強磁性結合していることを特徴とする。
また、本発明にかかるマイクロ波フィルタは、上記マイクロ波伝送線路を用いて作成されたことを特徴とする。
本発明にかかるマイクロ波伝送線路およびマイクロ波フィルタは、磁性層として、強磁性体と非磁性体とからなる積層膜として提供された人工反強磁性体を用いているので、共鳴周波数を律束する渦電流の増大や、有効磁場に寄与しない材料の体積の増大を抑えることができ、高周波域での利用が可能となるという効果を奏する。
以下に、本発明にかかるマイクロ波伝送線路およびマイクロ波フィルタの実施の形態を図面に基づいて詳細に説明する。但し、図面は模式的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは現実のものとは異なる。また、図面の相互間において同じ部分を指す場合であっても、互いの寸法や比率が異なって示されている部分もある。
(実施の形態1)
実施の形態1にかかるマイクロ波伝送線路は、磁性層として強磁性体/非磁性体/強磁性体の積層膜からなる人工反強磁性体を用いることを特徴とする。ここでは、マイクロ波伝送線路の応用例として、バンドストップフィルタについて説明する。図1は、実施の形態1にかかるマイクロ波伝送線路の斜視図であり、特に、マイクロストリップライン型のバンドストップフィルタを実現する構造を示している。図1に示すマイクロ波伝送線路100は、半導体基板10上に、順に、接地層12、絶縁層14、磁性層20、導電層16が積層された構造を有する。また、図1に示すように、接地層12の長手方向に垂直な方向の幅は、半導体基板10の幅よりも短い。ストリップラインは、絶縁層14、磁性層20、および、導電層16によって形成され、その幅は、接地層12の幅よりも短い。
磁性層20は、非磁性層22を強磁性層21および強磁性層23で挟んだ積層膜である。したがって、磁性層20は、人工反強磁性体として機能する。例えば、非磁性層22としてCoを用い、強磁性層21,23としてRuを用いることができる。特に、このCo/Ru/Co積層膜において、Ruの膜厚が約1.5nm以下であると、Co層間に反強磁性的な相互作用が働き2層のCo層の磁化は互いに逆向きに配向することが知られている。磁性層20の厚さは、数100nmであり、導電層16の厚さは数μmである。磁性層20をこのように薄くしてよい理由は、バンドストップフィルタとして機能する磁気共鳴周波数域では、磁性体の透磁率の虚数部が増大し、スキンデプスが数100nmに減少するからである。
図1では、磁性層20は、強磁性層21/非磁性層22/強磁性層23の3層から形成されるが、図2に示すように、それに代えて、磁性層と非磁性層を多数積層して形成された磁性層30を用いても良い。図2に示す磁性層30では、6つの強磁性層31〜36と、各強磁性層間に位置する5つの非磁性層41〜45とによって多層膜を形成している。このように、多くの積層数によって人工反強磁性体を形成することによって、共鳴周波数帯域の信号をより効率よく吸収することができ、理想的なバンドストップフィルタを提供することができる。
人工反強磁性体の共鳴モードには、図3に示すように、共鳴周波数の低い音響モードに加え、低磁場においても共鳴周波数が高い光学モードが存在する。光学モードの共鳴周波数は非磁性層の厚さおよび材料に依存するが、その共鳴周波数は数100エルステッドの弱い外部磁場の下でも10GHz以上にすることが容易である。特に、光学モードの共鳴周波数は実効磁化に依存しないので、強磁性体/反強磁性体からなる積層膜のような実効磁化の減少に伴う共鳴周波数の低下は生じない。また、非磁性層22の厚さは強磁性層21,23に比較して十分薄くでき、さらに導電層16としてCuなどの電気伝導度の高い金属を用いることができるので、積層膜において一般に生じる渦電流による損失を極めて小さくすることが可能である。
なお、強磁性層21,23として、Fe,Co、パーマロイなどの強磁性金属を用い、非磁性層22として、Rh,Ru,Ir,Cu,Cr,V,Re,Mo,Nb,W,Taなどの遷移金属を用いると、強磁性層21,23間に強い相互作用が生じ、上記した光学モードの周波数を高めることができる。
以上、バンドストップフィルタを例にして、共鳴周波数を増大させることのできる実施形態について述べたが、移相器や波長短縮型導波路についても同様に議論することができる。図4は、一定の外部磁場の下に置かれた磁性体について、透磁率(実部μ’,虚部μ”)の周波数依存性を示した模式図である。透磁率の虚部μ'' が最大となる領域、すなわち、共鳴周波数f0(図4の領域A1)は、マイクロ波の吸収が増大するので、マイクロ波伝送線路100をバンドストップフィルタとして利用することができる。
マイクロ波伝送線路100を移相器として利用できる周波数域は、虚部μ'' が小さく実部μ' の絶対値および磁場依存性が大きい領域A2である。したがって、10GHz以上の帯域で用いる移相器では磁性体の共鳴周波数を10GHz以上に高めておくことが望ましい。移相器の構造は、バンドストップフィルタの構造と同様に図1および図2に示した構造を用いることができるが、図4から分かるように移相器として用いる周波数域では透磁率の実部、虚部とも共鳴周波数近くの値に比較すると小さい。スキンデプスは透磁率の平方根に反比例するため、この周波数域におけるスキンデプスは1μm以上と大きい。従って、移相器の場合はバンドストップフィルタの場合と異なり磁性体の膜厚は数μm必要となる。
波長短縮型導波路では伝送損失を十分小さくしなければならないので、マイクロ波伝送線路100を波長短縮型導波路として利用できる周波数域は、図4の領域A3である。したがって、10GHz以下の導波路として用いる場合でも、共鳴周波数を10GHz以上に高めておくことが重要となる。移相器の場合と同様にスキンデプスは1μm以上になるので、磁性体の膜厚は数μm必要である。
以下に、実施の形態1にかかるマイクロ波伝送線路をバンドストップフィルタとして作製した例とそのバンドストップフィルタの評価について説明する。図5は、その作製例によって得られたマイクロ波伝送線路200の斜視図である。図1に示したマイクロ波伝送線路100では、磁性層20は絶縁層14上に形成されているが、スパッタリングで作製された絶縁層上に、良好な磁性層を形成することはしばしば困難な場合がある。そこで、マイクロ波伝送線路200では、周知のスパッタ成膜工程とリソグラフィ工程によって、GaAs基板210上に、順に、接地層212、磁性層220、絶縁層214、第1導電層217、第2導電層218が積層されている。すなわち、マイクロ波伝送線路200は、図1と異なり、磁性層220は接地層212上に形成され、絶縁層214は磁性層220上に形成されている。このような構造によっても、後述するグラフからわかるように、高周波帯域の信号伝送を許容することができる。
スパッタ成膜は、約1Kエルステッドの外部磁場をGaAs基板210面内に印加して行った。接地層212はAgで形成され、その厚さd0は2μmとした。磁性層220は、Co(3.2nm)/Ru(0.9nm)が多数積層された積層膜であり、その総膜厚d1は約400nmとした。絶縁層214はSiO2で形成され、その厚さd2は8μmとした。第1導電層217はAgで形成され、第2導電層218はAuで形成され、これら導電層からなるストリップラインの幅Wは20μmとし、その厚さd3は2μmとした。このバンドパスフィルタの全長Lは3mmとした。
フィルタ特性の評価は一定の外部磁場をストリップライン方向に印加した状態で、ネットワークアナライザを用いて行った。また、フィルタと測定ケーブルの接続にはマイクロ波プローバを用いた。図6は、100エルステッドの外部磁場の下で得られたフィルタ特性を示すグラフである。約17GHzに共鳴吸収に伴う透過パワーの減少が観測される。最大減衰量は20dB、半値幅は0.2GHz、挿入損失は2dBであった。
また、図5に示したマイクロ波伝送線路200において、磁性層220の厚さを1μmとすることによって、このマイクロ波伝送線路200を移相器として機能させることができた。図7は、周波数22GHzの信号に対して得られた移相器の特性を示すグラフである。横軸は外部磁場、縦軸は位相シフトを表す。600エルステッドの外部磁場変化で約100度の位相変化が観測された。
図5に示すマイクロ波伝送線路200では、磁性層220と絶縁層214の幅は、接地層212の幅と一致し、第1導電層217および第2導電層218によってストリップラインが形成されているが、磁性層220、絶縁層214、第1導電層217、第2導電層218の4層によってストリップラインを形成してもよい。また、絶縁層と導電層によってストリップラインを形成してもよい。図8は、この場合のマイクロ波伝送線路を示す斜視図である。マイクロ波伝送線路300では、半導体基板310上に、順に、接地層312、磁性層320、絶縁層314、導電層316が積層され、絶縁層314および導電層316によってストリップラインが形成されている。なお、磁性層320は、図1と同様に、強磁性層321/非磁性層322/強磁性層323の積層膜、すなわち人工反強磁性体で形成される。
以上に説明したように、実施の形態1にかかるマイクロ波伝送線路によれば、磁性層として、強磁性層/非磁性層/強磁性層の積層膜からなる人工反強磁性体を用いているので、共鳴周波数を律束する渦電流の増大や、有効磁場に寄与しない材料の体積の増大を抑えることができ、10GHz以上の高周波域での利用が可能となる。
また、このマイクロ波伝送線路を用いて、マイクロ波フィルタ(バンドストップフィルタ、バンドパスフィルタなど)、移相器、波長短縮型導波路、インピーダンス変換器、共振器などのマイクロ波デバイスを構築した場合にも、上記したマイクロ波伝送線路の効果を享受することができる。なお、これらマイクロ波デバイスは、実施の形態1にかかるマイクロ波伝送線路のサイズやパターンを調整することによって実現可能である。
(実施の形態2)
実施の形態2にかかるマイクロ波伝送線路は、コプレナガイド型のバンドストップフィルタを例示するものである。図9は、実施の形態2にかかるマイクロ波伝送線路の斜視図である。図9に示すマイクロ波伝送線路400は、半導体基板410上に、磁性層420、接地層412a,412bが形成され、磁性層420上にさらに導電層416が積層された構造を有する。磁性層420は、強磁性層421/非磁性層422/強磁性層423からなる積層膜で形成され、実施の形態1と同様に人工反強磁性体として機能する。2つの接地層412a,412bは、磁性層420および導電層416によって形成されるストリップラインの両側にその長手方向に沿って形成される。また、接地層412a,412bのそれぞれはストリップラインから所定の距離だけ離れて位置する。特に、このコプレナガイド型のバンドストップフィルタでは、図1に示したマイクロ波伝送線路100で必要であった絶縁層を必要としない。
この実施の形態2にかかるマイクロ波伝送線路であっても、磁性層として人工反強磁性体を用いているので、実施の形態1と同じ効果を享受することができる。また、このマイクロ波伝送線路を用いて、上記したような種々のマイクロ波デバイスを構築することができる。
(実施の形態3)
実施の形態3にかかるマイクロ波伝送線路は、磁性層として、異方性エネルギーKu1の大きな磁性材料を用いることを特徴とする。
磁化に働く有効磁場は、磁気異方性エネルギーKu1に依存することが知られている。よって、単一の磁性層で共鳴周波数を増大させるには、磁気異方性エネルギーKu1が大きな金属磁性体を用いることが有効である。例えば、Ku1=106erg/cm3の磁性体の場合、飽和磁化Ms=1000 Gとすると、有効磁場は約2000エルステッドとなり、共鳴周波数を15GHz以上に高めることが可能となる。薄膜形成が可能で異方性エネルギーの大きな磁性体として、例えば、CoCrTa,CoCrTaPt,CoCrTaNbなどのCoCr系合金、Co/Pd,Co/Pt,Co−Cr−Ta/PdなどのCo多層膜、CoCrPt系合金、FePt系合金、さらに希土類を含むSmCo系合金やTbFeCo合金が利用できる。
以下に、実施の形態3にかかるマイクロ波伝送線路をコプレナガイド型のバンドストップフィルタとして作製した例とそのバンドストップフィルタの評価について説明する。図10は、その作製例によって得られたマイクロ波伝送線路500の斜視図である。図10に示したマイクロ波伝送線路500において、図9と共通する部分には同一の符号が付されており、人工反強磁性体として機能する積層膜に代えて、単層の磁性層520を用いている点が図9と異なる。また、基板として、サファイア基板510を用いている。
磁性層520を大きな磁気異方性エネルギーKu1=3.3x106erg/cm2をもつCoCr15Pt12合金で形成し、その厚さを200nmとした。また、磁性層520および導電層416によって形成されるストリップラインの幅は、20μmとし、厚さは2μmとした。さらに、そのストリップラインと接地層412a,412bとの間隔は10μmとした。このバンドストップフィルタについて、実施の形態1と同様に、透過率の周波数依存性を評価したところ、18.6GHzにおいて最小透過率が観測された。また、最大減衰量32dB、半値幅0.6GHz、挿入損失2dBが観測された。
以上に説明したように、実施の形態3にかかるマイクロ波伝送線路によれば、磁性層として、磁気異方性エネルギーが106erg/cm3以上の強磁性体薄膜を用いているので、共鳴周波数を律束する渦電流や、有効磁場に寄与しない材料の体積を増大させることなく、10GHz以上の高周波域での利用が可能となる。なお、このマイクロ波伝送線路を用いて、上記したような種々のマイクロ波デバイスを構築することもできる。
上述した実施の形態1および2に示した磁性層を構成する強磁性体として、実施の形態3に示した磁性材料、すなわち磁気異方性エネルギーが106erg/cm3以上の強磁性体薄膜を用いてもよい。この場合、より高い周波帯域まで利用可能なマイクロ波伝送線路またはそれを用いたマイクロ波デバイスを提供することが可能となる。
本発明は、上述したような特定の実施形態に限定されるものではなく、さらなる効果や変形例は、当業者によって容易に導き出すことができる。すなわち、本発明にかかる実施の形態は、添付の特許請求の範囲およびその均等物にかかる発明の要旨を逸脱しない範囲で様々な変更が可能である。
以上のように、本発明にかかるマイクロ波伝送線路は、高周波帯域で利用可能な、マイクロ波フィルタを代表とするマイクロ波デバイスの構成要素として有用であり、特に、バンドストップフィルタ、移相器、波長短縮型導波路、インピーダンス変換器、共振器の基本要素として適している。
実施の形態1にかかるマイクロ波伝送線路の斜視図である。 磁性層の他の例を示す断面図である。 人工反強磁性体の共鳴モードの説明図である。 一定の外部磁場の下に置かれた磁性体について、透磁率の周波数依存性を示した模式図である。 実施の形態1にかかるマイクロ波伝送線路の作製例を示す斜視図である。 100エルステッドの外部磁場の下で得られたフィルタ特性を示すグラフである。 周波数22GHzの信号に対して得られた移相器の特性を示すグラフである。 実施の形態1にかかるマイクロ波伝送線路の他の例を示す斜視図である。 実施の形態2にかかるマイクロ波伝送線路の斜視図である。 実施の形態3にかかるマイクロ波伝送線路の斜視図である。
符号の説明
10,210,310,410 半導体基板
510 サファイア基板
12,212,412a,412b 接地層
14,214,314 絶縁層
16,217,218,316,416 導電層
20,220,320,420,520 磁性層
21,23,31〜36,321,323,421,423 強磁性層
22,41〜45,322,422 非磁性層
100,200,300,400,500 マイクロ波伝送線路

Claims (6)

  1. 共鳴周波数を決定する磁性層として、第1強磁性体、非磁性体、及び第2強磁性体を積層した積層膜を含み、
    前記第1強磁性体と前記第2強磁性体とは反強磁性結合していることを特徴とするマイクロ波伝送線路。
  2. 共鳴周波数を決定する磁性層として、強磁性体と非磁性体とを積層した積層膜を含み、
    前記強磁性体の磁気異方性エネルギーは106erg/cm3以上であることを特徴とするマイクロ波伝送線路。
  3. 半導体基板と、
    前記半導体基板上に位置する接地層と、
    前記接地層上に位置する絶縁層と、
    前記絶縁層上に位置する前記磁性層と、
    前記磁性層上に位置する導電層と、
    を備えることを特徴とする請求項1または2に記載のマイクロ波伝送線路。
  4. 半導体基板と、
    前記半導体基板上に位置する接地層と、
    前記接地層上に位置する前記磁性層と、
    前記磁性層上に位置する絶縁層と、
    前記絶縁層上に位置する導電層と、
    を備えることを特徴とする請求項1または2に記載のマイクロ波伝送線路。
  5. 半導体基板と、
    前記半導体基板上に位置する前記磁性層と、
    前記半導体基板上に位置し且つ前記磁性層と並置された接地層と、
    前記磁性層上に位置する導電層と、
    を備えることを特徴とする請求項1または2に記載のマイクロ波伝送線路。
  6. 請求項1〜5のいずれか一つに記載されたマイクロ波伝送線路によって作製されたことを特徴とするマイクロ波フィルタ。

JP2004183036A 2004-06-21 2004-06-21 マイクロ波伝送線路およびマイクロ波フィルタ Expired - Fee Related JP3990386B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183036A JP3990386B2 (ja) 2004-06-21 2004-06-21 マイクロ波伝送線路およびマイクロ波フィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183036A JP3990386B2 (ja) 2004-06-21 2004-06-21 マイクロ波伝送線路およびマイクロ波フィルタ

Publications (2)

Publication Number Publication Date
JP2006005887A true JP2006005887A (ja) 2006-01-05
JP3990386B2 JP3990386B2 (ja) 2007-10-10

Family

ID=35773858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183036A Expired - Fee Related JP3990386B2 (ja) 2004-06-21 2004-06-21 マイクロ波伝送線路およびマイクロ波フィルタ

Country Status (1)

Country Link
JP (1) JP3990386B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084879A (ja) * 2006-09-25 2008-04-10 Toshiba Corp 磁気発振素子、磁気センサ、磁気ヘッド及び磁気記録再生装置
KR100846634B1 (ko) 2007-01-30 2008-07-16 (주)노바마그네틱스 자성박막의 강자성 공명 현상을 이용한 ㎓ 주파수영역에서의 대역저지필터 소자
KR20200016632A (ko) * 2018-08-07 2020-02-17 주식회사 이엠따블유 고주파 저손실 전극
JP2020031404A (ja) * 2018-08-24 2020-02-27 古河電気工業株式会社 電磁波伝送路、電磁波伝送路の製造方法、および電子デバイス
CN114583425A (zh) * 2022-03-21 2022-06-03 电子科技大学 基于周期波纹衬底上磁性薄膜的可调宽频段带阻滤波器
WO2023122575A1 (en) * 2021-12-20 2023-06-29 Lawrence Livermore National Security, Llc Gyromagnetic nonlinear transmission line for radio frequency signal generation and pulse compression

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084879A (ja) * 2006-09-25 2008-04-10 Toshiba Corp 磁気発振素子、磁気センサ、磁気ヘッド及び磁気記録再生装置
KR100846634B1 (ko) 2007-01-30 2008-07-16 (주)노바마그네틱스 자성박막의 강자성 공명 현상을 이용한 ㎓ 주파수영역에서의 대역저지필터 소자
KR20200016632A (ko) * 2018-08-07 2020-02-17 주식회사 이엠따블유 고주파 저손실 전극
KR102113541B1 (ko) * 2018-08-07 2020-05-21 주식회사 이엠따블유 고주파 저손실 전극
JP2020031404A (ja) * 2018-08-24 2020-02-27 古河電気工業株式会社 電磁波伝送路、電磁波伝送路の製造方法、および電子デバイス
JP7072470B2 (ja) 2018-08-24 2022-05-20 古河電気工業株式会社 電磁波伝送路、電磁波伝送路の製造方法、および電子デバイス
WO2023122575A1 (en) * 2021-12-20 2023-06-29 Lawrence Livermore National Security, Llc Gyromagnetic nonlinear transmission line for radio frequency signal generation and pulse compression
CN114583425A (zh) * 2022-03-21 2022-06-03 电子科技大学 基于周期波纹衬底上磁性薄膜的可调宽频段带阻滤波器

Also Published As

Publication number Publication date
JP3990386B2 (ja) 2007-10-10

Similar Documents

Publication Publication Date Title
Korenivski GHz magnetic film inductors
Shimada et al. Granular thin films with high RF permeability
JP4444836B2 (ja) 薄い金属膜に基づいた静磁波デバイス、これを製造するための方法、及びマイクロ波信号を処理するためのデバイスへの応用
Yang et al. Low-loss magnetically tunable bandpass filters with YIG films
Hwangbo et al. Cu/Co multilayer-based high signal integrity and low RF loss conductors for 5G/millimeter wave applications
Harward et al. On-wafer magnetically tunable millimeter wave notch filter using M-phase Ba hexagonal ferrite/Pt thin films on Si
JP3990386B2 (ja) マイクロ波伝送線路およびマイクロ波フィルタ
US5665465A (en) Article comprising exchange-coupled magnetic materials
Michel et al. New RF magnetic stripe inductors with flanges based on exchange-coupled magnetic films
Yamaguchi et al. Ferromagnetic thin film noise suppressor integrated to on-chip transmission lines
US10586918B2 (en) Magnetic field effect transconductors
Yang et al. A wide-band magnetic tunable bandstop filter prototype with FeGaB/Al2O3 multilayer films
US7816994B2 (en) Microwave circulator with thin-film exchange-coupled magnetic structure
JP2003257739A (ja) 高周波デバイス
JP3990394B2 (ja) 高周波フィルタ
Persson et al. Spin-torque oscillator in an electromagnet package
Ni et al. Permalloy patterning effects on RF inductors
US11005149B2 (en) Metaconductor skins for low loss RF conductors
US7385469B2 (en) Integrated microelectronics component for filtering electromagnetic noise and radio frequency transmission circuit comprising same
Celinski et al. Planar magnetic devices for signal processing in the microwave and millimeter wave frequency range
JP2005109246A (ja) 高周波用磁性薄膜、その作製方法及び磁気素子
Shi et al. Application of single-crystal scandium substituted barium hexaferrite for monolithic millimeter-wavelength circulators
Zhou et al. Electric-field tunable rotation of optical mode ferromagnetic resonance in FeCoB/Ru/FeCoB/PMN-PT multilayers
Frommberger et al. High-frequency magnetic properties of FeCoBSi/SiO/sub 2/and (FeCo/CoB)/SiO/sub 2/multilayer thin films
JP4412549B2 (ja) 分布定数型非可逆素子及び分布定数型非可逆素子用ガーネット単結晶

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees