JP2006002212A - Aluminum alloy extrusion tube for heat exchanger and heat exchanger - Google Patents

Aluminum alloy extrusion tube for heat exchanger and heat exchanger Download PDF

Info

Publication number
JP2006002212A
JP2006002212A JP2004179524A JP2004179524A JP2006002212A JP 2006002212 A JP2006002212 A JP 2006002212A JP 2004179524 A JP2004179524 A JP 2004179524A JP 2004179524 A JP2004179524 A JP 2004179524A JP 2006002212 A JP2006002212 A JP 2006002212A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
extruded
aluminum alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004179524A
Other languages
Japanese (ja)
Other versions
JP4347145B2 (en
Inventor
Tomohiko Nakamura
友彦 中村
Yoshiharu Hasegawa
義治 長谷川
Yasunori Hiyougo
靖憲 兵庫
Masaya Katsumata
真哉 勝又
Akira Watabe
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Denso Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004179524A priority Critical patent/JP4347145B2/en
Publication of JP2006002212A publication Critical patent/JP2006002212A/en
Application granted granted Critical
Publication of JP4347145B2 publication Critical patent/JP4347145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy extrusion tube composed of an alloy having extrusion property at the time of forming even in the case the thickness of an extruding material with a hollow shape is thin, also having sufficient material strength and further having excellent local corrosion resistance in a low concentration zinc-diffused layer. <P>SOLUTION: The aluminum alloy extrusion tube 1 for a heat exchanger is characterized in that the outer surface of an Al alloy extrusion material having a composition comprising, by mass, 0.5 to 1.0% Si, 0.5 to 1.4% Mn and 0.1 to 0.25% Ti, and the balance Al with inevitable impurities is provided with a Zn or Zn-containing layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーエアコンのコンデンサ、エバポレータなどの熱交換器の構造用部材として用いる熱交換器用アルミニウム合金押出チューブ及び熱交換器に関するものであり、特に、高温強度及び耐圧強度に優れ、フロンやCOを冷媒として使用することが可能な熱交換器用アルミニウム合金押出チューブ及び熱交換器に関するものである。 The present invention relates to an aluminum alloy extruded tube for a heat exchanger and a heat exchanger used as a structural member of a heat exchanger such as a condenser and an evaporator of a car air conditioner. The present invention relates to an aluminum alloy extruded tube for a heat exchanger and a heat exchanger that can use 2 as a refrigerant.

AlおよびAl合金は軽量、かつ、熱伝導性が良好で耐食性にも優れていることから、アルミニウム合金の押出材からなるチューブ(以下、アルミニウム(Al)合金押出チューブと呼ぶ)は、車載用エアコンなどの熱交換器において広く用いられている。   Since Al and Al alloys are lightweight, have good thermal conductivity and excellent corrosion resistance, tubes made of extruded aluminum alloys (hereinafter referred to as aluminum (Al) alloy extruded tubes) are used as automotive air conditioners. It is widely used in heat exchangers such as.

この熱交換器は、例えば図2に示すように、ヘッダーパイプ4と称される左右一対の管体と、そのヘッダーパイプ4の間に互いに平行に間隔を空けて設けられたアルミニウム合金からなる多数のチューブ1と、チューブ1とチューブ1との間に設けられたフィン2とで構成されている。
そして、チューブ1とフィン2とはろう付けされており、さらに各チューブ1の内部空間とヘッダーパイプ4の内部空間は連通しており、ヘッダーパイプ4の内部空間と各チューブ1の内部空間に媒体を循環させ、前記フィン2を介して効率良く熱交換ができるようになっている。
For example, as shown in FIG. 2, the heat exchanger includes a pair of left and right tubes called header pipes 4 and a large number of aluminum alloys provided between the header pipes 4 so as to be spaced apart from each other in parallel. Tube 1 and fins 2 provided between the tube 1 and the tube 1.
The tubes 1 and the fins 2 are brazed, and the internal space of each tube 1 and the internal space of the header pipe 4 communicate with each other, and the medium is connected to the internal space of the header pipe 4 and the internal space of each tube 1. Is circulated so that heat can be exchanged efficiently through the fins 2.

この熱交換器を構成する各チューブ1としては、図1の斜視図に示されるような複数の冷媒通路穴3を有する断面偏平状の押出材が用いられ、この押出材は押出し加工により形成されるため、一般に、押出し加工性に優れたJIS1050合金に代表される純アルミニウム(Al)系合金が用いられている。   As each tube 1 constituting this heat exchanger, an extruded material having a flat cross section having a plurality of refrigerant passage holes 3 as shown in the perspective view of FIG. 1 is used, and this extruded material is formed by extrusion processing. Therefore, in general, a pure aluminum (Al) -based alloy typified by JIS1050 alloy having excellent extrudability is used.

このような製品では更なる軽量化を図るため、中空形状(管状)とした押出材はより薄肉であることが望まれているが、肉厚が減少するにつれて所定の形状寸法のチューブを得るには、成形時の押出速度を低下させる必要があるなど、押出性が低下し、量産性が損なわれるという課題があった。この押出性の低下は、特に、押出材の外表面となす最も薄い部分の肉厚が0.30mm以下の場合に顕著に現れるものであった。   In order to further reduce the weight of such products, it is desired that the extruded material having a hollow shape (tubular shape) be thinner. However, as the thickness decreases, a tube having a predetermined shape and dimension is obtained. However, there is a problem that the extrudability is lowered and the mass productivity is impaired because it is necessary to reduce the extrusion speed at the time of molding. This decrease in extrudability was particularly noticeable when the thickness of the thinnest part formed on the outer surface of the extruded material was 0.30 mm or less.

ところで、熱交換器ではチューブ内を通過する冷媒により、チューブに内圧が加わり、チューブの材料強度、特に、耐力が低い場合には薄肉化するとこの圧力によってチューブの壁面が外側に膨らみ、極端な場合には破裂に至る恐れもある。   By the way, in the heat exchanger, internal pressure is applied to the tube by the refrigerant that passes through the tube, and when the material strength of the tube, especially when the proof stress is low, the wall surface of the tube swells outward due to this pressure, and in extreme cases There is also a risk of rupture.

一方、チューブを腐食環境下で使用した場合には孔食などの局部腐食が生じることがあるが、薄肉化を図った場合には比較的早期に貫通孔が生じ、使用に耐えられなくなることがあった。   On the other hand, when the tube is used in a corrosive environment, local corrosion such as pitting corrosion may occur. However, when thinning is attempted, a through-hole may be formed relatively early and may not be able to withstand use. there were.

従来、このような耐食性の問題に対してはチューブ表面に亜鉛(Zn)を被覆して製品のろう付け時の加熱でチューブ内部へ拡散させる手法が用いられており、実環境ではチューブ肉厚が比較的厚い場合にはZnのいわゆる犠牲陽極効果によって局部腐食の進行を最小に抑える方法が用いられていた。   Conventionally, to solve such corrosion resistance problems, a method has been used in which zinc (Zn) is coated on the tube surface and diffused into the tube by heating during brazing of the product. When it is relatively thick, a method of minimizing the progress of local corrosion by the so-called sacrificial anode effect of Zn has been used.

通常、このようなZn被覆層は、押出成形された偏平状かつ管状の押出材について、その外表面にZnまたはZn含有層を溶射することにより形成する方法が開示されている(例えば、特許文献1参照)。   Usually, such a Zn coating layer is disclosed by a method of forming a flat and tubular extruded material by spraying a Zn or Zn-containing layer on its outer surface (for example, patent document). 1).

上記溶射は、押出材の外平坦部分にZn被覆層が均一な膜厚で形成されるように、押出材の外平坦部分の上下方向から行われる。すると、押出材をなす上下の外平坦部分が閉じる両端部はある曲率をもっているため、この両端部付近に形成されるZn被覆層の膜厚は、外平坦部分より薄くなると共に、不均一となる傾向があった。このような部位では低濃度の亜鉛拡散層となってしまう。   The thermal spraying is performed from above and below the outer flat portion of the extruded material so that the Zn coating layer is formed with a uniform film thickness on the outer flat portion of the extruded material. Then, since both ends of the upper and lower outer flat portions forming the extruded material have a certain curvature, the thickness of the Zn coating layer formed in the vicinity of both ends becomes thinner than the outer flat portions and becomes non-uniform. There was a trend. In such a part, it becomes a low concentration zinc diffusion layer.

この押出材の両端部付近におけるZn被覆層の膜厚減少や不均一は、耐食性の低下をもたらすという観点から危惧されていた。何故ならば、押出材の外表面となす最も薄い部分の肉厚が0.30mmより薄くなると従来の合金(例えば、1050や純Al等)では、局部腐食部の材料強度が著しく低下し、室温強度が低いと熱交換冷媒の内圧によって、この局部腐食部での変形が進み、容易に破断に至る傾向があった。   The reduction in thickness and non-uniformity of the Zn coating layer in the vicinity of both ends of the extruded material has been a concern from the viewpoint of causing a decrease in corrosion resistance. This is because when the thickness of the thinnest part formed on the outer surface of the extruded material becomes thinner than 0.30 mm, the material strength of the locally corroded portion is remarkably lowered in a conventional alloy (for example, 1050 or pure Al). If the strength is low, the deformation at the locally corroded portion proceeds due to the internal pressure of the heat exchange refrigerant, and there is a tendency to easily break.

また、従来のフロン系の冷媒に代わって、二酸化炭素(CO)を冷媒として用いる熱交換器が広く普及する可能性がある。COを冷媒として用いる場合には、チューブの高温強度や耐圧強度を更に高める必要があった。具体的には、COを冷媒として用いる場合、150℃の高温でも十分な耐熱強度を有し、かつフロン系冷媒と比べて3〜10倍の耐圧強度が必要になる。 In addition, a heat exchanger using carbon dioxide (CO 2 ) as a refrigerant instead of a conventional chlorofluorocarbon refrigerant may be widely spread. When using CO 2 as a refrigerant, it was necessary to further increase the high-temperature strength and pressure resistance of the tube. Specifically, when CO 2 is used as a refrigerant, it needs a sufficient heat resistance even at a high temperature of 150 ° C., and requires a pressure strength 3 to 10 times that of a fluorocarbon refrigerant.

以上説明した背景から、アルミニウム合金押出チューブを構成する押出材において、その肉厚が薄くなった場合でも押出性に優れ、かつ、十分な高温強度や耐圧強度を有し、加えて、低濃度亜鉛拡散層の耐局部腐食性にも優れた合金の開発が期待されていた。   From the background described above, in the extruded material constituting the aluminum alloy extruded tube, it has excellent extrudability even when the wall thickness is reduced, has sufficient high-temperature strength and pressure strength, and in addition, low concentration zinc The development of an alloy having excellent local corrosion resistance of the diffusion layer was expected.

また特許文献2には、MnとTiとを有する熱交換器用の押出チューブが開示されている。しかし、この特許文献2に記載の押出チューブは、その実施例からも明らかなように、主に耐食性の向上を目指したものであり、強度向上を目指したものでない。
更に特許文献3には、MnとTiとを有する熱交換器用の押出ヘッダータンクが開示されている。しかしこの文献に記載された内容はチューブに関するものではなく、用途が異なっている。
特開平9−137245号公報 特開2002−79370号公報 特開2002−275565号公報
Patent Document 2 discloses an extruded tube for a heat exchanger having Mn and Ti. However, as is clear from the examples, the extruded tube described in Patent Document 2 is mainly aimed at improving the corrosion resistance and not aiming at improving the strength.
Further, Patent Document 3 discloses an extrusion header tank for a heat exchanger having Mn and Ti. However, the contents described in this document are not related to the tube and are used for different purposes.
JP-A-9-137245 JP 2002-79370 A JP 2002-275565 A

本発明は、上記事情に鑑みてなされたものであって、中空形状をなす押出材の肉厚が薄い場合でも成形時の押出性に優れ、かつ、十分な材料強度を有すると共に、低濃度亜鉛拡散層の耐局部腐食性に優れた合金からなるアルミニウム合金押出チューブ及びこのチューブを用いた熱交換器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is excellent in extrudability at the time of molding even when the thickness of a hollow extruded material is thin, has sufficient material strength, and has a low concentration of zinc. An object of the present invention is to provide an aluminum alloy extruded tube made of an alloy excellent in local corrosion resistance of a diffusion layer and a heat exchanger using the tube.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の熱交換器用アルミニウム合金押出チューブは、質量%で0.5%以上1.0%以下のSiと、0.5%以上1.4%以下のMnと、0.1%以上0.25%以下のTiとを含有し、残りがAlおよび不可避不純物からなるAl合金押出材の外表面にZnまたはZn含有層を設けたことを特徴とする。
In order to achieve the above object, the present invention employs the following configuration.
The aluminum alloy extruded tube for a heat exchanger of the present invention is 0.5% to 1.0% Si, 0.5% to 1.4% Mn, 0.1% to 0.00% by mass%. A feature of the present invention is that a Zn or Zn-containing layer is provided on the outer surface of an Al alloy extruded material containing 25% or less of Ti and the remainder comprising Al and inevitable impurities.

上記の構成によれば、SiとMnに加えてTiが含有されているので、押出性を高めることができるとともに、チューブ自体の高温強度及び室温強度を飛躍的に向上させることができる。これにより、フロン系冷媒のほか、CO冷媒を用いることができる。
また、Siを添加することで、押出性、耐圧強度及び耐局部腐食性を高めることができる。更に、Mnを添加することで、耐圧強度と高温強度を同時に高めることができる。
According to said structure, since Ti is contained in addition to Si and Mn, extrudability can be improved and the high temperature strength and room temperature strength of tube itself can be improved dramatically. Thereby, in addition to the fluorocarbon refrigerant, a CO 2 refrigerant can be used.
Further, by adding Si, extrudability, pressure strength and local corrosion resistance can be improved. Furthermore, by adding Mn, the pressure strength and the high temperature strength can be increased at the same time.

また、上記のZnまたはZn含有層は、Zn若しくはZn含有合金を溶射、またはZn含有フラックスを塗布することで形成される。Zn含有フラックスとしては、例えばZnF、ZnCl、KZnF等の化合物を例示できる。
チューブの外表面にZnまたはZn含有層を設けることで、ろう付け後のチューブ表面にZn拡散層が形成され、このZn拡散層が犠牲陽極層として機能することによりチューブの防食効果を高めることができる。
The Zn or Zn-containing layer is formed by spraying Zn or a Zn-containing alloy or applying a Zn-containing flux. Examples of the Zn-containing flux include compounds such as ZnF 2 , ZnCl 2 , and KZnF 3 .
By providing a Zn or Zn-containing layer on the outer surface of the tube, a Zn diffusion layer is formed on the tube surface after brazing, and this Zn diffusion layer functions as a sacrificial anode layer, thereby enhancing the anticorrosion effect of the tube. it can.

また、本発明の熱交換器用アルミニウム合金押出チューブは、先に記載の熱交換器用アルミニウム合金押出チューブであって、前記Al合金押出材に更に、質量%で0.05%以上0.20%以下のCuが添加されていることを特徴とする。   Moreover, the aluminum alloy extruded tube for a heat exchanger of the present invention is the aluminum alloy extruded tube for a heat exchanger as described above, and is further 0.05% or more and 0.20% or less by mass% to the Al alloy extruded material. Cu is added.

上記構成によれば、更にCuを添加することで、押出性や耐局部腐食性を損なうことなく、耐圧強度をより高めることができる。   According to the said structure, pressure resistance strength can be raised more by adding Cu, without impairing extrudability and local corrosion resistance.

また、本発明の熱交換器用アルミニウム合金押出チューブにおいては、MnとTiの合計量が1.25%を越えて1.65%以下とされていることが好ましい。この構成により、耐圧強度をより高めることができる。   Moreover, in the aluminum alloy extruded tube for heat exchangers of the present invention, the total amount of Mn and Ti is preferably more than 1.25% and not more than 1.65%. With this configuration, the pressure strength can be further increased.

また、本発明の熱交換器用アルミニウム合金押出チューブにおいては、前記Al合金押出材の外表面となす最も薄い部分の肉厚が0.10mm以上0.30mm以下であることが好ましい。   Moreover, in the aluminum alloy extruded tube for heat exchangers of the present invention, it is preferable that the thickness of the thinnest part formed on the outer surface of the Al alloy extruded material is 0.10 mm or more and 0.30 mm or less.

本願明細書において押出材の外表面となす最も薄い部分とは、例えば図1に示すような熱交換器を構成するチューブ1の場合、冷媒通路穴3とチューブ1の外表面との間をなすチューブ1の肉厚部において最もその肉厚が小さくなる部分を指す。図1では、冷媒通路穴3の断面形状が略方形をなす例を示しているが、方形の他に円形や楕円形など如何なる形状であっても構わない。また、設置する冷媒通路穴3の個数や、冷媒通路穴3を設ける間隔は、図1の例に限定されるものではない。   In the present specification, the thinnest portion formed on the outer surface of the extruded material is formed between the refrigerant passage hole 3 and the outer surface of the tube 1, for example, in the case of the tube 1 constituting the heat exchanger as shown in FIG. In the thick part of the tube 1, it points the part where the thickness becomes the smallest. Although FIG. 1 shows an example in which the cross-sectional shape of the refrigerant passage hole 3 is a substantially square shape, it may be any shape such as a circle or an ellipse in addition to a square. Further, the number of refrigerant passage holes 3 to be installed and the interval at which the refrigerant passage holes 3 are provided are not limited to the example of FIG.

次に、本発明の熱交換器は、先のいずれかに記載の熱交換器用アルミニウム合金押出チューブを使用して製造されたものであることを特徴とする。上記の押出チューブは従来に比べて薄肉化を図っても十分にその機能を維持でき、これを搭載することで従来より著しく軽量化を図ることができる熱交換器の提供が可能となる。   Next, the heat exchanger of the present invention is manufactured using the aluminum alloy extruded tube for a heat exchanger described in any of the above. The above-described extruded tube can sufficiently maintain its function even if it is thinned compared to the conventional tube, and it is possible to provide a heat exchanger that can be significantly reduced in weight by mounting this.

本発明の熱交換器用アルミニウム合金押出チューブによれば、中空形状をなす押出材の肉厚が薄い場合でも成形時の押出性に優れ、かつ、十分な材料強度を有すると共に、低濃度亜鉛拡散層の耐局部腐食性を向上することができる。
また、押出チューブを構成する押出材の肉厚が薄い場合でも成形時の押出性に優れ、かつ、十分な材料強度を有するので、押出チューブの軽量化を一層図ることができる。
According to the aluminum alloy extruded tube for a heat exchanger of the present invention, even when the extruded material having a hollow shape is thin, it has excellent extrudability at the time of molding, has sufficient material strength, and has a low concentration zinc diffusion layer. It is possible to improve the local corrosion resistance.
Further, even when the extruded material constituting the extruded tube is thin, the extruded tube is excellent in extrudability at the time of molding and has sufficient material strength. Therefore, the weight of the extruded tube can be further reduced.

また、本発明に係る押出チューブは従来に比べて薄肉化を図っても十分にその機能を維持できるので、これを搭載することにより従来より更に一層の軽量化を図れる熱交換器の提供が可能となる。
また、耐圧強度と高温強度に優れているので、冷媒として、フロン系冷媒の他、CO冷媒をも好適に用いることができる。
In addition, since the extruded tube according to the present invention can maintain its function sufficiently even if it is made thinner than before, it is possible to provide a heat exchanger that can be further reduced in weight by installing this. It becomes.
In addition, since the pressure resistance and the high temperature strength are excellent, in addition to the chlorofluorocarbon refrigerant, a CO 2 refrigerant can also be suitably used.

更に、上記効果を備えた熱交換器ならば、これを搭載してなる自動車などの燃費向上に寄与すると共に、長期使用時における耐久性も改善されるので長期信頼性の向上にも貢献する。   Furthermore, a heat exchanger having the above-described effects contributes to an improvement in fuel efficiency of an automobile or the like equipped with the heat exchanger, and also contributes to an improvement in long-term reliability because durability during long-term use is also improved.

以下、本発明の実施の形態を図面を参照して説明する。
本発明の熱交換器用アルミニウム合金押出チューブは、質量%で0.5%以上1.0%以下のSiと、0.5%以上1.4%以下のMnと、0.1%以上0.25%以下のTiとを含有し、残りがAlおよび不可避不純物からなるAl合金押出材の外表面にZnまたはZn含有層を設けて構成されている。また、Al合金押出材に更に、質量%で0.05%以上0.20%以下のCuが添加されていてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The aluminum alloy extruded tube for a heat exchanger of the present invention is 0.5% to 1.0% Si, 0.5% to 1.4% Mn, 0.1% to 0.00% by mass%. A Zn or Zn-containing layer is provided on the outer surface of an Al alloy extruded material containing 25% or less of Ti and the remainder comprising Al and inevitable impurities. Moreover, 0.05% or more and 0.20% or less of Cu may be further added to the Al alloy extruded material by mass%.

また、上記のZnまたはZn含有層は、Zn若しくはZn含有合金を溶射、またはZn含有フラックスを塗布することで形成される。Zn含有フラックスとしては、例えばZnF、ZnCl、KZnF等の化合物を例示できる。チューブの外表面にZnまたはZn含有層を設けることで、ろう付けした後のチューブ表面にZn拡散層が形成され、このZn拡散層が犠牲陽極層として機能することによりチューブの防食効果を高めることができる。 The Zn or Zn-containing layer is formed by spraying Zn or a Zn-containing alloy or applying a Zn-containing flux. Examples of the Zn-containing flux include compounds such as ZnF 2 , ZnCl 2 , and KZnF 3 . By providing a Zn or Zn-containing layer on the outer surface of the tube, a Zn diffusion layer is formed on the tube surface after brazing, and this Zn diffusion layer functions as a sacrificial anode layer to enhance the anticorrosion effect of the tube Can do.

次に、Al合金押出材の組成限定理由について説明する。
(Si含有量)
Siを合金添加元素に用いることによって、押出性、材料の室温強度、及び、亜鉛被覆量の比較的少ない場合の低濃度亜鉛拡散層の耐局部腐食性を高めることができる。すなわち、Al合金中に添加したSi元素は、合金の熱間変形抵抗をほとんど上げることなく、室温から200℃までの強度を増加させ、かつ、比較的少量の亜鉛でも犠牲陽極を十分に発揮させるのに有効である。
Next, the reason for limiting the composition of the extruded aluminum alloy will be described.
(Si content)
By using Si as an alloy additive element, it is possible to enhance the extrudability, the room temperature strength of the material, and the local corrosion resistance of the low concentration zinc diffusion layer when the zinc coating amount is relatively small. That is, the Si element added to the Al alloy increases the strength from room temperature to 200 ° C. without substantially increasing the hot deformation resistance of the alloy, and sufficiently exhibits the sacrificial anode even with a relatively small amount of zinc. It is effective.

特に、アルミニウム合金押出チューブを構成する押出材においてZn被覆層の厚さが薄くなる箇所、すなわち押出材の両端部付近においてZn被覆層の膜厚減少や不均一が生じている箇所における耐食性の低下を抑制する手段として、本発明に係るAl−Si系合金(質量%で0.5%以上1.0%以下のSiを含有し、残りがAlおよび不可避不純物からなるAl合金)が優れている。   In particular, in the extruded material constituting the aluminum alloy extruded tube, the corrosion resistance deteriorates in the portion where the thickness of the Zn coating layer is thin, that is, in the portion where the thickness of the Zn coating layer is reduced or non-uniformity occurs near both ends of the extruded material. As a means for suppressing the above, an Al—Si alloy according to the present invention (an Al alloy containing 0.5% to 1.0% by mass of Si, with the balance being Al and inevitable impurities) is excellent. .

したがって、本発明によれば、押出チューブを構成する押出材の肉厚が薄い場合でも成形時の押出性に優れ、かつ、十分な材料強度を有すると共に、低濃度亜鉛拡散層の耐局部腐食性に優れた合金からなるアルミニウム合金押出チューブが得られる。   Therefore, according to the present invention, even when the thickness of the extruded material constituting the extruded tube is thin, it has excellent extrudability at the time of molding, has sufficient material strength, and local corrosion resistance of the low concentration zinc diffusion layer. An aluminum alloy extruded tube made of an excellent alloy can be obtained.

なお、Si含有量が0.5%未満の場合は、耐食性(最大腐食深さ)や押出性には優れているが、室温から200℃までの引張強さが十分得られない傾向がある。一方、Si含有量が1.0%を越える場合は、引張強さは改善されるが耐食性や押出性が損なわれる傾向があると共に、Al合金の溶融開始温度が低下し、600℃程度のろう付け時の加熱に際し、材料の部分溶融が生じることがあり、正常な熱交換器を製造できなくなる。
このような点を考慮すると、押出材のSi含有量は0.5%以上1.0%以下が好ましく、0.6%以上0.8%以下がより好ましい。
When the Si content is less than 0.5%, the corrosion resistance (maximum corrosion depth) and extrudability are excellent, but there is a tendency that the tensile strength from room temperature to 200 ° C. cannot be obtained sufficiently. On the other hand, when the Si content exceeds 1.0%, the tensile strength is improved, but the corrosion resistance and extrudability tend to be impaired, and the melting start temperature of the Al alloy is lowered, and the soldering temperature is about 600 ° C. During heating at the time of application, partial melting of the material may occur, and a normal heat exchanger cannot be manufactured.
Considering such points, the Si content of the extruded material is preferably 0.5% or more and 1.0% or less, and more preferably 0.6% or more and 0.8% or less.

(Mn含有量)
本発明に係る合金、すなわちAl−Si系合金は、更にMnを含有させることにより室温強度はもとより、高温強度も著しく増加する。Mn含有量が0.5%未満では室温、高温の強度改善効果が十分でなく、その含有量が増加すると押出性が低下するので上限を1.4%とした。
(Mn content)
The alloy according to the present invention, that is, the Al—Si alloy, further increases Mt, so that not only room temperature strength but also high temperature strength is remarkably increased. If the Mn content is less than 0.5%, the effect of improving the strength at room temperature and high temperature is not sufficient, and if the content increases, the extrudability decreases, so the upper limit was made 1.4%.

(Ti含有量)
本発明に係る合金、すなわちAl−Si系合金は、Tiを含有させることにより押出性や耐局部腐食性を損なうことなく、室温強度を上げることができる。特に、高温強度や耐圧強度を大幅に向上できる。これに対して、Tiの含有量が0.1%未満では上記効果が十分ではなく、0.25%を越えると押出性や耐食性を低下させることから芳しくない。
(Ti content)
The alloy according to the present invention, that is, the Al—Si alloy, can increase the room temperature strength without impairing the extrudability and local corrosion resistance by containing Ti. In particular, the high temperature strength and pressure strength can be greatly improved. On the other hand, if the Ti content is less than 0.1%, the above effect is not sufficient, and if it exceeds 0.25%, the extrudability and the corrosion resistance are deteriorated.

(MnとTiの合計量)
MnとTiの合計量は、1.25%を越えて1.65%以下とすることが耐圧強度をより高めることができるので好ましい。より好ましくは、1.3%以上1.5%以下の範囲がよい。MnとTiの合計量が1.25%以下では耐圧強度が低下するので好ましくなく、1.65%を越えると押出特性が低下するので好ましくない。
(Total amount of Mn and Ti)
The total amount of Mn and Ti is preferably more than 1.25% and not more than 1.65% because the pressure strength can be further increased. More preferably, the range is 1.3% or more and 1.5% or less. If the total amount of Mn and Ti is 1.25% or less, the pressure strength is reduced, which is not preferable, and if it exceeds 1.65%, the extrusion characteristics are deteriorated.

(Cu含有量)
また、本発明に係る合金、すなわちAl−Si系合金は、更にCuを含有させることにより押出性や耐局部腐食性を損なうことなく、室温強度を上げることができる。これに対して、Cuの含有量が0.05%未満では上記効果が十分ではなく、0.20%を越えると押出性や耐食性を低下させることから芳しくない。
(Cu content)
Moreover, the alloy which concerns on this invention, ie, an Al-Si type alloy, can raise room temperature intensity | strength, without impairing extrudability and local corrosion resistance by containing Cu further. On the other hand, if the Cu content is less than 0.05%, the above effect is not sufficient, and if it exceeds 0.20%, the extrudability and the corrosion resistance are deteriorated.

また、本発明の熱交換器用アルミニウム合金押出チューブにおいては、Al合金押出材の外表面となす最も薄い部分の肉厚が0.10mm以上0.30mm以下であることが好ましく、0.12mm以上0.25mm以下がより好ましい。   In the aluminum alloy extruded tube for a heat exchanger of the present invention, the thickness of the thinnest part formed on the outer surface of the Al alloy extruded material is preferably 0.10 mm or more and 0.30 mm or less, and preferably 0.12 mm or more and 0 or less. More preferably, it is 25 mm or less.

押出材の外表面となす最も薄い部分が0.30mmを越えるような従来の肉厚、例えば0.4mm程度の肉厚の場合は、従来のAl(1050)でも特性上、特に問題は無い。しかしながら、従来材は最も薄い部分が0.30mm以下の肉厚では押出性や強度の点で問題が生ずる。
これに対し、押出材の外表面となす最も薄い部分が0.30mm以下の肉厚の場合に本発明に係る合金、すなわちAl−Si系合金の特徴が十分発揮される。
押出材の外表面となす最も薄い部分の肉厚が0.10mm未満では本合金を用いても耐食性が著しく低下し、押出性や強度の点からも十分な特性を維持することが難しく、実用に耐えられない。一方、押出材の外表面となす最も薄い部分が0.30mmを越える場合は、必ずしも本合金である必要がない上に、製品の十分な軽量化が図れない、すなわち重量減少率が僅かとなり芳しくない。
In the case of a conventional thickness such that the thinnest portion formed on the outer surface of the extruded material exceeds 0.30 mm, for example, a thickness of about 0.4 mm, there is no particular problem in terms of characteristics even with the conventional Al (1050). However, when the thinnest part of the conventional material is 0.30 mm or less in thickness, problems arise in terms of extrudability and strength.
On the other hand, when the thinnest part formed on the outer surface of the extruded material has a thickness of 0.30 mm or less, the characteristics of the alloy according to the present invention, that is, the Al—Si alloy are sufficiently exhibited.
If the thickness of the thinnest part of the outer surface of the extruded material is less than 0.10 mm, even if this alloy is used, the corrosion resistance is remarkably reduced, and it is difficult to maintain sufficient characteristics from the point of extrudability and strength. I can't stand it. On the other hand, when the thinnest part formed on the outer surface of the extruded material exceeds 0.30 mm, it is not always necessary to use this alloy, and the product cannot be reduced in weight sufficiently. Absent.

また、チューブの外表面にZnまたはZn含有層を設けることで、ろう付けした後のチューブ表面にZn拡散層が形成され、このZn拡散層が犠牲陽極層として機能することによりチューブの防食効果を高めることができる。このZnまたはZn含有層は、Zn若しくはZn含有合金を溶射、またはZn含有フラックスを塗布することで形成される。Zn含有フラックスとしては、例えばZnF、ZnCl、KZnF等の化合物が挙げられる。 In addition, by providing a Zn or Zn-containing layer on the outer surface of the tube, a Zn diffusion layer is formed on the surface of the tube after brazing. Can be increased. This Zn or Zn-containing layer is formed by spraying Zn or a Zn-containing alloy or applying a Zn-containing flux. Examples of the Zn-containing flux include compounds such as ZnF 2 , ZnCl 2 , and KZnF 3 .

以下、本実施例により本発明を更に詳細に説明する。
(実験例1)
まず、0.8質量%のMnと0.1質量%のTiを含み、更にSiの含有率を0.05%〜1.5%の範囲で変えたAl合金をそれぞれ溶解し、鋳造して直径200mmの組成の異なるビレットを製造した。
次に、組成の異なるビレットごとに、ビレットを通常の条件で均質化処理を行い、この均質化処理を施したビレットを温度:500℃、押出し速度:60m/minで熱間押出し加工することにより、図1に示すように冷媒通路用穴を10個有し、断面寸法が幅:20mm、高さ:2mm、肉厚:0.20mmである偏平状の押出材を成形した。
次いで、組成の異なるビレットから成形した押出材ごとに、押出材の温度が冷える前に溶射法を用いてその外表面に、工業用純ZnからなるZn被覆層を設けた。その際、押出材の外平坦部分におけるZn被覆層の重量は約10g/mとした。
さらに、組成の異なるビレットごとに、押出及び溶射処理を行った後、水冷することにより、図1に示すような押出チューブを作製した。
Hereinafter, the present invention will be described in more detail with reference to Examples.
(Experimental example 1)
First, Al alloys containing 0.8% by mass of Mn and 0.1% by mass of Ti and further changing the Si content in the range of 0.05% to 1.5% were respectively melted and cast. Billets with different compositions with a diameter of 200 mm were produced.
Next, for each billet having a different composition, the billet is homogenized under normal conditions, and the billet subjected to the homogenization is hot extruded at a temperature of 500 ° C. and an extrusion speed of 60 m / min. As shown in FIG. 1, a flat extruded material having 10 refrigerant passage holes and having a cross-sectional dimension of width: 20 mm, height: 2 mm, and wall thickness: 0.20 mm was formed.
Next, for each extruded material formed from billets having different compositions, a Zn coating layer made of industrial pure Zn was provided on the outer surface of the extruded material using a thermal spraying method before the temperature of the extruded material cooled. At that time, the weight of the Zn coating layer in the outer flat portion of the extruded material was about 10 g / m 2 .
Furthermore, after performing extrusion and thermal spraying treatment for each billet having a different composition, an extruded tube as shown in FIG. 1 was produced by water cooling.

上記手順により形成された押出チューブに対し、最大腐食深さ、押出性および引張強さ(室温強度)を調べた。ろう付によりフィンと接合したチューブコアは10日間のSWAAT(See Water Acetic Acid Testの略称、規格:ASTM G85-85)によって耐食性を評価した。
押出チューブの最大腐食深さは、局部腐食部を光学顕微鏡で観察し、試料表面と腐食部底面との間の距離を測定することにより求めた。
押出チューブの押出性は、毎分60mの速度で加工したときの押出圧の大小により評価した。
押出チューブの引張強さは、600℃、3分間のろう付け相当の熱処理を施した後、引張試験を行い、押出チューブが破断する際の荷重を試料の断面積で除した値で評価した。
The maximum corrosion depth, extrudability, and tensile strength (room temperature strength) were examined for the extruded tube formed by the above procedure. The tube core joined to the fin by brazing was evaluated for corrosion resistance by SWAAT (abbreviation of See Water Acetic Acid Test, standard: ASTM G85-85) for 10 days.
The maximum corrosion depth of the extruded tube was determined by observing the local corrosion portion with an optical microscope and measuring the distance between the sample surface and the bottom surface of the corrosion portion.
The extrudability of the extruded tube was evaluated by the magnitude of the extrusion pressure when processed at a speed of 60 m / min.
The tensile strength of the extruded tube was evaluated by a value obtained by dividing the load when the extruded tube broke by the cross-sectional area of the sample after performing a heat treatment equivalent to brazing at 600 ° C. for 3 minutes.

表1には、試料1〜試料8のAl合金押出材に含まれるSi含有量と、押出チューブの耐食性(最大腐食深さ)、押出性(押出圧)および引張強さとの関係を示す。   Table 1 shows the relationship between the Si content contained in the Al alloy extruded materials of Samples 1 to 8, and the corrosion resistance (maximum corrosion depth), extrudability (extrusion pressure), and tensile strength of the extruded tube.

押出圧は、Si含有量が0.05%の試料1で得られた押出圧の値を1と定義して表記したものである。すなわち、試料2〜8における押出圧は、Si含有量が0.05%の試料1で得られた押出圧の値で除し、規格化したものである。   The extrusion pressure is expressed by defining the value of the extrusion pressure obtained with Sample 1 having a Si content of 0.05% as 1. That is, the extrusion pressures in Samples 2 to 8 are normalized by dividing by the value of the extrusion pressure obtained in Sample 1 having a Si content of 0.05%.

Figure 2006002212
Figure 2006002212

表1から、最大腐食深さについては以下の点が明らかとなった。
(a1)最大腐食深さは、Si含有量が増えるにつれて増加傾向を示す。
(a2)Si含有量が0.8%より多いと最大腐食深さは0.05mmを越え、局部腐食が促進し始める。
(a3)Si含有量が1.0%より多くなると更に最大腐食深さは加速し、0.15mmを越えてしまい、特にZn被覆層の厚さが薄くなる箇所では耐局部腐食性が維持できなくなる。
From Table 1, the following points became clear about the maximum corrosion depth.
(A1) The maximum corrosion depth shows an increasing tendency as the Si content increases.
(A2) If the Si content is more than 0.8%, the maximum corrosion depth exceeds 0.05 mm, and local corrosion starts to accelerate.
(A3) When the Si content exceeds 1.0%, the maximum corrosion depth further accelerates and exceeds 0.15 mm, and in particular, where the thickness of the Zn coating layer is reduced, local corrosion resistance can be maintained. Disappear.

表1から、押出圧については以下の点が明らかとなった。
(b1)押出圧は、Si含有量が増えるにつれて単調に増加するが、1.00%まではその増加は僅かである。
(b2)Si含有量が1.00%より多いと押出圧は急増し、1.50%では2.00となり、肉厚の薄い押出チューブを成形することが難しくなる。
From Table 1, the following points became clear about extrusion pressure.
(B1) The extrusion pressure increases monotonously as the Si content increases, but the increase is slight up to 1.00%.
(B2) When the Si content is more than 1.00%, the extrusion pressure increases rapidly, and when it is 1.50%, it becomes 2.00, which makes it difficult to form a thin extruded tube.

表1から、引張強さについては以下の点が明らかとなった。
(c1)引張強さは、Si含有量が1.5%のとき最大であり、Si含有量を減らすと次第に小さくなる傾向を示す。
From Table 1, the following points became clear about the tensile strength.
(C1) The tensile strength is maximum when the Si content is 1.5%, and tends to gradually decrease when the Si content is reduced.

以上の結果より、最大腐食深さ、押出性および引張強さの評価において、同時に優れた特性を備えるためには、Si含有量を質量%で0.5%〜1.0%の範囲とする必要があることが分かる。また、Si含有量を質量%で0.6%〜0.8%の範囲とした場合は、更に優れた耐食性(最大腐食深さ)、押出性および引張強さを得るのでより好ましい。   From the above results, in order to have excellent properties at the same time in the evaluation of the maximum corrosion depth, extrudability and tensile strength, the Si content is in the range of 0.5% to 1.0% by mass%. I understand that it is necessary. Further, when the Si content is in the range of 0.6% to 0.8% by mass%, it is more preferable because further excellent corrosion resistance (maximum corrosion depth), extrudability and tensile strength can be obtained.

(実験例2)
次に、Siの含有率を質量%で0%または0.7%、Mnを0%または0.4〜1.5%の範囲、Tiを0%または0.05〜0.3%の範囲、Cuを0%または0.03〜0.25%の範囲で変えたAl合金をそれぞれ溶解し、鋳造して直径200mmの組成の異なるビレットを製造した。
次に、組成の異なるビレットごとに、ビレットを通常の条件で均質化処理を行い、この均質化処理を施したビレットを温度:500℃、押出し速度:60m/minで熱間押出し加工することにより、図1に示すように冷媒通路用穴を10個有し、断面寸法が幅:20mm、高さ:2mm、肉厚:0.20mmである偏平状の押出材を成形した。
次いで、組成の異なるビレットから成形した押出材に、KZnFからなるZn含有フラックスを押出材の外表面にスプレー塗布してZn被覆層を形成した。また、ビレットから成形した押出材の一部については、Siを10質量%含有するAl−Si合金粉末からなるろう材粉末5重量部と、KZnFからなるZn含有フラックス1重量部とを混合してフラックス混合物とし、このフラックス混合物を押出材の外表面にスプレー塗布してZn被覆層を形成した。なお、どちらの場合も押出材の外平坦部分におけるZn含有フラックスの重量を約10g/mとした。
さらに、組成の異なるビレットごとに、押出及び溶射処理を行った後、水冷することにより、図1に示すような試料9〜試料27の押出チューブを作製した。表2に、各押出材の合金組成とZn被覆層の種類を示す。
(Experimental example 2)
Next, the Si content is 0% or 0.7% by mass, Mn is 0% or 0.4 to 1.5%, Ti is 0% or 0.05 to 0.3%. , Al alloys in which Cu was changed in the range of 0% or 0.03 to 0.25% were melted and cast to produce billets having a diameter of 200 mm and different compositions.
Next, for each billet having a different composition, the billet is homogenized under normal conditions, and the billet subjected to the homogenization is hot extruded at a temperature of 500 ° C. and an extrusion speed of 60 m / min. As shown in FIG. 1, a flat extruded material having 10 refrigerant passage holes and having a cross-sectional dimension of width: 20 mm, height: 2 mm, and wall thickness: 0.20 mm was formed.
Next, a Zn coating layer was formed by spray-coating a Zn-containing flux composed of KZnF 3 on the outer surface of the extruded material formed from billets having different compositions. Also, some of the extruded material molded from billet, and the brazing material powder 5 parts by weight of the Al-Si alloy powder containing Si 10 wt%, and a Zn-containing flux 1 part by weight consisting of KZnF 3 were mixed A flux mixture was sprayed onto the outer surface of the extruded material to form a Zn coating layer. In both cases, the weight of the Zn-containing flux in the outer flat portion of the extruded material was about 10 g / m 2 .
Further, for each billet having a different composition, extrusion and thermal spraying were performed, and then water cooling was performed to produce extruded tubes of Sample 9 to Sample 27 as shown in FIG. Table 2 shows the alloy composition of each extruded material and the type of Zn coating layer.

上記手順により形成された押出チューブに対し、高温強度特性、引張強度、最大孔食深さ及び押出圧を調べた。ろう付によりフィンと接合したチューブコアは10日間のSWAATによって耐食性を評価した。
押出チューブの高温強度特性は、チューブを150℃に加熱した状態で引張試験を行うことにより求めた。
押出チューブの引張強度、最大孔食深さ及び押出圧は、実験例1の場合と同様にして求めた。結果を表3に示す。押出圧は、試料12の押出圧を基準とした。
The extruded tube formed by the above procedure was examined for high-temperature strength characteristics, tensile strength, maximum pitting corrosion depth and extrusion pressure. The tube core joined to the fin by brazing was evaluated for corrosion resistance by SWAAT for 10 days.
The high temperature strength characteristics of the extruded tube were determined by conducting a tensile test while the tube was heated to 150 ° C.
The tensile strength, maximum pitting corrosion depth and extrusion pressure of the extruded tube were determined in the same manner as in Experimental Example 1. The results are shown in Table 3. The extrusion pressure was based on the extrusion pressure of Sample 12.

Figure 2006002212
Figure 2006002212

Figure 2006002212
Figure 2006002212

表3に示すように、試料9〜18および23並びに24については、150℃における引張強度、室温における引張強度、最大孔食深さ及び押出圧のいずれの指標も優れた値を示していることが分かる。特に、室温における引張強度については、Tiを添加しない試料25及び26と比べて、大幅に向上していることが分かる。また試料9〜18、23、24の150℃における引張強度についても、Tiを添加しない試料25及び26と比べて、大幅に改善されていることが分かる。   As shown in Table 3, Samples 9 to 18 and 23 and 24 show excellent values for all indicators of tensile strength at 150 ° C, tensile strength at room temperature, maximum pitting corrosion depth and extrusion pressure. I understand. In particular, it can be seen that the tensile strength at room temperature is greatly improved as compared with the samples 25 and 26 to which Ti is not added. It can also be seen that the tensile strength at 150 ° C. of Samples 9 to 18, 23, and 24 is significantly improved as compared with Samples 25 and 26 to which no Ti is added.

次に、試料19〜22および25〜27については、Ti、Mn、Cuの添加量が適切でないため、試料9〜18と比べて各指標が全般的に低下していることが分かる。
また、試料12と試料27を比べると、両者の違いはZn被覆層のろう材を添加したか否かの差であるが、ろう材を添加した試料27では、150℃、室温、の両方の引張強度が大幅に低下していることが分かる。これは、ろう材中のSiが、押出材に含まれるMnと化合してSiMn析出物を形成し、これにより押出材中のMn量が不足して強度が低下したものと考えられる。
Next, for samples 19 to 22 and 25 to 27, since the addition amounts of Ti, Mn, and Cu are not appropriate, it can be seen that the indicators are generally lower than those of samples 9 to 18.
Further, when comparing the sample 12 and the sample 27, the difference between the two is whether or not the brazing material of the Zn coating layer was added, but in the sample 27 to which the brazing material was added, both of 150 ° C. and room temperature were obtained. It can be seen that the tensile strength is greatly reduced. It is considered that this is because Si in the brazing material combines with Mn contained in the extruded material to form a SiMn precipitate, and thereby the amount of Mn in the extruded material is insufficient and the strength is lowered.

更に、試料12,13,17,18,24については、MnとTiの合計量が1.25〜1.65%の範囲にあるため、他の試料に比べて引張強度が高くなっていることが分かる。   Furthermore, for samples 12, 13, 17, 18, and 24, the total amount of Mn and Ti is in the range of 1.25 to 1.65%, so that the tensile strength is higher than the other samples. I understand.

以上のように、試料9〜18、23、24の押出材によれば、従来のフロン系冷媒のみならず、CO冷媒を用いた場合でも、十分な高温強度と耐圧性を確保することができる。この中でも特に試料12,13,17,18,24については、より優れた強度を有することがわかる。 As described above, according to the extruded materials of Samples 9 to 18, 23, and 24, it is possible to ensure sufficient high-temperature strength and pressure resistance even when using not only conventional chlorofluorocarbon refrigerant but also CO 2 refrigerant. it can. Among these, it can be seen that Samples 12, 13, 17, 18, and 24 have superior strength.

また、上記手順により得られた試料12の押出チューブの肉厚Tを、0.05mm〜0.40mmの範囲で変えて作製し、その耐食性(日数)を纏めて示したものが表4である。押出チューブの耐食性は、前述したSWAATにおいてチューブが貫通するまでに要した日数で評価した。   Table 4 shows the thickness T of the extruded tube of the sample 12 obtained by the above procedure in a range of 0.05 mm to 0.40 mm, and summarizes the corrosion resistance (days). . The corrosion resistance of the extruded tube was evaluated by the number of days required for the tube to penetrate in the above-described SWAAT.

Figure 2006002212
Figure 2006002212

表4より、押出チューブはその肉厚を0.10mm以上とした場合に、20日以上の耐食性を有することが分かる。したがって、押出チューブの肉厚を0.10mm以上0.30mm以下の範囲とすることにより、優れた耐食性を備えた押出チューブの提供が可能となる。   From Table 4, it can be seen that the extruded tube has a corrosion resistance of 20 days or more when its thickness is 0.10 mm or more. Therefore, by making the thickness of the extruded tube in the range of 0.10 mm to 0.30 mm, it is possible to provide an extruded tube having excellent corrosion resistance.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上述した作用・効果が損なわれない範囲で、従来から耐腐食性を改善する効果が確認されている元素、すなわち、FeやZnが含まれていてもよい。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, an element that has been confirmed to have an effect of improving the corrosion resistance, that is, Fe or Zn may be contained within a range in which the above-described functions and effects are not impaired.

図1は押出チューブの一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an extruded tube. 図2は熱交換器の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a heat exchanger.

符号の説明Explanation of symbols

1…チューブ(熱交換器用アルミニウム合金押出チューブ)、2…フィン、3…冷媒通路穴、4…ヘッダーパイプ   DESCRIPTION OF SYMBOLS 1 ... Tube (aluminum alloy extrusion tube for heat exchangers), 2 ... Fin, 3 ... Refrigerant passage hole, 4 ... Header pipe

Claims (5)

質量%で0.5%以上1.0%以下のSiと、0.5%以上1.4%以下のMnと、0.1%以上0.25%以下のTiとを含有し、残りがAlおよび不可避不純物からなるAl合金押出材の外表面に、ZnまたはZn含有層を設けたことを特徴とする熱交換器用アルミニウム合金押出チューブ。   It contains 0.5% to 1.0% Si, 0.5% to 1.4% Mn, and 0.1% to 0.25% Ti, and the rest An aluminum alloy extruded tube for a heat exchanger, characterized in that a Zn or Zn-containing layer is provided on the outer surface of an Al alloy extruded material comprising Al and inevitable impurities. 前記Al合金押出材には更に、質量%で0.05%以上0.20%以下のCuが添加されていることを特徴とする請求項1に記載の熱交換器用アルミニウム合金押出チューブ。   The aluminum alloy extruded tube for heat exchanger according to claim 1, wherein 0.05% or more and 0.20% or less of Cu is further added to the Al alloy extruded material by mass%. MnとTiの合計量が1.25%を越えて1.65%以下とされていることを特徴とする請求項1または請求項2に記載の熱交換器用アルミニウム合金押出チューブ。   The aluminum alloy extruded tube for a heat exchanger according to claim 1 or 2, wherein the total amount of Mn and Ti is more than 1.25% and not more than 1.65%. 前記Al合金押出材は、その外表面となす最も薄い部分の肉厚が0.10mm以上0.30mm以下であることを特徴とする請求項1ないし請求項3のいずれかに記載の熱交換器用アルミニウム合金押出チューブ。   4. The heat exchanger according to claim 1, wherein a thickness of the thinnest portion formed on the outer surface of the Al alloy extruded material is 0.10 mm or more and 0.30 mm or less. 5. Aluminum alloy extruded tube. 請求項1ないし請求項4のいずれかに記載の熱交換器用アルミニウム合金押出チューブを使用して製造されたものであることを特徴とする熱交換器。

A heat exchanger manufactured using the aluminum alloy extruded tube for a heat exchanger according to any one of claims 1 to 4.

JP2004179524A 2004-06-17 2004-06-17 Aluminum alloy extruded tube and heat exchanger for heat exchanger Expired - Fee Related JP4347145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179524A JP4347145B2 (en) 2004-06-17 2004-06-17 Aluminum alloy extruded tube and heat exchanger for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179524A JP4347145B2 (en) 2004-06-17 2004-06-17 Aluminum alloy extruded tube and heat exchanger for heat exchanger

Publications (2)

Publication Number Publication Date
JP2006002212A true JP2006002212A (en) 2006-01-05
JP4347145B2 JP4347145B2 (en) 2009-10-21

Family

ID=35770858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179524A Expired - Fee Related JP4347145B2 (en) 2004-06-17 2004-06-17 Aluminum alloy extruded tube and heat exchanger for heat exchanger

Country Status (1)

Country Link
JP (1) JP4347145B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330226A1 (en) * 2009-12-03 2011-06-08 Rio Tinto Alcan International Limited High strenght aluminium alloy extrusion
JP2014238209A (en) * 2013-06-07 2014-12-18 株式会社ケーヒン・サーマル・テクノロジー Anticorrosion treating method of outer surface of heat exchange pipe made of aluminum extrusion material and manufacturing method of heat exchanger
JP2015004093A (en) * 2013-06-19 2015-01-08 株式会社Uacj Aluminum alloy material for tube and brazed heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137245A (en) * 1995-11-09 1997-05-27 Denso Corp Aluminum tubular body for heat exchanger and aluminum-made heat exchanger using the same body
JPH1081930A (en) * 1996-09-05 1998-03-31 Mitsubishi Alum Co Ltd Heat exchanger excellent in corrosion resistance
JPH11335764A (en) * 1998-05-25 1999-12-07 Mitsubishi Alum Co Ltd Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
JP2002275565A (en) * 2001-03-21 2002-09-25 Denso Corp Aluminum alloy extrusion header tank for heat exchanger and heat exchanger using the header tank
JP2003225760A (en) * 2002-01-30 2003-08-12 Denso Corp Aluminum heat exchanger manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137245A (en) * 1995-11-09 1997-05-27 Denso Corp Aluminum tubular body for heat exchanger and aluminum-made heat exchanger using the same body
JPH1081930A (en) * 1996-09-05 1998-03-31 Mitsubishi Alum Co Ltd Heat exchanger excellent in corrosion resistance
JPH11335764A (en) * 1998-05-25 1999-12-07 Mitsubishi Alum Co Ltd Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
JP2002275565A (en) * 2001-03-21 2002-09-25 Denso Corp Aluminum alloy extrusion header tank for heat exchanger and heat exchanger using the header tank
JP2003225760A (en) * 2002-01-30 2003-08-12 Denso Corp Aluminum heat exchanger manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2330226A1 (en) * 2009-12-03 2011-06-08 Rio Tinto Alcan International Limited High strenght aluminium alloy extrusion
US8313590B2 (en) 2009-12-03 2012-11-20 Rio Tinto Alcan International Limited High strength aluminium alloy extrusion
JP2014238209A (en) * 2013-06-07 2014-12-18 株式会社ケーヒン・サーマル・テクノロジー Anticorrosion treating method of outer surface of heat exchange pipe made of aluminum extrusion material and manufacturing method of heat exchanger
DE102014210763A1 (en) 2013-06-07 2015-01-08 Keihin Thermal Technology Corporation A method of anticorrosive treatment of the outer surface of a heat exchanger tube made by aluminum extrusion, and a method of manufacturing a heat exchanger
US9534851B2 (en) 2013-06-07 2017-01-03 Keihin Thermal Technology Corporation Method for anticorrosion treatment of outer surface of heat exchange tube made of aluminum extrusion and method for producing heat exchanger
JP2015004093A (en) * 2013-06-19 2015-01-08 株式会社Uacj Aluminum alloy material for tube and brazed heat exchanger

Also Published As

Publication number Publication date
JP4347145B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4825507B2 (en) Aluminum alloy brazing sheet
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
JP4955418B2 (en) Aluminum alloy extrusions used in natural refrigerant heat exchangers
JP5188115B2 (en) High strength aluminum alloy brazing sheet
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
EP3093356B1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP4634854B2 (en) Aluminum alloy extruded tube material for natural refrigerant heat exchangers
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2008050657A (en) Aluminum piping material for automobile heat exchanger
JP2006348358A (en) Aluminum-alloy extruded material for heat-exchanger, and flat tube with multi-holes for heat-exchanger and header for heat-exchanger using the same
JP2010185646A (en) Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner
JP2008111143A (en) Aluminum alloy brazing sheet and manufacturing method therefor
JP2019011495A (en) Connector made of aluminum alloy for connecting piping member to heat exchanger and piping member for heat exchanger connection having the connector, and method for manufacturing them
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP2005161352A (en) Heat exchanger made of aluminum alloy and manufacturing method for the same
JP2008308724A (en) Method for producing aluminum alloy brazing filler metal and aluminum alloy brazing sheet
JP4318929B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JP3759441B2 (en) High strength and high corrosion resistance aluminum alloy extruded tube for heat exchanger, method for producing the same, and heat exchanger
JP2009046705A (en) Extruded flat perforated pipe for heat exchanger having excellent corrosion resistance, and heat exchanger
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof
JP3291042B2 (en) Aluminum alloy fin material and method for manufacturing aluminum alloy heat exchanger
JP2023045751A (en) Brazing sheet and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4347145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees