JP2006000890A - Method for melting metallic material in metal molding machine - Google Patents
Method for melting metallic material in metal molding machine Download PDFInfo
- Publication number
- JP2006000890A JP2006000890A JP2004179697A JP2004179697A JP2006000890A JP 2006000890 A JP2006000890 A JP 2006000890A JP 2004179697 A JP2004179697 A JP 2004179697A JP 2004179697 A JP2004179697 A JP 2004179697A JP 2006000890 A JP2006000890 A JP 2006000890A
- Authority
- JP
- Japan
- Prior art keywords
- melting
- metal material
- metal
- heating
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
この発明は、円柱状(丸棒状)の鋳塊を金属素材として用い、その金属素材を溶融して金型に射出し、所望の製品を射出成形する金属成形機における金属素材の溶融方法に関するものである。 The present invention relates to a method for melting a metal material in a metal molding machine that uses a cylindrical (round bar-shaped) ingot as a metal material, melts the metal material, and injects the metal material into a mold, thereby injection-molding a desired product. It is.
マグネシウム合金等の成形手段として、ノズル口を先端に有する筒体の外周囲に加熱手段を備え、そのノズル口と接続した計量室を縮径により先端部内に形成した溶融金属保持筒(加熱保持筒)に、粒状の金属素材を供給して溶融蓄積するか、または溶解炉により溶融した溶融金属を溶融金属保持筒に供給蓄積して、内装した射出プランジャの進退移動により、溶融金属の計量と金型への射出を行っているものがある。
また金属製品の鋳造法として、金属スラリーを冷却して鋳造した円柱状の金属素材を、インジェクション装置に横に供給して予備加熱したのち、半溶融状態に加熱して加熱チャンバに貯留し、吸引ロッドにより金型に射出するものもある。
Also, as a casting method for metal products, a cylindrical metal material cast by cooling the metal slurry is supplied to the injection device sideways and preheated, then heated to a semi-molten state, stored in a heating chamber, and sucked. Some are injected into the mold by a rod.
粒状の金属素材は酸化し易く、また軽量であることから溶融金属保持筒内に落下しても、溶湯内に沈んで直ちに溶融するものが少なく、その多くは湯面に浮き積もって熱気に長く曝されるのでスラッジが発生し易い。このスラッジの発生は、金属素材を粒状よりも酸化の度合いが少ないインゴットや円柱体(丸棒ともいう)などの鋳塊に換えることで抑制することができる。 Since the granular metal material is easy to oxidize and is light in weight, even if it falls into the molten metal holding cylinder, there are few things that sink into the molten metal and immediately melt, and many of them float on the surface of the molten metal and are long to hot air. Because it is exposed, sludge is likely to occur. The generation of sludge can be suppressed by replacing the metal material with an ingot such as an ingot or a cylindrical body (also referred to as a round bar) that is less oxidized than the granular material.
しかし、インゴットや柱状体は溶融金属保持筒に直接供給できず、溶解炉により完全溶融してから供給するか、または予備加熱バレルにより予備加熱してから半溶融状態に加熱して加熱チャンバに貯留してるので、金属成形機が大型となり、保守管理にも手数を要する。 However, ingots and columnar bodies cannot be supplied directly to the molten metal holding cylinder, and are supplied after being completely melted by a melting furnace, or preheated by a preheating barrel and then heated to a semi-molten state and stored in a heating chamber. As a result, the metal forming machine becomes large and maintenance work is also required.
上記課題は、金属素材の溶解炉に筒体を採用し、その溶解筒を射出手段を内装した加熱保持筒に縦に設けて、円柱状の金属素材を加熱溶融しながら、半溶融又は完全溶融状態で加熱保持筒に供給することにより解決できる。 The above problem is to adopt a cylindrical body for the melting furnace of the metal material, and provide the melting cylinder vertically in the heating and holding cylinder equipped with the injection means to heat or melt the columnar metal material while semi-melting or completely melting This can be solved by supplying the heated holding cylinder in a state.
そのような金属成形機は、加熱保持筒と溶解炉よりも小さな溶解筒とから構成できるので大型とならず、また保守管理も容易となるが、金属素材の溶融を溶解筒の周囲の加熱手段により間接的に行っているので、金属素材を溶湯に沈めて直接加熱する溶解炉の場合よりも加熱効率が悪く、溶融に時間を要する。 Such a metal forming machine can be composed of a heating and holding cylinder and a melting cylinder smaller than the melting furnace, so it is not large-sized and easy to maintain, but the metal material is melted by heating means around the melting cylinder. Therefore, the heating efficiency is lower than in the case of a melting furnace in which a metal material is immersed in a molten metal and heated directly, and it takes time to melt.
この溶解筒における加熱効率の悪さは、素材底面や上面の加熱が行い難いために、金属素材の加熱が胴周囲に限られ、中央部が溶融温度に達するまで時間が掛かることにある。
また溶解筒の内径と円柱状の金属素材の直径との差から設定されるクリアランスも一因となってる。これまでクリアランスは、金属素材の挿入の容易さを考慮して設定しており、加熱前(非熱膨張時)の金属素材の直径から溶解筒の内径を決めて設定している。この内径の設定では金属素材の直径や溶解筒の内径に公差があるので、その公差を考慮してクリアランスは大きめに設定されている。
The inefficiency of heating in this melting cylinder is that heating of the metal bottom is limited to the periphery of the body because it is difficult to heat the bottom and top surfaces of the material, and it takes time until the center reaches the melting temperature.
In addition, the clearance that is set based on the difference between the inner diameter of the melting cylinder and the diameter of the cylindrical metal material also contributes. Until now, the clearance has been set in consideration of the ease of insertion of the metal material, and has been set by determining the inner diameter of the melting cylinder from the diameter of the metal material before heating (during non-thermal expansion). In the setting of the inner diameter, there is a tolerance in the diameter of the metal material and the inner diameter of the melting cylinder, so that the clearance is set larger in consideration of the tolerance.
溶解筒による金属素材の加熱効率は、クリアランスが大きくなるほど低下してゆく。加熱効率の向上のためにクリアランスを小さく設定して、溶解筒の内面に金属素材の外面を接近させると、金属素材を溶解筒底面まで自重により落下挿入することが難しくなることが多く、挿入作業の手間取りによる供給の遅れから、加熱保持筒内の蓄積量が低減して、成形作業に支障を来すようなこともある。 The heating efficiency of the metal material by the melting cylinder decreases as the clearance increases. If the clearance is set small to improve heating efficiency and the outer surface of the metal material is brought closer to the inner surface of the melting cylinder, it is often difficult to drop and insert the metal material to the bottom surface of the melting cylinder due to its own weight. Due to the delay in the supply due to the troublesome arrangement, the amount of accumulation in the heating and holding cylinder is reduced, which may hinder the molding operation.
この発明は、上記従来の課題を解決するために考えられたものであって、その目的は、溶解筒における加熱効率の課題を、金属素材の胴周囲と同時に底面からも加熱することで解決でき、また胴周囲の加熱効率の悪さも、熱膨張時を対象にクリアランスを設定することで解決できるとともに、金属素材の表面加工によりスラッジの発生をも抑制することができる新たな金属成形機における金属素材の溶融方法を提供することにある。 The present invention has been conceived in order to solve the above-described conventional problems, and the object of the present invention is to solve the problem of the heating efficiency in the melting cylinder by heating from the bottom as well as around the body of the metal material. In addition, the inefficiency of heating around the body can be solved by setting clearance for thermal expansion, and metal in a new metal forming machine that can suppress the generation of sludge by surface processing of metal materials It is to provide a method for melting a material.
上記目的によるこの発明は、円柱状(丸棒状)の鋳塊を金属素材とし、その金属素材を加熱保持筒に縦に設けた溶解筒に挿入して、半溶融又は完全溶融するにあたり、上記溶解筒を、胴部に連なる濾斗状の底部と、底部中央の胴部よりも小径の流出管と、底部に近接して胴部内に横設した加熱補助材と、胴部及び流出管の外周囲に設けた加熱手段とから構成し、該加熱補助材により上記金属素材を底部上に支持して、金属素材の加熱を胴周囲と底面とから行う、というものである。 The present invention for the above-described object uses a cylindrical (round bar-shaped) ingot as a metal material, and inserts the metal material into a melting cylinder provided vertically in a heating and holding cylinder, so that the above melting The tube has a funnel-shaped bottom connected to the body, an outflow pipe having a smaller diameter than the body at the center of the bottom, a heating auxiliary material installed in the body adjacent to the bottom, and outside the body and the outflow pipe. It comprises heating means provided in the periphery, the metal material is supported on the bottom by the heating auxiliary material, and the metal material is heated from the periphery and the bottom surface.
また上記加熱補助材を、胴部内の底部に近接した中央に横設し、または加熱補助材の複数本を、胴部内の底部に近接した中央に交差横設して、上記金属素材を支持してなるというものであり、加熱補助材に加熱手段を埋設し、金属素材の加熱を胴周囲及び加熱補助材により行う、というものでもある。 Further, the heating auxiliary material is horizontally installed in the center near the bottom portion in the trunk portion, or a plurality of heating auxiliary materials are arranged transversely in the center near the bottom portion in the trunk portion to support the metal material. The heating means is embedded in the heating auxiliary material, and the metal material is heated by the periphery of the trunk and the heating auxiliary material.
この発明は、上記溶解筒の胴部内径Dと上記金属素材の直径dとの差から生ずる胴部のクリアランスcを、溶解筒と金属素材の両方の熱膨張時において1mmを超えず、かつ金属素材の非熱膨張時に挿入が可能な範囲に設定してなるというものであり、上記溶解筒は、上記金属素材の線膨張係数よりも小さい線膨張係数の金属材料からなる、というものである。 In the present invention, the clearance c of the body caused by the difference between the body inner diameter D of the melting tube and the diameter d of the metal material does not exceed 1 mm during the thermal expansion of both the melting tube and the metal material, and the metal The melting tube is set in a range where insertion is possible at the time of non-thermal expansion of the material, and the melting cylinder is made of a metal material having a linear expansion coefficient smaller than that of the metal material.
またこの発明に用いられる上記金属素材は、マグネシウム合金、アルミニウム合金等の低融点金属合金からなり、金属素材の加熱溶融は、素材表層に生じた巣や表面に付着した不純物を切削除去したのち行う、というものである。 The metal material used in the present invention is made of a low melting point metal alloy such as a magnesium alloy or an aluminum alloy, and the metal material is heated and melted after cutting and removing impurities formed on the nest and the surface of the material surface layer. That's it.
上記構成では、金属素材の底面が加熱補助材により部分的に支持されて、漏斗状の底部上に位置することから、胴部外周囲からの加熱による金属素材の軟化に伴って、加熱補助材が金属素材の荷重により底面から内部に入り込むようになる。加熱補助材は胴部からの伝熱又は埋設した加熱手段により加熱されているので、金属素材は底面内からも加熱を受け、胴周囲からの加熱と相俟って加熱効率が、溶解筒の内底面により金属素材の底面を全面支持して、胴周囲を加熱した従来の場合よりも向上し、溶融時間が短く済むようになる。 In the above configuration, since the bottom surface of the metal material is partially supported by the heating auxiliary material and located on the funnel-shaped bottom portion, the heating auxiliary material is accompanied by the softening of the metal material due to heating from the outer periphery of the body portion. Enters the inside from the bottom due to the load of the metal material. Since the heating auxiliary material is heated by heat transfer from the barrel or by an embedded heating means, the metal material is also heated from within the bottom surface, and combined with the heating from the barrel periphery, the heating efficiency is improved. Compared to the conventional case in which the bottom surface of the metal material is fully supported by the inner bottom surface and the periphery of the cylinder is heated, the melting time can be shortened.
またチクソトロピー性状を呈する金属組織の金属素材では、固液共存温度で溶融する共晶の分布状態が不均一なことから、溶融塊となって金属素材から溶け落ちても、溶融塊は底部で再溶融されるので、溶融塊が加熱保持筒への流出の妨げとなるようなことがない。 In addition, in a metal material with a metal structure that exhibits thixotropic properties, the distribution state of the eutectic that melts at the solid-liquid coexisting temperature is non-uniform. Since it is melted, the molten mass does not hinder the outflow to the heated holding cylinder.
また挿入クリアランスを溶解筒と金属素材の両方の熱膨張時において1mmを超えず、かつ金属素材の非熱膨張時に挿入が可能な範囲に設定したことにより、金属素材の挿入作業が容易となり、クリアランスは挿入後の金属素材の熱膨張により自然に小さくなるので胴周囲の加熱効率が向上し、上記加熱補助材による内部加熱と相俟って溶融時間が短縮されることから、成形サイクルに対応した金属素材の溶融供給と蓄積とを行うことができる。更にまた金属素材の表層の巣や、表面に付着している酸化物等の不純物を切削除去して、金属素材を融解筒で溶融するので酸化物によるスラッジの発生が低減し、スラッジ排除を含む定期的なメンテナンスの期間を長くすることができ、メンテナンス回数の減少から生産効率もよくなる。またスラッジの混入による不良成形品も著しく減少して歩留りも改善されるようになる。 In addition, the insertion clearance is set to a range that does not exceed 1 mm when both the melting cylinder and the metal material are thermally expanded, and can be inserted when the metal material is not thermally expanded. Since it naturally becomes smaller due to the thermal expansion of the metal material after insertion, the heating efficiency around the trunk is improved, and the melting time is shortened in combination with the internal heating by the heating auxiliary material, so it corresponds to the molding cycle It is possible to supply and accumulate metal materials. Furthermore, the surface of the metal material nest and impurities such as oxide adhering to the surface are cut and removed, and the metal material is melted in the melting cylinder, so the generation of sludge due to oxide is reduced, and sludge elimination is included. The period of regular maintenance can be extended, and the production efficiency is improved due to the reduced number of maintenance. In addition, defective molded products due to sludge mixing are significantly reduced and the yield is improved.
図中1は金属成形機で、筒体21の先端にノズル部材22を有する加熱保持筒2と、円柱状(丸棒状)の鋳塊の金属素材Mの溶解筒3と、射出保持筒2の後部に配設した射出駆動装置4とからなる。
In the figure,
上記加熱保持筒2は、筒体21の中程上側に設けた供給口に上記溶解筒3を備え、筒体外周囲にバンドヒータによる加熱手段24を備える。この加熱手段24による加熱保持筒2の温度は、成形に用いられる金属素材Mが、固液共存温度領域の温度でチクソトロピー性状を呈する鋳塊の場合には、液相線温度と固相線温度との間の温度に設定され、また完全溶融する通常の鋳塊の場合には、液相線温度以上の温度に設定される。
The heating and holding cylinder 2 is provided with the melting
加熱保持筒2は筒体後端部を支持部材23に取付けて、射出駆動装置4と共に水平面に対し45°の角度に斜設してある。この斜設により下向きに位置する先端部内は、上記ノズル部材22のノズル口と連通する計量室25となっている。この計量室25には上記射出駆動装置4と連結した射出手段26の射出プランジャ26aが進退自在に嵌挿してある。射出プランジャ26aは加熱保持筒2の密閉後端から内部に挿入したロッド26bの先端に取付けてあり、外周面にシールリングを埋設した逆止弁26cを軸部周囲に進退自在に備えている。
The heating and holding cylinder 2 is attached to the
上記溶解筒3は、円筒形の胴部31に連なる濾斗状の底部32と、底部中央の胴部31よりも小径の流出管33と、底部32に近接した胴部内の中央に横設したステンレス鋼の丸棒の加熱補助材34と、胴部31及び流出路33の外周囲に設けたバンドヒータや誘導加熱器等による加熱手段35とから構成されており、上端開口には蓋部材36が開閉自在に取付けてある。また胴部31の加熱手段35は加熱補助材34の下側から上方に複数ゾーンに分割して個々に温度制御可能に設けてある。
The
上記加熱補助材34は1本に限定されず、図では省略するが、複数本を間隔を空けて並行に横架してもよく、また図4に示すように、複数本を十字に交差して横架してもよい。この場合には、胴部31の上部開口から胴部31と底部32の境まで挿入して掛け止めることになる。また加熱補助材34による底部内の加熱を積極的に行う場合には、図は省略するが加熱補助材を管体により形成し、その内に胴部からカートリッジヒータを挿入して胴部とは別に加熱するのが好ましい。
The heating
上記構成の溶解筒3は、流出管33を筒体21に設けた供給口に差込み、胴部31の上部を上記支持部材23に固設したアーム部材27により保持して加熱保持筒2に縦に設けられている。なお、37は流出管33に沿って加熱保持筒2の溶湯面Lまで挿入たアルゴンガス等の不活性ガスの注入管である。
In the melting
円柱状の金属素材Mとしては、マグネシウム合金、アルミニウム合金等の低融点金属合金が用いられる。また使用にあたっては、鋳造時に生じている表層の巣や、表面に付着している酸化物等の不純物を切削により除去しておくのが好ましい。表面の酸化物や表層の巣に入り込んで空気中の酸素は、金属素材Mの加熱溶融により金属酸化物を生成してスラッジとなり易く、これが加熱保持筒2内に沈積して成形操作の障害となったり、或いは成形品に混入して不良品となるので、表層を深さ1〜5mmほど切削して除去することで、スラッジの発生を低減することができる。 As the columnar metal material M, a low melting point metal alloy such as a magnesium alloy or an aluminum alloy is used. Further, in use, it is preferable to remove impurities such as surface nests generated during casting and oxides adhering to the surface by cutting. Oxygen in the air entering the surface oxide and nests on the surface tends to generate metal oxide by heating and melting the metal material M to become sludge, which deposits in the heating and holding cylinder 2 and hinders the molding operation. Therefore, the generation of sludge can be reduced by cutting the surface layer to a depth of 1 to 5 mm and removing it.
金属素材Mは、上部開口から液相線温度以上の温度に加熱されている溶解筒3の胴部内に挿入される。金属素材Mは底面が上記加熱補助材34に接する所まで自重により溶解筒3内を落下して、加熱補助材34に受け止められる。溶解筒内では胴部31の上記加熱手段35により、胴周囲と加熱補助材34が当接された底面中央とから加熱を受ける。素材温度が固相線温度を超えると金属素材Mは軟化してゆくので、金属素材Mの荷重を受けている加熱補助材34は底面から中央部内に入り込んで行く。また軟化した底面は加熱補助材34の入り込みに伴い、図2に仮想線で示すように、加熱補助材34の両側にはみ出てゆくので、加熱補助材34は更に上部へと入り込みながら中央部を加熱する。これにより金属素材Mの加熱は胴周囲からの加熱と相俟って効率よく行われるようになる。
The metal material M is inserted into the barrel portion of the
溶解筒3により素材温度が液相線温度を超えると、金属素材Mは完全に溶融して湯となるが、金属組織が固液共存温度領域の温度でチクソトロピー性状を呈する金属素材Mでは、結晶間に分布する共晶が液相線温度に達する前の固液共存温度領域の温度で溶融し、液相と固相とによる半溶融状態となる。溶融は胴周囲と中央部内とから加熱を受ける下部が先行し、底部32から縮径された流出管33を流れて加熱保持筒2にチクソトロピー性状を呈する半溶融状態の融体M1 として蓄えられる。溶融量が増えると底部32に溜りながら流出管33を流下してゆく。
When the material temperature exceeds the liquidus temperature by the
チクソトロピー性状を呈する金属組織では、共晶の分布状態が不均一であることから溶融状態もまちまちで均等に行われず、小さな溶融塊となって金属素材Mから溶け落ちるものもある。しかし、加熱補助材34の下方に加熱された漏斗状の底部32と流出管33があるので、溶融塊は底壁面上に溶け落ちて底壁面から流出管33を流通する間に、再溶融して解塊されるようになる。また底部32に溶融溜りが生じているときには、その溶融溜りに沈んで再溶融されるようになるので、溶融塊が生じても溶融が支障なく行われ、溶融塊による流出管33の詰まりもないことから溶融時間も短く済むようになる。
因に、特許文献1に記載の平底の溶解筒に同一の金属素材Mを挿入し、底面を全面支持して胴部周囲から加熱した場合との比較では、溶融時間が約10分短縮される。
In a metallographic structure exhibiting thixotropic properties, the eutectic distribution state is not uniform, so that the molten state is not evenly mixed and may be melted down from the metal material M as a small molten mass. However, since there is a heated funnel-shaped
For comparison, the melting time is reduced by about 10 minutes in comparison with the case where the same metal material M is inserted into the flat bottom melting tube described in
加熱保持筒3に蓄積された半溶融の融体M1 は、上記射出プランジャ26aの後退移動により計量室25に流入して計量されたのち、射出プランジャ26aの前進移動により図示しない金型に射出される。
The semi-molten melt M 1 accumulated in the heating and holding
上記溶解筒3において、胴部31における加熱効率は、胴部内径Dと金属素材Mの直径dとの関連において生ずるクリアランスcが小さいほど高くなる。反対に金属素材Mの挿入が困難となるので、挿入の容易性をも考慮してクリアランスcは、熱膨張時を対象に設定するのが好ましい。このクリアランスcの設定は、金属素材Mと溶解筒3に採用される金属材料の材質の線膨張係数から得られる熱膨張時の直径dと胴部内径Dとを対象に行い、その両方の熱膨張時に1mmを超えず、かつ円柱状の金属素材Mの挿入を可能とする範囲に設定している。また熱膨張によるクリアランスcの拡大を制限するために、溶解筒31には線膨張係数が金属素材の線膨張係数より小さい膨張率の金属材料が使用されている。
In the
この熱膨張時を対象として設定したクリアランスcでは、加熱されていない金属素材Mの挿入時には、金属素材Mは熱膨張していないので、既に加熱膨張している溶解筒3との間のクリアランスcは、その非熱膨張分だけ熱膨張時のよりも大きく形成される。したがって、熱膨張時を対象に設定した1mmを超えないクリアランスcでも金属素材Mの挿入がスムーズに行えるようになり、胴部31における加熱効率も高くなって、金属素材Mの溶解時間が更に短縮されるようになる。
With the clearance c set for this thermal expansion, the clearance c between the melting
金属素材 マグネシウム合金(AZ91D) 線膨張係数 27.0×10-6 /K
形状:円柱体、 長さ:300mm、 質量:1.5Kg
溶解筒
材質 ステンレス鋼 (SUS304)線膨張係数 16.5×10-6/K
形状 円筒体、 底部深さ30mm、 流出管内径40mm
加熱補助材
材質 ステンレス鋼 (SUS304)線膨張係数 16.5×10-6/K
形状 丸棒 直径 12mm
Metal material Magnesium alloy (AZ91D) Linear expansion coefficient 27.0 × 10 −6 / K
Shape: cylindrical body, length: 300 mm, mass: 1.5 kg
Melting tube
Material Stainless steel (SUS304) Linear expansion coefficient 16.5 × 10 -6 / K
Shape Cylindrical body, bottom depth 30mm, outflow pipe inner diameter 40mm
Heating auxiliary material
Material Stainless steel (SUS304) Linear expansion coefficient 16.5 × 10 -6 / K
Shape Round bar Diameter 12mm
非熱膨張時 熱膨張時(550℃)
金属素材 直径mm 60.0 60.891
溶解筒 胴部内径mm 61.3 61.856
クリアランスmm 1.3 0.965
挿入時クリアランス (61.856−60.0)=1.856mm
溶融時間(600℃) 約12分
Non-thermal expansion Thermal expansion (550 ° C)
Metal material Diameter mm 60.0 60.899
Dissolving cylinder body inner diameter mm 61.3 61.856
Clearance mm 1.3 0.965
Clearance at insertion (61.856-60.0) = 1.856mm
Melting time (600 ° C) About 12 minutes
溶融時間の比較
非膨張時設定クリアランス1.8mmの場合との比較
但し、溶解筒 胴部内径61.8mm、 金属素材 直径60.0mm
溶融時間(600℃) 約20分
結果: 挿入時クリアランス1.856mmは、非膨張時設定クリアランス1.8mm
よりもクリアランスが0.056mm大きいが、溶融時間は短く、約8分の短縮
となった。
Comparison of melting time Comparison with non-expansion set clearance 1.8mm However, melting cylinder body diameter 61.8mm, metal material diameter 60.0mm
Melting time (600 ° C) Approx. 20 minutes Result: Clearance at insertion 1.856mm is set clearance at non-expansion 1.8mm
The clearance was 0.056 mm larger than that, but the melting time was short, which was about 8 minutes.
1 金属成形機
2 加熱保持筒
3 溶解筒
31 胴部
32 底部
33 流出管
34 加熱補助材
35 加熱手段
36 蓋部材
DESCRIPTION OF
Claims (8)
上記溶解筒を、胴部に連なる濾斗状の底部と、底部中央の胴部よりも小径の流出管と、底部に近接して胴部内に横設した加熱補助材と、胴部及び流出管の外周囲に設けた加熱手段とから構成し、該加熱補助材により上記金属素材を底部上に支持して、金属素材の加熱を胴周囲と底面とから行うことを特徴とする金属成形機における金属素材の溶融方法。 When a cylindrical (round bar-shaped) ingot is used as a metal material, the metal material is inserted into a melting cylinder vertically provided in a heating and holding cylinder, and then semi-molten or completely melted.
The melting tube includes a funnel-shaped bottom continuous to the body, an outflow pipe having a smaller diameter than the body at the center of the bottom, a heating auxiliary material disposed in the body close to the bottom, and the body and the outflow pipe. In a metal forming machine characterized in that the metal material is supported from the periphery and the bottom surface by supporting the metal material on the bottom by the heating auxiliary material. A method for melting metal materials.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004179697A JP4273045B2 (en) | 2004-06-17 | 2004-06-17 | Method of melting metal material in metal forming machine |
PCT/JP2005/003550 WO2005080025A1 (en) | 2004-02-25 | 2005-02-24 | Production method for metallic material in metal forming machine |
US10/549,429 US7331372B2 (en) | 2004-02-25 | 2005-02-24 | Method for melting metallic raw material in metal molding apparatus |
TW094105945A TWI337906B (en) | 2004-02-25 | 2005-02-25 | Metal raw material melting method for a metal molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004179697A JP4273045B2 (en) | 2004-06-17 | 2004-06-17 | Method of melting metal material in metal forming machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006000890A true JP2006000890A (en) | 2006-01-05 |
JP4273045B2 JP4273045B2 (en) | 2009-06-03 |
Family
ID=35769710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004179697A Expired - Fee Related JP4273045B2 (en) | 2004-02-25 | 2004-06-17 | Method of melting metal material in metal forming machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4273045B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101340268B1 (en) | 2006-12-18 | 2014-01-02 | 닛세이 쥬시 고교 가부시키가이샤 | Material melting and holding apparatus of metal molding apparatus and rod material melting method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104190911A (en) * | 2014-07-28 | 2014-12-10 | 洛阳王力重型机械有限公司 | Inner lining and outer lining separating support for roller sleeve |
-
2004
- 2004-06-17 JP JP2004179697A patent/JP4273045B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101340268B1 (en) | 2006-12-18 | 2014-01-02 | 닛세이 쥬시 고교 가부시키가이샤 | Material melting and holding apparatus of metal molding apparatus and rod material melting method |
Also Published As
Publication number | Publication date |
---|---|
JP4273045B2 (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101602102B (en) | Solidification process control method using small external temperature gradient to eliminate shrinkage cavities and porosity in casting | |
CA2855799C (en) | Die cast nozzle and method for operating a die cast nozzle | |
RU2497629C2 (en) | Method and device for semi-continuous casting of hollow metal billets and articles thus made | |
JPH10211565A (en) | Device for producing precasting metal | |
JP5918572B2 (en) | Continuous casting apparatus and continuous casting method for titanium ingot and titanium alloy ingot | |
JP2006341290A (en) | Die casting device | |
US7849912B2 (en) | Process for electroslag remelting of metals and ingot mould therefor | |
JP4273045B2 (en) | Method of melting metal material in metal forming machine | |
JP2010247202A (en) | Device for smelting metal ingot and method for smelting the metal ingot using the same | |
CN105834386A (en) | Continuous casting device of high temperature alloy tubes and continuous casting method of high temperature alloy tubes | |
US7331372B2 (en) | Method for melting metallic raw material in metal molding apparatus | |
RU2283205C2 (en) | Metal centrifugal casting process without turning off heat source | |
KR100673618B1 (en) | Manufacturing apparatus for casting semi-solid materials and process method thereof | |
JP2018069279A (en) | Graphite crucible, melting-holding furnace using the same, and casting device | |
JP3927957B2 (en) | Low melting point metal alloy forming method | |
JP2004160507A (en) | Direct casting apparatus | |
KR20140129338A (en) | Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same | |
JP4582778B2 (en) | Method of melting metal material in metal forming machine | |
JPS60191640A (en) | Casting method of casting ingot in heated mold type continuous casting method | |
JP5203680B2 (en) | Metal electroslag remelting process and ingot mold used therefor | |
CN201304473Y (en) | On-line dehydrogenating device of nonferrous metal liquid | |
JP2014091147A (en) | CONTINUOUS CASTING METHOD OF Cu-Zn-Si-BASED ALLOY, AND Cu-Zn-Si-BASED ALLOY MATERIAL | |
CN102806329A (en) | Continuous blank casting system capable of performing semi-solid processing on non-ferrous alloy | |
RU2282522C2 (en) | Process for centrifugal casting of metal in horizontal plane | |
JP3848936B2 (en) | Semi-melt forming method and molding machine for low melting point metal alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081208 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090114 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090302 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150306 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |