JP2006005321A - Convex electrode and its manufacturing method - Google Patents

Convex electrode and its manufacturing method Download PDF

Info

Publication number
JP2006005321A
JP2006005321A JP2004226006A JP2004226006A JP2006005321A JP 2006005321 A JP2006005321 A JP 2006005321A JP 2004226006 A JP2004226006 A JP 2004226006A JP 2004226006 A JP2004226006 A JP 2004226006A JP 2006005321 A JP2006005321 A JP 2006005321A
Authority
JP
Japan
Prior art keywords
film
electrode
thin film
original
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226006A
Other languages
Japanese (ja)
Other versions
JP4501580B2 (en
Inventor
Hiroshi Asami
浅見  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004226006A priority Critical patent/JP4501580B2/en
Publication of JP2006005321A publication Critical patent/JP2006005321A/en
Application granted granted Critical
Publication of JP4501580B2 publication Critical patent/JP4501580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a convex electrode wherein an inspection probe for a wiring circuit can be easily brought into contact with an original electrode so that inspection cost can be greatly reduced and wiring density in parts can be also made high, and to provide its manufacturing method. <P>SOLUTION: In the case that the effective part 13e of a mounting land 13 is made small because of a recessed part surrounded by a solder resist film 15 overlapping the periphery of the mounting land 13 of an interposer substrate 11, the recessed part of the mounting land 13 is filled with paste containing dispersed Ag ultrafine particles, and the paste is applied over the solder resist film 15 overlapping the periphery of the mounting land 13 and heated and cured to form a conductive film 25. Then, an electroless Ni plating film 27 and an electroless Au plating film 28 are formed thereon under the existence of an absorptive type Pd catalyst, thereby forming a convex electrode 29. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は凸型電極およびその製造方法に関するものであり、更に詳しくは、インターポーザ基板、配線基板や配線回路を含む部品において配線回路の検査を容易化させ、更には配線密度を高めることの可能な凸型電極とその製造方法に関するものである。   The present invention relates to a convex electrode and a method for manufacturing the same, and more particularly, can facilitate inspection of a wiring circuit in an interposer substrate, a component including a wiring substrate and a wiring circuit, and can further increase the wiring density. The present invention relates to a convex electrode and a manufacturing method thereof.

従来、部品をLGA(ランド・グリッド・アレイ)として絶縁基板に実装する場合、絶縁基板の導電性ランドは周縁にソルダーレジスト膜が形成されており、導電性ランドの面のレベルはソルダーレジストの面よりも低い位置とされている(例えば特許文献1を参照。)。このことはインターポーザ基板を配線基板に実装する場合も同様であり、インターポーザ基板の電極としての実装ランドの周縁部では絶縁膜であるソルダーレジスト膜が重なって形成されており、実装ランドの面はソルダーレジスト膜の面よりも低い位置とされている。図21はその様なインターポーザ基板を製造するプロセスを示す断面図である。
特開平06−152114号公報
Conventionally, when a component is mounted as an LGA (land grid array) on an insulating substrate, a solder resist film is formed on the periphery of the conductive land of the insulating substrate, and the level of the surface of the conductive land is the surface of the solder resist. (See, for example, Patent Document 1). The same applies to the case where the interposer board is mounted on the wiring board. The solder resist film, which is an insulating film, is formed on the periphery of the mounting land as an electrode of the interposer board. The position is lower than the surface of the resist film. FIG. 21 is a sectional view showing a process for manufacturing such an interposer substrate.
Japanese Patent Laid-Open No. 06-152114

すなわち、図21−Aは配線112、実装ランド113、接合ランド114からなる配線回路を備えたインターポーザ基板111が実装ランド113と接合ランド114を除く部分を外層絶縁膜であるソルダーレジスト膜115で被覆されている状態を示す断面図である。なお、特許請求の範囲および本明細書においては、この実装ランド113、接合ランド114を原電極としている。これは本発明の凸型電極と区別するためである。また、上記の原電極のうち、ソルダーレジスト膜115で被覆されていない部分を原電極の有効部分としている。なお、上記実装ランド113と接合ランド114は、接続図からも明らかなように電気的に接続されているが、上側の導電部(これには後述するように半導体チップが接合される)を「接合ランド」と称し、下側の導電部(これによって配線基板に実装する)を「実装ランド」と称する。 That is, FIG. 21A shows an interposer substrate 111 having a wiring circuit composed of wiring 112, mounting land 113, and bonding land 114, and covers the portion excluding mounting land 113 and bonding land 114 with a solder resist film 115 which is an outer insulating film. It is sectional drawing which shows the state performed. In the claims and the present specification, the mounting land 113 and the junction land 114 are used as original electrodes. This is to distinguish from the convex electrode of the present invention. Moreover, the part which is not coat | covered with the soldering resist film | membrane 115 among said raw electrodes is made into the effective part of a raw electrode. Although the mounting land 113 and the bonding land 114 are electrically connected as is apparent from the connection diagram, the upper conductive portion (to which a semiconductor chip is bonded as described later) is connected. This is referred to as “junction land”, and the lower conductive portion (which is mounted on the wiring board) is referred to as “mounting land”.

図21−Bは実装ランド113と接合ランド114に吸着型パラジウム(Pd)触媒126を塗布した状態、図21−Cは吸着型Pd触媒126の存在下に、実装ランド113と接合ランド114に無電解ニッケル(Ni)メッキ膜127、続いて無電解金(Au)メッキ膜128を重ねて形成した状態を示す。なお、吸着型Pd触媒126および無電解Niメッキ膜127、無電解Auメッキ膜128は実際よりも厚く示されている。また全体の寸法も比例関係には示されていない。このことは以降の図面においても同様である。そして図21−Dは接合ランド114に半導体チップ31を接合した半導体パッケージ110を示す。 図21−Cおよび図21−Dに見られるように、実装ランド113の周縁部ではソルダーレジスト膜115が重なって形成されており、実装ランド113の有効部分、すなわちソルダーレジスト膜115で覆われていない部分は狭くなっている。また実装ランド113は凹部の底面にあって、実装ランド113の面に無電解Niメッキ膜127、無電解Auメッキ膜128が形成された後においても、最下の無電解Auメッキ膜128の面はソルダーレジスト膜115の面よりも低くなっている。 FIG. 21-B shows a state in which an adsorption-type palladium (Pd) catalyst 126 is applied to the mounting land 113 and the bonding land 114, and FIG. 21-C shows a state where the adsorption land 113 and the bonding land 114 are not in the presence of the adsorption-type Pd catalyst 126. A state in which an electrolytic nickel (Ni) plating film 127 and then an electroless gold (Au) plating film 128 are formed in an overlapping manner is shown. The adsorption type Pd catalyst 126, the electroless Ni plating film 127, and the electroless Au plating film 128 are shown to be thicker than actual. Also, the overall dimensions are not shown in a proportional relationship. The same applies to the subsequent drawings. 21-D shows the semiconductor package 110 in which the semiconductor chip 31 is bonded to the bonding land 114. FIG. As seen in FIGS. 21C and 21D, a solder resist film 115 is formed on the periphery of the mounting land 113 so as to overlap with the effective portion of the mounting land 113, that is, covered with the solder resist film 115. The part without it is narrowed. Further, the mounting land 113 is on the bottom surface of the recess, and even after the electroless Ni plating film 127 and the electroless Au plating film 128 are formed on the surface of the mounting land 113, the surface of the lowermost electroless Au plating film 128 is formed. Is lower than the surface of the solder resist film 115.

図22はインターポーザ基板111とパッケージ110とについてプローブ51の先端を実装ランド113に電気的に接触させて配線回路の検査をせんとする状態を示す図であり、 図22−Aは図20−Cのインターポーザ基板111についての図、図22−Bは図21−Dのパッケージ110についての図である。また、図22−Cは図22−Aのインターポーザ基板111および図22−Bのパッケージ110に共通するインターポーザ基板111のメッキされている実装ランド113の回りを部分拡大して示す図である。後述の図23に示すように、実装ランド113は0.5mmピッチで形成されており、実装ランド113のソルダーレジスト膜115が重なっていない部分、すなわち凹部となっている部分の径は275μmと小さい。それに応じてプローブ51も先端部の径が50μmで先端を尖らせた高価なものが使用されている。検査にはメッキされている実装ランド113へプローブ51の先端を正確に接触させることを要するが、インターポーザ基板111には実装ランド113が多数に設けられているので接触ミスを生じ易く、検査は慎重さが求められ時間を要する作業となっている。 FIG. 22 is a diagram showing a state in which the tip of the probe 51 is in electrical contact with the mounting land 113 for the interposer substrate 111 and the package 110, and the wiring circuit is inspected, and FIG. FIG. 22B is a diagram of the interposer substrate 111, and FIG. 22B is a diagram of the package 110 of FIG. 21-D. FIG. 22C is a partially enlarged view of the periphery of the mounting land 113 on which the interposer substrate 111 common to the interposer substrate 111 of FIG. 22A and the package 110 of FIG. 22B is plated. As shown in FIG. 23 to be described later, the mounting lands 113 are formed at a pitch of 0.5 mm, and the diameter of the portion of the mounting lands 113 where the solder resist film 115 does not overlap, that is, the portion that is a recess, is as small as 275 μm. . Correspondingly, an expensive probe 51 with a tip having a diameter of 50 μm and a sharp tip is used. Inspection requires that the tip of the probe 51 be brought into contact with the plated mounting land 113 accurately. However, since the mounting lands 113 are provided on the interposer substrate 111, contact mistakes are likely to occur, and inspection is careful. This is a time-consuming task.

上記は実装ランド113のピッチが0.5mmのインターポーザ基板111についての検査であるが、近い将来、実装ランド113のピッチは0.3mmとなることが予想されており、その時点における検査は極めて困難になることが考えられる。そのほか、実装ランド113のソルダーレジスト膜115が重なっていない有効な部分の面積が小さいので、インターポーザ基板111を配線基板に実装する場合の実装強度の確保も困難になっている。 The above is an inspection for the interposer substrate 111 having a pitch of the mounting lands 113 of 0.5 mm. In the near future, the pitch of the mounting lands 113 is expected to be 0.3 mm, and the inspection at that time is extremely difficult. It is possible to become. In addition, since the area of the effective portion where the solder resist film 115 of the mounting land 113 does not overlap is small, it is difficult to ensure the mounting strength when the interposer substrate 111 is mounted on the wiring substrate.

図23はインターポーザ基板111における配線112と実装ランド113の関係を示す図である。すなわち、図23−Aは図21−Cの再掲であり、図23−Bは、図22−Aの中央部の配線112とその両側の実装ランド113を示す部分拡大図である。図23−Bに見られるように、実装ランド113の有効な部分の径275μmを確保するために実装ランド113は径350μmとされている。また実装ランド113は0.5mmピッチで形成されているので、隣り合う実装ランド113の間隔は150μmとなっている。そして配線112の幅は50μmである。従ってライン・アンド・スペースを(50/50)とすると、隣り合う実装ランド113の間には配線112が1本しか布設し得ないことになる。 FIG. 23 is a diagram illustrating the relationship between the wiring 112 and the mounting land 113 in the interposer substrate 111. That is, FIG. 23-A is a reprint of FIG. 21-C, and FIG. 23-B is a partially enlarged view showing the wiring 112 at the center of FIG. 22-A and the mounting lands 113 on both sides thereof. As can be seen in FIG. 23-B, the mounting land 113 has a diameter of 350 μm in order to ensure a diameter of 275 μm of an effective portion of the mounting land 113. Since the mounting lands 113 are formed at a pitch of 0.5 mm, the interval between the adjacent mounting lands 113 is 150 μm. The width of the wiring 112 is 50 μm. Therefore, if the line and space is (50/50), only one wiring 112 can be laid between the adjacent mounting lands 113.

そのほか、インターポーザ基板111のアルミニウム(Al)からなる実装ランド113に半田バンプを形成する場合、実装ランド113に直接に半田バンプを設けると半田の鉛(Pb)成分が実装ランド113内へ侵入しAlを溶損するので、実装ランド113のAlを亜鉛(Zn)で置換するZn置換が行われるが、Znの置換度は内部配線の線種、容量によって変化するので、全ての実装ランド113においてZn置換度を一定にすることは困難である。従って別な方法として、実装ランド113の面にバリアーとしてチタン(Ti)薄膜および銅(Cu)薄膜を形成してから半田バンプを設けると言う方法も可能であるが、この方法は真空下における薄膜形成(例えばスパッタリング)を必要とするので製造コストを増大させる。 In addition, when solder bumps are formed on the mounting lands 113 made of aluminum (Al) of the interposer substrate 111, if the solder bumps are provided directly on the mounting lands 113, the lead (Pb) component of the solder penetrates into the mounting lands 113 and Al. Zn is replaced by replacing the Al in the mounting land 113 with zinc (Zn), but the degree of Zn replacement varies depending on the line type and capacitance of the internal wiring. It is difficult to keep the degree constant. Therefore, as another method, a method of providing a solder bump after forming a titanium (Ti) thin film and a copper (Cu) thin film as a barrier on the surface of the mounting land 113 is also possible. Since the formation (for example, sputtering) is required, the manufacturing cost is increased.

本発明は上述の問題に鑑みてなされ、部品検査用のプローブを原電極に接触させる操作が容易で検査コストを大幅に軽減することができ、かつ部品内の配線密度も増大させることが可能な電極およびその製造方法を提供することを課題とする。 The present invention has been made in view of the above-described problems. It is easy to operate a component inspection probe in contact with an original electrode, can greatly reduce the inspection cost, and can increase the wiring density in the component. It is an object to provide an electrode and a method for manufacturing the electrode.

上記の課題は請求項1、請求項5、請求項6、請求項8、請求項12、または請求項13の構成によって解決されるが、その解決手段を説明すれば次に示す如くである。   The above problem is solved by the structure of claim 1, claim 5, claim 6, claim 8, claim 12, or claim 13. The solution means will be described as follows.

請求項1の凸型電極は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストが塗布され硬化されて形成された導電性膜と、前記導電性膜に対し吸着型パラジウム触媒の存在下に形成された無電解ニッケルメッキ膜および重ねて形成された無電解金メッキ膜とからなり、前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされているものである。   The convex electrode according to claim 1 is a convex electrode formed by processing an original electrode of a component which is surrounded by an outer layer insulating film overlapping at a peripheral portion and becomes a bottom surface of a recess and whose effective portion is narrowed. A conductive film formed by applying and curing a paste in which ultrafine particles of silver or copper are dispersed on the effective portion of the original electrode and the outer insulating film overlapping the peripheral edge of the original electrode And an electroless nickel plating film formed in the presence of an adsorption-type palladium catalyst on the conductive film and an electroless gold plating film formed in an overlapping manner, and the surface level of the convex electrode is The projected area of the convex electrode on the principal plane of the component is the same as the surface of the outer insulating film overlapping at the peripheral edge or protruding from the surface of the outer insulating film, and the effective portion of the original electrode Larger than the area of Is shall.

このような凸型電極は、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出されており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、プローブを使用する配線回路の検査を極めて容易化させる。また凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に布設し得る配線本数を増やすことができる。   Such a convex electrode has a surface level of the convex electrode connected to the original electrode of the component equivalent to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or protruded from the surface of the outer insulating film. In addition, since the projected area of the convex electrode on the main plane of the component is larger than the area of the effective portion of the original electrode, the inspection of the wiring circuit using the probe is extremely facilitated. Further, since the area of the convex electrodes is large, the diameter of the original electrodes can be reduced, the distance between the original electrodes can be increased, and the number of wirings that can be laid between the original electrodes can be increased.

請求項1に従属する請求項2の凸型電極は、前記原電極の有効部分と前記導電性膜との間に、真空下の薄膜形成法によるチタン薄膜および銅薄膜が重ねて形成されているものである。
このような凸型電極は、チタン薄膜および銅薄膜が存在することによって、原電極の有効部分と導電性膜との間の導通抵抗が低い。
The convex electrode according to claim 2 subordinate to claim 1 is formed by overlapping a thin titanium film and a thin copper film by a thin film forming method under vacuum between the effective portion of the original electrode and the conductive film. Is.
Such a convex electrode has a low conduction resistance between the effective portion of the original electrode and the conductive film due to the presence of the titanium thin film and the copper thin film.

請求項1に従属する請求項3の凸型電極は、前記原電極の有効部分と前記導電性膜との間に、プライマーとして二酸化マンガン膜が形成されているものである。
このような凸型電極は、二酸化マンガン膜が存在することによって原電極の有効部分と導電性膜との接着性が大である。
The convex electrode according to claim 3, which is dependent on claim 1, has a manganese dioxide film formed as a primer between the effective portion of the original electrode and the conductive film.
Such a convex electrode has great adhesion between the effective portion of the original electrode and the conductive film due to the presence of the manganese dioxide film.

請求項2または請求項3に従属する請求項4の凸型電極は、前記原電極の有効部分と前記導電性膜との間に、前記チタン薄膜および前記銅薄膜と、前記二酸化マンガン膜とが重ねて形成されているものである。
このような凸型電極は、チタン薄膜および銅薄膜が存在することによって原電極の有効部分と二酸化マンガン膜との間の導通抵抗が低く、二酸化マンガン膜が存在することによって銅薄膜と導電性膜との接着性が大である。
The convex electrode according to claim 4 that is dependent on claim 2 or claim 3, wherein the titanium thin film, the copper thin film, and the manganese dioxide film are interposed between the effective portion of the original electrode and the conductive film. It is formed by overlapping.
Such a convex electrode has a low conduction resistance between the effective portion of the original electrode and the manganese dioxide film due to the presence of the titanium thin film and the copper thin film, and the copper thin film and the conductive film due to the presence of the manganese dioxide film. Adhesiveness is great.

請求項5の凸型電極は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、前記部品の前記原電極側の面に真空下の薄膜形成法によって形成されたチタン薄膜および重ねて形成された銅薄膜と、 前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して形成された銅メッキ膜と、前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去して露出された前記銅メッキ膜の全面および該銅メッキ膜の下の前記チタン薄膜と前記銅薄膜の端面に対し吸着型パラジウム触媒の存在下に形成された無電解ニッケルメッキ膜および重ねて形成された無電解金メッキ膜とからなり、前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされているものである。 The convex electrode according to claim 5 is a convex electrode formed by processing an original electrode of a part which is surrounded by an outer layer insulating film overlapping at a peripheral portion and becomes a bottom surface of a recess and whose effective portion is narrowed. A titanium thin film formed by a thin film forming method under vacuum on the surface of the component on the original electrode side and a copper thin film formed in an overlapping manner; an effective portion of the original electrode on the copper thin film; and the original electrode A copper plating film formed through a plating resist film on a portion corresponding to the outer insulating film overlapping at the peripheral edge of the plating resist film, the titanium thin film under the plating resist film, and the copper thin film An electroless nickel plating film formed in the presence of an adsorptive palladium catalyst on the entire surface of the copper plating film exposed by removing the copper, and the titanium thin film under the copper plating film and the end face of the copper thin film; The surface level of the convex electrode is equivalent to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or protrudes from the surface of the outer insulating film. The projected area of the convex electrode on the main plane of the component is larger than the area of the effective portion of the original electrode.

このような凸型電極は、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出されており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線の本数を増やすことができる。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成されていることから、凸型電極は極めて優れた耐食性を持つ。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。   Such a convex electrode has a surface level of the convex electrode connected to the original electrode of the component equivalent to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or protruded from the surface of the outer insulating film. In addition, since the projected area of the convex electrode on the main plane of the component is larger than the area of the effective portion of the original electrode, the inspection of the wiring circuit using the probe is extremely facilitated, and the convex electrode Therefore, the number of wires existing between the original electrodes can be increased by reducing the diameter of the original electrodes and increasing the distance between the original electrodes. In addition, since the convex electrode is mainly composed of a copper plating film, existing technology and equipment can be used for its production, and it is formed of a coating film made of a paste in which ultrafine particles of silver or copper are dispersed. Compared with a convex electrode, the cost is low. Further, since the electroless (Ni / Au) plating film is formed on the entire surface of the exposed copper plating film, the convex electrode has extremely excellent corrosion resistance. In addition, since the (Ti / Cu) thin film is not completely removed because of electroless plating, a (Ni / Au) plating film is formed on the remaining (Ti / Cu) thin film, and the residual (Ti / Cu) Cu) It is easy to confirm the thin film.

請求項6の凸型電極は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、前記部品の前記原電極側の面に真空下の薄膜形成法によって形成されたチタン薄膜および重ねて形成された銅薄膜と、 前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して形成された銅メッキ膜と、前記メッキレジスト膜の存在下に前記銅メッキ膜の上面に形成された電解ニッケルメッキ膜および重ねて形成された電解金メッキ膜と、前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜が除去されて露出された前記銅メッキ膜の側面および前記チタン薄膜と前記銅薄膜の端面を備えており、前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされているものである。 The convex electrode according to claim 6 is a convex electrode formed by processing an original electrode of a part which is surrounded by an outer insulating film which is overlapped at a peripheral portion and becomes a bottom surface of a recess and whose effective portion is narrowed. A titanium thin film formed by a thin film forming method under vacuum on the surface of the component on the original electrode side and a copper thin film formed in an overlapping manner; an effective portion of the original electrode on the copper thin film; and the original electrode A copper plating film formed through a plating resist film on a portion corresponding to the outer insulating film overlapping at the peripheral edge of the electrode, and an electrolysis formed on the upper surface of the copper plating film in the presence of the plating resist film A nickel plating film and an overlying electrolytic gold plating film; a side surface of the copper plating film exposed by removing the plating resist film and the titanium thin film and the copper thin film under the plating resist film; And end surfaces of the titanium thin film and the copper thin film, and the surface level of the convex electrode is equal to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or more than the surface of the outer insulating film The projected area of the convex electrode onto the main plane of the component is larger than the area of the effective portion of the original electrode.

このような凸型電極は、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出しており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線の本数を増やすことができる。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜が形成されていることから、製造プロセスは簡易化されるが凸型電極の耐食性においてやや劣る。 In such a convex electrode, the surface level of the convex electrode connected to the original electrode of the part is equivalent to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or protrudes from the surface of the outer insulating film. In addition, since the projected area of the convex electrode on the main plane of the component is larger than the area of the effective portion of the original electrode, the inspection of the wiring circuit using the probe is greatly facilitated, and the convex electrode Since the area is large, it is possible to increase the number of wires existing between the original electrodes by reducing the diameter of the original electrodes and increasing the distance between the original electrodes. In addition, since the convex electrode is mainly composed of a copper plating film, existing technology and equipment can be used for its production, and it is formed of a coating film made of a paste in which ultrafine particles of silver or copper are dispersed. Compared with a convex electrode, the cost is low. In this case, the convex electrode mainly composed of a copper plating film has an electrolytic (Ni / Au) plating film formed only on the upper surface of the copper plating film, so that the manufacturing process is simplified, but the corrosion resistance of the convex electrode. Slightly inferior.

請求項1、請求項5、または請求項6に従属する請求項7の凸型電極は、前記凸型電極の突出高さが前記原電極の面から3〜20μmの範囲にあるものである。
このような凸型電極は、原電極面が露出している凹部に埋め不足を発生させず、また部品を配線基板に実装した場合における部品と配線基板とのギャップを過大にすることもない。
The convex electrode according to claim 7, which is dependent on claim 1, claim 5, or claim 6, has a protruding height of the convex electrode in a range of 3 to 20 μm from the surface of the original electrode.
Such a convex electrode does not cause insufficient filling in the concave portion where the original electrode surface is exposed, and does not cause an excessive gap between the component and the wiring substrate when the component is mounted on the wiring substrate.

請求項8の凸型電極の製造方法は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストを塗付し加熱硬化させて導電性膜を形成する工程と、前記導電性膜に対し吸着型パラジウム触媒を塗付して無電解ニッケルメッキ膜を形成させ重ねて無電解金メッキ膜を形成させる工程とからなり、形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする方法である。   The method for manufacturing a convex electrode according to claim 8 is a method for manufacturing a convex electrode for processing an original electrode of a part surrounded by an outer insulating film overlapping at a peripheral portion to become a bottom surface of a recess and whose effective portion is narrowed. A method in which a paste in which ultrafine particles of silver or copper are dispersed is applied to an effective portion of the original electrode and the outer insulating film overlapping at a peripheral edge of the original electrode, and then heated and cured to be conductive. Forming the film, and forming the electroless gold plating film by applying an adsorptive palladium catalyst to the conductive film to form an electroless nickel plating film, and forming the convex mold Projecting area of the convex electrode on the main plane of the component with the surface level of the electrode being equivalent to the surface of the outer layer insulating film overlapping the peripheral edge of the original electrode or protruding from the surface of the outer layer insulating film The effective part of the original electrode A method for the large than the area.

このような凸型電極の製造方法は、部品の原電極と接続された凸型電極の表面レベルを外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、部品の主平面への凸型電極の投影面積を原電極の有効部分の面積より大にすることから、プローブを使用する配線回路の検査を極めて容易化させ、かつ凸型電極の面積が大であることから原電極の径を小として原電極間の間隔を大にし原電極間に布設し得る配線本数を増大させる。   Such a method for manufacturing a convex electrode is such that the surface level of the convex electrode connected to the original electrode of the part is equal to or more than the surface of the outer insulating film, and protrudes from the surface of the outer insulating film. Since the projected area of the convex electrode is made larger than the area of the effective portion of the original electrode, the inspection of the wiring circuit using the probe is greatly facilitated, and the area of the convex electrode is large. By reducing the diameter and increasing the distance between the original electrodes, the number of wires that can be laid between the original electrodes is increased.

請求項8に従属する請求項9の凸型電極の製造方法は、前記導電性膜を形成する工程の前に、前記原電極の有効部分に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程を挿入する方法である。
このような凸型電極の製造方法は、原電極の有効部分に対しチタン薄膜と銅薄膜を形成させてから導電性膜を形成させることにより、原電極の有効部分と導電性膜との間の導通抵抗を低下させる。
The method of manufacturing a convex electrode according to claim 9, which is dependent on claim 8, includes forming a titanium thin film on an effective portion of the original electrode by a thin film forming method under vacuum before the step of forming the conductive film. In this method, a step of forming a copper thin film is inserted.
Such a method for manufacturing a convex electrode is formed by forming a titanium thin film and a copper thin film on the effective portion of the original electrode, and then forming a conductive film, thereby forming a gap between the effective portion of the original electrode and the conductive film. Reduce conduction resistance.

請求項8に従属する請求項10の凸型電極の製造方法は、前記導電性膜を形成する工程の前に、前記原電極の有効部分にプライマーとして二酸化マンガン膜を形成する工程を挿入する方法である。
このような凸型電極の製造方法は、二酸化マンガン膜が原電極の有効部分と導電性膜との接着性を向上させる。
The method of manufacturing a convex electrode according to claim 10 that is dependent on claim 8 is a method of inserting a step of forming a manganese dioxide film as a primer in an effective portion of the original electrode before the step of forming the conductive film. It is.
In such a method for manufacturing a convex electrode, the manganese dioxide film improves the adhesion between the effective portion of the original electrode and the conductive film.

請求項9または請求項10に従属する請求項11の凸型電極の製造方法は、前記導電性膜を形成する工程の前に、前記原電極の有効部分に前記チタン薄膜および前記銅薄膜を形成する工程と、重ねて前記二酸化マンガン膜を形成する工程とを挿入する方法である。
このような凸型電極の製造方法は、チタン薄膜および銅薄膜が原電極の有効部分と二酸化マンガン膜との間の導通抵抗を低下させ、二酸化マンガン膜が銅薄膜に対する導電性膜の接着性を向上させる。
The method for manufacturing a convex electrode according to claim 11 that depends on claim 9 or claim 10 forms the titanium thin film and the copper thin film on an effective portion of the original electrode before the step of forming the conductive film. And a step of forming the manganese dioxide film in an overlapping manner.
In such a method of manufacturing a convex electrode, the titanium thin film and the copper thin film reduce the conduction resistance between the effective portion of the original electrode and the manganese dioxide film, and the manganese dioxide film improves the adhesion of the conductive film to the copper thin film. Improve.

請求項12の凸型電極の製造方法は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、前記部品の前記原電極側の面に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程と、前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して銅メッキ膜を形成する工程と、前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去する工程と、露出された前記銅メッキ膜の全面および該銅メッキ膜の下の前記チタン薄膜と前記銅薄膜の端面に吸着型パラジウム触媒を塗付して無電解ニッケルメッキ膜を形成し重ねて無電解金メッキ膜を形成する工程とからなり、形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする方法である。 The method for producing a convex electrode according to claim 12 is a method for producing a convex electrode for processing an original electrode of a part surrounded by an outer insulating film overlapping at a peripheral portion to become a bottom surface of a recess and whose effective portion is narrowed. A method of forming a copper thin film by forming a titanium thin film on a surface of the component on the side of the original electrode by a thin film forming method under a vacuum, and forming an effective portion of the original electrode on the copper thin film; A step of forming a copper plating film via a plating resist film on a portion corresponding to the outer insulating film overlapping the peripheral edge of the original electrode; the plating resist film and the titanium thin film under the plating resist film; Step of removing the copper thin film, and electroless nickel plating by applying an adsorption-type palladium catalyst to the whole exposed copper plating film and the titanium thin film under the copper plating film and the end face of the copper thin film And forming an electroless gold plating film on the surface, and the surface level of the convex electrode to be formed is equivalent to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or the outer insulating layer. In this method, the projected area of the convex electrode on the main plane of the component is made larger than the area of the effective portion of the original electrode.

このような凸型電極の製造方法は、部品の原電極と接続された凸型電極の表面のレベルを外層絶縁膜の面のレベルと同等または外層絶縁膜の面よりも突出させ、部品の主平面への凸型電極の投影面積を原電極の有効部分の面積より大にすることから、プローブを使用する配線回路の検査を極めて容易化させる。また凸型電極の面積が大であることから原電極の径を小として原電極間の間隔を大にして原電極間に存在させる配線の本数を増大させることが可能である。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成されていることから凸型電極は極めて優れた耐食性を有する。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。   In such a method for manufacturing a convex electrode, the level of the surface of the convex electrode connected to the original electrode of the component is equal to the level of the surface of the outer insulating film or protrudes from the surface of the outer insulating film, thereby Since the projected area of the convex electrode on the plane is made larger than the area of the effective portion of the original electrode, the inspection of the wiring circuit using the probe is greatly facilitated. Further, since the area of the convex electrode is large, it is possible to increase the number of wirings existing between the original electrodes by reducing the diameter of the original electrodes and increasing the distance between the original electrodes. In addition, since the convex electrode is mainly composed of a copper plating film, existing technology and equipment can be used for its production, and it is formed of a coating film made of a paste in which ultrafine particles of silver or copper are dispersed. Compared with a convex electrode, the cost is low. Further, since the electroless (Ni / Au) plating film is formed on the entire surface of the exposed copper plating film, the convex electrode has extremely excellent corrosion resistance. In addition, since the (Ti / Cu) thin film is not completely removed because of electroless plating, a (Ni / Au) plating film is formed on the remaining (Ti / Cu) thin film, and the residual (Ti / Cu) Cu) It is easy to confirm the thin film.

請求項13の凸型電極の製造方法は、周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、前記部品の前記原電極側の面に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程と、前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して銅メッキ膜を形成する工程と、前記メッキレジスト膜の存在下に前記銅メッキ膜の上面に電解ニッケルメッキ膜を形成し重ねて電解金メッキ膜を形成する工程と、前記メッキレジスト膜と該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去する工程とからなり、形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする方法である。 The method for producing a convex electrode according to claim 13 is a method for producing a convex electrode for processing an original electrode of a part surrounded by an outer insulating film that is overlapped at a peripheral portion to become a bottom surface of a recess and whose effective portion is narrowed. A method of forming a copper thin film by forming a titanium thin film on a surface of the component on the side of the original electrode by a thin film forming method under a vacuum, and forming an effective portion of the original electrode on the copper thin film; A step of forming a copper plating film through a plating resist film on a portion corresponding to the outer layer insulating film overlapping the peripheral edge of the original electrode, and electrolysis on the upper surface of the copper plating film in the presence of the plating resist film Forming a nickel plating film and forming an electrolytic gold plating film; and removing the titanium thin film and the copper thin film under the plating resist film and the plating resist film. Projecting area of the convex electrode on the main plane of the component with the surface level of the electrode being equivalent to the surface of the outer layer insulating film overlapping the peripheral edge of the original electrode or protruding from the surface of the outer layer insulating film Is larger than the area of the effective portion of the original electrode.

このような凸型電極の製造方法は、部品の原電極と接続された凸型電極の表面のレベルを外層絶縁膜の面のレベルと同等または外層絶縁膜の面よりも突出させ、部品の主平面への凸型電極の投影面積を原電極の有効部分の面積より大にすることから、プローブを使用する配線回路の検査を極めて容易化させる。また凸型電極の面積が大であることから原電極の径を小として原電極間の間隔を大にして原電極間に存在させる配線の本数を増大させることが可能である。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜を形成させるので製造プロセスは簡易化されるが凸型電極の耐食性はやや劣るものとなる。 In such a method for manufacturing a convex electrode, the level of the surface of the convex electrode connected to the original electrode of the component is equal to the level of the surface of the outer insulating film or protrudes from the surface of the outer insulating film, thereby Since the projected area of the convex electrode on the plane is made larger than the area of the effective portion of the original electrode, the inspection of the wiring circuit using the probe is greatly facilitated. Further, since the area of the convex electrode is large, it is possible to increase the number of wirings existing between the original electrodes by reducing the diameter of the original electrodes and increasing the distance between the original electrodes. In addition, since the convex electrode is mainly composed of a copper plating film, existing technology and equipment can be used for its production, and it is formed of a coating film made of a paste in which ultrafine particles of silver or copper are dispersed. Compared with a convex electrode, the cost is low. In this case, the convex electrode mainly composed of the copper plating film forms an electrolytic (Ni / Au) plating film only on the upper surface of the copper plating film, so that the manufacturing process is simplified, but the corrosion resistance of the convex electrode is slightly inferior. It becomes.

請求項8、請求項12、または請求項13に従属する請求項14の凸型電極の製造方法は、形成される前記凸型電極の突出高さを、前記原電極の面から3〜20μmの範囲とする方法である。
このような凸型電極の製造方法は、原電極面が露出している凹部に埋め不足を発生させず、また部品を配線基板に実装した場合における部品と配線基板とのギャップを過大にすることもない。
The method for producing a convex electrode according to claim 14, which is dependent on claim 8, claim 12, or claim 13, wherein the protruding height of the formed convex electrode is 3 to 20 μm from the surface of the original electrode. It is a method of setting a range.
Such a method of manufacturing a convex electrode does not cause insufficient filling in the concave portion where the original electrode surface is exposed, and makes the gap between the component and the wiring substrate excessive when the component is mounted on the wiring substrate. Nor.

請求項1の凸型電極によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出されており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされていることから、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径の太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また、凸型電極の面積を大にするので原電極の径を小にすることができ、そのことによって原電極間の間隔を大にして原電極間に布設する配線の本数を増大させて配線密度を高めることができる。従って、部品の小型化に大きく寄与するほか、部品の大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。   According to the convex electrode of claim 1, the surface level of the convex electrode connected to the original electrode of the component is equal to or more than the surface of the outer insulating film overlapping the peripheral edge of the original electrode. Since the projected area of the convex electrode on the main plane of the component is larger than the area of the effective part of the original electrode, the tip of the probe for inspecting the wiring circuit can make multipoint contact A crown type, a contact with a wide area, or a tip having a large diameter can be used, which greatly reduces the cost of the inspection equipment and facilitates the inspection work. Also, since the area of the convex electrode is increased, the diameter of the original electrode can be reduced, thereby increasing the number of wirings laid between the original electrodes by increasing the distance between the original electrodes. The density can be increased. Therefore, it greatly contributes to the miniaturization of parts and enables a significant cost reduction of parts. Furthermore, since convex electrodes having a large diameter and a large area are used for mounting components, mounting work is facilitated and mounting reliability is improved.

請求項2の凸型電極によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜が存在するので、原電極の有効部分と導電性膜と間の導通抵抗が一層低い凸型電極を備えた部品が得られる。 According to the convex electrode of claim 2, since the Ti thin film and the Cu thin film exist between the effective portion of the original electrode and the conductive film, the conduction resistance between the effective portion of the original electrode and the conductive film is further increased. Parts with low convex electrodes are obtained.

請求項3の凸型電極によれば、原電極の有効部分と導電性膜との間に二酸化マンガン(MnO2 )膜が存在するので、原電極の有効部分に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。 According to the convex electrode of claim 3, since the manganese dioxide (MnO 2 ) film exists between the effective part of the original electrode and the conductive film, the conductive film is strong against the effective part of the original electrode. A part having bonded convex electrodes is obtained.

請求項4の凸型電極によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜とMnO2 膜とが存在するので、原電極の有効部分とMnO2 膜との間の導通抵抗が低く、Cu薄膜と導電性膜との間にMnO2 膜が存在するのでCu薄膜に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。 According to the convex electrode of claim 4, since the Ti thin film, the Cu thin film, and the MnO 2 film exist between the effective portion of the original electrode and the conductive film, the effective portion of the original electrode and the MnO 2 film Since the MnO 2 film is present between the Cu thin film and the conductive film, a component having a convex electrode in which the conductive film is firmly bonded to the Cu thin film is obtained.

請求項5の凸型電極によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出しており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされているので、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線本数を線本数を増大させて配線密度を高めることができ、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成されていることから、凸型電極は極めて優れた耐食性を持ち信頼性の高い部品を与える。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。   According to the convex electrode of claim 5, the surface level of the convex electrode connected to the original electrode of the part is equal to or more than the surface of the outer insulating film overlapping the peripheral edge of the original electrode. Since the projected area of the convex electrode on the main plane of the part is larger than the area of the effective part of the original electrode, the inspection of the wiring circuit using the probe is extremely facilitated and the convex type Since the electrode area is large, the diameter of the original electrode is reduced, the distance between the original electrodes is increased, the number of wires existing between the original electrodes can be increased, and the wiring density can be increased. It contributes greatly to cost reduction and enables significant cost reduction. In addition, since the convex electrode is mainly composed of a copper plating film, existing technology and equipment can be used for its production, and it is formed of a coating film made of a paste in which ultrafine particles of silver or copper are dispersed. Compared with a convex electrode, the cost is low. Further, since the electroless (Ni / Au) plating film is formed on the entire surface of the exposed copper plating film, the convex electrode has a very excellent corrosion resistance and gives a highly reliable part. In addition, since the (Ti / Cu) thin film is not completely removed because of electroless plating, a (Ni / Au) plating film is formed on the remaining (Ti / Cu) thin film, and the residual (Ti / Cu) Cu) It is easy to confirm the thin film.

請求項6の凸型電極によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出しており、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大とされているので、プローブを使用する配線回路の検査が極めて容易化され、かつ凸型電極の面積が大あることから原電極の径を小とし原電極間の間隔を大にして原電極間に存在する配線本数を線本数を増大させて配線密度を高めることができ、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。また凸型電極が銅メッキ膜を主体とするものであるから、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗膜で形成された凸型電極と比較し低コストである。また、メッキレジスト膜を除去することなくCuメッキ膜の上面のみに電解(Ni/Au)メッキ膜が形成されているので、この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜を形成させるので(Ni/Au)メッキ膜が全面に形成されているものと比較して製造プロセスは簡易化されるが凸型電極の耐食性はやや劣るものとなる。 According to the convex electrode of claim 6, the surface level of the convex electrode connected to the original electrode of the component is equal to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or more than the surface of the outer insulating film. Since the projected area of the convex electrode on the main plane of the part is larger than the area of the effective part of the original electrode, the inspection of the wiring circuit using the probe is extremely facilitated and the convex type Since the electrode area is large, the diameter of the original electrode is reduced, the distance between the original electrodes is increased, the number of wires existing between the original electrodes can be increased, and the wiring density can be increased. It contributes greatly to cost reduction and enables significant cost reduction. In addition, since the convex electrode is mainly composed of a copper plating film, existing technology and equipment can be used for its production, and it is formed of a coating film made of a paste in which ultrafine particles of silver or copper are dispersed. Compared with a convex electrode, the cost is low. Further, since the electrolytic (Ni / Au) plating film is formed only on the upper surface of the Cu plating film without removing the plating resist film, the convex electrode mainly composed of the copper plating film in this case is the copper plating film. Since the electrolytic (Ni / Au) plating film is formed only on the upper surface, the manufacturing process is simplified as compared with the case where the (Ni / Au) plating film is formed on the entire surface, but the corrosion resistance of the convex electrode is slightly inferior. It will be a thing.

請求項7の凸型電極によれば、凸型電極の突出高さが原電極の面から3〜20μmの範囲にあるので、原電極の有効部分が存在する凹部に埋め不足を発生させず、また部品を配線基板に実装した場合における部品と配線基板とのギャップを過大にすることもない。   According to the convex electrode of claim 7, since the protruding height of the convex electrode is in the range of 3 to 20 μm from the surface of the original electrode, it does not cause insufficient filling in the concave portion where the effective portion of the original electrode exists, In addition, when the component is mounted on the wiring board, the gap between the component and the wiring board is not excessive.

請求項8の凸型電極の製造方法によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大にするので、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径も太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また凸型電極の面積を大にするので原電極の径を小とすることができ、原電極の間隔を大にして原電極間に布設する配線本数を増大させることにより配線密度を高めることができることから、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。   According to the method for manufacturing a convex electrode according to claim 8, the surface level of the convex electrode connected to the original electrode of the component is equivalent to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or the outer insulating film. Since the projected area of the convex electrode on the main plane of the part is larger than the area of the effective part of the original electrode, the tip of the probe for inspecting the wiring circuit is a crown type that can make multipoint contact Can be used, those that can be contacted over a wide area, and those having a large tip diameter, which can greatly reduce the cost of inspection equipment and facilitate inspection work. Further, since the area of the convex electrode is increased, the diameter of the original electrode can be reduced, and the wiring density can be increased by increasing the number of wirings laid between the original electrodes by increasing the distance between the original electrodes. As a result, it contributes greatly to miniaturization of parts and enables a significant cost reduction. Furthermore, since convex electrodes having a large diameter and a large area are used for mounting components, mounting work is facilitated and mounting reliability is improved.

請求項9の凸型電極の製造方法によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜が形成させるので、原電極の有効部分と導電性膜と間の導通抵抗の低い凸型電極を有する部品が得られる。   According to the method for manufacturing a convex electrode of claim 9, since the Ti thin film and the Cu thin film are formed between the effective portion of the original electrode and the conductive film, the conduction between the effective portion of the original electrode and the conductive film. A component having a convex electrode with low resistance is obtained.

請求項10の凸型電極の製造方法によれば、原電極の有効部分と導電性膜との間にプライマーとしてMnO2 膜を形成させるので、原電極の有効部分に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。 According to the method for producing a convex electrode of claim 10, since the MnO 2 film is formed as a primer between the effective portion of the original electrode and the conductive film, the conductive film is strong against the effective portion of the original electrode. A component having a convex electrode adhered to the substrate is obtained.

請求項11の凸型電極の製造方法によれば、原電極の有効部分と導電性膜との間にTi薄膜およびCu薄膜を形成し、かつその上にMnO2 膜を形成させるるので、原電極の有効部分とMnO2 膜との間はTi薄膜およびCu薄膜によって導通抵抗が低く、Cu薄膜と導電性膜との間はMnO2 膜が存在するのでCu薄膜に対して導電性膜が強固に接着した凸型電極を有する部品が得られる。 According to the method for manufacturing a convex electrode according to claim 11, since the Ti thin film and the Cu thin film are formed between the effective portion of the original electrode and the conductive film, and the MnO 2 film is formed thereon, The conductive portion between the effective portion of the electrode and the MnO 2 film has low conduction resistance due to the Ti thin film and the Cu thin film, and the MnO 2 film exists between the Cu thin film and the conductive film, so that the conductive film is strong against the Cu thin film. A component having a convex electrode adhered to the substrate is obtained.

請求項12の凸型電極の製造方法によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大にするので、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径も太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また凸型電極の面積を大にするので原電極の径を小とすることができ、原電極の間隔を大にして原電極間に布設する配線本数を増大させることにより配線密度を高めることができることから、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。そして、凸型電極は主としてCuメッキ膜で形成しているので、その製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗布膜で形成された凸型電極と比較し低コストである。また露出された銅メッキ膜の全面に無電解(Ni/Au)メッキ膜を形成させるので、凸型電極は極めて優れた耐食性を持ち信頼性の高い部品を与える。また、無電解メッキしているので(Ti/Cu)薄膜の除去が不完全な場合、残留している(Ti/Cu)薄膜にも(Ni/Au)メッキ膜が形成され、残留(Ti/Cu)薄膜の確認が容易である。 According to the method for manufacturing a convex electrode according to claim 12, the surface level of the convex electrode connected to the original electrode of the component is equivalent to the surface of the outer insulating film overlapping the peripheral edge portion of the original electrode or the outer insulating film. Since the projected area of the convex electrode on the main plane of the part is larger than the area of the effective part of the original electrode, the tip of the probe for inspecting the wiring circuit is a crown type that can make multipoint contact Can be used, those that can be contacted over a wide area, and those having a large tip diameter, which can greatly reduce the cost of inspection equipment and facilitate inspection work. Further, since the area of the convex electrode is increased, the diameter of the original electrode can be reduced, and the wiring density can be increased by increasing the number of wirings laid between the original electrodes by increasing the distance between the original electrodes. As a result, it contributes greatly to miniaturization of parts and enables a significant cost reduction. Furthermore, since convex electrodes having a large diameter and a large area are used for mounting components, mounting work is facilitated and mounting reliability is improved. Since the convex electrode is mainly formed of a Cu plating film, the existing technology and equipment can be used for its manufacture, and it is formed of a coating film made of a paste in which ultrafine particles of silver or copper are dispersed. Compared with a convex electrode, the cost is low. Further, since an electroless (Ni / Au) plating film is formed on the entire surface of the exposed copper plating film, the convex electrode provides a highly reliable component having extremely excellent corrosion resistance. In addition, since the (Ti / Cu) thin film is not completely removed because of electroless plating, a (Ni / Au) plating film is formed on the remaining (Ti / Cu) thin film, and the residual (Ti / Cu) Cu) It is easy to confirm the thin film.

請求項13の凸型電極の製造方法によれば、部品の原電極と接続された凸型電極の表面レベルが原電極の周縁部で重なっている外層絶縁膜の面と同等または外層絶縁膜の面よりも突出させ、かつ部品の主平面への凸型電極の投影面積が原電極の有効部分の面積より大にするので、配線回路を検査するプローブの先端は多点接触が可能なクラウン型のものや広い面積での接触が可能なもの、先端部の径も太いものを使用することができ、検査用機器のコストを大幅に低減すると共に、検査の作業を容易化させる。また凸型電極の面積を大にするので原電極の径を小とすることができ、原電極の間隔を大にして原電極間に布設する配線本数を増大させることにより配線密度を高めることができることから、部品の小型化に大きく寄与し大幅なコストダウンを可能にする。更には、径が大で面積の広い凸型電極が部品の実装に使用されるので実装作業が容易化され実装の信頼性が高められる。そして、凸型電極は主としてCuメッキ膜で形成しているのでその製造に既存の技術および設備の利用が可能であり、銀または銅の超微粒子を分散させたペーストからの塗布膜で形成された凸型電極と比較し低コストである。また、メッキレジスト膜を除去することなくCuメッキ膜の上面のみに電解(Ni/Au)メッキ膜が形成されているので、この場合の銅メッキ膜を主体とする凸型電極は銅メッキ膜の上面のみに電解(Ni/Au)メッキ膜を形成させるので(Ni/Au)メッキ膜が全面に形成されているものと比較して製造プロセスを簡易化させるが凸型電極の耐食性はやや劣るものとなる。 According to the method for manufacturing a convex electrode according to claim 13, the surface level of the convex electrode connected to the original electrode of the component is equal to the surface of the outer insulating film overlapping the peripheral edge of the original electrode or the outer insulating film is Since the projected area of the convex electrode on the main plane of the part is larger than the area of the effective part of the original electrode, the tip of the probe for inspecting the wiring circuit is a crown type that can make multipoint contact Can be used, those that can be contacted over a wide area, and those having a large tip diameter, which can greatly reduce the cost of inspection equipment and facilitate inspection work. Further, since the area of the convex electrode is increased, the diameter of the original electrode can be reduced, and the wiring density can be increased by increasing the number of wirings laid between the original electrodes by increasing the distance between the original electrodes. As a result, it contributes greatly to miniaturization of parts and enables a significant cost reduction. Furthermore, since convex electrodes having a large diameter and a large area are used for mounting components, mounting work is facilitated and mounting reliability is improved. Since the convex electrode is mainly formed of a Cu plating film, the existing technology and equipment can be used for its production, and it is formed of a coating film from a paste in which ultrafine particles of silver or copper are dispersed. Low cost compared to convex electrodes. Further, since the electrolytic (Ni / Au) plating film is formed only on the upper surface of the Cu plating film without removing the plating resist film, the convex electrode mainly composed of the copper plating film in this case is the copper plating film. Since the electrolytic (Ni / Au) plating film is formed only on the upper surface, the manufacturing process is simplified compared to the case where the (Ni / Au) plating film is formed on the entire surface, but the corrosion resistance of the convex electrode is slightly inferior. It becomes.

請求項14の凸型電極の製造方法によれば、形成させる凸型電極の突出高さを、原電極の面から3〜20μmの範囲とするので、原電極の有効部分が露出している凹部の埋め込みが不足することはなく、また、凸型電極を備えた部品を配線基板に実装した時に、部品と配線基板とのギャップが過大になることもない。   According to the method for producing a convex electrode according to claim 14, since the protruding height of the convex electrode to be formed is in the range of 3 to 20 μm from the surface of the original electrode, the concave portion in which the effective portion of the original electrode is exposed. The gap between the component and the wiring substrate does not become excessive when a component having a convex electrode is mounted on the wiring substrate.

本発明の凸型電極は、上述したように、部品の原電極がその周縁部で重なっている外層絶縁膜によって囲われて有効部分すなわち露出部分が凹所の底面となり、有効部分の面積が原電極の面積より狭められている場合に、原電極の有効部分および原電極の周縁部で重なっている外層絶縁膜に処理加工して凸状電極としたものである。なお、ここに言う部品とはインターポーザ基板や配線基板のほか、内部配線回路に接続された外部電極を有する部品を含む。 As described above, the convex electrode of the present invention is surrounded by the outer insulating film in which the original electrode of the component overlaps at the peripheral portion thereof, and the effective portion, that is, the exposed portion becomes the bottom surface of the recess, and the area of the effective portion is the original. When the area is smaller than the area of the electrode, the outer layer insulating film overlapping the effective portion of the original electrode and the peripheral portion of the original electrode is processed into a convex electrode. In addition to the interposer substrate and the wiring substrate, the component referred to here includes a component having an external electrode connected to the internal wiring circuit.

部品の原電極は、その周縁部で重なっている外層絶縁膜によって有効部分の面積が狭められると共に凹部の底面となっているので、その凹部を埋めるように、原電極の有効部分と原電極の周縁部で重なっている外層絶縁膜とに、Agまたは銅の超微粒子を分散させたペーストを印刷、転写、噴射、その他の方法によって適用する。そして、加熱硬化させて形成される導電性膜には耐食性を与えるために、吸着型Pd触媒を塗布して無電解Niメッキ膜、続いて無電解Auメッキ膜を形成させる。   The original electrode of the part is narrowed by the outer layer insulating film overlapped at the periphery thereof, and the area of the effective portion is the bottom of the recess, so that the effective portion of the original electrode and the original electrode are filled so as to fill the recess. A paste in which ultrafine particles of Ag or copper are dispersed is applied to the outer insulating film overlapping at the periphery by printing, transferring, spraying, or other methods. Then, in order to give corrosion resistance to the conductive film formed by heat curing, an adsorption type Pd catalyst is applied to form an electroless Ni plating film and subsequently an electroless Au plating film.

その一例を図によって概念的に示すと、図1−Aは原電極13がその周縁部で重なっている外層絶縁膜15によって囲われて有効部分13eすなわち露出部分が凹所の底面となり、有効部分13eの面積が原電極13の面積より狭められている部品11を示す。図1−Bは原電極13の有効部分13eと原電極13の周縁部で重なっている外層絶縁膜15との上にAgまたはCuの超微粒子を分散させたペーストを塗布し硬化させて形成させた導電性膜25を示す。そして図1−Cはその導電性膜25に吸着型Pd触媒を塗付して無電解Niメッキ膜27および無電解Auメッキ膜28を形成させたものである。このようにして得られる凸型電極29の表面のレベルは原電極13の周縁部で重なっている外層絶縁膜15の面と同等または外層絶縁膜15の面よりも突出しており、かつ部品11の主平面への凸型電極29の投影面積は原電極13の有効部分13eの面積よりも拡げられている。 An example is conceptually shown in FIG. 1A. FIG. 1A shows an effective portion 13e, that is, an exposed portion that is surrounded by an outer layer insulating film 15 in which the original electrode 13 overlaps at the peripheral edge thereof, and the effective portion 13e. The part 11 in which the area 13e is narrower than the area of the original electrode 13 is shown. FIG. 1-B shows a case where a paste in which ultrafine particles of Ag or Cu are dispersed is applied and cured on the effective portion 13e of the original electrode 13 and the outer insulating film 15 overlapping at the peripheral edge of the original electrode 13. The conductive film 25 is shown. FIG. 1C shows an electroless Ni plating film 27 and an electroless Au plating film 28 formed by applying an adsorption type Pd catalyst to the conductive film 25. The level of the surface of the convex electrode 29 obtained in this way is equivalent to the surface of the outer insulating film 15 overlapping at the peripheral edge of the original electrode 13 or protrudes from the surface of the outer insulating film 15, and The projected area of the convex electrode 29 on the main plane is larger than the area of the effective portion 13 e of the original electrode 13.

上記のAgまたはCuの超微粒子を分散させたペーストとは、その一例を挙げれば、導電性が大きいAgまたはCuの粒子径が5〜10nmである超微粒子を、バインダーとなる熱硬化性樹脂と硬化剤とを有機溶媒に溶解させた溶液に分散させてペースト状としたものである(例えば特開2002−324966号公報を参照。)。このようにAgまたはCuの超微粒子を分散させたペーストを凹所となっている原電極の有効部分およびその周縁部で重なっている外層絶縁膜に適用することにより、原電極上の凹所に空隙を残すことなくペーストが充填される。そして、そのペーストを熱硬化させることにより導電性膜が原電極上の凹所を埋め、凹所の外周部の外層絶縁膜上まで拡がった状態で形成される。上記においてバインダーとなる熱硬化性樹脂には、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、その他の公知の熱硬化性樹脂を使用することができる。 As an example of the paste in which the ultrafine particles of Ag or Cu are dispersed, the ultrafine particles having a highly conductive Ag or Cu particle diameter of 5 to 10 nm are used as a thermosetting resin as a binder. A curing agent is dispersed in a solution in an organic solvent to form a paste (see, for example, JP-A-2002-324966). By applying the paste in which ultrafine particles of Ag or Cu are dispersed in this way to the effective portion of the original electrode that is the recess and the outer insulating film that overlaps the peripheral portion thereof, the paste on the original electrode is formed. The paste is filled without leaving any voids. Then, the paste is thermally cured, so that the conductive film fills the recess on the original electrode, and is formed in a state of spreading to the outer insulating film on the outer periphery of the recess. In the above, epoxy resin, phenol resin, urethane resin, silicone resin, and other known thermosetting resins can be used as the thermosetting resin as a binder.

AgまたはCuの超微粒子を分散させたペーストは印刷、転写、吹き付け、その他の公知の技術によって部品の電極面に適用することができる。そして適用後は加熱し熱硬化性樹脂を熱硬化させて導電性膜を形成させる。この時の塗付厚さは、ペースト状態で7〜10μm、硬化後の厚さは3〜5μmとすることが望ましい。すなわち、硬化後の厚さを3μm未満とすると、電極の凹所を埋めることが困難になり、硬化後の厚さが5μmを超えるほど、部品を配線基板に実装した場合の部品と配線基板とのギャップを拡大させるようになるからである。勿論、厚さを3〜5μmに限定するものではなく、ギャップを大きくしてもよい場合には硬化後の導電性膜の厚さを例えば20μm程度にしてもよい。 The paste in which ultrafine particles of Ag or Cu are dispersed can be applied to the electrode surface of the component by printing, transferring, spraying, or other known techniques. And after application, it heats and thermosets a thermosetting resin and forms a conductive film. The coating thickness at this time is preferably 7 to 10 μm in a paste state, and the thickness after curing is preferably 3 to 5 μm. That is, if the thickness after curing is less than 3 μm, it becomes difficult to fill in the recesses of the electrodes, and as the thickness after curing exceeds 5 μm, the component and the wiring substrate when the component is mounted on the wiring substrate This is because the gap between the two becomes wider. Of course, the thickness is not limited to 3 to 5 μm, and when the gap may be increased, the thickness of the conductive film after curing may be about 20 μm, for example.

また上記において、導電性膜の面に無電解Niメッキ膜と無電解Auメッキ膜を形成するのは、形成した導電性膜の酸化を防ぐためである。インターポーザ基板の電極は一般にはAlありPd触媒によって溶損するので、無電解Niメッキ、無電解Auメッキを施す場合には、あらかじめAl電極をZnで置換しておくことを要するが、本発明においては、AgまたはCuの超微粒子を分散させたペーストによる導電性膜に形成させるので、Zn置換不要である。 In the above, the electroless Ni plating film and the electroless Au plating film are formed on the surface of the conductive film in order to prevent oxidation of the formed conductive film. Since the electrode of the interposer substrate is generally melted by the Pd catalyst with Al, when electroless Ni plating or electroless Au plating is applied, it is necessary to replace the Al electrode with Zn in advance. Since the conductive film is formed of a paste in which ultrafine particles of Ag or Cu are dispersed, Zn substitution is unnecessary.

上記においては原電極の露出部分である有効部分に直接にAgまたはCuの超微粒子を分散させたペーストを適用して導電性膜を形成する場合を説明したが、原電極の有効部分と形成させる導電性膜との間の導通抵抗を下げたい場合には、導電性膜を形成させる前に、真空下の薄膜形成法によって原電極の有効部分の面にTi薄膜を形成し、重ねてCu薄膜を形成させてもよい。真空下の薄膜形成法としてはスパッタリング法、真空蒸着法、化学的気相析出(CVD)法など、一般に知られている方法が採用される。   In the above description, the case where the conductive film is formed by directly applying the paste in which the ultrafine particles of Ag or Cu are dispersed to the effective portion which is the exposed portion of the original electrode has been described. When it is desired to lower the conduction resistance between the conductive film, a Ti thin film is formed on the surface of the effective portion of the original electrode by a thin film formation method under vacuum before forming the conductive film, and the Cu thin film is overlaid. May be formed. As a method for forming a thin film under vacuum, generally known methods such as sputtering, vacuum deposition, and chemical vapor deposition (CVD) are employed.

そのほか、原電極の有効部分と導電性膜との接着性を向上させるために、原電極の有効部分の面にあらかじめプライマーとしてMnO2 膜を形成しておいてから導電性膜を形成するようにしてもよい。MnO2 膜はMnO2 の微粒子を有機溶媒に分散させたペースト状の分散液を塗布し、MnO2 を焼結して得られる膜が使用される。
更には、原電極の有効部分にTi薄膜およびCu薄膜を形成し、そのCu薄膜の上に二酸化マンガン膜を形成させてから導電性膜を形成するようにしてもよい。このような構成とすることにより、原電極の有効部分とMnO2 膜との間の導通抵抗を低下させ、かつCu薄膜と導電性膜との間の接着性を向上させることが可能である。
In addition, in order to improve the adhesion between the effective portion of the original electrode and the conductive film, a conductive film is formed after a MnO 2 film is previously formed as a primer on the surface of the effective portion of the original electrode. May be. As the MnO 2 film, a film obtained by applying a paste-like dispersion liquid in which fine particles of MnO 2 are dispersed in an organic solvent and sintering MnO 2 is used.
Further, a Ti thin film and a Cu thin film may be formed on the effective portion of the original electrode, and a manganese dioxide film may be formed on the Cu thin film, and then the conductive film may be formed. With such a configuration, it is possible to reduce the conduction resistance between the effective portion of the original electrode and the MnO 2 film and improve the adhesion between the Cu thin film and the conductive film.

上記においては、凹所の底面となっている原電極の露出部分である有効部分に導性膜を形成して凸型電極を製造する場合を説明したが、凹所の底面となっている原電極の有効部分に電解(電気)メッキ法によってCuメッキ膜を形成して凸型電極とすることもできる。すなわち図2、 図3はCuメッキ膜によって凸型電極を形成する方法を概念的に示す図である。 図2−Aは図1−Aと同様 であり、部品11の原電極13がその周縁部で重なっている外層絶縁膜15によって囲われて原電極の露出部分である有効部分13eが凹所の底面となり、有効部分13eの面積が原電極13の面積より狭められているものである。図2−Bは原電極13の有効部分13e、およびその外側の外層絶縁膜15の全面に、真空下の薄膜形成方法によってTi薄膜53を形成した状態、図2−CはTi薄膜53上に重ねてCu薄膜54を形成した状態、図2−DはCu薄膜54上の原電極13にほぼ対応する部分を開口部55hとして残し、それ以外の部分にメッキレジスト膜55を形成させた状態を示す。   In the above description, the case where the conductive film is formed on the effective portion that is the exposed portion of the original electrode that is the bottom surface of the recess to manufacture the convex electrode has been described. It is also possible to form a convex electrode by forming a Cu plating film on the effective portion of the electrode by electrolytic (electric) plating. That is, FIG. 2 and FIG. 3 are diagrams conceptually showing a method of forming a convex electrode by a Cu plating film. FIG. 2-A is the same as FIG. 1-A, and the effective portion 13e, which is the exposed portion of the original electrode, is surrounded by the outer insulating film 15 where the original electrode 13 of the component 11 overlaps with the peripheral edge portion. It becomes the bottom surface, and the area of the effective portion 13e is narrower than the area of the original electrode 13. 2B shows a state in which a Ti thin film 53 is formed on the entire surface of the effective portion 13e of the original electrode 13 and the outer outer insulating film 15 by a thin film forming method under vacuum. FIG. 2-C shows the state on the Ti thin film 53. FIG. 2D shows a state in which the portion corresponding to the original electrode 13 on the Cu thin film 54 is left as the opening 55h, and the plating resist film 55 is formed in the other portion.

そして図3−Eはメッキレジスト膜55の開口部55hにCuメッキ膜56を形成した状態、図3−Fはメッキレジスト膜55を除去した状態、図3−Gはメッキレジスト膜55の下に存在したTi薄膜53およびCu薄膜54を除去した状態、図3−Hは形成される凸型電極59の酸化を防ぐために、下のTi薄膜53およびCu薄膜54の端面と共にCuメッキ膜56の全面に、吸着型Pd触媒を塗付して無電解Niメッキ膜57、 重ねて無電解Auメッキ膜58を形成させて得られる凸型電極59を示す。 3E shows a state in which the Cu plating film 56 is formed in the opening 55h of the plating resist film 55, FIG. 3-F shows a state in which the plating resist film 55 has been removed, and FIG. FIG. 3H shows the entire surface of the Cu plating film 56 together with the end surfaces of the lower Ti thin film 53 and the Cu thin film 54 in order to prevent the formed convex electrode 59 from being oxidized. 5 shows a convex electrode 59 obtained by applying an adsorption type Pd catalyst to form an electroless Ni plating film 57 and forming an electroless Au plating film 58 on top of each other.

上記のNiメッキ膜57、Auメッキ膜58はメッキレジスト膜55の存在下にCuメッキ膜56の形成に続いて電解メッキ法によって形成させることもできる。すなわち、 図4−Aは図2−Dの再掲であり、 形成されたメッキレジスト膜55を示すが、図4−Bに示すように、電解メッキ(電気メッキ)法によってCuメッキ膜56を形成し、更に図4−Cに示すように、Cuメッキ膜56上に電解メッキ法によってNiメッキ膜57’を形成し、続いて図5−Dに示すように、電解メッキ法によってAuメッキ膜58’を重ねて形成させる。その後、図5−Fに示すように、メッキレジスト膜55を除去し、更にその下にあったTiのスパッタ膜53とCuのスパッタ膜54を除去して凸型電極69とする方法である。 The Ni plating film 57 and the Au plating film 58 may be formed by electrolytic plating after the formation of the Cu plating film 56 in the presence of the plating resist film 55. That is, FIG. 4-A is a reproduction of FIG. 2-D, and shows the formed plating resist film 55. As shown in FIG. 4-B, the Cu plating film 56 is formed by electrolytic plating (electroplating). Further, as shown in FIG. 4C, a Ni plating film 57 ′ is formed on the Cu plating film 56 by electrolytic plating, and subsequently, as shown in FIG. 5-D, an Au plating film 58 is formed by electrolytic plating. 'Overlapping and forming. Thereafter, as shown in FIG. 5F, the plating resist film 55 is removed, and the Ti sputtered film 53 and the Cu sputtered film 54 which are therebelow are removed to form a convex electrode 69.

以下、本発明の凸型電極およびその製造方法を実施例により図面を参照して具体的に説明する。 Hereinafter, the convex electrode and the manufacturing method thereof according to the present invention will be specifically described with reference to the drawings.

図6と図7はインターポーザ基板11に、本発明の凸型電極29を製造するプロセスをステップ的に示す図である。すなわち、 図6−Aは配線12、実装ランド13、接合ランド14が形成されたインターポーザ基板11を示す図であり、実装ランド13と接合ランド14を除いて、それ以外の部分はソルダーレジスト膜15で被覆されており、実装ランド13の有効部分13eは凹部の底面となっている。図6−Bはインターポーザ基板11の実装ランド13の有効部分13eの上、および実装ランド13の周縁部で重なっているソルダーレジスト膜15の上に(図では下側に)、Agの超微粒子が分散されたペースト、すなわちバインダーとなるエポキシ樹脂と硬化剤とを有機溶剤に溶解した溶液に、Agの超微粒子を分散させてペースト状としたものを印刷法によってウエット厚さ7〜10μmに塗布し、熱硬化させて厚さ3〜5μmで径300μmの導電性膜25を形成させた状態を示す。勿論、凹所にあった有効部分13eが導電性膜25によって実装ランド13の周縁部で重なっているソルダーレジスト膜15のレベルと同一のレベルとすることを妨げるものではない。   FIG. 6 and FIG. 7 are diagrams showing the process of manufacturing the convex electrode 29 of the present invention on the interposer substrate 11 step by step. 6A is a diagram showing the interposer substrate 11 on which the wiring 12, the mounting land 13, and the bonding land 14 are formed. Except for the mounting land 13 and the bonding land 14, the other portions are the solder resist film 15. The effective portion 13e of the mounting land 13 is the bottom surface of the recess. FIG. 6B shows the ultrafine particles of Ag on the effective portion 13e of the mounting land 13 of the interposer substrate 11 and on the solder resist film 15 that overlaps with the peripheral edge of the mounting land 13 (on the lower side in the figure). A dispersed paste, that is, a solution in which an epoxy resin as a binder and a curing agent are dissolved in an organic solvent, and a paste obtained by dispersing ultrafine Ag particles is applied to a wet thickness of 7 to 10 μm by a printing method. This shows a state in which a conductive film 25 having a thickness of 3 to 5 μm and a diameter of 300 μm is formed by thermosetting. Of course, this does not prevent the effective portion 13e in the recess from being set to the same level as the level of the solder resist film 15 overlapping the peripheral portion of the mounting land 13 by the conductive film 25.

図6−Cは形成された導電性膜25と接合ランド14に吸着型Pd触媒26を塗布し、続いて図7−Dに示すように厚さ3〜5μmの無電解Niメッキ膜27、その上へ厚さ0.05μmの無電解Auメッキ膜28を形成して凸型電極29とした。この時点で凸型電極29の径は310μmとなった。図7−Eはインターポーザ基板11の接合ランド14に半田ボールを介して半導体チップ31を接合し樹脂封止してパッケージ10とした状態を示す。 FIG. 6C shows an application of the adsorption type Pd catalyst 26 to the formed conductive film 25 and the bonding land 14, followed by the electroless Ni plating film 27 having a thickness of 3 to 5 μm, as shown in FIG. An electroless Au plating film 28 having a thickness of 0.05 μm was formed thereon to form a convex electrode 29. At this time, the diameter of the convex electrode 29 was 310 μm. FIG. 7E shows a state in which the semiconductor chip 31 is bonded to the bonding land 14 of the interposer substrate 11 via a solder ball and sealed with resin to form the package 10.

図8は、図7−Dのインターポーザ基板11、および図7−Eのパッケージ10の配線回路を検査せんとする状態を示すが、これらのインターポーザ基板11、パッケージ10では本来の電極である実装ランド13を処理加工して凸型電極29が形成されており、その凸型電極29は実装ランド13の周縁部のソルダーレジスト膜15に重ねて形成されているので、当然のことながら、凸型電極29の表面のレベルは周縁の外層絶縁膜15の面よりも突出しており、凸型電極29の露出面は実装ランド13の有効部分13eの面積より大幅に拡大された面積となっている。従って従来の実装ランド13には図22に示した先端部の径50μmで先端を尖らせたプローブ51を要したに対し、本実施例の凸型電極29では先端部の径が150μmで先端側をクラウン型としたプローブ52を採用することができる。そしてプローブ52自体が廉価になるほか、凸型電極29に対するプローブ52の位置の許容範囲が大であるために接触ミスは発生せず、検査に要する機器コスト、労務コストを含めてコストを30%軽減することができた。   FIG. 8 shows a state in which the wiring circuit of the interposer substrate 11 of FIG. 7-D and the package 10 of FIG. 7-E is to be inspected. In these interposer substrate 11 and package 10, the mounting land which is an original electrode is shown. 13 is processed to form a convex electrode 29, and the convex electrode 29 is formed so as to overlap the solder resist film 15 at the peripheral edge of the mounting land 13. The level of the surface 29 protrudes beyond the surface of the outer peripheral insulating film 15 at the periphery, and the exposed surface of the convex electrode 29 has an area greatly enlarged from the area of the effective portion 13 e of the mounting land 13. Therefore, the conventional mounting land 13 requires the probe 51 with the tip having a tip diameter of 50 μm shown in FIG. 22, whereas the convex electrode 29 of the present embodiment has a tip with a tip diameter of 150 μm and the tip side. A probe 52 having a crown shape can be employed. In addition to the low cost of the probe 52 itself, since the allowable range of the position of the probe 52 with respect to the convex electrode 29 is large, no contact error occurs, and the cost including equipment cost and labor cost required for inspection is 30%. I was able to reduce it.

また図9は、インターポーザ基板11における実装ランド13と配線12との関係を示す図である。すなわち、図9−Aは図7−Dの再掲であり、図9−Bは、図9−Aの中央部の配線12とその両側の実装ランド13を示す部分拡大図である。図9−Bに見られるように、インターポーザ基板11の凸型電極29は径310μmとすることができるので、実装ランド13の原電極の径を150μmとしても充分に機能する。従って実装ランド13の形成ピッチを図23−Bの従来例と同様の0.5mmとしても、隣り合う実装ランド13の間隔として350μmを確保することができ、隣り合う実装ランド13の間には、ライン・アンド・スペースを(50/50)として、線幅50μmの配線12を3本布設することができる。このことによってインターポーザ基板の必要枚数を削減することができ、従来のインターポーザ基板111の実装には4層の積層基板を必要とした場合でも本実施例のインターポーザ基板11の実装には2層の積層基板で目的を達し得るなど、コストダウンの効果は極めて大きい。   FIG. 9 is a diagram showing the relationship between the mounting lands 13 and the wirings 12 in the interposer substrate 11. That is, FIG. 9-A is a reprint of FIG. 7-D, and FIG. 9-B is a partially enlarged view showing the wiring 12 at the center and the mounting lands 13 on both sides of FIG. 9-A. As can be seen in FIG. 9-B, the convex electrode 29 of the interposer substrate 11 can have a diameter of 310 μm, so that even if the diameter of the original electrode of the mounting land 13 is 150 μm, it functions sufficiently. Therefore, even if the formation pitch of the mounting lands 13 is 0.5 mm as in the conventional example of FIG. 23-B, 350 μm can be secured as an interval between the adjacent mounting lands 13. Three lines 12 having a line width of 50 μm can be laid with the line and space being (50/50). As a result, the required number of interposer substrates can be reduced. Even when the conventional interposer substrate 111 is mounted with a four-layer laminated substrate, the interposer substrate 11 according to this embodiment is mounted with a two-layer laminated layer. The effect of cost reduction is extremely large, for example, the purpose can be achieved with a substrate.

図10と図11は、凸型電極29を実施例1とは異なる方法によって製造する例を示す。すなわち、図10−Aは図6−Aに示したインターポーザ基板11である。図10−Bは図10−Aのインターポーザ基板11の実装ランド13側の全面にスパッタリングによってTi薄膜23を形成した状態、図10−Cは同じくスパッタリングによってCu薄膜24を重ねて形成した状態を示す。そして、図11−DはTi薄膜23、Cu薄膜24に重ねてCuの超微粒子を分散させたペーストを塗布して導電性膜25を形成した状態を示す。更に、図11−Eは実装ランド13に対応する部分を残して、それ以外の部分の導電性膜25、Cu薄膜24、Ti薄膜23を除去した状態を示す。   10 and 11 show an example in which the convex electrode 29 is manufactured by a method different from that in the first embodiment. That is, FIG. 10-A is the interposer substrate 11 shown in FIG. 6-A. 10B shows a state in which the Ti thin film 23 is formed by sputtering on the entire surface of the mounting land 13 side of the interposer substrate 11 in FIG. 10A, and FIG. 10C shows a state in which the Cu thin film 24 is also formed by overlapping the sputtering. . FIG. 11D shows a state in which a conductive film 25 is formed by applying a paste in which ultrafine particles of Cu are dispersed on the Ti thin film 23 and the Cu thin film 24. Further, FIG. 11-E shows a state in which the conductive film 25, the Cu thin film 24, and the Ti thin film 23 in other portions are removed except for the part corresponding to the mounting land 13.

続く図11−Fは残した導電性膜25と接合ランド14の表面に吸着型Pd触媒26を塗布し、図11−Gに示すように無電解Niメッキ膜27を形成し、重ねて無電解Auメッキ膜28を形成して導電性膜25を凸型電極39としたものである。実施例1と実施例2との違いは、実施例2において、導電性膜25を形成する前の実装ランド13にTi薄膜23とCu薄膜24とを形成させたので、実装ランド13と導電性膜25との間にTi薄膜23とCu薄膜24が存在していることにある。上述したように、このような構成とすることにより、実装ランド13と導電性膜25と導通抵抗を低下させることができる。   In FIG. 11-F, the adsorption type Pd catalyst 26 is applied to the remaining conductive film 25 and the surface of the bonding land 14 to form an electroless Ni plating film 27 as shown in FIG. An Au plating film 28 is formed to make the conductive film 25 a convex electrode 39. The difference between the first embodiment and the second embodiment is that, in the second embodiment, the Ti thin film 23 and the Cu thin film 24 are formed on the mounting land 13 before the conductive film 25 is formed. This is because a Ti thin film 23 and a Cu thin film 24 exist between the film 25. As described above, with such a configuration, the mounting land 13, the conductive film 25, and the conduction resistance can be reduced.

図12と図13はインターポーザ基板11における実装ランド13の凹所に露出している有効部分13eにあらかじめプライマーとしてのMnO2 膜を形成しておき、導電性膜の接着性を向上させた凸型電極29cを製造するプロセスを示す。すなわち、図12−Aは図6−Aに示したインターポーザ基板11と同様な配線12、実装ランド13、接合ランド14が形成されたインターポーザ基板11を示す図であり、図12−Bはインターポーザ基板11の凹所に露出している実装ランド13の有効部分13eに、MnO2 の微粒子を有機溶媒に分散させたペースト状の分散液を印刷法によって塗布して加熱し、有機溶剤を蒸発させると共にMnO2 の微粒子を焼結させた膜をプライマー31として形成した状態を示す図である。 12 and 13 are convex shapes in which an MnO 2 film as a primer is formed in advance on the effective portion 13e exposed in the recess of the mounting land 13 in the interposer substrate 11 to improve the adhesion of the conductive film. A process for manufacturing the electrode 29c will be described. That is, FIG. 12-A is a view showing the interposer substrate 11 in which the wiring 12, the mounting land 13, and the bonding land 14 are formed, similar to the interposer substrate 11 shown in FIG. 6-A, and FIG. A paste-like dispersion liquid in which MnO 2 fine particles are dispersed in an organic solvent is applied to the effective portion 13e of the mounting land 13 exposed in the recess 11 by a printing method and heated to evaporate the organic solvent. 4 is a view showing a state in which a film obtained by sintering fine particles of MnO 2 is formed as a primer 31.

そして図12−Cは、そのMnO2 膜からなるプライマー31の上に実施例1で使用したAgの超微粒子が分散されたペーストを印刷法によって塗布し、熱硬化させて厚さ3〜5μmで径300μmの導電性膜32を形成させた状態を示す。続く図13−Dは形成された導電性膜32、および反対面の接合ランド14に吸着型Pd触媒36を塗布し、更に図13−Eに示すように、厚さ3〜5μmの無電解Niメッキ膜37、その上へ厚さ0.05μmの無電解Auメッキ膜38を形成して導電性膜32を凸型電極49とした状態を示す。この時点で凸型電極49の径は310μであった。 And in FIG. 12-C, the paste in which the ultrafine particles of Ag used in Example 1 are dispersed is applied on the primer 31 made of the MnO 2 film by a printing method and thermally cured to a thickness of 3 to 5 μm. A state in which a conductive film 32 having a diameter of 300 μm is formed is shown. Next, FIG. 13-D applies the adsorption type Pd catalyst 36 to the formed conductive film 32 and the bonding land 14 on the opposite surface, and further, as shown in FIG. 13-E, electroless Ni having a thickness of 3 to 5 μm. A state is shown in which a conductive film 32 is formed as a convex electrode 49 by forming a plating film 37 and an electroless Au plating film 38 having a thickness of 0.05 μm thereon. At this time, the diameter of the convex electrode 49 was 310 μm.

図14と図15は、インターポーザ基板11の実装ランド13側の全面に、先ず導通抵抗を低下させる金属膜を形成し、続いてプライマーを形成させる場合を示す図である。すなわち、図14−Aは実施例1の図6−Aと同様な配線12、実装ランド13、接合ランド14が形成されたインターポーザ基板11を示す図である。図14−Bは図14−Aのインターポーザ基板11の実装ランド13側の全面にスパッタリングによってTi薄膜を形成し、続いてCu薄膜を重ねて(Ti/Cu)薄膜43を形成し、その上へMnO2 の微粒子を有機溶剤に分散させたペースト状の分散液を塗布し加熱して得られるMnO2 の膜をプライマー44として形成させた状態を示す。そして、図14−Cはプライマー44の上へ重ねてCuの超微粒子を分散させたペーストを塗布し硬化させて導電性膜45を形成した状態を示す。 FIGS. 14 and 15 are diagrams showing a case where a metal film that lowers the conduction resistance is first formed on the entire surface of the interposer substrate 11 on the mounting land 13 side, and then a primer is formed. That is, FIG. 14-A is a view showing the interposer substrate 11 on which the wiring 12, the mounting land 13, and the bonding land 14 similar to FIG. 6-A of the first embodiment are formed. 14B, a Ti thin film is formed on the entire surface of the interposer substrate 11 side of the interposer substrate 11 of FIG. 14A by sputtering, and then a Cu thin film is overlaid to form a (Ti / Cu) thin film 43. MnO 2 MnO 2 obtained by applying and heating a paste-like dispersion in which fine particles of the above are dispersed in an organic solvent A state in which the film is formed as a primer 44 is shown. FIG. 14C shows a state in which a conductive film 45 is formed by applying and curing a paste in which ultrafine particles of Cu are dispersed on the primer 44 and being cured.

続いて図15−Dは実装ランド13部分において、実装ランド13の有効部分13eと、実装ランド13の周縁部で重なっているソルダーレジスト膜15とにほぼ対応する部分を残して、それ以外の部分の導電性膜45、プライマー44、および(Ti/Cu)薄膜43をカットし除去した状態を示す。続く図15−Eは残した導電性膜45、および反対面の接合ランド14の表面に吸着型Pd触媒46を塗布して、図15−Fに示すように、無電解Niメッキ膜47を形成し、重ねて無電解Auメッキ膜48を形成して導電性膜45を凸型電極59としたものである。実施例1と実施例4との違いは、実施例4においては、導電性膜45を形成する前の実装ランド13の有効部分13eに(Ti/Cu)薄膜43を形成し、更にプライマー44としてのMnO2 膜を形成させたので、実装ランド13の有効部分13eとプライマー44との間の導通抵抗が低く、(Ti/Cu)薄膜43と導電性膜45とはプライマー44によって接着性が大である。 Subsequently, FIG. 15D shows a portion of the mounting land 13 that substantially corresponds to the effective portion 13e of the mounting land 13 and the solder resist film 15 that overlaps with the peripheral portion of the mounting land 13, and the other portions. The conductive film 45, the primer 44, and the (Ti / Cu) thin film 43 are cut and removed. In FIG. 15E, an electroless Ni plating film 47 is formed as shown in FIG. 15-F by applying the adsorbing Pd catalyst 46 to the remaining conductive film 45 and the surface of the bonding land 14 on the opposite side. Then, the electroless Au plating film 48 is formed so as to overlap the conductive film 45 as the convex electrode 59. The difference between the first embodiment and the fourth embodiment is that, in the fourth embodiment, a (Ti / Cu) thin film 43 is formed on the effective portion 13e of the mounting land 13 before the conductive film 45 is formed. Since the MnO 2 film is formed, the conduction resistance between the effective portion 13e of the mounting land 13 and the primer 44 is low, and the (Ti / Cu) thin film 43 and the conductive film 45 have high adhesiveness due to the primer 44. It is.

図16、図17、 図18はインターポーザ基板11の実装ランド13の有効部分13eに対し、Cuメッキすることによって凸型電極69を形成させる場合を示す図である。すなわち、図16−Aは実施例1の図6−Aに示したインターポーザ基板11と同様なインターポーザ基板11である。図16−Bは図16−Aのインターポーザ基板11における実装ランド13側の全面にスパッタリング法によってTi薄膜53を形成した状態、図16−Cは同じくスパッタリング法によってCu薄膜54を重ねて形成した状態を示す。   FIGS. 16, 17, and 18 are diagrams showing a case where the convex electrode 69 is formed by Cu plating on the effective portion 13e of the mounting land 13 of the interposer substrate 11. FIG. That is, FIG. 16A shows an interposer substrate 11 similar to the interposer substrate 11 shown in FIG. 16B shows a state in which a Ti thin film 53 is formed by sputtering on the entire surface of the mounting land 13 side of the interposer substrate 11 in FIG. 16A. FIG. 16C shows a state in which a Cu thin film 54 is also formed by overlapping the sputtering method. Indicates.

図17−D以降は図16−Cに示したインターポーザ基板11の上下を反転させて示している。すなわち、図17−Dは、図13−FのCu薄膜54上において、実装ランド13の上方となる部分に、実装ランド13と同程度の面積に相当する部分を開口部55hとして残し、それ以外の部分にメッキレジスト膜55を形成した状態を示す。図17−Eはメッキレジスト膜55が形成されていない実装ランド13上にCuメッキ膜56を3〜20μmの厚さに形成させた状態を示す。そして、図17−FはCuメッキ膜56を形成した後にメッキレジスト膜55を除去した状態を示す。   In FIG. 17D and subsequent figures, the top and bottom of the interposer substrate 11 shown in FIG. That is, FIG. 17D shows a portion corresponding to the same area as the mounting land 13 as an opening 55h in the portion above the mounting land 13 on the Cu thin film 54 of FIG. 13-F. A state in which the plating resist film 55 is formed on the portion is shown. FIG. 17E shows a state in which the Cu plating film 56 is formed to a thickness of 3 to 20 μm on the mounting land 13 where the plating resist film 55 is not formed. FIG. 17F shows a state where the plating resist film 55 is removed after the Cu plating film 56 is formed.

続いて図18−GはCuメッキ膜56の下のTi薄膜53、Cu薄膜54は残し、メッキレジスト膜55の下にあったTi薄膜53、Cu薄膜54を除去した状態を示す。そして図18−Hは、Cuメッキ膜56、およびTi薄膜53、Cu薄膜54の端面、更に裏面側の接合ランド14に対して、図示せずとも吸着型Pd触媒を塗布してから、無電解メッキ法によって形成した厚さ3〜5μmのNiメッキ膜と、その上へ重ねた厚さ0.05μmのAuメッキ膜とからなる防錆のための無電解(Ni/Au)メッキ膜57を形成してCuメッキ膜56を凸型電極69としたものである。実施例5の製造方法によれば、仮にソルダーレジスト膜15上にTi薄膜53、Cu薄膜54の除去が不完全で残存している場合には、その残存部分にも無電解(Ni/Au)メッキ膜57が形成されるので、Ti薄膜53、Cu薄膜54の除去の確認が容易である。また後述する実施例6の場合と比較して、形成される無電解(Ni/Au)メッキ膜57は厚さが均等である。   18G shows a state in which the Ti thin film 53 and the Cu thin film 54 under the Cu plating film 56 are left and the Ti thin film 53 and the Cu thin film 54 under the plating resist film 55 are removed. 18-H shows the electroless electroless Pd catalyst applied to the Cu plating film 56, the end face of the Ti thin film 53, the Cu thin film 54, and the bonding land 14 on the back side, although not shown. Forming an electroless (Ni / Au) plating film 57 for rust prevention comprising a Ni plating film having a thickness of 3 to 5 μm formed by plating and an Au plating film having a thickness of 0.05 μm stacked thereon. Thus, the Cu plating film 56 is used as the convex electrode 69. According to the manufacturing method of Example 5, if the removal of the Ti thin film 53 and the Cu thin film 54 remains on the solder resist film 15 incompletely, the remaining portion is also electroless (Ni / Au). Since the plating film 57 is formed, it is easy to confirm the removal of the Ti thin film 53 and the Cu thin film 54. Further, compared to the case of Example 6 described later, the formed electroless (Ni / Au) plating film 57 has a uniform thickness.

実施例5では、メッキレジスト膜55を除去した後のCuメッキ膜56に耐食性付与のための無電解(Ni/Au)メッキ膜57を形成させたが、メッキレジスト膜55を除去する前に、Cuメッキ膜56の形成に続いて電解メッキ法によって(Ni/Au)メッキ膜58を形成することもできる。すなわち、図19−Aは実施例5の図17−Dの再掲であり、実装ランド13に対応する部分に開口部55hを有するメッキレジスト膜55が形成された状態である。そして図19−Bは、メッキレジスト膜55の開口部55hにおいて電解メッキ(電気メッキ)法によってCuメッキ膜56を形成した状態、続いて図19−CはCuメッキ膜56および接合ランド14に電解メッキ法によってNiメッキし、重ねてAuメッキして、(Ni/Au)メッキ膜58”を形成させた状態を示す。そして図20−Dは図19−Cの状態からメッキレジスト膜55を除去した状態を示し、図20−Eはメッキレジスト膜55の下に存在していたTi薄膜53とCu薄膜54を除去してCuメッキ膜56を凸型電極79とした状態を示す。実施例6の方法によれば、図20−Eに見られるように、Cuメッキ膜56の側壁面には(Ni/Au)メッキ膜58”が形成されない。また、この(Ni/Au)メッキ膜58”はメッキレジスト膜55の開口部55h内で形成されるためか、実施例5の場合と比較して厚さの均一性に劣る。   In Example 5, an electroless (Ni / Au) plating film 57 for imparting corrosion resistance was formed on the Cu plating film 56 after the plating resist film 55 was removed, but before the plating resist film 55 was removed, Subsequent to the formation of the Cu plating film 56, the (Ni / Au) plating film 58 may be formed by an electrolytic plating method. That is, FIG. 19-A is a reprint of FIG. 17-D of Example 5, and shows a state in which a plating resist film 55 having an opening 55 h is formed in a portion corresponding to the mounting land 13. 19B shows a state in which the Cu plating film 56 is formed by the electrolytic plating (electroplating) method in the opening 55h of the plating resist film 55, and FIG. 19C shows that the Cu plating film 56 and the bonding land 14 are electrolyzed. FIG. 20D shows a state in which the Ni plating is performed by the plating method, the Au plating is again performed, and the (Ni / Au) plating film 58 ″ is formed. FIG. 20-D shows the removal of the plating resist film 55 from the state of FIG. 20E shows a state in which the Ti thin film 53 and the Cu thin film 54 existing under the plating resist film 55 are removed to form the Cu plating film 56 as the convex electrode 79. Example 6 According to this method, as shown in FIG. 20E, the (Ni / Au) plating film 58 ″ is not formed on the side wall surface of the Cu plating film 56. Further, the (Ni / Au) plating film 58 ″ is formed in the opening 55h of the plating resist film 55, so that the thickness uniformity is inferior to that in the case of the fifth embodiment.

以上、本発明の凸型電極およびその製造方法を実施例によって説明したが、勿論、本発明はこれらによって限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As described above, the convex electrode and the manufacturing method thereof according to the present invention have been described with reference to the embodiments. However, the present invention is not limited thereto, and various modifications can be made based on the technical idea of the present invention.

例えば実施例1〜5においては、従来例の実装ランド113が周縁部のソルダーレジスト膜115の面よりも低い位置にあり凹部が形成されているインターポーザ基板111に換わるものとして、実装ランド13に接続された凸型電極29、39、49、59、69、または79を持つインターポーザ基板11を例示したが、インターポーザ基板以外で凹部となっている電極を有する部品にも本発明を適用することができる。   For example, in the first to fifth embodiments, the mounting land 113 of the conventional example is connected to the mounting land 13 as a substitute for the interposer substrate 111 in which a recessed portion is formed at a position lower than the surface of the solder resist film 115 at the peripheral edge. Although the interposer substrate 11 having the convex electrodes 29, 39, 49, 59, 69, or 79 is illustrated as an example, the present invention can also be applied to components having electrodes that are recessed other than the interposer substrate. .

原電極の周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となっている原電極の有効部分に、AgまたはCuの超微粒子を分散させたペーストを塗布し硬化させた導電性膜によって凸型電極とする方法を概念的に示す図である。A conductive material in which a paste in which ultrafine particles of Ag or Cu are dispersed is applied to the effective portion of the original electrode surrounded by the outer insulating film that is overlapped with the peripheral edge portion of the original electrode and serving as the bottom surface of the recess. It is a figure which shows notionally the method of setting it as a convex electrode by a film | membrane. 図3と共に、接合パッドの有効部分にCuメッキ膜を形成させて凸型電極を製造するプロセスを概念的に示す図である。FIG. 4 is a diagram conceptually showing a process of manufacturing a convex electrode by forming a Cu plating film on an effective portion of a bonding pad together with FIG. 3. 図2と共に、Cuメッキ膜によって凸型電極を製造するプロセスを概念的に示す図である。It is a figure which shows notionally the process which manufactures a convex electrode with Cu plating film with FIG. 図2、図3と同様にCuメッキ膜によって凸型電極を製造する方法であるが、図5と共に、耐食性付与のNiメッキ膜、Auメッキ膜の形成させ方が異なる方法を示す図である。FIG. 6 is a method for producing a convex electrode using a Cu plating film as in FIGS. 2 and 3, and FIG. 5 is a diagram showing a method in which a method for forming a corrosion-resistant Ni plating film and an Au plating film is different. 図4と共に、Cuメッキ膜によって凸型電極を製造する別な方法を示す図である。It is a figure which shows another method with which FIG. 4 and a convex electrode are manufactured with Cu plating film. 図7と共に、実施例1による凸型電極を備えたインターポーザ基板の製造するプロセスをステップ的に示す図である。FIG. 8 is a view showing, in a step-by-step manner, a process for manufacturing an interposer substrate having convex electrodes according to Example 1 together with FIG. 7. 図6と共に、実施例1による凸型電極を備えたインターポーザ基板の製造するプロセスをステップ的に示す図である。FIG. 7 is a view showing, in a step-by-step manner, a process for manufacturing an interposer substrate having convex electrodes according to Example 1 together with FIG. 6. 実施例1のインターポーザ基板と半導体チップのパッケージにおける凸型電極と使用される検査用プローブとの関係を示す図である。It is a figure which shows the relationship between the interposer board | substrate of Example 1, the convex electrode in the package of a semiconductor chip, and the test probe used. 実施例1のインターポーザ基板における実装ランドと配線との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between mounting lands and wiring in the interposer substrate according to the first embodiment. 図11と共に、実施例2による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。It is a figure which shows the manufacturing process of the interposer substrate provided with the convex electrode by Example 2 step by step with FIG. 図10と共に、実施例2による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 11 is a view showing step by step a manufacturing process of an interposer substrate provided with a convex electrode according to Example 2 together with FIG. 10. 図13と共に、実施例3による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。It is a figure which shows the manufacturing process of the interposer substrate provided with the convex electrode by Example 3 step by step with FIG. 図12と共に、実施例3による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 13 is a view showing step by step a manufacturing process of an interposer substrate provided with convex electrodes according to Example 3 together with FIG. 12. 図15と共に、実施例4による凸型電極を備えたインターポーザ基板の製造方法をステップ的に示す図である。It is a figure which shows the manufacturing method of the interposer board provided with the convex electrode by Example 4 along with FIG. 15 in steps. 図14と共に、実施例4による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 15 is a view showing step by step a manufacturing process of an interposer substrate provided with a convex electrode according to Example 4 together with FIG. 14. 図17、図18と共に、実施例5による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 19 is a view showing step by step a manufacturing process of an interposer substrate provided with a convex electrode according to Example 5 together with FIGS. 図16、図18と共に、実施例5による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 19 is a view showing step by step a manufacturing process of an interposer substrate provided with convex electrodes according to Example 5 together with FIGS. 図16、図17と共に、実施例5による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 18 is a view showing step by step a manufacturing process of an interposer substrate provided with a convex electrode according to Example 5 together with FIGS. 図20と共に、実施例6による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 21 is a view showing step by step a manufacturing process of an interposer substrate having convex electrodes according to Example 6 together with FIG. 20. 図19と共に、実施例6による凸型電極を備えたインターポーザ基板の製造プロセスをステップ的に示す図である。FIG. 20 is a view showing step by step a manufacturing process of an interposer substrate provided with a convex electrode according to Example 6 together with FIG. 19. 従来例の実装ランドを備えたインターポーザ基板の製造プロセスをステップ的に示す図である。It is a figure which shows the manufacturing process of the interposer board provided with the mounting land of the prior art example in steps. 従来例によるインターポーザ基板の実装ランドと検査用プローブとの関係を示す図である。It is a figure which shows the relationship between the mounting land of the interposer board | substrate by a prior art example, and an inspection probe. 従来例のインターポーザ基板における実装ランドと配線との関係を示す図である。It is a figure which shows the relationship between the mounting land and wiring in the interposer board | substrate of a prior art example.

符号の説明Explanation of symbols

11 ・ インターポーザ基板、 12 ・ 配線、 13 ・ 実装ランド、
15 ・ ソルダーレジスト膜、 23 ・ Ti薄膜、 24 ・ Cu薄膜、
25 ・ AgまたはCuの超微粒子を分散させたペーストによる導電性膜、
26 ・ 吸着型Pd触媒、 27 ・ 無電解Niメッキ膜、
28 ・ 無電解Auメッキ膜、
29、39、49、59、69、79・ 凸型電極、
51 ・ 従来のプローバ、 52 ・ 凸型電極に使用し得るプローバ、
56 ・ Cuメッキ膜
11 ・ Interposer board, 12 ・ Wiring, 13 ・ Mounting land,
15 · Solder resist film, 23 · Ti thin film, 24 · Cu thin film,
25. Conductive film made of paste in which ultrafine particles of Ag or Cu are dispersed,
26-adsorption type Pd catalyst, 27-electroless Ni plating film,
28 ・ Electroless Au plating film,
29, 39, 49, 59, 69, 79 ・ Convex electrode,
51-a conventional prober, 52-a prober that can be used for a convex electrode,
56 ・ Cu plating film

Claims (14)

周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、
前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストが塗布され加熱硬化されて形成された導電性膜と、前記導電性膜に対し吸着型パラジウム触媒の存在下に形成された無電解ニッケルメッキ膜および重ねて形成された無電解金メッキ膜とからなり、
前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされている
ことを特徴とする凸型電極。
A convex electrode formed by processing a raw electrode of a component surrounded by an outer insulating film overlapping at a peripheral edge portion to become a bottom surface of a recess and whose effective portion is narrowed,
A conductive film formed by applying and heat-curing a paste in which ultrafine particles of silver or copper are dispersed on the outer layer insulating film overlapping the effective portion of the original electrode and the peripheral edge of the original electrode; An electroless nickel plating film formed in the presence of an adsorptive palladium catalyst and an electroless gold plating film formed to overlap with the conductive film,
The surface level of the convex electrode is the same as the surface of the outer layer insulating film overlapping the peripheral edge of the original electrode or protrudes from the surface of the outer layer insulating film, and the convex to the main plane of the component A projected electrode, wherein the projected area of the mold electrode is larger than the area of the effective portion of the original electrode.
前記原電極の有効部分と前記導電性膜との間に、真空下の薄膜形成法によるチタン薄膜および銅薄膜が重ねて形成されている
ことを特徴とする請求項1に記載の凸型電極。
2. The convex electrode according to claim 1, wherein a titanium thin film and a copper thin film are formed so as to overlap each other between an effective portion of the original electrode and the conductive film by a thin film forming method under vacuum.
前記原電極の有効部分と前記導電性膜との間に、プライマーとして二酸化マンガン膜が形成されている
ことを特徴とする請求項1に記載の凸型電極。
The convex electrode according to claim 1, wherein a manganese dioxide film is formed as a primer between an effective portion of the original electrode and the conductive film.
前記原電極の有効部分と前記導電性膜との間に、前記チタン薄膜および前記銅薄膜と、前記二酸化マンガン膜とが重ねて形成されている
ことを特徴とする請求項2または請求項3に記載の凸型電極。
4. The titanium thin film, the copper thin film, and the manganese dioxide film are formed so as to overlap each other between the effective portion of the original electrode and the conductive film. The convex electrode as described.
周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、
前記部品の前記原電極側の面に真空下の薄膜形成法によって形成されたチタン薄膜および重ねて形成された銅薄膜と、 前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して形成された銅メッキ膜と、
前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去して露出された前記銅メッキ膜の全面および該銅メッキ膜の下の前記チタン薄膜と前記銅薄膜の端面に対し吸着型パラジウム触媒の存在下に形成された無電解ニッケルメッキ膜および重ねて形成された無電解金メッキ膜とからなり、
前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされている
ことを特徴とする凸型電極。
A convex electrode formed by processing a raw electrode of a component surrounded by an outer insulating film overlapping at a peripheral edge portion to become a bottom surface of a recess and whose effective portion is narrowed,
A titanium thin film formed by a thin film forming method under vacuum on the surface of the component on the original electrode side and a copper thin film formed in an overlapping manner; an effective portion of the original electrode on the copper thin film; and a peripheral portion of the original electrode A copper plating film formed via a plating resist film on a portion corresponding to the outer insulating film overlapping with
The plating resist film and the entire surface of the copper plating film exposed by removing the titanium thin film and the copper thin film under the plating resist film, and the end surfaces of the titanium thin film and the copper thin film under the copper plating film In contrast, an electroless nickel plating film formed in the presence of an adsorption-type palladium catalyst and an electroless gold plating film formed in layers,
The surface level of the convex electrode is the same as the surface of the outer layer insulating film overlapping the peripheral edge of the original electrode or protrudes from the surface of the outer layer insulating film, and the convex to the main plane of the component A projected electrode, wherein the projected area of the mold electrode is larger than the area of the effective portion of the original electrode.
周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工して形成される凸型電極であって、
前記部品の前記原電極側の面に真空下の薄膜形成法によって形成されたチタン薄膜および重ねて形成された銅薄膜と、 前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して形成された銅メッキ膜と、前記メッキレジスト膜の存在下に前記銅メッキ膜の上面に形成された電解ニッケルメッキ膜および重ねて形成された電解金メッキ膜と、前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜が除去されて露出された前記銅メッキ膜の側面および前記チタン薄膜と前記銅薄膜の端面を備えており、
前記凸型電極の表面レベルが前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出されており、かつ前記部品の主平面への前記凸型電極の投影面積が前記原電極の有効部分の面積より大とされている
ことを特徴とする凸型電極。
A convex electrode formed by processing a raw electrode of a component surrounded by an outer insulating film overlapping at a peripheral edge portion to become a bottom surface of a recess and whose effective portion is narrowed,
A titanium thin film formed by a thin film forming method under vacuum on the surface of the component on the original electrode side and a copper thin film formed in an overlapping manner; an effective portion of the original electrode on the copper thin film; and a peripheral portion of the original electrode A copper plating film formed through a plating resist film in a portion corresponding to the outer layer insulating film overlapping with each other, and an electrolytic nickel plating film formed on the upper surface of the copper plating film in the presence of the plating resist film And an electrolytic gold plating film formed in an overlapping manner, the plating resist film, the side surface of the copper plating film exposed by removing the titanium thin film and the copper thin film under the plating resist film, and the titanium thin film and the copper It has a thin film end face,
The surface level of the convex electrode is the same as the surface of the outer layer insulating film overlapping the peripheral edge of the original electrode or protrudes from the surface of the outer layer insulating film, and the convex to the main plane of the component A convex electrode, wherein the projected area of the mold electrode is larger than the area of the effective portion of the original electrode.
前記凸型電極の突出高さが前記原電極の面から3〜20μmの範囲にある
ことを特徴とする請求項1、請求項5、または請求項6に記載の凸型電極。
7. The convex electrode according to claim 1, wherein the protruding height of the convex electrode is in the range of 3 to 20 μm from the surface of the original electrode.
周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、
前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対し銀または銅の超微粒子を分散させたペーストを塗付し加熱硬化させて導電性膜を形成する工程と、
前記導電性膜に対し吸着型パラジウム触媒を塗付して無電解ニッケルメッキ膜を形成させ重ねて無電解金メッキ膜を形成させる工程とからなり、
形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする
ことを特徴とする凸型電極の製造方法。
A method of manufacturing a convex electrode that processes an original electrode of a component that is surrounded by an outer insulating film that is overlapped at a peripheral edge portion to become a bottom surface of a recess and whose effective portion is narrowed,
A step of applying a paste in which ultrafine particles of silver or copper are dispersed to the effective portion of the original electrode and the outer insulating film overlapping at the peripheral portion of the original electrode, and heating and curing to form a conductive film When,
A step of applying an adsorptive palladium catalyst to the conductive film to form an electroless nickel plating film and forming an electroless gold plating film;
The surface level of the convex electrode to be formed is the same as the surface of the outer layer insulating film overlapping the peripheral edge portion of the original electrode or protrudes from the surface of the outer layer insulating film, and the surface to the main plane of the component A method for producing a convex electrode, wherein the projected area of the convex electrode is larger than the area of the effective portion of the original electrode.
前記導電性膜を形成する工程の前に、前記原電極の有効部分に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程を挿入する
ことを特徴とする請求項8に記載の凸型電極の製造方法。
9. The step of forming a copper thin film by forming a titanium thin film on an effective portion of the original electrode by a thin film forming method under vacuum is inserted before the step of forming the conductive film. The manufacturing method of the convex electrode as described in 2.
前記導電性膜を形成する工程の前に、前記原電極の有効部分にプライマーとして二酸化マンガン膜を形成する工程を挿入する
ことを特徴とする請求項8に記載の凸型電極の製造方法。
The method for producing a convex electrode according to claim 8, wherein a step of forming a manganese dioxide film as a primer is inserted into an effective portion of the original electrode before the step of forming the conductive film.
前記導電性膜を形成する工程の前に、前記原電極の有効部分に前記チタン薄膜および前記銅薄膜を形成する工程と、重ねて前記二酸化マンガン膜を形成する工程とを挿入する
ことを特徴とする請求項9または請求項10に記載の凸型電極の製造方法。
Before the step of forming the conductive film, the step of forming the titanium thin film and the copper thin film on the effective portion of the original electrode and the step of forming the manganese dioxide film in an overlapping manner are inserted. The manufacturing method of the convex electrode of Claim 9 or Claim 10 to do.
周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、
前記部品の前記原電極側の面に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程と、
前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して銅メッキ膜を形成する工程と、
前記メッキレジスト膜および該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去する工程と、
露出された前記銅メッキ膜の全面および該銅メッキ膜の下の前記チタン薄膜と前記銅薄膜の端面に吸着型パラジウム触媒を塗付して無電解ニッケルメッキ膜を形成し重ねて無電解金メッキ膜を形成する工程とからなり、
形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする
ことを特徴とする凸型電極の製造方法。
A method of manufacturing a convex electrode that processes an original electrode of a component that is surrounded by an outer insulating film that is overlapped at a peripheral edge portion to become a bottom surface of a recess and whose effective portion is narrowed,
Forming a copper thin film by forming a titanium thin film on the surface of the component on the side of the original electrode by a thin film forming method under vacuum; and
Forming a copper plating film via a plating resist film on a portion corresponding to the effective portion of the original electrode on the copper thin film and the outer insulating film overlapping the peripheral edge of the original electrode;
Removing the plating resist film and the titanium thin film and the copper thin film under the plating resist film;
An electroless nickel plating film is formed by applying an adsorption-type palladium catalyst to the exposed whole surface of the copper plating film and the titanium thin film under the copper plating film and an end face of the copper thin film to form an electroless gold plating film. And the process of forming
The surface level of the convex electrode to be formed is the same as the surface of the outer layer insulating film overlapping the peripheral edge portion of the original electrode or protrudes from the surface of the outer layer insulating film, and the surface to the main plane of the component A method for producing a convex electrode, wherein the projected area of the convex electrode is larger than the area of the effective portion of the original electrode.
周縁部で重なっている外層絶縁膜によって囲われて凹所の底面となり有効部分が狭められている部品の原電極を処理加工する凸型電極の製造方法であって、
前記部品の前記原電極側の面に真空下の薄膜形成法によってチタン薄膜を形成し重ねて銅薄膜を形成する工程と、
前記銅薄膜上における前記原電極の有効部分と前記原電極の周縁部で重なっている前記外層絶縁膜とに対応する部分にメッキレジスト膜を介して銅メッキ膜を形成する工程と、
前記メッキレジスト膜の存在下に前記銅メッキ膜の上面に電解ニッケルメッキ膜を形成し重ねて電解金メッキ膜を形成する工程と、
前記メッキレジスト膜と該メッキレジスト膜の下の前記チタン薄膜と前記銅薄膜を除去する工程とからなり、
形成される前記凸型電極の表面レベルを前記原電極の周縁部で重なっている前記外層絶縁膜の面と同等または前記外層絶縁膜の面よりも突出させ、かつ前記部品の主平面への前記凸型電極の投影面積を前記原電極の有効部分の面積より大にする
ことを特徴とする凸型電極の製造方法。
A method of manufacturing a convex electrode that processes an original electrode of a component that is surrounded by an outer insulating film that is overlapped at a peripheral edge portion to become a bottom surface of a recess and whose effective portion is narrowed,
Forming a copper thin film by forming a titanium thin film on the surface of the component on the side of the original electrode by a thin film forming method under vacuum; and
Forming a copper plating film via a plating resist film on a portion corresponding to the effective portion of the original electrode on the copper thin film and the outer insulating film overlapping the peripheral edge of the original electrode;
Forming an electrolytic gold plating film on the upper surface of the copper plating film in the presence of the plating resist film and forming an electrolytic gold plating film; and
The plating resist film and the step of removing the titanium thin film and the copper thin film under the plating resist film,
The surface level of the convex electrode to be formed is the same as the surface of the outer layer insulating film overlapping the peripheral edge portion of the original electrode or protrudes from the surface of the outer layer insulating film, and the surface to the main plane of the component A method for producing a convex electrode, wherein the projected area of the convex electrode is larger than the area of the effective portion of the original electrode.
前記凸型電極の突出高さを前記原電極の面から3〜20μmの範囲に形成する
ことを特徴とする請求項8、請求項12、または請求項13に記載の凸型電極の製造方法。
14. The method for manufacturing a convex electrode according to claim 8, wherein the protruding height of the convex electrode is formed in a range of 3 to 20 μm from the surface of the original electrode.
JP2004226006A 2004-05-18 2004-08-02 Convex electrode and manufacturing method thereof Expired - Fee Related JP4501580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226006A JP4501580B2 (en) 2004-05-18 2004-08-02 Convex electrode and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004147896 2004-05-18
JP2004226006A JP4501580B2 (en) 2004-05-18 2004-08-02 Convex electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006005321A true JP2006005321A (en) 2006-01-05
JP4501580B2 JP4501580B2 (en) 2010-07-14

Family

ID=35773398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226006A Expired - Fee Related JP4501580B2 (en) 2004-05-18 2004-08-02 Convex electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4501580B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506628A (en) * 2008-10-21 2012-03-15 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for forming a solder deposit on a substrate
JP2014150101A (en) * 2013-01-31 2014-08-21 Toyota Central R&D Labs Inc Electronic element substrate and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188343A (en) * 1986-02-14 1987-08-17 Nec Corp Manufacture of semiconductor device
JPH08264541A (en) * 1995-03-23 1996-10-11 Citizen Watch Co Ltd Semiconductor device
JP2000299339A (en) * 1999-04-14 2000-10-24 Shinko Electric Ind Co Ltd Semiconductor device and manufacture thereof
JP2002170840A (en) * 2000-09-25 2002-06-14 Ibiden Co Ltd Manufacturing method of semiconductor device and multi-layer printed circuit board including the same
JP2002231860A (en) * 2001-01-31 2002-08-16 Kyocera Corp Electronic part device
JP2002299341A (en) * 2001-03-29 2002-10-11 Seiko Epson Corp Method of forming wiring pattern, semiconductor device, method of manufacturing the same, circuit substrate, and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188343A (en) * 1986-02-14 1987-08-17 Nec Corp Manufacture of semiconductor device
JPH08264541A (en) * 1995-03-23 1996-10-11 Citizen Watch Co Ltd Semiconductor device
JP2000299339A (en) * 1999-04-14 2000-10-24 Shinko Electric Ind Co Ltd Semiconductor device and manufacture thereof
JP2002170840A (en) * 2000-09-25 2002-06-14 Ibiden Co Ltd Manufacturing method of semiconductor device and multi-layer printed circuit board including the same
JP2002231860A (en) * 2001-01-31 2002-08-16 Kyocera Corp Electronic part device
JP2002299341A (en) * 2001-03-29 2002-10-11 Seiko Epson Corp Method of forming wiring pattern, semiconductor device, method of manufacturing the same, circuit substrate, and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506628A (en) * 2008-10-21 2012-03-15 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for forming a solder deposit on a substrate
JP2014150101A (en) * 2013-01-31 2014-08-21 Toyota Central R&D Labs Inc Electronic element substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP4501580B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR101168263B1 (en) Semiconductor package and fabrication method thereof
US8810040B2 (en) Wiring substrate including projecting part having electrode pad formed thereon
JP5693977B2 (en) Wiring board and manufacturing method thereof
US7851928B2 (en) Semiconductor device having substrate with differentially plated copper and selective solder
JP4813255B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
US20120313240A1 (en) Semiconductor package and fabrication method thereof
US9433109B2 (en) Wiring substrate and semiconductor package
TWI495026B (en) Package substrate, package structure and methods for manufacturing same
JP2006128455A (en) Semiconductor device and manufacturing method therefor
JP4803993B2 (en) Manufacturing method of semiconductor device
JP6282425B2 (en) Wiring board manufacturing method
JP4501580B2 (en) Convex electrode and manufacturing method thereof
WO2013061500A1 (en) Flexible wiring board and method for manufacturing same
JP2007158069A (en) External connection structure for semiconductor package and manufacturing method thereof
US9530725B2 (en) Wiring substrate and semiconductor package
JPH0727789A (en) Circuit wiring board and its manufacture
JP6220799B2 (en) Wiring board and manufacturing method thereof
JP7382170B2 (en) semiconductor equipment
JP5501940B2 (en) Circuit board manufacturing method
WO2003002786A1 (en) Electroplating method and printed wiring board manufacturing method
JP6467797B2 (en) WIRING BOARD, SEMICONDUCTOR DEVICE USING WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME
JP2013140902A (en) Semiconductor package and manufacturing method thereof
JP5653144B2 (en) Manufacturing method of semiconductor package
CN107611036A (en) Package substrate and preparation method thereof, encapsulating structure
JP2012204732A (en) Wiring board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees