JP2006002685A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP2006002685A
JP2006002685A JP2004180752A JP2004180752A JP2006002685A JP 2006002685 A JP2006002685 A JP 2006002685A JP 2004180752 A JP2004180752 A JP 2004180752A JP 2004180752 A JP2004180752 A JP 2004180752A JP 2006002685 A JP2006002685 A JP 2006002685A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
output voltage
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004180752A
Other languages
Japanese (ja)
Inventor
Sueaki Inoue
季明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004180752A priority Critical patent/JP2006002685A/en
Publication of JP2006002685A publication Critical patent/JP2006002685A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain accuracy of air-fuel ratio feed back control by correcting slippage of output characteristics of an air-fuel ratio sensor. <P>SOLUTION: In an air-fuel ratio control device 2 for an internal combustion engine provided with an exhaust gas sensor 9 sensing of which output value changes with sensing component of exhaust gas of an engine 1 and changing output value and an air-fuel ratio feed back control means 2 determining air-fuel ratio of air-fuel mixture supplied to the engine 1 with corresponding to output value of the exhaust gas sensor 9 and performing feed back control to make the air-fuel ratio close to target one, an air-fuel ratio changing means 2 changing air-fuel ratio by changing fuel injection quantity at a predetermined increase decrease width and a predetermined changing cycle during engine operation and an exhaust gas sensor output voltage collection means 2 correcting exhaust gas sensor output voltage corresponding to theoretical air-fuel ratio based on output voltage displacement of the exhaust gas sensor 9 while the ratio is changing are provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の空燃比制御に関し、特に、空燃比フィードバック制御の精度を維持するための技術に関する。   The present invention relates to air-fuel ratio control of an internal combustion engine, and more particularly to a technique for maintaining the accuracy of air-fuel ratio feedback control.

電子制御式の燃料噴射装置を備えた内燃機関において、排気通路中に酸素濃度を検出する酸素濃度センサを備え、検出した酸素濃度に基づいて空燃比をフィードバック制御する方法が知られている。   2. Description of the Related Art An internal combustion engine equipped with an electronically controlled fuel injection device is known that includes an oxygen concentration sensor that detects an oxygen concentration in an exhaust passage, and feedback-controls the air-fuel ratio based on the detected oxygen concentration.

特許文献1には、酸素センサの出力特性が劣化等によりリッチ/リーンにシフトしたときに、酸素センサ出力に対応する空燃比の特性マップテーブルを、リッチ/リーン出力偏差の関数を元の値から減算/加算して修正する技術が開示されている。
特開平7−127505号
Patent Document 1 discloses an air-fuel ratio characteristic map table corresponding to the oxygen sensor output when the output characteristic of the oxygen sensor is shifted to rich / lean due to deterioration or the like, and a function of rich / lean output deviation from the original value. A technique for correcting by subtraction / addition is disclosed.
Japanese Patent Laid-Open No. 7-127505

しかしながら、特許文献1に記載の技術では、酸素センサの出力値が安定するリーン状態またはリッチ状態でのみ特性マップテーブルを修正するので、ストイキ近傍の特性ずれを補正することができない。   However, in the technique described in Patent Document 1, the characteristic map table is corrected only in the lean state or the rich state where the output value of the oxygen sensor is stable, and thus the characteristic deviation in the vicinity of the stoichiometry cannot be corrected.

そこで、本発明では、酸素センサのストイキ近傍の特性ずれを正確に補正することを可能とすることを目的とする。   Accordingly, an object of the present invention is to make it possible to accurately correct a characteristic deviation in the vicinity of the stoichiometric oxygen sensor.

本発明の内燃機関の空燃比制御装置は、機関の排気ガスの成分に感応して出力値が変化する排気センサを備え、前記排気センサの出力値に対応して機関に供給される混合気の空燃比を求め、空燃比を目標空燃比に近づけるようにフィードバック制御する空燃比フィードバック制御手段を備えた内燃機関の空燃比制御装置において、機関運転中に、燃料噴射量を所定の増減幅、所定の変動周期で変動させることによって空燃比を変動させる空燃比変動手段と、空燃比が変動している間の前記排気センサの出力電圧の変位に基づいて、理論空燃比に対応する排気センサ出力電圧を補正する排気センサ出力電圧補正手段と、を備える。   An air-fuel ratio control apparatus for an internal combustion engine according to the present invention includes an exhaust sensor whose output value changes in response to a component of the exhaust gas of the engine, and an air-fuel ratio supplied to the engine corresponding to the output value of the exhaust sensor. In an air-fuel ratio control apparatus for an internal combustion engine having an air-fuel ratio feedback control means for obtaining an air-fuel ratio and performing feedback control so that the air-fuel ratio approaches a target air-fuel ratio, the fuel injection amount is increased by a predetermined increase / decrease range during engine operation. And an exhaust gas sensor output voltage corresponding to the stoichiometric air fuel ratio based on the displacement of the output voltage of the exhaust sensor while the air fuel ratio is fluctuating. And an exhaust sensor output voltage correction means for correcting.

本発明によれば、燃料噴射量を増減させることによって空燃比を変動させ、この時検出される排気センサの出力電圧の変動幅を用いて出力電圧補正を行うので、実際の出力電圧に基づいた精度の高い補正を行うことができ、これにより空燃比フィードバック制御の精度を良好に維持し、触媒の浄化性能を確保することができる。   According to the present invention, the air-fuel ratio is changed by increasing or decreasing the fuel injection amount, and the output voltage correction is performed using the fluctuation range of the output voltage of the exhaust sensor detected at this time. A highly accurate correction can be performed, whereby the accuracy of the air-fuel ratio feedback control can be maintained well, and the purification performance of the catalyst can be ensured.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

1はエンジン、3はエンジン1に空気を供給するための吸気通路、5はエンジン1の排気を排出するための排気通路である。   Reference numeral 1 denotes an engine, 3 denotes an intake passage for supplying air to the engine 1, and 5 denotes an exhaust passage for discharging exhaust of the engine 1.

吸気通路3には吸入空気量を測定するためのエアフローメータ(以下、AFMという)10および吸入空気の圧力を検出する大気圧センサ8が設けられ、その下流には図示しないアクセルペダルに連動して吸入空気量を調節するスロットルバルブ4が設けられる。また、吸気通路3下流の吸気ポート11には、吸気ポート11内に燃料を噴射する燃料噴射弁7が設置される。   The intake passage 3 is provided with an air flow meter (hereinafter referred to as AFM) 10 for measuring the amount of intake air and an atmospheric pressure sensor 8 for detecting the pressure of the intake air, and downstream thereof in conjunction with an accelerator pedal (not shown). A throttle valve 4 for adjusting the amount of intake air is provided. A fuel injection valve 7 that injects fuel into the intake port 11 is installed in the intake port 11 downstream of the intake passage 3.

また、排気通路5には、排気中の酸素濃度を検出することによって吸入混合気の空燃比を検出する排気センサとしての空燃比センサ9と、排気中のCO、HCの酸化とNOxの還元を行って浄化する三元触媒6が設けられる。   In the exhaust passage 5, an air-fuel ratio sensor 9 serving as an exhaust sensor for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust, and oxidation of CO and HC in the exhaust and reduction of NOx are performed. A three-way catalyst 6 is provided that goes and purifies.

上記のAFM10、大気圧センサ8、空燃比センサ9や、図示しないアクセル開度センサ等の出力値は空燃比変動手段および排気センサ出力電圧補正手段としてのエンジンコントロールユニット(以下、ECUという)2に入力され、ECU2はこれらの値に基づいてスロットルバルブ4の開度や燃料噴射量等を制御する。   The output values of the AFM 10, the atmospheric pressure sensor 8, the air-fuel ratio sensor 9 and the accelerator opening sensor (not shown) are sent to an engine control unit (hereinafter referred to as ECU) 2 as air-fuel ratio fluctuation means and exhaust sensor output voltage correction means. Based on these values, the ECU 2 controls the opening of the throttle valve 4, the fuel injection amount, and the like.

燃料噴射量は、アクセル開度やエンジン回転数等から定まる要求トルクに応じて制御されるが、このとき、ECU2は空燃比が理論空燃比(ストイキ)になるように空燃比センサ9の出力値に基づいてフィードバック制御を行う。なお、加速時等の高負荷運転時にはストイキよりもリッチ側に、低負荷走行時にはストイキよりもリーン側に制御される場合もある。   The fuel injection amount is controlled according to the required torque determined from the accelerator opening, the engine speed, etc. At this time, the ECU 2 outputs the output value of the air-fuel ratio sensor 9 so that the air-fuel ratio becomes the stoichiometric air-fuel ratio (stoichiometric). Based on the feedback control. In some cases, the engine is controlled to be richer than stoichiometric during high-load operation such as during acceleration, and leaner than stoichiometric during low-load driving.

ここで、本実施形態で使用する空燃比センサ9について説明する。   Here, the air-fuel ratio sensor 9 used in the present embodiment will be described.

空燃比センサ9は、排気中の酸素濃度に応じた起電力を発生するものであり、この起電力は、空燃比(空気過剰率)に対して図2(a)に示すような特性をもっている。   The air-fuel ratio sensor 9 generates an electromotive force according to the oxygen concentration in the exhaust gas, and this electromotive force has a characteristic as shown in FIG. 2A with respect to the air-fuel ratio (excess air ratio). .

図2(a)は横軸が空燃比(空気過剰率)、縦軸がセンサ出力(mV)であり、図2(b)の出力電圧−実空燃比換算テーブルに示すように、実空燃比SETABF(n)は出力電圧AFSOUT(n)に一対一で対応している。図2(a)においてストイキ時の出力電圧はAFSOUT6であり、実空燃比はSETABF6である。   2A, the horizontal axis represents the air-fuel ratio (excess air ratio) and the vertical axis represents the sensor output (mV). As shown in the output voltage-actual air-fuel ratio conversion table of FIG. SETABF (n) has a one-to-one correspondence with the output voltage AFSOUT (n). In FIG. 2A, the output voltage at the time of stoichiometry is AFSOUT6, and the actual air-fuel ratio is SETABF6.

空燃比センサ9の出力は空燃比がストイキ(SETABF6)よりリーンになるほど大きくなり、リッチになるほど小さくなる特性がある。また、ストイキを起点としてリッチ側とリーン側とでは、出力特性の傾きが異なっている。   The output of the air-fuel ratio sensor 9 has a characteristic that it increases as the air-fuel ratio becomes leaner than stoichiometric (SETABF6) and decreases as it becomes richer. In addition, the slope of the output characteristic is different between the rich side and the lean side starting from the stoichiometry.

ところで、空燃比センサ9は、劣化、個体差、回路のばらつき、環境変化によるばらつきなどによって出力特性が変化し、前述した空燃比とセンサ出力との対応関係にずれが生じる場合があり空燃比フィードバック制御の精度を悪化させてしまうことがある。   By the way, the output characteristics of the air-fuel ratio sensor 9 may change due to deterioration, individual differences, circuit variations, variations due to environmental changes, etc., and there may be a deviation in the correspondence relationship between the air-fuel ratio and sensor output described above. The accuracy of control may be deteriorated.

出力特性の変化の形態としては、ストイキ時のセンサ出力は変化しないものの、出力特性の傾きが変わるゲイン変化(図13(a))、出力特性の傾きは変化しないものの、ストイキ時のセンサ出力がずれてしまうシフト変化(図13(b))、そして出力特性の傾きとストイキ時のセンサ出力の両方がずれるゲイン+シフト変化(図13(c))などがある。   As a form of change of the output characteristics, although the sensor output at the time of stoichiometry does not change, the gain change that changes the slope of the output characteristics (FIG. 13A), the slope of the output characteristics does not change, but the sensor output at the time of stoichiometry is There is a shift change that shifts (FIG. 13B), and a gain + shift change (FIG. 13C) in which both the slope of the output characteristic and the sensor output at the time of stoichiometry shift.

そこで、本実施形態では、空燃比センサ9の出力電圧の補正を行うことにより、空燃比フィードバック制御の精度を維持する。   Therefore, in the present embodiment, the accuracy of the air-fuel ratio feedback control is maintained by correcting the output voltage of the air-fuel ratio sensor 9.

次に、出力電圧の補正方法について図3のフローチャートを参照して説明する。   Next, a method for correcting the output voltage will be described with reference to the flowchart of FIG.

図3は空燃比センサ9の出力補正のためにECU2が実行する制御のフローチャートであり、エンジン始動から停止までに少なくとも1回行うものとする。   FIG. 3 is a flowchart of the control executed by the ECU 2 for correcting the output of the air-fuel ratio sensor 9 and is performed at least once from the engine start to the stop.

以下、フローチャートの各ステップにしたがって説明する。   Hereinafter, it demonstrates according to each step of a flowchart.

ステップS1では、空燃比センサ9が活性化しているか否かの判定を行う。判定は、例えば、エンジン始動から所定時間が経過したか否か、センサ出力電圧が所定値以上になったか否か等により行う。   In step S1, it is determined whether or not the air-fuel ratio sensor 9 is activated. The determination is made based on, for example, whether a predetermined time has elapsed since the engine was started, whether the sensor output voltage has become a predetermined value or more, and the like.

判定がnoであった場合、つまり空燃比センサ9が活性化していない状態では、空燃比センサ9の出力電圧は空燃比に対応した値にならず、補正を行える状態ではないので、活性化するまで待つ。   When the determination is no, that is, when the air-fuel ratio sensor 9 is not activated, the output voltage of the air-fuel ratio sensor 9 does not become a value corresponding to the air-fuel ratio and is not in a state where correction can be performed, so that it is activated. Wait until.

判定がyesの場合はステップS2に進み、空燃比センサ9の出力電圧に基づいて図2の出力特性テーブルを用いて空燃比フィードバック制御を開始する。   If the determination is yes, the process proceeds to step S2, and air-fuel ratio feedback control is started based on the output voltage of the air-fuel ratio sensor 9 using the output characteristic table of FIG.

続いてステップS3で、燃料噴射量をストイキ時の噴射量を基準として、所定量だけ所定の周期でリーン側、リッチ側に交互に増減させて、空燃比をアックティブに変動させる。   Subsequently, in step S3, the fuel injection amount is alternately increased or decreased by a predetermined amount from the lean side to the rich side in a predetermined cycle with the injection amount at the time of stoichiometry as a reference, and the air-fuel ratio is changed actively.

この時の燃料噴射量の変動幅を燃料噴射量変動幅といい、増減方向の切換周期を駆動周期という。   The fluctuation range of the fuel injection amount at this time is called a fuel injection amount fluctuation range, and the switching cycle in the increase / decrease direction is called a drive cycle.

ここで、所定の燃料噴射量変動幅および駆動周期について図4を参照して説明する。   Here, the predetermined fuel injection amount fluctuation range and the drive cycle will be described with reference to FIG.

図4はストイキを基準とした燃料噴射率の変化、ストイキ時の出力電圧(標準ストイキ電圧)を基準とした空燃比センサ9の出力電圧の変化を表すタイムチャートである。   FIG. 4 is a time chart showing changes in the fuel injection rate based on stoichiometry and changes in the output voltage of the air-fuel ratio sensor 9 based on the output voltage (standard stoichiometric voltage) during stoichiometry.

図4に示すように、ストイキを基準に一定量の燃料噴射量の増量、減量を一定周期で繰り返す。   As shown in FIG. 4, the fuel injection amount is increased and decreased by a certain amount with a fixed period based on the stoichiometry.

燃料噴射量変動幅とは、この時の燃料噴射量の変動幅をいう。増量、減量は、例えば、燃料噴射弁に通電するパルス幅を変化させることによって、燃料噴射弁の噴射率を変化させることにより行う。   The fluctuation range of the fuel injection amount means the fluctuation range of the fuel injection amount at this time. The increase or decrease is performed, for example, by changing the injection rate of the fuel injection valve by changing the pulse width for energizing the fuel injection valve.

なお、燃料噴射量変動幅は、具体的には、例えば低負荷運転時にはストイキを基準に±3%程度、高負荷運転時でも6%程度に抑える。これにより、空燃比変動に伴うトルク変化の発生を防止する。   Specifically, the fluctuation range of the fuel injection amount is, for example, suppressed to about ± 3% on the basis of stoichiometry during low load operation and to about 6% even during high load operation. This prevents the occurrence of torque change due to air-fuel ratio fluctuations.

また、燃料噴射量を変化させることにより、空燃比はリーン側、リッチ側に変動することになるので、空燃比センサ9の出力もリーン側、リッチ側に変動することになる。   Further, by changing the fuel injection amount, the air-fuel ratio changes from the lean side to the rich side, so the output of the air-fuel ratio sensor 9 also changes from the lean side to the rich side.

燃料噴射量の変動幅は一定であるので、理論上は空燃比センサ9の出力電圧の変動幅も一定値となるが、実際にはシステム系としてのばらつきや、空燃比センサ9内のガス交換性等の要因によって図に示したように多少のばらつきが生じる。   Since the fluctuation range of the fuel injection amount is constant, theoretically, the fluctuation range of the output voltage of the air-fuel ratio sensor 9 is also a constant value. However, in reality, the variation in the system system and the gas exchange in the air-fuel ratio sensor 9 are changed. Due to factors such as sex, some variation occurs as shown in the figure.

駆動周期とは、上記の燃料噴射量の増量/減量の切換周期のことをいい、例えば1Hz程度とする。また、増量/減量の切換を行った回数を駆動回数という。   The driving cycle refers to the increase / decrease switching cycle of the fuel injection amount, for example, about 1 Hz. The number of times of switching between increasing / decreasing is called the number of driving times.

図3のフローチャートの説明に戻る。ステップS4では、上記の駆動回数が所定回数以上となったか否かを検出し、所定回数となった場合にはステップS5に進む。所定回数としては、例えば10反転とする。   Returning to the flowchart of FIG. In step S4, it is detected whether or not the number of times of driving is equal to or greater than the predetermined number of times. The predetermined number of times is, for example, 10 inversion.

ステップS5では、上記駆動回数の間の酸素センサ8出力電圧ABFOUTVn(n:駆動回数)を読込む。   In step S5, the oxygen sensor 8 output voltage ABFOUTVn (n: number of times of driving) during the number of times of driving is read.

ステップS6では、上記で読込んだ空燃比センサ9出力電圧ABFOUTVnに基づいて、下式(1)から実測値から求まるストイキ電圧と標準ストイキ電圧(図2中のAFSOUT6)との差分ΔAFSOUTを演算する。   In step S6, based on the air-fuel ratio sensor 9 output voltage ABFOUTVn read in the above, the difference ΔAFSOUT between the stoichiometric voltage obtained from the measured value from the following equation (1) and the standard stoichiometric voltage (AFSOUT6 in FIG. 2) is calculated. .

ΔAFSOUT=[{(ABFOUTV1×α+ABFOUTV2×β)−AFSOUT6}+(ABFOUTV3×α+ABFOUTV4×β)−AFSOUT6]+・・・(ABFOUTVn×α+ABFOUTV(n+1)×β)−AFSOUT6}/反転回数 ・・・(1)
ただし、
α:ストイキからリーン側(図2のAFSOUT6〜AFSOUT16)の出力補正係数
β:ストイキからリッチ側(図2のAFSOUT1〜AFSOUT6)の出力補正係数
出力補正係数α、βは使用する酸素センサ8固有の数値であり、予め実験などにより求めておく。
ΔAFSOUT = [{(ABFOUTV1 × α + ABFOUTV2 × β) −AFSOUT6} + (ABFOUTV3 × α + ABFOUTV4 × β) −AFSOUT6] +... (ABFOUTVn × α + ABFOUTV (n + 1) × β) −AFSOUT6} / number of inversions (1) )
However,
α: Output correction coefficient from stoichiometric to lean side (AFSOUT6 to AFSOUT16 in FIG. 2) β: Output correction coefficient from stoichiometric to rich side (AFSOUT1 to AFSOUT6 in FIG. 2) Output correction coefficients α and β are specific to the oxygen sensor 8 to be used. It is a numerical value and is obtained in advance through experiments or the like.

ステップS7では、式(1)で算出したΔAFSOUTを用いて、下式(2)から補正後の標準ストイキ電圧を補正する。   In step S7, the corrected standard stoichiometric voltage is corrected from the following equation (2) using ΔAFSOUT calculated by the equation (1).

補正後標準ストイキ電圧=AFSOUT6+ΔAFSOUT ・・・(2)
そして、上記のように設定した補正後の標準ストイキ電圧を基準として、出力補正係数α及びβを用いて、リーン側(図2のAFSOUT6〜AFSOUT16)、リッチ側(図2のAFSOUT1〜AFSOUT6)の出力特性を補正する。
Standard stoichiometric voltage after correction = AFSOUT6 + ΔAFSOUT (2)
Then, using the corrected standard stoichiometric voltage set as described above as a reference, the lean side (AFSOUT6 to AFSOUT16 in FIG. 2) and the rich side (AFSOUT1 to AFSOUT6 in FIG. 2) are used using the output correction coefficients α and β. Correct the output characteristics.

上記の制御により、劣化等によって空燃比センサ9の出力特性が変化した場合にも、ストイキ時の出力電圧を補正し、さらに出力補正係数α、βを用いてリッチ側、リーン側の出力特性も補正することができる。   Even when the output characteristics of the air-fuel ratio sensor 9 change due to deterioration or the like by the above control, the output voltage at the time of stoichiometry is corrected, and the output characteristics on the rich side and lean side are also corrected using the output correction coefficients α and β. It can be corrected.

以上により本実施形態では、空燃比センサ9の出力特性が劣化等により変化し、ストイキ時の出力電圧がずれた場合にも、空燃比をリッチ、リーンにアクティブに変化させ、検出された実際の出力電圧に基づいてストイキ時の出力電圧を補正し、さらに補正後のストイキ時の出力電圧に基づいてリッチ側、リーン側の出力特性も補正するので、精度良く空燃比フィードバック制御を実行することが可能となり、触媒の浄化性能を最大限に発揮させることができる。   As described above, in the present embodiment, even when the output characteristic of the air-fuel ratio sensor 9 changes due to deterioration or the like and the output voltage at the time of stoichiometry shifts, the air-fuel ratio is changed richly and leanly and the detected actual The output voltage at the time of stoichiometry is corrected based on the output voltage, and the output characteristics on the rich side and the lean side are also corrected based on the corrected output voltage at the time of stoichiometry, so that air-fuel ratio feedback control can be executed with high accuracy. This makes it possible to maximize the purification performance of the catalyst.

第2実施形態について説明する。   A second embodiment will be described.

本実施形態は、第1実施形態と同様に空燃比をアクティブに変化させて、この時の空燃比センサ9の出力電圧の変位に基づいてストイキ時の出力電圧を補正するものである。ただし、第1実施例では燃料噴射量と駆動周期が一定であるのに対して、本実施形態では運転状態に応じて燃料噴射量と駆動周期を変動させる。運転状態は、例えば吸入空気量を検出することによって判断する。   In the present embodiment, the air-fuel ratio is actively changed as in the first embodiment, and the output voltage at the time of stoichiometry is corrected based on the displacement of the output voltage of the air-fuel ratio sensor 9 at this time. However, in the first embodiment, the fuel injection amount and the driving cycle are constant, but in the present embodiment, the fuel injection amount and the driving cycle are changed according to the operating state. The operating state is determined, for example, by detecting the intake air amount.

図5は本実施形態でECU2が実行する制御のフローチャートである。   FIG. 5 is a flowchart of control executed by the ECU 2 in the present embodiment.

ステップS21、S22は図3のステップS1、S2と同様であるので説明を省略する。   Steps S21 and S22 are the same as steps S1 and S2 in FIG.

ステップS23では、検出した吸入空気量と前回補正時の吸入空気量とを比較し、今回検出した吸入空気量が前回補正時の吸入空気量より少ない場合は吸入空気量が前回補正時よりも多くなるまでまつ。   In step S23, the detected intake air amount is compared with the intake air amount at the previous correction, and when the detected intake air amount is smaller than the intake air amount at the previous correction, the intake air amount is larger than at the previous correction. Wait until it becomes.

前回補正時より多くなったらステップS24に進み、吸入空気量に応じた燃料噴射量と駆動周期で空燃比をアクティブに変化させる。   If it has increased from the time of the previous correction, the process proceeds to step S24, and the air-fuel ratio is actively changed at the fuel injection amount corresponding to the intake air amount and the drive cycle.

吸入空気量と燃料噴射率、駆動周期の関係は、図14のテーブルに示すように、吸入空気量QAVALUE(n)に対して、燃料噴射量AFBAND(n)、駆動周期DRCYCLE(n)が対応している。   As shown in the table of FIG. 14, the relationship between the intake air amount, the fuel injection rate, and the drive cycle corresponds to the fuel injection amount AFBAND (n) and the drive cycle DRCYCLE (n) with respect to the intake air amount QAVALUE (n). is doing.

以下、ステップS25〜S28は図3のステップS3〜S7と同様の制御を行う。   Thereafter, steps S25 to S28 perform the same control as steps S3 to S7 in FIG.

ここで、ステップS23において前回補正時の吸入空気量より少ない場合に補正を行わない理由について説明する。   Here, the reason why the correction is not performed when the intake air amount at the previous correction is smaller in step S23 will be described.

吸入空気量が少ない場合、例えばアイドル運転時などは、燃料噴射量を増減させると、空燃比の変動によるトルク段差の発生等、運転性の悪化が懸念される。したがって、運転性を悪化させないようにするためには、燃料噴射量の増減幅を大きくすることはできず、また、駆動周期を短くすることもできない。   When the amount of intake air is small, for example during idle operation, if the fuel injection amount is increased or decreased, there is a concern that the drivability deteriorates, such as the generation of a torque step due to the fluctuation of the air-fuel ratio. Therefore, in order not to deteriorate the drivability, the increase / decrease width of the fuel injection amount cannot be increased, and the drive cycle cannot be shortened.

一方、吸入空気量が多い高負荷運転時には、アイドル状態に比べて空燃比の変動に伴うトルク変動の運転性への影響は少ない。したがって、燃料噴射量の増減幅を大きくし、空燃比の変動を大きくすることが可能であり、また、駆動周期を短くすることができる。   On the other hand, during high load operation with a large amount of intake air, the torque fluctuation due to fluctuations in the air-fuel ratio has less influence on the drivability than in the idle state. Therefore, it is possible to increase the increase / decrease range of the fuel injection amount, increase the fluctuation of the air-fuel ratio, and shorten the drive cycle.

空燃比センサ9の出力電圧の補正を行うためには、出力電圧の変動幅が大きい方が正確な補正を行うことが可能であるので、補正を行う条件としては吸入空気量は多い方が望ましい。   In order to correct the output voltage of the air-fuel ratio sensor 9, it is possible to perform accurate correction when the fluctuation range of the output voltage is large. Therefore, it is desirable that the amount of intake air is large as a condition for performing correction. .

そこで、ステップS23で今回と前回補正時の吸入空気量を比較し、前回の補正よりも精度の高い補正を行えるか否かを判定している。   Therefore, in step S23, the intake air amount at this time and the previous correction are compared, and it is determined whether correction with higher accuracy than the previous correction can be performed.

以上により本実施形態では、より精度の高い補正が実行可能な条件を検出し、エンジン状態に応じて燃料噴射量と駆動周期を変動させることによって空燃比をアクティブに変化させ、そのとき検出された実際の空燃比センサ9の出力電圧に基づいて出力電圧の補正を行うので、空燃比センサ9の出力特性が劣化等により変化した場合にも、ストイキ時の出力電圧を補正し、さらに補正後のストイキ時の出力電圧に基づいてリッチ側、リーン側の出力特性も補正するので、精度良く空燃比フィードバック制御を実行することが可能となり、触媒の浄化性能を最大限に発揮させることができる。   As described above, in the present embodiment, a condition under which more accurate correction can be performed is detected, and the air-fuel ratio is actively changed by changing the fuel injection amount and the driving cycle according to the engine state. Since the output voltage is corrected based on the actual output voltage of the air-fuel ratio sensor 9, even when the output characteristics of the air-fuel ratio sensor 9 change due to deterioration or the like, the output voltage at the time of stoichiometry is corrected, and further after the correction Since the rich side and lean side output characteristics are also corrected based on the output voltage at the time of stoichiometry, air-fuel ratio feedback control can be executed with high accuracy, and the purification performance of the catalyst can be maximized.

第3実施形態について図6〜図12を参照して説明する。   A third embodiment will be described with reference to FIGS.

図6は本実施形態においてECU2が実行する空燃比センサ9の出力電圧補正のための制御フローチャートであり、ストイキ時の出力電圧の補正を行った後、さらに、最大出力電圧および最小出力電圧の補正も行う。以下、各ステップにしたがって説明する。   FIG. 6 is a control flowchart for correcting the output voltage of the air-fuel ratio sensor 9 executed by the ECU 2 in the present embodiment. After correcting the output voltage at the time of stoichiometry, further correcting the maximum output voltage and the minimum output voltage. Also do. Hereinafter, it demonstrates according to each step.

ステップS31〜S38までは図5のステップS21〜S28と同様であるので、説明を省略する。   Steps S31 to S38 are the same as steps S21 to S28 in FIG.

ステップS39では、現在、リーン雰囲気であるか否かを判定する。   In step S39, it is determined whether or not the atmosphere is currently lean.

判定方法は、例えば、走行中にアクセルオフとなり、燃料カットされた状態であれば、リーン雰囲気であると判定する。   For example, if the accelerator is turned off during traveling and the fuel is cut, the determination method determines that the atmosphere is lean.

リーン雰囲気でなければリーン雰囲気になるまで待ち、リーン雰囲気となったらステップS40に進み、リーン雰囲気での出力電圧を読込む。   If it is not a lean atmosphere, it waits until a lean atmosphere is reached. If the lean atmosphere is reached, the process proceeds to step S40, and the output voltage in the lean atmosphere is read.

このとき、燃料カットされているので空燃比は最もリーン側となり、空燃比センサ9は最大出力電圧(AFSOUTMA)を示す。   At this time, since the fuel is cut, the air-fuel ratio becomes the leanest side, and the air-fuel ratio sensor 9 shows the maximum output voltage (AFSOUTMA).

ステップS41では大気圧(酸素分圧)のばらつき分の補正値である大気圧補正値を算出する。具体的には、図7に示すように、大気圧(ATOMSP)毎に出力補正値(LEVHOSA)を割り付けたテーブルを検出した大気圧で検索することによって行う。   In step S41, an atmospheric pressure correction value, which is a correction value for variations in atmospheric pressure (oxygen partial pressure), is calculated. Specifically, as shown in FIG. 7, the search is performed by detecting the atmospheric pressure at which the table in which the output correction value (LEVHOSA) is assigned for each atmospheric pressure (ATOMSP) is detected.

ステップS42では空燃比センサ9の素子温のばらつき分の補正値である素子温補正値を行う。具体的には、図8に示すように素子の内部抵抗(ELIMPED)毎に出力補正値(LEVHOSR)を割り付けたテーブルを検出した素子の内部抵抗で検索することによって行う。ここで、内部抵抗を用いるのは、素子温は内部抵抗と比例関係にあることを利用して、素子温を検出するセンサ等を設けることなく、素子温を推定することが可能であるからである。なお、ステップS41、S42はどちらを先に行ってもよい。   In step S42, an element temperature correction value, which is a correction value for the element temperature variation of the air-fuel ratio sensor 9, is performed. Specifically, as shown in FIG. 8, a table in which an output correction value (LEVHOSR) is assigned for each internal resistance (ELIMPED) of the element is searched by the internal resistance of the detected element. Here, the internal resistance is used because it is possible to estimate the element temperature without providing a sensor or the like for detecting the element temperature by utilizing the fact that the element temperature is proportional to the internal resistance. is there. Note that either step S41 or S42 may be performed first.

ステップS43では、まず上記で算出した補正値を用いて下式(2)により、補正後のリーン側最大出力電圧AFSOUT16Hを算出する。   In step S43, first, the corrected lean-side maximum output voltage AFSOUT16H is calculated by the following equation (2) using the correction value calculated above.

AFSOUT16H=AFSOUTMA+LEVHOSR(n)+LEVHOSA(n) ・・・(2)
そして、図9に示すように、補正後リーン側最大出力電圧AFSOUT16Hが、ステップS38で求めた補正後のストイキ時出力電圧に基づいて算出した出力特性図のリーン側最大出力電圧AFSOUT16となるように補正を行う。図9は補正後のストイキ時出力電圧を起点として出力補正係数αを用いて算出した出力特性図であり、補正後のリーン側最大出力電圧AFSOUT16Hがこの出力特性図上のAFSOUT16となるように補正する。これにより最大出力電圧が補正される。
AFSOUT16H = AFSOUTMA + LEVHOSR (n) + LEVHOSA (n) (2)
Then, as shown in FIG. 9, the corrected lean maximum output voltage AFSOUT16H becomes the lean maximum output voltage AFSOUT16 in the output characteristic diagram calculated based on the corrected stoichiometric output voltage obtained in step S38. Make corrections. FIG. 9 is an output characteristic diagram calculated using the output correction coefficient α with the corrected stoichiometric output voltage as a starting point, and the corrected lean-side maximum output voltage AFSOUT16H is corrected to be AFSOUT16 on the output characteristic diagram. To do. As a result, the maximum output voltage is corrected.

次に、ステップS44では、現在安定したリッチ雰囲気か否かの判定を行う。   Next, in step S44, it is determined whether or not the current atmosphere is a stable rich atmosphere.

具体的には加速等の高負荷運転時や、燃料カットからのリカバー時等のように燃料増量が行われている状態であるか否かにより判定する。   Specifically, the determination is made based on whether or not the fuel increase is being performed, such as during high-load operation such as acceleration or when recovering from a fuel cut.

リッチ雰囲気でないときは、リッチ雰囲気になるまでまち、ステップS45に進む。   If it is not a rich atmosphere, the process proceeds to step S45 until the rich atmosphere is reached.

ステップS45では、リッチ雰囲気、つまり燃料増量中の最少出力電圧AFSOUTMIを読込む。   In step S45, the rich atmosphere, that is, the minimum output voltage AFSOUTMI during the fuel increase is read.

ステップS46、S47では、ステップS41、S42と同様に、図10の大気圧補正テーブル、図11の素子温補正テーブルを用いて大気圧補正値REVHOSA、素子温補正値REVHOSRを求め、ステップS48で補正後リッチ側最小出力電圧AFSOUT1Hを下式(3)により求める。   In steps S46 and S47, similarly to steps S41 and S42, the atmospheric pressure correction value REVHOSA and the element temperature correction value REVHOSR are obtained using the atmospheric pressure correction table in FIG. 10 and the element temperature correction table in FIG. 11, and are corrected in step S48. The rear rich side minimum output voltage AFSOUT1H is obtained by the following equation (3).

AFSOUT1H=AFSOUTMI+REVHOSR(n)+REVHOSA(n) ・・・(3)
そして、ステップS43と同様の手法で、図12に示すように補正後リッチ側最小出力電圧AFSOUT1Hが補正後のストイキ時出力電圧を起点として出力補正係数βを用いて算出した出力特性係数上の最小出力電圧AFSOUT1となるように補正を行う。これにより最小出力電圧が補正される。
AFSOUT1H = AFSOUTMI + REVHOSR (n) + REVHOSA (n) (3)
Then, the corrected rich side minimum output voltage AFSOUT1H is the minimum on the output characteristic coefficient calculated using the output correction coefficient β starting from the corrected stoichiometric output voltage as shown in FIG. Correction is performed so that the output voltage AFSOUT1 is obtained. As a result, the minimum output voltage is corrected.

上記のように、本実施形態の制御は、まずストイキ時の出力電圧を補正し、補正後のストイキ時出力電圧を起点として、予め求めておいた出力補正係数α、βを用いて出力特性図を作成し、その後、リーン状態で最大出力電圧の補正を行い、さらに、リッチ状態で最小出力電圧の補正を行うものである。   As described above, the control of the present embodiment first corrects the output voltage at the time of stoichiometry, and uses the output correction coefficients α and β obtained in advance from the corrected output voltage at the time of stoichiometry as the starting point. After that, the maximum output voltage is corrected in the lean state, and the minimum output voltage is corrected in the rich state.

以上により本実施形態では、第2実施形態と同様の効果に加えて、さらに、ストイキよりもリーン側については燃料カット時に、そしてリッチ側については燃料増量時にそれぞれ補正を行うので、空燃比センサ9のストイキ時の出力電圧および出力特性の傾きがともにずれる「ゲイン+シフト変化」であっても、精度の良い補正を行うことが可能となり、精度良く空燃比フィードバック制御を実行することが可能となり、触媒の浄化性能を最大限に発揮させることができる。   As described above, in the present embodiment, in addition to the same effects as those of the second embodiment, correction is further performed when the fuel is cut on the lean side of the stoichiometry and when the fuel is increased on the rich side. Even if the output voltage and the slope of the output characteristics at the time of stoichiometry are both "gain + shift change", it is possible to perform accurate correction, and it is possible to execute air-fuel ratio feedback control with high accuracy, The purification performance of the catalyst can be maximized.

なお、本実施形態では空燃比センサ9を用いる場合について説明したが、酸素センサでも同様に制御を行うことができる。   In the present embodiment, the case where the air-fuel ratio sensor 9 is used has been described. However, the oxygen sensor can be similarly controlled.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

本発明は、内燃機関の空燃比フィードバック制御に用いる酸素センサの出力電圧補正に適用可能である。   The present invention is applicable to output voltage correction of an oxygen sensor used for air-fuel ratio feedback control of an internal combustion engine.

本実施形態のシステムの構成を表す図である。It is a figure showing the structure of the system of this embodiment. (a)は空燃比センサの出力特性図であり、(b)は出力電圧と実空燃比の換算テーブルである。(A) is an output characteristic diagram of an air-fuel ratio sensor, and (b) is a conversion table of output voltage and actual air-fuel ratio. 第1実施形態の制御フローチャートである。It is a control flowchart of a 1st embodiment. (a)は燃料噴射率の変動幅、駆動周期を表す図であり、(b)は空燃比センサの出力電圧の変化を表す図である。(A) is a figure showing the fluctuation range of a fuel injection rate, and a drive period, (b) is a figure showing the change of the output voltage of an air fuel ratio sensor. 第2実施形態の制御フローチャートである。It is a control flowchart of a 2nd embodiment. 第3実施形態の制御フローチャートである。It is a control flowchart of a 3rd embodiment. リーン側の大気圧補正用の換算テーブルである。It is a conversion table for the correction of the atmospheric pressure on the lean side. リーン側の素子温補正用の換算テーブルである。It is a conversion table for lean side element temperature correction. リーン側出力電圧補正を説明するための図である。It is a figure for demonstrating lean side output voltage correction | amendment. リッチ側の大気圧補正用の換算テーブルである。It is a conversion table for atmospheric pressure correction on the rich side. リッチ側の素子温補正用の換算テーブルである。It is a conversion table for element temperature correction on the rich side. リッチ側出力電圧補正を説明するための図である。It is a figure for demonstrating rich side output voltage correction | amendment. (a)〜(c)は空燃比センサの出力電圧のずれを説明するための図である。(A)-(c) is a figure for demonstrating the shift | offset | difference of the output voltage of an air fuel ratio sensor. 吸入空気量と燃料噴射率、駆動周期の関係を表すテーブルである。It is a table showing the relationship between an intake air amount, a fuel injection rate, and a driving cycle.

符号の説明Explanation of symbols

1 エンジン
2 コントロールユニット(ECU)
3 吸気通路
4 スロットルバルブ
5 排気通路
6 三元触媒
7 燃料噴射弁
8 大気圧センサ
9 空燃比センサ
10 エアフローメータ(AFM)
11 吸気ポート
1 Engine 2 Control unit (ECU)
DESCRIPTION OF SYMBOLS 3 Intake passage 4 Throttle valve 5 Exhaust passage 6 Three way catalyst 7 Fuel injection valve 8 Atmospheric pressure sensor 9 Air fuel ratio sensor 10 Air flow meter (AFM)
11 Intake port

Claims (10)

機関の排気ガスの成分に感応して出力値が変化する排気センサを備え、
前記排気センサの出力値に対応して機関に供給される混合気の空燃比を求め、
空燃比を目標空燃比に近づけるようにフィードバック制御する空燃比フィードバック制御手段を備えた内燃機関の空燃比制御装置において、
機関運転中に、燃料噴射量を所定の増減幅、所定の変動周期で変動させることによって空燃比を変動させる空燃比変動手段と、
空燃比が変動している間の前記排気センサの出力電圧の変位に基づいて、理論空燃比に対応する排気センサ出力電圧を補正する排気センサ出力電圧補正手段と、を備えることを特徴とする内燃機関の空燃比制御装置。
Equipped with an exhaust sensor whose output value changes in response to the exhaust gas component of the engine,
Finding the air-fuel ratio of the air-fuel mixture supplied to the engine corresponding to the output value of the exhaust sensor,
In an air-fuel ratio control apparatus for an internal combustion engine provided with an air-fuel ratio feedback control means for performing feedback control so that the air-fuel ratio approaches a target air-fuel ratio,
Air-fuel ratio changing means for changing the air-fuel ratio by changing the fuel injection amount at a predetermined increase / decrease range and a predetermined fluctuation period during engine operation;
Exhaust gas sensor output voltage correction means for correcting an exhaust sensor output voltage corresponding to the stoichiometric air-fuel ratio based on the displacement of the output voltage of the exhaust sensor while the air-fuel ratio varies. Engine air-fuel ratio control device.
前記排気センサ出力電圧補正手段により補正した理論空燃比時の排気センサ出力電圧と、排気センサ固有の出力補正係数に基づいて、理論空燃比よりもリッチ側、リーン側の出力特性を算出する請求項1に記載の内燃機関の空燃比制御装置。   The richer and leaner output characteristics than the stoichiometric air-fuel ratio are calculated based on the exhaust sensor output voltage at the stoichiometric air-fuel ratio corrected by the exhaust sensor output voltage correcting means and an output correction coefficient unique to the exhaust sensor. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1. 前記空燃比変動手段は、前記燃料噴射量の増減幅、変動周期を、機関の運転状態に応じて可変に制御する請求項1または2に記載の内燃機関の空燃比制御装置。   The air-fuel ratio control device for an internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio fluctuation means variably controls the increase / decrease width and fluctuation cycle of the fuel injection amount in accordance with the operating state of the engine. 吸入空気量を検出する吸入空気量検出手段を設け、
前記空燃比変動手段は、前記吸入空気量検出手段の検出値に応じて前記燃料噴射量の増減幅、変動周期を制御する請求項3に記載の内燃機関の空燃比制御装置。
Intake air amount detection means for detecting the intake air amount is provided,
4. The air-fuel ratio control apparatus for an internal combustion engine according to claim 3, wherein the air-fuel ratio fluctuation means controls the increase / decrease width and fluctuation period of the fuel injection amount in accordance with the detection value of the intake air amount detection means.
前記空燃比変動手段は、吸入空気量が多い場合には、燃料噴射量の増減幅を大きくかつ変動周期を短くし、吸入空気量が少ない場合には、燃料噴射量の増減幅を小さくかつ変動周期を長くする請求項4に記載の内燃機関の空燃比制御装置。   When the intake air amount is large, the air-fuel ratio changing means increases and decreases the fluctuation range of the fuel injection amount and shortens the fluctuation cycle. When the intake air amount is small, the air-fuel ratio fluctuation means decreases and fluctuates the increase and decrease range of the fuel injection amount. The air-fuel ratio control device for an internal combustion engine according to claim 4, wherein the cycle is lengthened. 吸入空気量が前回補正時の吸入空気量よりも多い場合にのみ、前記空燃比変動手段により空燃比を変動させ、排気センサ出力電圧補正手段により補正を行う請求項4または5に記載の内燃機関の空燃比制御装置。   6. The internal combustion engine according to claim 4, wherein only when the intake air amount is larger than the intake air amount at the time of previous correction, the air-fuel ratio is changed by the air-fuel ratio changing means and the exhaust sensor output voltage correction means is used for correction. Air-fuel ratio control device. 前記排気センサの出力電圧が安定するリッチ状態となる運転状態を検出するリッチ状態検出手段と、
リッチ状態を検出した場合に、そのときの排気センサ出力電圧が前記出力特性算出手段により算出した出力特性に合致するように補正を行うリッチ出力電圧補正手段と、を備える請求項1〜6のいずれか一つに記載の内燃機関の空燃比制御装置。
Rich state detection means for detecting an operation state in which the exhaust sensor outputs a stable rich voltage;
7. A rich output voltage correction unit that performs correction so that an exhaust sensor output voltage at that time matches an output characteristic calculated by the output characteristic calculation unit when a rich state is detected. An air-fuel ratio control apparatus for an internal combustion engine according to claim 1.
リーン状態を検出した場合に、そのときの排気センサ出力電圧が前記出力特性算出手段により算出した出力特性に合致するように補正を行うリーン出力電圧補正手段と、を備える請求項1〜7のいずれか一つに記載の内燃機関の空燃比制御装置。   The lean output voltage correction means for correcting the exhaust sensor output voltage at that time so as to match the output characteristic calculated by the output characteristic calculation means when a lean state is detected. An air-fuel ratio control apparatus for an internal combustion engine according to claim 1. 前記リッチ状態もしくはリーン状態の排気センサ出力電圧を大気圧に応じて補正する大気圧補正手段を備える請求項7または8に記載の内燃機関の空燃比制御装置。   The air-fuel ratio control apparatus for an internal combustion engine according to claim 7 or 8, further comprising an atmospheric pressure correction unit that corrects the exhaust sensor output voltage in the rich state or the lean state according to atmospheric pressure. 前記リッチ状態もしくはリーン状態の排気センサ出力電圧を排気センサの素子温度に応じて補正する素子温補正手段を備える請求項7または9に記載の内燃機関の空燃比制御装置。   The air-fuel ratio control apparatus for an internal combustion engine according to claim 7 or 9, further comprising element temperature correction means for correcting the exhaust sensor output voltage in the rich state or lean state according to the element temperature of the exhaust sensor.
JP2004180752A 2004-06-18 2004-06-18 Air-fuel ratio control device for internal combustion engine Pending JP2006002685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004180752A JP2006002685A (en) 2004-06-18 2004-06-18 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180752A JP2006002685A (en) 2004-06-18 2004-06-18 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006002685A true JP2006002685A (en) 2006-01-05

Family

ID=35771286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180752A Pending JP2006002685A (en) 2004-06-18 2004-06-18 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006002685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106804A (en) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd Sensor abnormality diagnosis device and sensor abnormality diagnosis method
JP2013185483A (en) * 2012-03-07 2013-09-19 Denso Corp Air-fuel ratio control device
JP2015200187A (en) * 2014-04-04 2015-11-12 富士重工業株式会社 Air-fuel ratio imbalance diagnostic apparatus and air-fuel ratio imbalance diagnostic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106804A (en) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd Sensor abnormality diagnosis device and sensor abnormality diagnosis method
JP2013185483A (en) * 2012-03-07 2013-09-19 Denso Corp Air-fuel ratio control device
JP2015200187A (en) * 2014-04-04 2015-11-12 富士重工業株式会社 Air-fuel ratio imbalance diagnostic apparatus and air-fuel ratio imbalance diagnostic method

Similar Documents

Publication Publication Date Title
JP4835497B2 (en) Air-fuel ratio control device for internal combustion engine
JP3941828B2 (en) Air-fuel ratio control device for internal combustion engine
JP5001183B2 (en) Air-fuel ratio control device for internal combustion engine
JP3356878B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006083796A (en) Air fuel ratio controller for internal combustion engine
JP2010001803A (en) Catalyst deterioration determination device
JP5116868B2 (en) Air-fuel ratio control device for internal combustion engine
JP4661691B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006002685A (en) Air-fuel ratio control device for internal combustion engine
JP2018155179A (en) Engine control device and engine control method
JPH09310636A (en) Air-fuel ratio controller for internal combustion engine
JP4419952B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007032438A (en) Air-fuel ratio control device for internal combustion engine
JP5331931B2 (en) Air-fuel ratio control device for internal combustion engine
JP4432630B2 (en) Air-fuel ratio control device for internal combustion engine
JP5316103B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP4276136B2 (en) Engine diagnostic equipment
JP4291492B2 (en) Air-fuel ratio control device for internal combustion engine
JP3612785B2 (en) Control device for internal combustion engine
JP4064092B2 (en) Engine air-fuel ratio control device
JP4072412B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11159376A (en) Air-fuel ratio control device for internal combustion engine
JP2005054770A (en) Error detection device for air-fuel ratio sensor
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2722805B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623