JP3848936B2 - Semi-melt forming method and molding machine for low melting point metal alloy - Google Patents

Semi-melt forming method and molding machine for low melting point metal alloy Download PDF

Info

Publication number
JP3848936B2
JP3848936B2 JP2003200535A JP2003200535A JP3848936B2 JP 3848936 B2 JP3848936 B2 JP 3848936B2 JP 2003200535 A JP2003200535 A JP 2003200535A JP 2003200535 A JP2003200535 A JP 2003200535A JP 3848936 B2 JP3848936 B2 JP 3848936B2
Authority
JP
Japan
Prior art keywords
cylinder
melting
melt
semi
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003200535A
Other languages
Japanese (ja)
Other versions
JP2005040802A (en
JP2005040802A5 (en
Inventor
清登 滝澤
守 宮川
和夫 安在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2003200535A priority Critical patent/JP3848936B2/en
Publication of JP2005040802A publication Critical patent/JP2005040802A/en
Publication of JP2005040802A5 publication Critical patent/JP2005040802A5/ja
Application granted granted Critical
Publication of JP3848936B2 publication Critical patent/JP3848936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、予め凝固組織を固相が微細な粒状に結晶化したチクソトロピー性状を有するマグネシウム合金、アルミニウム合金等の低融点金属合金を成形材料とし、それを半溶融状態で金型に射出充填して、金属製品となす成形方法と成形機とに関するものである。
【0002】
【従来の技術】
従来の半溶融成形としては、アルミニウム合金又はマグネシウム合金の冷却固化したビレットを、固相線を超える温度領域まで昇温して初晶が粒状化するまで保持し、その後に液相線以下の成形温度までさらに昇温して半溶融状態となし、それを成形用金型に供給して加圧成形している(例えば、特許文献1参照)。
また溶融マグネシウム合金を冷却して固相を含んだ金属スラリーを生成し、この金属スラリーを冷却固化して円柱棒状の金属素材に成形し、これをインジェクション装置により半溶融状態に加熱溶解して金属製品を射出成形するものもある(例えば、特許文献2参照)。
【0003】
金属成形機として、ノズル部材を先端に有する筒体の外周囲に加熱手段を備え、内部に射出プランジャを進退自在に備えた溶解筒を傾斜設置し、その溶解筒によりホッパから供給された粒状の低融点金属材料を完全溶解して、金型に射出するものがある(例えば、特許文献3参照)。
【0004】
低融点金属製品の製造装置として、低融点金属の棒状材料を溶解炉により溶解し、その溶湯を固相線温度以上、液相線温度以下に保持されたシリンダ内にて、スクリューにより攪拌せん断してチクソ状となしたのち、プランジャ前部に貯留し、そのプランジャにより金型に射出充填するものがある(例えば、特許文献4参照)。
【0005】
【特許文献1】
特許第3216684号公報(第1−3頁、図1)。
【特許文献2】
特開2001−252759号公報(第4−5頁、図1)。
【特許文献3】
特開2001−191162号公報(第3−5頁、図1、図6)。
【特許文献4】
特開平7−51824号公報(第5−8頁、図1−2)。
【0006】
【発明が解決しようとする課題】
上記特許文献1に記載の半溶融成形方法は、冷却固化したビレットを固相線を超える温度領域まで昇温して初晶が粒状化するまで、5分〜60分間保持する必要があることから、成形に時間が掛かる大型の金属製品をダイキャストにより鋳造する場合には適用可能であっても、射出成形による製品重量が小さい金属製品の成形には、その保持時間によって成形効率が低下するために採用し難い課題を有する。
【0007】
上記特許文献2に記載の成形方法では、固相を含んだ金属スラリーを冷却固化して、チクソトロピーを潜在的に保持した円柱棒状の金属素材とし、それをインジエクション装置の加熱チャンバーにより半溶融状態に溶融貯留し、その半溶融金属スラリーを金型に供給して成形を行っていることから、引用文献1の課題とされる初晶が粒状化するまでの保持時間が不要となる。しかし、金属素材の溶融と貯留の両方を加熱チャンバーにて行っており、また吐出口が予備溶解バレルよりも上方にあるため、半溶融金属スラリーの金型への供給が溶融順に行われず、加熱チャンバーに長く留まって固相が粗大化し、組織的にチクソトロピー性状が失われた金属スラリーとなるものもあり、これが稼働時間の経過にともない増加して、金型に供給される金属スラリーに混在し、金属製品に悪影響を与えるという新たな課題を有する。
【0008】
上記特許文献3の金属成形機でも、粒状の成形材料の溶解と貯留の両方を溶解筒にて行っているが、溶解筒が傾斜設置されてその下部内に溶湯が貯留され、最下位の溶湯から金型に射出充填されることと、溶湯の上に粒状材料が落下して溶解されることから、金型への射出充填は溶解順に行われ、長く留まるものはないが、そこに記載の構造からは、成形材料の溶解と貯留を別個に行うことができない。
【0009】
上記引用文献4では、材料インゴットを溶解炉により溶解し、その溶湯を固相線温度以上、液相線温度以下に保持したシリンダに供給しているが、それはシリンダ内のスクリューによる攪拌せん断をもって、溶湯をチクソトロピー性状とするためである。予めチクソトロピー性状を有する成形材料を半溶融し、これをスクリューにより攪拌せん断すると、固相の成長が促進されてチクソトロピー性状が失われるので、低融点金属合金の半溶融成形には採用し難い。
【0010】
この発明の目的は、固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金(例えば、マグネシウム合金、アルミニウム合金等)の固体を成形材料とする半溶融成形法において、成形材料の溶融と貯留とを別個に行うことにより、射出成形の容易性と好ましいチクソトロピー性状の凝固組織の金属製品とを得ることができる新たな成形方法と、上記特許文献3に記載された金属成形機の改良による新たな半溶融成形機とを提供することにある。
【0011】
【課題を解決するための手段】
上記目的によるこの発明の半溶融成形方法は、固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金の固体を成形材料として用い、その固体材料を先端にノズルを有し内部に射出プランジャを備えた溶融保持筒と連通した溶融筒内にて、固液共存状態でチクソトロピー性状を有する半溶融状態の金属スラリーに溶融し、その金属スラリーを溶融順に固液共存温度に維持された溶融保持筒に流下させて保温貯留し、その溶融保持筒によりチクソトロピー性状が維持されている時間内に射出プランジャの前進移動により製品金型に射出充填してなるというものである。
【0012】
また上記固体の成形材料は、チップ形状の粒状物又は棒状、インゴット等の固形物からなり、その成形材料の溶融及び半溶融金属スラリーの保温貯留は、アルゴンガス等の不活性ガス雰囲気にて行う、というものである。
【0013】
この発明の半溶融成形機は、先端にノズル部材を有し、内部に射出プランジャを進退自在に備えた溶融保持筒と、上記射出プランジャを進退移動する溶融保持筒後部の射出シリンダと、溶融保持筒内のチクソトロピー性状を有する低融点金属合金の金属スラリーを、固液共存状態に保持する筒体外周囲の加熱手段と、筒体の閉塞端に筒体内径よりも小径の流出路を有し、その流出路を下側に上記溶融保持筒の上部に立設して内部を互いに連通した溶融筒と、溶融筒内の固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金の粒状材料を、固液共存状態の上記金属スラリーに溶融する筒体外周囲の加熱手段と、溶融筒の頂端に連設したフィードスクリュ内装のホッパーとからなる、というものである。
【0014】
また半溶融成形機は、先端にノズル部材を有し、内部に射出プランジャを進退自在に備え、筒体外周囲の加熱手段を設けた溶融保持筒と、上記射出プランジャを進退移動する溶融保持筒後部の射出シリンダと、溶融保持筒内のチクソトロピー性状を有する低融点金属合金の金属スラリーを、固液共存状態に保持する筒体外周囲の加熱手段と、筒体の閉塞端に筒体内径よりも小径の流出路を有し、その流出路を下側に上記溶融保持筒の上部に立設して内部を互いに連通した溶融筒と、溶融筒内の固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金の棒状材料を、固液共存状態の上記金属スラリーに溶融する筒体外周囲の加熱手段と、溶融筒の上部開口に連設した供給筒とからなる、というものである。
【0015】
さらに上記半溶融成形機のいずれも、上記溶融筒の下部から上記溶融保持筒の半溶融液面内までと、上部の空間部とにアルゴンガス等の不活性ガスの注入管を有する、というものである。
【0016】
【発明の実施の形態】
図中1は、固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金の固体を成形材料として用いる半溶融成形機の射出機構で、筒体21の先端にノズル部材22を有する半溶融状態の金属スラリーの溶融保持筒2と、溶融保持筒2に立設した成形材料の溶融供給装置3と、溶融保持筒後部の射出シリンダ4とからなる。5は金型6の型締機構で、射出機構1と共に機台7の上面に設置されている。
【0017】
固相が微細な粒状に結晶化したチクソトロピー性状を有する固体の成形材料は、低融点金属合金の溶体を、固液共存温度領域の固相が微細に粒状化されてチクソトロピー性状を呈する半溶融体に冷却し、その半溶融体を冷却固化して製造したものからなる。
【0018】
8は射出機構1の受台で、先端部上にホットランナを内部に有するノズルタッチブロック9を有し、後部に上縁が内向きに45°前後の角度で傾斜した左右一対の板体10aによる架台10を旋回自在に備え、その架台10に溶融保持筒2の支持部23と射出シリンダ4の支持部41とを支軸12に挿通して、型締機構5に対し射出機構1を下向きに傾斜設置し、先端のノズル部材22をノズルタッチブロック9の上隅部にノズルタッチしている。
【0019】
13は溶融保持筒2のノズルタッチ装置で、溶融保持筒2の筒体支持部23と射出シリンダ4の支持部41にわたり設けた側部の油圧シリンダ13aと、ノズルタッチブロック9の側部の軸受に先端を回動自在に軸着したロッド13bとからなる。
【0020】
14は上記ノズルタッチブロック9の前面に水平に取付けた射出筒15のノズルタッチ装置で、機台上面に据え付けた受部材16に固設した油圧シリンダ14aと、先端をノズルタッチブロック9の後部に連結したロッド14bとからなり、そのロッド14bの進退移動により、受台8がその上部の溶融保持筒2と共に進退移動して、射出筒15の金型6へのノズルタッチ及びリリースが行えるようにしてある。
【0021】
上記溶融保持筒2は、筒体21の中程上側に設けた材料供給口に上記溶融供給装置3を備え、筒体外周囲に溶融保持筒2内のチクソトロピー性状を有する半溶融状態の金属スラリーM1の温度を、固液共存温度領域の温度に維持するバンドヒータなどの加熱手段24を備える。また図2に示すように、上記ノズル部材22のノズル口と連通する先端部内は、筒体内径よりも8〜15%ほど小径に縮径した所要長さの計量室25に形成してあり、その計量室25に射出プランジャ26の射出ヘッド26aが進退自在に嵌挿してある。
【0022】
また材料供給口の上縁から上部の溶融保持筒2内は、内端面を供給口上縁に接近して内設した閉塞部材27により塞がれて無空間となっている。この閉塞部材27は供給口上縁の近傍から筒体後端まで達する長さの軸材を、筒体後端に外端をボルト止めして気密に固設したものからなり、その閉塞部材27の中央に穿設した貫通孔に、上記射出プランジャ26のロッド26bが後端を上記射出シリンダ4のピストンロッド42に連結し、周囲を複数のリング28により気密にして進退自在に挿通してある。
【0023】
この射出プランジャ26のロッド26bの太さは、溶融保持筒2の筒体内径によって異なるが、筒体内径とロッド径の比は2.5以上とし、筒体内径とロッド外径の片側間隙を35mm以上として設定するのが好ましい。因に上記比率から寸法としては、筒体内径115mmの場合,ロッド径は32〜40mmの範囲となる。
【0024】
また射出プランジャ26の射出ヘッド26aは、外周面にシールリングを埋設した逆止弁26cを外周囲に進退自在に備え、その逆止弁26cと射出ヘッド26aとの間に形成した流通隙間(図は省略)を、逆止弁26cの後端面と射出プランジャ後部のシートリングとの接離により開閉できるようにして、上記計量室25に進退自在に嵌挿してある。
【0025】
このような半溶融成形機では、射出プランジャ26の後退移動により、計量室25の射出ヘッド26aを、図2に示す後退限位置まで摺動移動して、溶融保持筒2に貯留した金属スラリーM1を計量室25に吸引して計量を行うことができ、計量後の射出プランジャ26の前進移動により、計量室25の金属スラリーM2を、ノズル部材22からノズルタッチブロック9及び射出筒15を経て、型締された金型6に射出充填することができる。
【0026】
上記溶融供給装置3は、細長い筒体(例えば、直径が40mm、長さが500mm程)の一端部を閉塞して、閉塞端の中央に金属スラリーM1が流通する筒体内径よりも小径(例えば、7mm程度)の流出路31aを穿設し、その流出路31aを下側にして、該流出路31aを上記溶融保持筒2の筒体21に設けた材料供給口に差込み、溶融保持筒2の上部に立設して内部を互いに連通した溶融筒31と、その溶融筒31の頂端に連設したホッパー35とからなる。
【0027】
上記溶融筒31の筒体外周囲には、ホッパー35から供給された粒状材料Mを、チクソトロピー性状を有する半溶融状態の金属スラリーM1に溶融するバンドヒータや誘導加熱器等による加熱手段32が、それぞれ温度制御可能に複数ゾーンに分割して設けてある。
【0028】
上記ホッパー35は、溶融筒31の上部開口となる他端に中間部材33を介して連結してあり、その内部中央にフィードスクリュ34を備える。このフィードスクリュ34はホッパー蓋板36に据え付けた電動モータ37の駆動軸に連結して、溶融筒31の延長部となる中間部材33の内部まで設けられている。
なお、38は材料搬送管、39は溶融供給装置3を溶融保持筒2の支持部23に固設するアーム部材である。
【0029】
このような溶融供給装置3では、粒状材料Mをホッパー35に蓄え、その所定量をフィードスクリュ34の回転により、溶融筒31に送り込むことができる。溶融筒31とホッパー35及び溶融保持筒2の内部は、溶融筒31の上部と下部から溶融保持筒2の溶湯面Lの内部までとに設けた注入管40a、40bからのアルゴンガスにより不活性ガス雰囲気に維持され、これにより酸化物の発生を防止している。
【0030】
溶融筒31の加熱温度は、そこに採用される粒状材料Mがマグネシウム合金(AZ91D)で、チクソトロピー性状を潜在的に有する固体材料を、切削機械により長さが9.0mm未満に切削されたチップ形状の場合、粒状材料Mを短時間で半溶融状態に溶融する目的から液相線温度以上(600°〜620℃)に設定されるが、上記溶融保持筒2の温度は、筒体外周囲の加熱手段24により固液共存温度領域の温度(570°〜595℃)に維持される。
【0031】
上記粒状材料Mは、ホッパー35からフィードスクリュ34の回転により溶融筒21に送り込まれる。この溶融筒31への材料供給は、溶融能力に合わせてフィードスクリュ34の回転速度を制御し、溶融筒31内の材料嵩を常に一定に調整するのが好ましい。溶融筒31内の粒状材料Mは、小径の流出路31aの周囲の内底面31bにより、溶融保持筒2内にまで落下することなく溶融筒31内に留まって、周囲からの加熱により溶融する。
【0032】
この材料溶融は、粒状材料Mの温度が固液共存温度領域(550℃以上)に達したときから生じ、粒状材料Mが潜在的に有する微細に粒状化された固相が、均一に分散したチクソトロピー性状の半溶融状態の金属スラリーM1となって、直ちに自重により流出路31aから溶融保持筒2の内に流下して貯留される。
【0033】
この直径が小さく制限された溶融筒31での粒状材料Mの溶融では、粒状材料Mが密の状態で加熱を受けるので、溶融筒31からの熱が各粒状材料Mに伝わり易く溶融効率が向上する。また液相線温度よりも低い固液共存温度領域の温度で溶融が進行するので省エネルギー効果がある。また粒状材料Mが密の状態で同時に周囲から加熱を受けて急速に溶融するため、金属スラリーM1の上面に高く積もる間もなく溶融するので蒸し焼き状態がなくなり、これが原因とされるスラッジの発生が抑制されることから、溶融保持筒2内におけるスラッジの沈積も著しく減少するようになる。
【0034】
溶融保持筒2内に貯留された金属スラリーM1は、溶融保持筒2が外周の加熱手段24により、固液共存温度領域の温度に加熱されているので、完全に溶融することなく固相が微細に粒状化されたチクソトロピー性状を維持する。しかし、固相は固液共存温度領域の温度でも、時間の経過に伴い成長を続けて固相同士が結合し、固相が粗大化及び樹枝化してチクソトロピー性状が失われ、射出成形が困難となるので、半溶融金属スラリーの貯留時間、即ち最大貯留量を制限するの好ましい。
【0035】
この溶融保持筒2における金属スラリーM1の最大貯留量は、成形サイクル時間と、製品重量とから求められる単位時間当たりの射出充填量を基準に決められるが、総量は貯留時間30分を超えない時間内に射出充填できる貯留量に制限するのが好ましい。これにより金属スラリーM1の射出充填の全てを、溶融保持筒2によりチクソトロピー性状が維持されている時間内に行うことができる。例えば、成形サイクル25秒、1ショット重量50gの場合には、30分で72ショットとなるので、その貯留量は3,600gとなる。また1ショット重量100gの場合には、貯留量は7,200gとなる。
なお、保持温度を550℃という通常より低い温度で設定した場合、例えばAZ91Dの場合には、貯留時間は60分まで許容される。
【0036】
溶融保持筒2に貯留された金属スラリーM1は、射出プランジャ26の後退移動により、計量室25を後退限位置まで摺動移動する射出ヘッド26aによって計量される。この計量はノズル筒15の先端が前回の成形で冷却残存した成形材料により閉鎖されているので、射出ヘッド26aの強制後退により計量室25が負圧となり、それにより上記逆止弁26cが開弁して、射出ヘッド26aとの流通隙間から金属スラリーM1が計量室25に吸引され、射出ヘッド26aが後退限位置で停止するまで計量室25に溜められて計量が行われるようになる。
【0037】
計量室25の金属スラリーM2は計量後の射出プランジャ26の前進移動により、チキソトロピー性状の金属スラリーとして、ノズル部材22からノズルタッチブロック9及び射出筒15を経て、型締された製品金型6に射出充填され、固相が微細な粒状に結晶化した凝固組織の金属製品となる。
【0038】
図3は、丸棒に成形された棒状材料M′を成形材料とする場合の溶融供給装置3の1例を示すもので、因に丸棒は上記マグネシウム合金で、直径40〜60mm,長さ300mmからなる。
この溶融供給装置3は上記加熱手段32を筒体外周囲に備える溶融筒31と、その上部に中間部材33を介して連結した側部に投入口43を有する縦長の供給管44と、材料押し込み用のプランジャ45を下向きに挿入して、供給管44の頂端に取付けたエア又は油圧作動の押圧シリンダ46とからなり、上記溶融筒31の流出路31a側を下部として溶融保持筒2に立設され、その下部から溶融保持筒2の溶湯面Lの内部までと、溶融筒31の上部の空間内とにアルゴンガス等の不活性ガスの注入管40a,40bが設けてある。
【0039】
このような溶融供給装置3では、プランジャ45を縮小して投入口43から供給管内に入れた棒状材料M′を、プランジャ45の伸長により溶融筒31の内部に押し込み、外周囲の加熱手段32により温度に傾斜をつけて固液共存温度領域の温度に加熱することで、棒状材料M′が半溶融の金属スラリーに溶融してゆく。
【0040】
この溶融筒31内に生じた半溶融の金属スラリーM1は、棒状材料M′が有する微細に粒状化された固相が、均一に分散したチクソトロピー性状の金属スラリーM1となって、そのまま自重により小径(例えば、10mm)の流出路31aから溶融保持筒2の内に流下して貯留される。この棒状材料M′では上記粒状材料Mより単位質量当たりの表面積が小さくできるため、材料表面に付着した酸化物等が溶融筒31や溶融保持筒2内に持ち込まれ難くなって、酸化によるスラッジの発生がさらに抑制されることから、粒状材料Mの場合よりも成形機の稼働率が向上するようになる。
【0041】
なお、上記実施形態ではプランジャ45により棒状材料M′の押込みを行っているが、棒状材料M′は自重により落下挿入してもよく、この場合には押圧シリンダ46及びプランジャ45を除いて供給筒44の上部を開放し、その上部開口から棒状材料M′を挿入するだけで材料供給が行える。
【0042】
また上記半溶融成形機では、射出機構2を型締機構1に対して傾斜設置しているが、射出機構2は水平に設置されていても傾斜設置の場合と同様に機能するので、この発明は上記実施形態に限定されるものではない。
【図面の簡単な説明】
【図1】 この発明に係る低融点金属合金の半溶融成形機の側面図である。
【図2】 同上の主たる部分の縦断側面図である。
【図3】 この発明の他の実施形態の主たる部分の縦断側面図である。
【符号の説明】
1 射出機構
2 溶融保持筒
3 溶融供給装置
4 射出シリンダ
5 型締装置
6 金型
9 ノズルタッチブロック
15 射出筒
22 ノズル部材
23 支持部
24 加熱手段
25 計量室
26 射出プランジャ
31 溶融筒
32 加熱手段
33 中間部材
34 フィードスクリュ
35 ホッパー
37 電動モータ
40a,40b 不活性ガスの注入管
43 投入口
44 供給管
45 プランジャ
46 押圧シリンダ
[0001]
BACKGROUND OF THE INVENTION
This invention uses a low melting point metal alloy such as a magnesium alloy or aluminum alloy having thixotropic properties in which the solidified structure is crystallized into a fine solid phase in advance as a molding material, which is injected and filled into a mold in a semi-molten state. The present invention relates to a molding method and a molding machine for metal products.
[0002]
[Prior art]
In conventional semi-melt molding, a cooled and solidified billet of an aluminum alloy or magnesium alloy is heated to a temperature range exceeding the solidus and held until the primary crystal is granulated, and then molded below the liquidus The temperature is further raised to a temperature to achieve a semi-molten state, which is supplied to a molding die and pressure-molded (see, for example, Patent Document 1).
Also, the molten magnesium alloy is cooled to produce a metal slurry containing a solid phase, and the metal slurry is cooled and solidified to form a cylindrical rod-shaped metal material, which is heated and melted in a semi-molten state by an injection device. Some products are injection-molded (see, for example, Patent Document 2).
[0003]
As a metal forming machine, a heating unit is provided on the outer periphery of a cylindrical body having a nozzle member at the tip, and a melting cylinder provided with an injection plunger in a movable manner is inclined, and a granular shape supplied from a hopper by the melting cylinder is provided. There is one in which a low melting point metal material is completely dissolved and injected into a mold (for example, see Patent Document 3).
[0004]
As a low melting point metal product manufacturing equipment, a low melting point metal rod-shaped material is melted in a melting furnace, and the molten metal is stirred and sheared with a screw in a cylinder maintained at a temperature higher than the solidus temperature and lower than the liquidus temperature. In some cases, it is stored in the front part of the plunger and injected into the mold by the plunger (for example, see Patent Document 4).
[0005]
[Patent Document 1]
Japanese Patent No. 3216684 (page 1-3, FIG. 1).
[Patent Document 2]
JP 2001-252759 A (page 4-5, FIG. 1).
[Patent Document 3]
JP 2001-191162 A (page 3-5, FIGS. 1 and 6).
[Patent Document 4]
JP-A-7-51824 (page 5-8, FIG. 1-2).
[0006]
[Problems to be solved by the invention]
The semi-melt molding method described in Patent Document 1 requires that the cooled and solidified billet is heated to a temperature range exceeding the solidus and held for 5 to 60 minutes until the primary crystal is granulated. Even if it can be applied when casting large metal products that take a long time to form by die-casting, the molding efficiency of the metal product with small product weight by injection molding will decrease due to its holding time. Have problems that are difficult to adopt.
[0007]
In the molding method described in Patent Document 2, a metal slurry containing a solid phase is cooled and solidified to form a cylindrical rod-shaped metal material that potentially holds thixotropy, which is semi-molten by a heating chamber of an injection device. Since the molten molten slurry is stored in a state and the semi-molten metal slurry is supplied to the mold for molding, the holding time until the primary crystal, which is the subject of Cited Document 1, is granulated becomes unnecessary. However, both melting and storage of the metal material are performed in the heating chamber, and the discharge port is located above the preliminary melting barrel, so the supply of the semi-molten metal slurry to the mold is not performed in the melting order, and the heating is performed. Some metal slurries remain in the chamber for a long time and the solid phase becomes coarse, and the thixotropic properties are lost systematically.This increases with the lapse of operating time and is mixed with the metal slurry supplied to the mold. And has a new problem of adversely affecting metal products.
[0008]
In the metal forming machine of Patent Document 3 described above, both melting and storage of the granular molding material are performed in the melting cylinder, but the melting cylinder is inclined and the molten metal is stored in its lower part, and the lowest molten metal From the injection filling into the mold and the granular material falls and melts on the molten metal, the injection filling into the mold is performed in the order of dissolution, there is nothing that stays long, but there From the structure, the molding material cannot be dissolved and stored separately.
[0009]
In the above cited reference 4, the material ingot is melted by a melting furnace, and the molten metal is supplied to a cylinder maintained at a temperature equal to or higher than the solidus temperature and equal to or lower than the liquidus temperature. This is because the molten metal has thixotropic properties. If a molding material having thixotropic properties is semi-melted and stirred and sheared with a screw in advance, the growth of the solid phase is promoted and the thixotropic properties are lost. Therefore, it is difficult to adopt for semi-melt molding of a low melting metal alloy.
[0010]
An object of the present invention is to provide a molding material of a semi-melt molding method using a solid of a low melting point metal alloy (for example, a magnesium alloy, an aluminum alloy, etc.) having thixotropic properties whose solid phase is crystallized into fine particles. By performing melting and storage separately, a new molding method capable of obtaining a metal product having a solidified structure with ease of injection molding and a preferable thixotropic property, and a metal molding machine described in Patent Document 3 above It is to provide a new semi-melt molding machine by improvement.
[0011]
[Means for Solving the Problems]
The semi-melt molding method of the present invention according to the above object uses a solid of a low melting point metal alloy having a thixotropic property whose solid phase is crystallized in a fine granular form as a molding material, and the solid material has a nozzle at the tip and has an inside. In a melt cylinder communicating with a melt holding cylinder equipped with an injection plunger, the metal slurry was melted into a semi-molten metal slurry having thixotropic properties in a solid-liquid coexistence state, and the metal slurry was maintained at a solid-liquid coexistence temperature in the melting order. The molten metal is allowed to flow down into the melt-holding cylinder and kept warm, and the product mold is injected and filled by the forward movement of the injection plunger within the time during which the thixotropic property is maintained by the melt-holding cylinder.
[0012]
The solid molding material is made of a solid material such as a chip-shaped granule, a rod, or an ingot, and the molding material is melted and the semi-molten metal slurry is kept warm in an inert gas atmosphere such as argon gas. That's it.
[0013]
A semi-molten molding machine of the present invention has a nozzle member at the tip, a melting holding cylinder having an injection plunger that can be moved forward and backward, an injection cylinder at the rear of the melting holding cylinder that moves the injection plunger forward and backward, and a melting holding A metal slurry of a low-melting-point metal alloy having thixotropic properties in the cylinder, a heating means around the outer periphery of the cylinder that holds the solid-liquid coexistence state, and an outflow path having a diameter smaller than the inner diameter of the cylinder at the closed end of the cylinder, A melting cylinder standing up in the upper part of the melting holding cylinder with the outflow path on the lower side, and a low melting point metal alloy having thixotropic properties in which the solid phase in the melting cylinder is crystallized into fine particles It consists of a heating means around the outside of the cylinder that melts the granular material into the metal slurry in the solid-liquid coexistence state, and a hopper with a feed screw inside that is connected to the top end of the melting cylinder.
[0014]
Further, the semi-melt molding machine has a nozzle member at the tip, and an injection plunger is provided in the inside thereof so that the injection plunger can be moved forward and backward, and a melt holding cylinder provided with heating means on the outer periphery of the cylinder, and a rear portion of the melt holding cylinder that moves the injection plunger forward and backward Injection cylinder, heating means for holding the metal slurry of the low melting point metal alloy having thixotropic properties in the melt holding cylinder in a solid-liquid coexistence state, and a diameter smaller than the cylinder inner diameter at the closed end of the cylinder And a thixotropic property in which the solid phase in the melting cylinder is crystallized into fine particles. The low melting point metal alloy rod-shaped material having a melting point is composed of a heating means around the outer periphery of the cylinder that melts into the metal slurry in a solid-liquid coexistence state, and a supply cylinder that is connected to the upper opening of the melting cylinder.
[0015]
Further, any of the above-mentioned semi-melt molding machines has an inert gas injection tube such as argon gas in the upper space from the lower part of the melting cylinder to the inner surface of the melt-holding cylinder. It is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the figure, reference numeral 1 denotes an injection mechanism of a semi-melt molding machine using a solid of a low melting point metal alloy having a thixotropic property crystallized into a fine solid phase as a molding material, and has a nozzle member 22 at the tip of a cylindrical body 21. It consists of a melt holding cylinder 2 of a semi-molten metal slurry, a molding material melting supply device 3 standing on the melting holding cylinder 2, and an injection cylinder 4 at the rear of the melting holding cylinder. A mold clamping mechanism 5 for the mold 6 is installed on the upper surface of the machine base 7 together with the injection mechanism 1.
[0017]
The solid molding material with thixotropic properties, whose solid phase is crystallized into fine particles, is a low-melting metal alloy solution, and a semi-molten material with thixotropic properties as the solid phase in the solid-liquid coexistence temperature region is finely granulated. And the semi-molten product was produced by cooling and solidifying.
[0018]
Reference numeral 8 denotes a receiving base for the injection mechanism 1, which has a nozzle touch block 9 having a hot runner on the tip, and a pair of left and right plates 10a whose upper edges are inclined inwardly at an angle of about 45 ° at the rear. The support 10 of the melting holding cylinder 2 and the support 41 of the injection cylinder 4 are inserted through the support shaft 12 into the support 10 so that the injection mechanism 1 faces downward with respect to the mold clamping mechanism 5. The nozzle member 22 at the tip is nozzle-touched to the upper corner of the nozzle touch block 9.
[0019]
Reference numeral 13 denotes a nozzle touch device for the melt holding cylinder 2, a side hydraulic cylinder 13 a provided across the cylinder support 23 of the melt holding cylinder 2 and the support 41 of the injection cylinder 4, and a bearing on the side of the nozzle touch block 9. And a rod 13b having a tip pivotally attached thereto.
[0020]
Reference numeral 14 denotes a nozzle touch device for the injection cylinder 15 mounted horizontally on the front surface of the nozzle touch block 9. The hydraulic cylinder 14 a is fixed to the receiving member 16 installed on the upper surface of the machine base, and the tip is attached to the rear part of the nozzle touch block 9. It is composed of a connected rod 14b, and by moving the rod 14b forward and backward, the cradle 8 moves forward and backward together with the upper melting holding cylinder 2 so that the nozzle touch and release of the injection cylinder 15 to the mold 6 can be performed. It is.
[0021]
The melting and holding cylinder 2 is provided with the melting and supplying device 3 at the material supply port provided at the middle upper side of the cylinder 21 and has a thixotropic property in the melting and holding cylinder 2 around the outer periphery of the cylinder 21 in a semi-molten state. Is provided with a heating means 24 such as a band heater for maintaining the temperature of the liquid at a temperature in the solid-liquid coexistence temperature region. Also, as shown in FIG. 2, the inside of the tip portion communicating with the nozzle opening of the nozzle member 22 is formed in a measuring chamber 25 having a required length that is reduced to a diameter smaller by 8 to 15% than the inner diameter of the cylindrical body, An injection head 26a of an injection plunger 26 is inserted into the measuring chamber 25 so as to be able to advance and retract.
[0022]
In addition, the inside of the melting and holding cylinder 2 from the upper edge of the material supply port to the upper portion is closed by the closing member 27 provided with the inner end face close to the upper edge of the supply port. The closing member 27 is composed of a shaft member having a length extending from the vicinity of the upper edge of the supply port to the rear end of the cylinder, and is airtightly fixed by bolting the outer end to the rear end of the cylinder. A rod 26b of the injection plunger 26 is connected to a piston rod 42 of the injection cylinder 4 through a through hole formed in the center, and the periphery is hermetically sealed by a plurality of rings 28 so as to be freely advanced and retracted.
[0023]
The thickness of the rod 26b of the injection plunger 26 varies depending on the inner diameter of the melt-holding cylinder 2, but the ratio between the inner diameter of the cylinder and the rod diameter is 2.5 or more. It is preferable to set as 35 mm or more. Incidentally, as a dimension from the above ratio, the rod diameter is in the range of 32 to 40 mm when the cylinder inner diameter is 115 mm.
[0024]
The injection head 26a of the injection plunger 26 includes a check valve 26c having a seal ring embedded in the outer peripheral surface thereof so as to be able to advance and retreat to the outer periphery, and a flow gap formed between the check valve 26c and the injection head 26a (see FIG. Is inserted into the measuring chamber 25 so as to be able to move forward and backward so that it can be opened and closed by contact and separation between the rear end face of the check valve 26c and the seat ring at the rear part of the injection plunger.
[0025]
In such a semi-melt molding machine, by the backward movement of the injection plunger 26, the injection head 26a of the measuring chamber 25 is slid to the backward limit position shown in FIG. The metering chamber 25 can be weighed to measure the metal slurry M2 in the metering chamber 25 from the nozzle member 22 through the nozzle touch block 9 and the injection cylinder 15 by the forward movement of the injection plunger 26 after the metering. The mold 6 that has been clamped can be injection-filled.
[0026]
The melt supply device 3 closes one end of an elongated cylindrical body (for example, a diameter of about 40 mm and a length of about 500 mm), and has a smaller diameter (for example, the inner diameter of the cylindrical body through which the metal slurry M1 flows in the center of the closed end. , About 7 mm), and the outflow path 31a is placed on the lower side, and the outflow path 31a is inserted into the material supply port provided in the cylindrical body 21 of the melting and holding cylinder 2, so that the melting and holding cylinder 2 And a hopper 35 connected to the top end of the melting cylinder 31.
[0027]
Heating means 32 such as a band heater or an induction heater for melting the granular material M supplied from the hopper 35 into a semi-molten metal slurry M1 having thixotropic properties is provided around the outer periphery of the melting cylinder 31. It is divided into a plurality of zones so that the temperature can be controlled.
[0028]
The hopper 35 is connected to the other end serving as the upper opening of the melting cylinder 31 via an intermediate member 33, and includes a feed screw 34 in the center of the inside thereof. The feed screw 34 is connected to a drive shaft of an electric motor 37 installed on the hopper cover plate 36 and is provided up to the inside of an intermediate member 33 that is an extension of the melting cylinder 31.
In addition, 38 is a material conveyance pipe | tube, 39 is an arm member which fixes the fusion | melting supply apparatus 3 to the support part 23 of the fusion | melting holding cylinder 2. FIG.
[0029]
In such a melting supply device 3, the granular material M can be stored in the hopper 35, and a predetermined amount thereof can be fed into the melting cylinder 31 by the rotation of the feed screw 34. The inside of the melting cylinder 31, the hopper 35 and the melting holding cylinder 2 is inactive by argon gas from the injection pipes 40a and 40b provided from the upper and lower parts of the melting cylinder 31 to the inside of the molten metal surface L of the melting holding cylinder 2. A gas atmosphere is maintained, thereby preventing the generation of oxides.
[0030]
The heating temperature of the melting cylinder 31 is a chip in which the granular material M employed therein is a magnesium alloy (AZ91D), and a solid material having a potential thixotropic property is cut to a length of less than 9.0 mm by a cutting machine. In the case of the shape, the temperature is set to a liquidus temperature or higher (600 ° C. to 620 ° C.) for the purpose of melting the granular material M into a semi-molten state in a short time. The heating means 24 maintains the temperature in the solid-liquid coexistence temperature region (570 ° to 595 ° C.).
[0031]
The granular material M is fed into the melting cylinder 21 from the hopper 35 by the rotation of the feed screw 34. In supplying the material to the melting cylinder 31, it is preferable that the rotational speed of the feed screw 34 is controlled in accordance with the melting capacity so that the material volume in the melting cylinder 31 is always adjusted to be constant. The granular material M in the melting cylinder 31 stays in the melting cylinder 31 without falling into the melting and holding cylinder 2 by the inner bottom surface 31b around the small-diameter outflow passage 31a, and is melted by heating from the surroundings.
[0032]
This material melting occurs when the temperature of the granular material M reaches the solid-liquid coexistence temperature region (550 ° C. or higher), and the finely granulated solid phase potentially possessed by the granular material M is uniformly dispersed. The metal slurry M1 is in a semi-molten state having a thixotropic property, and immediately flows down from the outflow path 31a into the molten holding cylinder 2 by its own weight and is stored.
[0033]
In the melting of the granular material M in the melting cylinder 31 having a small diameter, since the granular material M is heated in a dense state, the heat from the melting cylinder 31 is easily transmitted to each granular material M and the melting efficiency is improved. To do. Further, since melting proceeds at a temperature in the solid-liquid coexistence temperature region lower than the liquidus temperature, there is an energy saving effect. In addition, since the granular material M is rapidly melted by being heated from the surroundings in a dense state at the same time, it melts without being piled up on the upper surface of the metal slurry M1, so there is no steamed state and the generation of sludge caused by this is suppressed. Therefore, sludge deposition in the melting and holding cylinder 2 is also significantly reduced.
[0034]
The metal slurry M1 stored in the melt-holding cylinder 2 is heated to a temperature in the solid-liquid coexistence temperature region by the heating means 24 on the outer periphery, so that the solid phase is fine without melting completely. Maintains thixotropic properties that are granulated. However, even when the solid phase is in the solid-liquid coexistence temperature range, the solid phase continues to grow as time passes, the solid phase becomes coarse and dendritic, and the thixotropic properties are lost, making injection molding difficult. Therefore, it is preferable to limit the storage time of the semi-molten metal slurry, that is, the maximum storage amount.
[0035]
The maximum storage amount of the metal slurry M1 in the melt holding cylinder 2 is determined based on the injection filling amount per unit time obtained from the molding cycle time and the product weight, but the total amount does not exceed the storage time of 30 minutes. It is preferable to limit to a storage amount that can be injected and filled inside. Thereby, all of the injection filling of the metal slurry M1 can be performed within the time period in which the thixotropic property is maintained by the melt holding cylinder 2. For example, in the case of a molding cycle of 25 seconds and a shot weight of 50 g, since it takes 72 shots in 30 minutes, the storage amount is 3,600 g. In addition, in the case of one shot weight of 100 g, the storage amount is 7,200 g.
In addition, when the holding temperature is set at a temperature lower than normal of 550 ° C., for example, in the case of AZ91D, the storage time is allowed up to 60 minutes.
[0036]
The metal slurry M1 stored in the melting and holding cylinder 2 is measured by the injection head 26a that slides and moves the measuring chamber 25 to the retreat limit position by the retreating movement of the injection plunger 26. In this measurement, since the tip of the nozzle cylinder 15 is closed by the molding material remaining after cooling in the previous molding, the metering chamber 25 becomes negative pressure by the forcible retraction of the injection head 26a, thereby opening the check valve 26c. Then, the metal slurry M1 is sucked into the measurement chamber 25 from the flow gap with the injection head 26a, and is stored in the measurement chamber 25 until the injection head 26a stops at the retreat limit position, and the measurement is performed.
[0037]
The metal slurry M2 in the measuring chamber 25 is moved from the nozzle member 22 through the nozzle touch block 9 and the injection cylinder 15 to the product mold 6 that has been clamped as thixotropic metal slurry by the forward movement of the injection plunger 26 after measurement. It becomes a metal product with a solidified structure that is injected and filled and the solid phase is crystallized into fine particles.
[0038]
FIG. 3 shows an example of the melt supply device 3 in the case where the rod-shaped material M ′ formed into a round bar is used as the molding material. The round bar is made of the above-mentioned magnesium alloy and has a diameter of 40 to 60 mm and a length. It consists of 300 mm.
The melting supply device 3 includes a melting cylinder 31 provided with the heating means 32 on the outer periphery of the cylinder, a vertically long supply pipe 44 having a charging port 43 on a side portion connected to the upper portion thereof via an intermediate member 33, and a material pushing-in device. The plunger 45 is inserted downward, and is composed of an air or hydraulically operated pressing cylinder 46 attached to the top end of the supply pipe 44, and is erected on the melting holding cylinder 2 with the outflow path 31a side of the melting cylinder 31 as a lower part. Further, inert gas injection pipes 40 a and 40 b such as argon gas are provided from the lower part to the inside of the molten metal surface L of the melting and holding cylinder 2 and in the upper space of the melting cylinder 31.
[0039]
In such a melting and supplying apparatus 3, the plunger 45 is reduced and the rod-like material M ′ put into the supply pipe through the inlet 43 is pushed into the melting cylinder 31 by the extension of the plunger 45, and is heated by the outer peripheral heating means 32. The rod-shaped material M ′ is melted into a semi-molten metal slurry by heating the temperature to a temperature in the solid-liquid coexistence temperature range with a gradient in temperature.
[0040]
The semi-molten metal slurry M1 generated in the melting cylinder 31 becomes a thixotropic metal slurry M1 in which the finely granulated solid phase of the rod-shaped material M ′ is uniformly dispersed, and the small diameter is caused by its own weight. It flows down from the outflow path 31a (for example, 10 mm) into the melt holding cylinder 2 and is stored. In this rod-shaped material M ′, since the surface area per unit mass can be made smaller than that of the granular material M, it becomes difficult for oxides and the like adhering to the surface of the material to be brought into the melting cylinder 31 or the melting holding cylinder 2, and the sludge caused by oxidation Since the generation is further suppressed, the operating rate of the molding machine is improved as compared with the case of the granular material M.
[0041]
In the above embodiment, the rod-shaped material M ′ is pushed by the plunger 45. However, the rod-shaped material M ′ may be dropped and inserted by its own weight, and in this case, the supply cylinder except for the pressing cylinder 46 and the plunger 45 may be used. The material can be supplied simply by opening the upper portion of 44 and inserting the rod-like material M ′ from the upper opening.
[0042]
Further, in the semi-melt molding machine, the injection mechanism 2 is installed at an inclination with respect to the mold clamping mechanism 1. However, even if the injection mechanism 2 is installed horizontally, it functions in the same manner as in the installation at an inclination. Is not limited to the above embodiment.
[Brief description of the drawings]
FIG. 1 is a side view of a low melting point metal alloy semi-melt molding machine according to the present invention.
FIG. 2 is a vertical side view of the main part of the above.
FIG. 3 is a longitudinal side view of a main part of another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Injection mechanism 2 Melting holding cylinder 3 Melting supply apparatus 4 Injection cylinder 5 Clamping apparatus 6 Mold 9 Nozzle touch block 15 Injection cylinder 22 Nozzle member 23 Support part 24 Heating means 25 Metering chamber 26 Injection plunger 31 Melting cylinder 32 Heating means 33 Intermediate member 34 Feed screw 35 Hopper 37 Electric motor 40a, 40b Inert gas injection pipe 43 Input port 44 Supply pipe 45 Plunger 46 Press cylinder

Claims (6)

固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金の固体を成形材料として用い、
その固体材料を、先端にノズルを有し内部に射出プランジャを備えた溶融保持筒と連通した溶融筒内にて、固液共存状態でチクソトロピー性状を有する半溶融状態の金属スラリーに溶融し、
その金属スラリーを溶融順に固液共存温度に維持された溶融保持筒に流下させて保温貯留し、
その溶融保持筒によりチクソトロピー性状が維持されている時間内に、上記射出プランジャの前進移動により製品金型に射出充填してなることを特徴とする低融点金属合金の半溶融成形方法。
Using a solid of low melting point metal alloy having thixotropic properties that solid phase is crystallized into fine particles as a molding material,
The solid material is melted into a semi-molten metal slurry having thixotropic properties in a solid-liquid coexistence state in a melt cylinder communicating with a melt holding cylinder having a nozzle at the tip and having an injection plunger inside,
The metal slurry is kept warm by flowing down to a melt-holding cylinder maintained at a solid-liquid coexistence temperature in the order of melting,
A method for semi-molten molding of a low-melting-point metal alloy, wherein the product mold is injection-filled by the forward movement of the injection plunger within a time period during which the thixotropic property is maintained by the melt-holding cylinder.
上記固体の成形材料は、チップ形状の粒状物又は棒状、インゴット等の固形物からなることを特徴とする請求項1記載の低融点金属合金の半溶融成形方法。  2. The method of semi-melt molding of a low-melting-point metal alloy according to claim 1, wherein the solid molding material is made of a solid material such as a chip-shaped granule, a rod, or an ingot. 上記固体の成形材料の溶融及び金属スラリーの保温貯留は、アルゴンガス等の不活性ガス雰囲気にて行うことを特徴とする請求項1記載の低融点金属合金の半溶融成形方法。  2. The method of semi-melt molding of a low melting metal alloy according to claim 1, wherein the melting of the solid molding material and the heat retention of the metal slurry are performed in an inert gas atmosphere such as argon gas. 先端にノズル部材を有し、内部に射出プランジャを進退自在に備えた溶融保持筒と、
上記射出プランジャを進退移動する溶融保持筒後部の射出シリンダと、
溶融保持筒内のチクソトロピー性状を有する低融点金属合金の金属スラリー
を、固液共存状態に保持する筒体外周囲の加熱手段と、
筒体の閉塞端に筒体内径よりも小径の流出路を有し、その流出路を下側に上記溶融保持筒の上部に立設して内部を互いに連通した溶融筒と、
溶融筒内の固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金の粒状材料を、固液共存状態の上記金属スラリーに溶融する筒体外周囲の加熱手段と、
溶融筒の頂端に連設したフィードスクリュ内装のホッパーとからなることを特徴とする低融点金属合金の半溶融成形機。
A melt-holding cylinder having a nozzle member at the tip and an injection plunger inside and out so as to freely advance and retract;
An injection cylinder at the rear of the melt-holding cylinder that moves the injection plunger forward and backward;
A heating means around the outside of the cylinder for holding the metal slurry of the low melting point metal alloy having thixotropic properties in the melting and holding cylinder in a solid-liquid coexistence state;
A melting cylinder having an outflow path smaller in diameter than the inner diameter of the cylinder at the closed end of the cylinder, and standing up on the upper part of the melting holding cylinder on the lower side and communicating with each other inside;
A heating means around the outside of the cylinder for melting the granular material of the low melting point metal alloy having thixotropic properties in which the solid phase in the melting cylinder is crystallized into fine particles, into the metal slurry in a solid-liquid coexisting state;
A low melting point metal alloy semi-melt molding machine characterized by comprising a feed screw interior hopper continuously provided at the top end of a melting cylinder.
先端にノズル部材を有し、内部に射出プランジャを進退自在に備え、筒体外周囲の加熱手段を設けた溶融保持筒と、
上記射出プランジャを進退移動する溶融保持筒後部の射出シリンダと、
溶融保持筒内のチクソトロピー性状を有する低融点金属合金の金属スラリー
を、固液共存状態に保持する筒体外周囲の加熱手段と、
筒体の閉塞端に筒体内径よりも小径の流出路を有し、その流出路を下側に上記溶融保持筒の上部に立設して内部を互いに連通した溶融筒と、
溶融筒内の固相が微細な粒状に結晶化したチクソトロピー性状を有する低融点金属合金の棒状材料を、固液共存状態の上記金属スラリーに溶融する筒体外周囲の加熱手段と、
溶融筒の上部開口に連設した供給筒とからなることを特徴とする低融点金属合金の半溶融成形機。
A melt holding cylinder having a nozzle member at the tip, an injection plunger inside and outside to be freely moved back and forth, and provided with a heating means around the cylinder;
An injection cylinder at the rear of the melt-holding cylinder that moves the injection plunger forward and backward;
A heating means around the outside of the cylinder for holding the metal slurry of the low melting point metal alloy having thixotropic properties in the melting and holding cylinder in a solid-liquid coexistence state;
A melting cylinder having an outflow path smaller in diameter than the inner diameter of the cylinder at the closed end of the cylinder, and standing up on the upper part of the melting holding cylinder on the lower side and communicating with each other inside;
A heating means around the outside of the cylinder for melting the rod-shaped material of a low-melting-point metal alloy having a thixotropic property in which the solid phase in the melting cylinder is crystallized into fine particles, into the metal slurry in a solid-liquid coexisting state;
A low-melting-point metal alloy semi-melt molding machine characterized by comprising a supply cylinder continuously provided in an upper opening of a melting cylinder.
上記半溶融成形機は、上記溶融筒の下部から上記溶融保持筒の半溶融液面内までと、上部の空間部とにアルゴンガス等の不活性ガスの注入管を有することを特徴とする請求項4又は5記載の低融点金属合金の半溶融成形機。The semi-melt molding machine has an injection pipe for an inert gas such as argon gas in a space from the lower part of the melting cylinder to the semi-molten liquid surface of the melting and holding cylinder. Item 6. A low melting point metal alloy semi-melt molding machine according to Item 4 or 5 .
JP2003200535A 2003-07-23 2003-07-23 Semi-melt forming method and molding machine for low melting point metal alloy Expired - Fee Related JP3848936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200535A JP3848936B2 (en) 2003-07-23 2003-07-23 Semi-melt forming method and molding machine for low melting point metal alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200535A JP3848936B2 (en) 2003-07-23 2003-07-23 Semi-melt forming method and molding machine for low melting point metal alloy

Publications (3)

Publication Number Publication Date
JP2005040802A JP2005040802A (en) 2005-02-17
JP2005040802A5 JP2005040802A5 (en) 2005-07-21
JP3848936B2 true JP3848936B2 (en) 2006-11-22

Family

ID=34260918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200535A Expired - Fee Related JP3848936B2 (en) 2003-07-23 2003-07-23 Semi-melt forming method and molding machine for low melting point metal alloy

Country Status (1)

Country Link
JP (1) JP3848936B2 (en)

Also Published As

Publication number Publication date
JP2005040802A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP2974416B2 (en) Method and apparatus for injection casting of semi-solid metal
JP3013226B2 (en) Manufacturing method of metal molded products
EP0867246B1 (en) Method and apparatus for injection molding of semi-molten metals
WO2004045791A1 (en) Injection apparatus in cold chamber die casting molding machine and measuring method used therein
TWI481456B (en) Molding apparatus, manufacturing apparatus for semi-solidifying metal, molding method, and method for producing semi-solidified metal
EP0931607B1 (en) Method of preparing a shot of semi-solid metal
US10384262B2 (en) Die-casting apparatus, die-casting method, and diecast article
US6298901B1 (en) Method and apparatus for semi-molten metal injection molding
JP4062688B2 (en) Metal material melting and feeding device in metal forming machine
JP3848936B2 (en) Semi-melt forming method and molding machine for low melting point metal alloy
JPH05285626A (en) Metal injection molding device
JP3927957B2 (en) Low melting point metal alloy forming method
CN210188438U (en) Thermal semi-solid die casting machine
JP2009166054A (en) Molding method and molding machine
JP2003311389A (en) Method for casting metal and casting apparatus used therefor
JP4204878B2 (en) Light alloy injection molding method and injection molding apparatus
JP4009601B2 (en) Low melting point metal alloy forming method
JP4273045B2 (en) Method of melting metal material in metal forming machine
JP3546154B2 (en) Injection molding method and injection molding apparatus for metal molded products
JP2002144000A (en) Method for injection-forming light alloy and its device
JP3954914B2 (en) Light alloy injection molding method and injection molding apparatus
JPH09155526A (en) Device for injecting metallic material
JP2005238312A (en) Method for forming low melting point metal alloy
JP2005066692A (en) Method and apparatus for producing rapidly cooled and solidified metallic thin material
JP2001191168A (en) Injection molding method and machine for aluminum

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees