JP3927957B2 - Low melting point metal alloy forming method - Google Patents

Low melting point metal alloy forming method Download PDF

Info

Publication number
JP3927957B2
JP3927957B2 JP2004023165A JP2004023165A JP3927957B2 JP 3927957 B2 JP3927957 B2 JP 3927957B2 JP 2004023165 A JP2004023165 A JP 2004023165A JP 2004023165 A JP2004023165 A JP 2004023165A JP 3927957 B2 JP3927957 B2 JP 3927957B2
Authority
JP
Japan
Prior art keywords
solid
semi
heating
holding cylinder
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004023165A
Other languages
Japanese (ja)
Other versions
JP2005211958A (en
Inventor
清登 滝澤
和夫 安在
孝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2004023165A priority Critical patent/JP3927957B2/en
Publication of JP2005211958A publication Critical patent/JP2005211958A/en
Application granted granted Critical
Publication of JP3927957B2 publication Critical patent/JP3927957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、低融点金属合金をチクソトロピー性状を有するセミソリッドの状態で金型に射出して金属製品に成形する方法に関するものである。   The present invention relates to a method of injecting a low-melting-point metal alloy into a metal mold in a semi-solid state having thixotropic properties to form a metal product.

マグネシウム合金の成形方法として、金属素材を液相線温度以上の温度で液体合金に溶解し、この液体合金を傾斜冷却板の板面上を流下させて半溶融状態に急冷し、それを貯留槽で固液共存温度領域の温度に保持してチクソトロピー性状を有する金属スラリー(セミソリッド)となしたのち、チクソトロピーを潜在的に有する金属素材に鋳造し、この金属素材をインジェクシヨン装置により半溶融状態に加熱して金型に射出し、金属製品に成形することが行われている。   As a method for forming a magnesium alloy, a metal material is dissolved in a liquid alloy at a temperature equal to or higher than the liquidus temperature, and the liquid alloy is allowed to flow down on the surface of the inclined cooling plate to rapidly cool it into a semi-molten state, which is stored in a storage tank. In this way, a metal slurry (semi-solid) with thixotropic properties is maintained by maintaining the temperature in the solid-liquid coexistence temperature range, and then cast into a metal material that potentially has thixotropy. It is heated into a metal mold and injected into a mold to form a metal product.

半溶融過共晶アルミニウム合金の製造方法として、溶湯を傾斜冷却板の板面上を流下させて半溶融状態に急冷し、これを所要数の断熱容器に入れて、所定の液相率になるまで冷却しつつ、固液共存温度領域の温度に5秒〜60分間保持し、それにより微細な球状の初晶を多数発生させるとともに、断熱容器を回転円板により射出スリーブに移送して、断熱容器内の半溶融合金を成形金型により金属製品に加圧成形することが行われている。   As a method for producing a semi-molten hypereutectic aluminum alloy, the molten metal is caused to flow down on the surface of the inclined cooling plate and rapidly cooled to a semi-molten state, and this is put into a required number of heat insulating containers to obtain a predetermined liquid phase ratio. While maintaining the temperature in the solid-liquid coexistence temperature range for 5 seconds to 60 minutes, thereby generating a large number of fine spherical primary crystals and transferring the heat insulating container to the injection sleeve by a rotating disk, A semi-molten alloy in a container is pressure-molded into a metal product using a molding die.

またマグネシウム合金等の成形手段として、ノズル口を先端に有する筒体の外周囲に加熱手段を備え、そのノズル口に接続した計量室を縮径により先端部内に形成した溶解金属保持筒に、固相が球状化したチクソトロピー性状の金属素材を供給して溶解蓄積し、その溶解金属保持筒に内装した射出プランジャの進退移動により、溶解保持した溶融金属の計量と金型への射出を行うものもある。
特開2001−252759号公報 特開平9−10893号公報 特開2003−200249号公報
In addition, as a forming means for magnesium alloy or the like, a heating means is provided on the outer periphery of a cylindrical body having a nozzle opening at the tip, and a measuring chamber connected to the nozzle opening is fixed to a molten metal holding cylinder formed in the tip by a reduced diameter. Some metal materials with thixotropic properties that are spheroidized are supplied and dissolved and accumulated, and the molten plunger held in the molten metal holding cylinder measures and melts and holds the molten metal that is injected into the mold. is there.
JP 2001-252759 A JP-A-9-10893 JP 2003-200409 A

溶融・急冷して生成したチクソトロピー性状を有する金属スラリーを、冷却固化して金属素材となし、この金属素材を再溶融して金型に供給する上記成形方法では、金属製品に成形するまで2回の溶融を要し、また金属スラリーを冷却して金属素材に固化しているため消費エネルギー大きく、金属スラリーを冷却する装置と、金属素材に切断加工する装置も必要となることから設備が大掛かりとなる。このため製品コストも嵩み、設備の保守管理にも手数を要するなどの課題を有する。   In the above molding method, the metal slurry having thixotropic properties generated by melting and quenching is cooled and solidified to form a metal material, and this metal material is re-melted and supplied to the mold. And the metal slurry is cooled and solidified into a metal material, which consumes a large amount of energy and requires a device for cooling the metal slurry and a device for cutting the metal material. Become. For this reason, there is a problem that the product cost is increased, and maintenance and management of the facilities are required.

また急冷した半溶融合金を、断熱容器に入れて固液共存温度領域の温度に保持したのち、成形金型に供給して金属製品に加圧成形する成形方法では、半溶融合金を再溶融することなく加圧成形するので溶融は1回で済み、金属素材に加工する装置も不要となるが、半溶融合金を所定の液相率になるまで断熱容器に入れて保持するため、連続成形を行うには多数の断熱容器が必要となる。また断熱容器を冷却用治具から射出スリーブに移送する手段と、半溶融合金を射出スリーブに移す装置も必要となる。さらに断熱容器は1回の成形に要する半溶融合金の計量容器をも兼ねるので、製品重量が変わるごとに、その重量に適合した容積の断熱容器に変えて成形を行わねばならず、所定の液相率になるまでの保持時間も、容量が小さくなるほど短時間となるので、成形サイクル時間に適合させることが難しく、製品重量が100g以下の金属部品などの成形には適さないなどの課題を有する。   Also, in the molding method in which the rapidly cooled semi-molten alloy is put in a heat insulating container and kept at a temperature in the solid-liquid coexistence temperature range, and then supplied to the molding die and pressed into a metal product, the semi-molten alloy is remelted. Since it is pressure-formed without melting, it only needs to be melted once, and an apparatus for processing it into a metal material is not required, but in order to hold the semi-molten alloy in a heat-insulating container until a predetermined liquid phase ratio is obtained, continuous molding is performed. To do so, a large number of insulated containers are required. Further, a means for transferring the heat insulating container from the cooling jig to the injection sleeve and a device for transferring the semi-molten alloy to the injection sleeve are also required. Furthermore, since the insulated container also serves as a semi-molten alloy measuring container required for one molding, every time the product weight is changed, the molded container must be molded by changing to a insulated container having a volume suitable for the weight. The holding time until the phase ratio becomes shorter as the capacity becomes smaller. Therefore, it is difficult to adapt to the molding cycle time, and there is a problem that it is not suitable for molding a metal part having a product weight of 100 g or less. .

また溶解金属保持筒内にて、固相が球状化したチクソトロピー性状の金属素材を溶解蓄積し、射出プランジャの進退移動により、蓄積した溶融金属の計量と金型への射出を行う上記従来法では、溶解金属保持筒内に蓄積した溶融金属を成形ごとに計量して金型に射出することから、射出プランジャの後退加減により計量を変更することができ、また蓄積時間が保持時間となるので、上記断熱容器により半溶融合金を保持する場合のような課題は生じない。しかし、そこに用いられるチクソトロピー性状の金属素材は、素材メーカーにより製造されたものであり、また固相率(液相率)も製造ロットごとに異なることが多いので、金属素材が変わるごとに成形開始前に試し打ちを行って蓄積量と蓄積時間及び保持温度を設定する必要がある。   In the above-mentioned conventional method, the thixotropic metal material with a solid phase spheroidized is dissolved and accumulated in the molten metal holding cylinder, and the accumulated molten metal is measured and injected into the mold by the forward and backward movement of the injection plunger. Since the molten metal accumulated in the molten metal holding cylinder is weighed and injected into the mold for each molding, the metering can be changed by adjusting the back and forth of the injection plunger, and the accumulated time becomes the holding time. There is no problem as in the case of holding the semi-molten alloy by the heat insulating container. However, the thixotropic metal materials used there are manufactured by material manufacturers, and the solid phase ratio (liquid phase ratio) often varies from production lot to production lot. Before starting, it is necessary to make a trial hit and set the accumulation amount, accumulation time, and holding temperature.

これはチクソトロピー性状を有する金属素材では、溶解すると固相と液相とが共存した半溶融金属(以下セミソリッドという)となり、このセミソリッドの温度を流動性を保持するために固液共存温度領域の温度に保持していると、時間の経過と共に固相が成長して固相率が溶解時よりも高くなるからである。固相率が高い金属素材の場合には、セミソリッドの蓄積時間を短く設定しないと、蓄積中に成長した固相により流動性が悪くなって、射出プランジャの後退による計量が不安定となり、良品の連続成形が困難となる。   This is a metal material with thixotropic properties, and when dissolved, it becomes a semi-molten metal (hereinafter referred to as semi-solid) in which the solid and liquid phases coexist, and the solid-liquid coexistence temperature range in order to maintain the fluidity of this semi-solid temperature This is because the solid phase grows over time and the solid phase ratio becomes higher than that at the time of dissolution. In the case of a metal material with a high solid phase ratio, if the accumulation time of the semi-solid is not set short, the fluidity deteriorates due to the solid phase grown during the accumulation, and the metering due to the backward movement of the injection plunger becomes unstable, and the product is good. It becomes difficult to perform continuous molding.

この発明は、上記従来の課題を解決するために考えられたものであって、その目的は、鋳造された通常の金属素材(樹枝状晶)の溶解から、チクソトロピー性状を有するセミソリッドの生成及び蓄積、金型への射出を一貫して行えるようにして、成形ごとに生成したセミソリッドの固相率の把握と、その固相率から許容される蓄積時間(保持時間)の設定とを可能となすとともに、セミソリッドの供給量と蓄積量のバランス及び供給時間と保持温度等を、成形サイクル時間に基いて設定することにより、蓄積したセミソリッドの全量を連続して許容時間内に金型に射出することができる新たな低融点金属合金の成形方法を提供することにある。   The present invention has been conceived to solve the above-described conventional problems, and its purpose is to produce a semisolid having thixotropic properties from the dissolution of a cast normal metal material (dendritic crystals) and Accumulation and injection into the mold can be performed consistently, so that the solid phase ratio of semi-solid generated for each molding can be grasped and the allowable accumulation time (holding time) can be set from the solid phase ratio. At the same time, by setting the balance of the supply amount and accumulation amount of semi-solid, supply time and holding temperature, etc. based on the molding cycle time, all the accumulated amount of semi-solid is die within the allowable time continuously. It is an object of the present invention to provide a new method for forming a low-melting-point metal alloy that can be injected.

上記目的によるこの発明は、低融点金属合金の固形素材を溶解炉により液相線温度以上の温度の液体合金に溶解する工程と、その液体合金を、溶解炉と生成槽との間に配設した傾斜冷却板の板面上を流下させて急冷し、固液共存温度領域の温度に設定された生成槽に貯留して、固相が微細に球状化されたチクソトロピー性状を有するセミソリッドに生成する工程と、上記生成槽から所要ショット数分のセミソリッドを、先端にノズルを有し外周囲に加熱手段を有する加熱保持筒に供給蓄積し、該加熱保持筒により固液共存温度領域の温度に保持する工程と、加熱保持筒に蓄積したセミソリッドを、チクソトロピー性状を保持し、かつ固相の成長により流動性が悪くなる前の時間内に、加熱保持筒内の射出プランジャの強制後退により1ショット分ずつ計量し、強制前進により上記ノズルから金型に射出して金属製品に成形する工程と、からなるというものである。 According to the above-described object, the present invention provides a step of melting a solid material of a low melting point metal alloy into a liquid alloy having a temperature equal to or higher than the liquidus temperature by a melting furnace, and the liquid alloy is disposed between the melting furnace and the generation tank. and the inclined quench cooling plate on the plate surface by flow down of, and stored the generated bath set to a temperature of solid-liquid coexisting temperature range, generated semisolid having thixotropic properties which the solid phase is finely spheroidized And a semi-solid for the required number of shots from the generation tank is supplied and accumulated in a heating and holding cylinder having a nozzle at the tip and a heating means on the outer periphery, and the temperature in the solid-liquid coexistence temperature region is stored by the heating and holding cylinder And the semi-solid accumulated in the heating and holding cylinder by the forced retraction of the injection plunger in the heating and holding cylinder within the time before the thixotropic properties are maintained and the fluidity deteriorates due to solid phase growth. 1 shot Weighed by minute, a step of forming an injection to a metal product in the mold from the nozzle by forced forward, it is that consist.

上記セミソリッドの供給と蓄積は、許容される蓄積時間を成形サイクル時間で除した値を、その蓄積時間での総ショット数とし、該総ショット数を3等分以上に等分して1等分を生成量とし、他を蓄積量として1等分の射出に要した時間ごとに、1等分のセミソリッドを上記生成槽から新たに上記加熱保持筒に供給して行うことを特徴とする請求項1記載の低融点金属合金の成形方法。 For the supply and accumulation of the semi-solid, the value obtained by dividing the allowable accumulation time by the molding cycle time is taken as the total number of shots in the accumulation time, and the total number of shots is equally divided into three or more equal parts. A semi-solid of one equivalent is newly supplied from the generation tank to the heating and holding cylinder every time required for injection of one equivalent, with the amount as the generation amount and the other as the accumulation amount. The method for forming a low melting point metal alloy according to claim 1.

上記セミソリッドはマグネシウム合金からなり、そのセミソリッドの金型への射出は、加熱保持筒に蓄積した後30分を超えない蓄積時間内に行うというものであり、上記固形素材は、低融点金属合金を完全溶解して鋳造した樹枝状晶のインゴット、短柱体からなる、というものである。 The semi-solid is made of a magnesium alloy, and the injection of the semi-solid into the mold is performed within an accumulation time not exceeding 30 minutes after accumulating in the heating and holding cylinder. It consists of dendritic ingots and short columns that are cast by melting the alloy completely.

この発明では、固形素材を溶解して生成したチクソトロピー性状を有するセミソリッドを直ちに加熱保持筒に蓄積して金属製品の射出成形を連続して行うことから、セミソリッドを固形素材に加工して成形機により再溶融する成形法、またセミソリッドを所望の固相率になるまで冷却保持して成形機に移送する成形法等と比べて消費エネルギーが少なく、成形機も簡素化されるので製造コストの低減を図ることができる。   In this invention, a semi-solid having a thixotropic property generated by dissolving a solid material is immediately accumulated in a heating and holding cylinder and injection molding of a metal product is continuously performed. Therefore, the semi-solid is processed into a solid material and molded. Compared to molding methods that re-melt with a machine, or semi-solids that are cooled and held until the desired solid phase ratio is transferred to the molding machine, less energy is consumed, and the molding machine is simplified, resulting in manufacturing costs. Can be reduced.

また成形時に金属素材を溶解してセミソリッド化するので、そこに設定の温度からセミソリッドの固相率が把握でき、その固相率から成形サイクル時間に適応した蓄積時間を設定して、セミソリッドの供給量と蓄積量とをバランスさせることができるので、加熱保持筒にセミソリッドを蓄積して成形を行うものであっても、固相の成長による流動性の低下や流動抵抗による計量不良が生じ難く、蓄積したセミソリッドを1ショットずつ計量して成形を行うので、製品重量の変更にも適応でき、製品重量が小さな金属部品の成形も容易に行い得る。   Also, since the metal material is melted and semi-solidified at the time of molding, the solid phase ratio of the semi-solid can be grasped from the set temperature, and the accumulation time suitable for the molding cycle time is set from the solid phase ratio, and the semi-solid ratio is set. Since the supply amount and accumulation amount of solids can be balanced, even if semi-solids are accumulated in a heated holding cylinder and molded, deterioration of fluidity due to solid phase growth and poor measurement due to flow resistance Since the accumulated semi-solid is weighed and molded one shot at a time, it can be adapted to changes in product weight and metal parts with small product weight can be easily molded.

図中1は金属成形機で、筒体21の先端にノズル部材22を有する加熱保持筒2と、マグネシウム合金等の金属合金の固形素材M1 を液体合金M2 に溶解したのち、チクソトロピー性状を有するセミソリッドM3 に生成して加熱保持筒2に供給する装置3と、加熱保持筒2の後部の射出駆動装置4とからなる。 In the figure, reference numeral 1 denotes a metal forming machine, in which a heated holding cylinder 2 having a nozzle member 22 at the tip of a cylindrical body 21 and a solid material M 1 of a metal alloy such as magnesium alloy are dissolved in a liquid alloy M 2 , and then the thixotropic properties are obtained. It comprises a device 3 that produces the semi-solid M 3 and supplies it to the heating and holding cylinder 2 and an injection driving device 4 at the rear of the heating and holding cylinder 2.

上記加熱保持筒2は、筒体21の中程上側に設けた供給口に上記セミソリッド生成供給装置3を備え、筒体外周囲に加熱保持筒2に貯留したセミソリッドM3の温度を、所要温度に加熱保持するバンドヒータによる加熱手段24を備える。また筒体後端部を支持部材23に取付けて水平面に対し45°の角度に斜設してある。 The heating and holding cylinder 2 includes the semi-solid generating and supplying device 3 at a supply port provided in the middle upper side of the cylinder 21, and the temperature of the semi-solid M 3 stored in the heating and holding cylinder 2 around the outer periphery of the cylinder is required. A heating means 24 using a band heater for heating and holding at a temperature is provided. Further, the rear end portion of the cylindrical body is attached to the support member 23 and is inclined at an angle of 45 ° with respect to the horizontal plane.

上記ノズル部材22のノズル口と連通する先端部内は、筒体内径よりも8〜15%ほど小径に縮径した所要長さの計量室25に形成してあり、その計量室25に射出手段26の先端の射出プランジャ26aが進退自在に嵌挿してある。   The inside of the tip portion communicating with the nozzle opening of the nozzle member 22 is formed in a measuring chamber 25 having a required length reduced to a diameter of 8 to 15% smaller than the inner diameter of the cylindrical body. The injection plunger 26a at the front end of this is fitted so as to freely advance and retract.

この射出プランジャ26aは、ロッド26bの先端に取付けてあり、外周面にシールリングを埋設した逆止弁26cを軸部周囲に進退自在に備えている。この逆止弁26cと軸部との間は流路26dとなっており、その流路26dを逆止弁26cの後端面と射出プランジャ後部のシートリング26eとの接離により開閉できるようにして、上記計量室25に進退自在に嵌挿してある。   This injection plunger 26a is attached to the tip of a rod 26b, and is provided with a check valve 26c having a seal ring embedded in the outer peripheral surface thereof so as to be movable back and forth around the shaft portion. A flow path 26d is formed between the check valve 26c and the shaft portion, and the flow path 26d can be opened and closed by contacting and separating the rear end surface of the check valve 26c and the seat ring 26e at the rear portion of the injection plunger. Are inserted into the measuring chamber 25 so as to freely advance and retract.

上記供給口の上縁から上部の筒体21内は、内端面を供給口上縁に接近して、筒体内に設けた閉塞部材27により塞がれて無空間となっている。この閉塞部材27は供給口上縁の近傍から筒体後端まで達する長さの軸材を、筒体後端に外端をボルト止めして気密に固設したものからなり、その閉塞部材27の中央に穿設した貫通孔に、上記射出手段26のロッド26bが周囲を複数のリング28により気密にして進退自在に挿通してある。このロッド26bの後端は上記射出駆動装置4に連結してある。   The inside of the cylindrical body 21 from the upper edge of the supply port to the upper part is close to the upper edge of the supply port and is closed by a closing member 27 provided in the cylindrical body. The closing member 27 is composed of a shaft member having a length extending from the vicinity of the upper edge of the supply port to the rear end of the cylinder, and is airtightly fixed by bolting the outer end to the rear end of the cylinder. A rod 26b of the injection means 26 is inserted in a through hole formed in the center so that the periphery thereof is hermetically sealed by a plurality of rings 28 so as to advance and retract. The rear end of the rod 26b is connected to the injection driving device 4.

上記セミソリッド生成供給装置3は、底部に流出路を有する溶解炉31と、その流出路と接続して溶解炉31の下側に連結した内部に傾斜冷却板32を有する冷却部33と、その冷却部33に上部の開口を連結したセミソリッドM3 の生成槽34と、その生成槽34の底部に連結した供給管路35とを縦長に連結して、該供給管路35を加熱保持筒2の供給口に嵌合して筒体21と連通し、溶解炉31を筒体後部の支持部材23に連結したアーム部材29に載置固定して、加熱保持筒2の上に立設してある。 The semi-solid production and supply apparatus 3 includes a melting furnace 31 having an outflow channel at the bottom, a cooling unit 33 having an inclined cooling plate 32 connected to the lower side of the melting furnace 31 and connected to the lower side of the melting furnace 31; A semi-solid M 3 generation tank 34 having an upper opening connected to the cooling unit 33 and a supply pipe 35 connected to the bottom of the generation tank 34 are connected in a vertically long manner, and the supply pipe 35 is heated and retained. The melting furnace 31 is placed and fixed on the arm member 29 connected to the support member 23 at the rear of the cylinder, and is erected on the heating and holding cylinder 2. It is.

上記溶解炉31と生成槽34の外周囲には、バンドヒータや誘導加熱器等による加熱手段36,37が、それぞれ複数の加熱ゾーンに分けて施してあり、溶解炉31の上記流出路及び供給管路35には、個々に開閉操作されるバルブ装置38,39が取付けてある。また供給管路35の下部から加熱保持筒2の溶融面Lの内部までと、供給管路35の上部の空間内とにアルゴンガス等の不活性ガスの注入管40a,40bが設けてある。   Around the outer periphery of the melting furnace 31 and the generation tank 34, heating means 36 and 37 such as band heaters and induction heaters are respectively provided in a plurality of heating zones, and the outflow path and supply of the melting furnace 31 are provided. Valve devices 38 and 39 that are individually opened and closed are attached to the pipe line 35. Further, inert gas injection pipes 40 a and 40 b such as argon gas are provided from the lower part of the supply pipe 35 to the inside of the melting surface L of the heating and holding cylinder 2 and in the space above the supply pipe 35.

上記溶解炉31の加熱手段36は、固形素材M1 として用いられる低融点金属合金の液相線温度以上の温度に温度設定され、生成槽34の加熱手段37と上記加熱保持筒2の加熱手段24の両方は、液相線温度と固相線温度との間の固液共存温度領域の温度に設定してある。また傾斜冷却板33は内部に冷却媒体の流路33aを備え、その冷却媒体により溶解炉31から板面上を流下する液体金属M1 を、固液共存温度領域の温度まで冷却することができるようにしてある。 The heating means 36 of the melting furnace 31 is set to a temperature equal to or higher than the liquidus temperature of the low melting point metal alloy used as the solid material M 1 , and the heating means 37 of the generation tank 34 and the heating means of the heating holding cylinder 2 are set. Both are set to a temperature in the solid-liquid coexistence temperature region between the liquidus temperature and the solidus temperature. The inclined cooling plate 33 is provided with a flow path 33a of the cooling medium therein, the liquid metal M 1 flowing down over the plate surface from the melting furnace 31 by the cooling medium can be cooled to a temperature of solid-liquid coexisting temperature range It is like that.

上記構成の金属成形機1による低融点金属合金の成形について、マグネシウム合金(AZ91D)の場合を1例として説明すると、先ず溶解炉31の加熱手段36を液相線温度以上の温度、例えば600°〜700℃に設定し、上記加熱保持筒2の加熱手段24と生成槽34の加熱手段37の両方を、固液共存温度領域の温度、例えば560°〜590℃に設定する。また傾斜冷却板33の内部の冷却媒体の温度を5°〜50℃に設定しておく。   Regarding the forming of the low melting point metal alloy by the metal forming machine 1 having the above-described configuration, the case of a magnesium alloy (AZ91D) will be described as an example. First, the heating means 36 of the melting furnace 31 is set to a temperature higher than the liquidus temperature, for example, 600 °. The temperature is set to ˜700 ° C., and both the heating means 24 of the heating and holding cylinder 2 and the heating means 37 of the production tank 34 are set to a temperature in the solid-liquid coexistence temperature region, for example, 560 ° to 590 ° C. The temperature of the cooling medium inside the inclined cooling plate 33 is set to 5 ° to 50 ° C.

次に上記マグネシウム合金の固形素材M1 を、バルブ装置38により流出路を閉鎖した溶解炉31に投入する。この固形素材M1 は溶解したマグネシウム合金を除冷して成形したインゴットや短柱体などからなり、金属組織としては樹枝状晶のものからなる。 Next, the solid material M 1 of the magnesium alloy is charged into the melting furnace 31 whose outflow path is closed by the valve device 38. The solid material M 1 is made of an ingot or a short column formed by removing the molten magnesium alloy from the cold, and the metal structure is made of dendritic crystals.

溶解炉31に投入した固形素材M1 は、上記液相線温度以上の温度に加熱されて液体合金M2 に完全に溶解される。溶解炉内の液体合金M2 が設定量に達したら、流出路を開放して液体合金M2 を傾斜冷却板33の板面上に流し落とす。液体合金M2 は傾斜冷却板33により急冷され、半溶融状態で上記バルブ装置39により底部の供給管路35を閉鎖した生成槽34に流入する。この板面上を流下する間に生じた微細な初晶は球状を有するようになり、上記固液共存温度領域の温度に設定された生成槽34において、液相と球状の固相とが共存したチクソトロピー性状を有するセミソリッドM3 となる。 The solid material M 1 charged into the melting furnace 31 is heated to a temperature equal to or higher than the liquidus temperature and completely dissolved in the liquid alloy M 2 . When the liquid alloy M 2 in the melting furnace reaches a set amount, the outflow passage is opened and the liquid alloy M 2 is poured onto the plate surface of the inclined cooling plate 33. The liquid alloy M 2 is rapidly cooled by the inclined cooling plate 33 and flows into the production tank 34 in which the supply pipe 35 at the bottom is closed by the valve device 39 in a semi-molten state. The fine primary crystals generated while flowing down on the plate surface have a spherical shape, and the liquid phase and the spherical solid phase coexist in the production tank 34 set to a temperature in the solid-liquid coexistence temperature region. The resulting semi-solid M 3 has thixotropic properties.

生成槽34のセミソリッドM3 が設定量に達したならば、溶解炉31の流出路を閉鎖して次の固形材料M1 の溶解を行う。また供給管路35を開放して生成槽34のセミソリッドM3 を、該供給管路35から上記固液共存温度領域の温度に加熱されている加熱保持筒2に流出して供給し、図示しない金型に射出するまで所要ショット数分のセミソリッドM3 を蓄積する。蓄積されたセミソリッドM3の温度は計量後に射出されるまで固液共存温度領域の温度に保持される。 When the semi-solid M 3 in the production tank 34 reaches the set amount, the outflow passage of the melting furnace 31 is closed and the next solid material M 1 is melted. Also, the supply line 35 is opened, and the semi-solid M 3 in the production tank 34 flows out from the supply line 35 to the heated holding cylinder 2 heated to the temperature in the solid-liquid coexistence temperature region, and is supplied. The semi-solid M 3 corresponding to the required number of shots is accumulated until it is injected into a mold that does not. The accumulated temperature of the semi-solid M 3 is maintained at a temperature in the solid-liquid coexistence temperature region until it is injected after weighing.

加熱保持筒2に蓄積した所要ショット数分のセミソリッドM3 は、その一部が上記射出プランジャ26aの強制後退により流路26dから計量室25に流入して、該計量室25に1ショット分として蓄えられる。この1ショット分のセミソリッドの量は射出プランジャ26aの後退位置によって異なるので、射出プランジャ26aの後退操作のみにより製品重量の大小にかかわらずそれに適応した計量を行うことができる。この計量は製品重量の小さな金属部品であっても正確に行うことができる。計量後のセミソリッドは射出プランジャ26aの強制前進により、ノズル22から図示しない金型に直接又はホットランナーを通って射出され、所望形態の金属製品に成形される。 A part of the semi-solid M 3 corresponding to the required number of shots accumulated in the heating and holding cylinder 2 flows into the measuring chamber 25 from the flow path 26d by the forced retraction of the injection plunger 26a, and enters the measuring chamber 25 for one shot. As stored. Since the amount of the semi-solid for one shot varies depending on the retracted position of the injection plunger 26a, it is possible to perform the measurement corresponding to the product weight regardless of the product weight only by the retracting operation of the injection plunger 26a. This weighing can be accurately performed even for metal parts having a small product weight. The semi-solid after the metering is injected from a nozzle 22 directly into a mold (not shown) or through a hot runner by a forced advance of an injection plunger 26a, and is formed into a metal product in a desired form.

上記セミソリッドM3 の固相率は温度によって異なる。上記マグネシウム合金の場合には、設定温度570℃で固相率65%前後、590℃では50%前後とのごとく、固液共存温度領域の温度であっても液相線温度に近づくほど固相率は低くなる。しかし、球状の固相は固液共存温度の高低差に関係なく時間の経過と共に成長して大きくなり、それに伴い固相率も高くなって液相における固相の密度も増すようになる。 The solid phase ratio of the semi-solid M 3 varies depending on the temperature. In the case of the magnesium alloy, the solid phase ratio is around 65% at a set temperature of 570 ° C., and around 50% at 590 ° C., even if the temperature is in the solid-liquid coexistence temperature region, the solid phase becomes closer to the liquidus temperature. The rate is low. However, the spherical solid phase grows and grows with time regardless of the difference in solid-liquid coexistence temperature, and accordingly, the solid phase ratio increases and the density of the solid phase in the liquid phase also increases.

図3と図4は、固液共存温度に保持した時間が極めて僅かなセミソリッドの組織図(図3)と、570℃で30分保持したセミソリッドの組織図(図4)で、この両図から明らかなように、セミソリッドの固相率は生成後において既に64%に達してチクソトロピー性状を有している。30分保持した状態でも固相率は69%と5%増加する程度であるが、液相a中の固相bは総体的に大きく成長している。しかし、200μを超えるものは少なくチクソトロピー性状は保持されている。保持時間が30分を超過してゆくと200μを超える固相bの割合が多くなり、固相率も75%にも及ぶようになって流動性が低下してゆく。   3 and 4 are a semi-solid structure diagram (FIG. 3) in which the time at which the solid-liquid coexistence temperature is maintained is extremely short, and a semi-solid structure diagram (FIG. 4) held at 570 ° C. for 30 minutes. As is apparent from the figure, the solid fraction of the semi-solid has already reached 64% after production and has thixotropic properties. Although the solid phase ratio increases by 5% to 69% even in a state of being held for 30 minutes, the solid phase b in the liquid phase a is growing large overall. However, there are few things exceeding 200 μm, and the thixotropic properties are retained. When the holding time exceeds 30 minutes, the ratio of the solid phase b exceeding 200 μ increases, the solid phase ratio reaches 75%, and the fluidity decreases.

したがって、上記マグネシウム合金によるセミソリッドM3 のチクソトロピー性状は、固相が大きく成長しても200μを超える固相の割合が少なければ保持され、200μを超える固相の割合が多くなるほど流動し難くなる。加熱保持筒2に蓄積したセミソリッドM3 でも、蓄積時間が30分以内では、射出プランジャ26aの強制後退による計量及び前進による金型への射出をスムーズに行い得るが、30分を経過すると流動性が低下し、また成長した固相により上記射出プランジャ26aの流路26dを通過し難くなり、それにより生じた流動抵抗と流動性の低下とが相俟って、射出プランジャ26aの後退移動によるセミソリッドM3 の計量室25への送り込みがわるくなる。このため成形ごとの計量が不安定となって、金型への射出量の不足からショートショットとなり易い。 Therefore, the thixotropic property of the semi-solid M 3 made of the magnesium alloy is maintained as long as the solid phase grows large if the proportion of the solid phase exceeding 200 μm is small, and the more the proportion of the solid phase exceeding 200 μ increases, the more difficult it becomes to flow. . Even with the semi-solid M 3 accumulated in the heating and holding cylinder 2, if the accumulation time is within 30 minutes, metering by forced retraction of the injection plunger 26a and injection into the mold by forward movement can be performed smoothly. And the growth of the solid phase makes it difficult to pass through the flow path 26d of the injection plunger 26a, and the flow resistance and the decrease in flowability caused by the solid phase are combined to cause the backward movement of the injection plunger 26a. Feeding the semi-solid M 3 into the measuring chamber 25 becomes troublesome. For this reason, the weighing for each molding becomes unstable, and short shots are likely to occur due to a shortage of injection amount into the mold.

このような現象を回避するには、加熱保持筒2に蓄積されたセミソリッドM3を、固相の成長によりチクソトロピー性状が失われる前の時間内に射出することである。上記マグネシウム合金では加熱保持筒2に蓄積したセミソリッドM3 を順次30分以内に射出すれば、固形素材M1 からセミソリッドM3 の生成及び蓄積と金属製品の成形までを支障なく連続して行うことができる。 In order to avoid such a phenomenon, the semi-solid M 3 accumulated in the heating and holding cylinder 2 is injected within a time before the thixotropy is lost due to the growth of the solid phase. If injection within sequential 30 min semisolid M 3 accumulated in the heating holding cylinder 2 in the above magnesium alloys, continuously from the solid material M 1 to the forming of production and accumulation and metal products semisolid M 3 without trouble It can be carried out.

セミソリッドM3 の生成量と加熱保持筒2の蓄積量の割合は、固相率から許容される蓄積時間、成形サイクル時間から設定することができる。蓄積時間を成形サイクル時間(冷却−型開−製品取出し−型閉及び型締−射出終了までに要する時間)で除した値は、蓄積時間での総ショット数となるから、総ショット数を3等分以上に等分して1等分を生成量とし、他を蓄積量として1等分の射出に要した時間ごとに、新たな1等分を加熱保持筒2に供給蓄積すれば、生成槽34における貯留時間を蓄積時間として加えても、そこに蓄積されたセミソリッドM3 の全量は、チクソトロピー性状を有する時間内に連続して射出されることになる。 The ratio of the production amount of the semisolid M 3 and the accumulation amount of the heating and holding cylinder 2 can be set from the accumulation time allowed from the solid phase rate and the molding cycle time. The value obtained by dividing the accumulation time by the molding cycle time (cooling-mold opening-product removal-mold closing and mold clamping-time required for completion of injection) is the total number of shots in the accumulation time. Divide evenly into equal parts or more to make 1 part as a production amount, and use the other as an accumulation quantity. Even if the storage time in the tank 34 is added as the accumulation time, the total amount of the semisolid M 3 accumulated therein is continuously ejected within the time having the thixotropic property.

また幾とおりかの蓄積時間を等間隔に設定し、それらの蓄積時間に適合したセミソリッドM3 の生成と蓄積とを行って成形することもできる。この場合には、蓄積時間差分のショット数を単位として各蓄積時間当たりのショット数を等分し、その1等分を上記と同様に生成量、他を蓄積量として、1等分の射出に要した時間ごとにセミソリッドM3 の供給蓄積を行えば、そこに設定された蓄積時間内に連続して射出を行うことができる。 It is also possible to set several accumulation times at equal intervals, and form and accumulate semi-solid M 3 suitable for those accumulation times. In this case, the number of shots for each accumulation time is divided equally with the number of shots of the accumulation time difference as a unit, and the same amount is generated in the same manner as described above, and the other is stored as the accumulated amount. If the supply and accumulation of the semisolid M 3 is performed every required time, the injection can be continuously performed within the accumulation time set there.

例えば上記マグネシウム合金では、セミソリッドの固相率30〜70%で許容される蓄積時間は30分以内であるから、成形サイクル25秒を要する製品重量50〜100g(1ショット)の成形において、その許容時間内にて幾つかの蓄積時間を5分間隔で設定すると、蓄積時間30分で72ショット(3600〜7200g)、25分では60ショット3000〜6000g)、20分では48ショット(2400〜4800g)、15分では36ショット(1800〜3600g)となる。   For example, in the above magnesium alloy, the allowable storage time is 30 minutes or less with a solid phase ratio of 30 to 70%, so in the molding of a product weight of 50 to 100 g (one shot) that requires a molding cycle of 25 seconds, If several accumulation times are set within the allowable time at intervals of 5 minutes, 72 shots (3600-7200 g) at 30 minutes, 60 shots 3000-6000 g at 25 minutes, 48 shots (2400-4800 g at 20 minutes) ), It takes 36 shots (1800 to 3600 g) in 15 minutes.

また各時間差5分のショット数は12ショットであるから、それを単位として上記蓄積時間当たりのショット数を等分すると、それぞれ6、5、4、3単位となる。そのうちの1単位をセミソリッドM3 の1回当たりの生成量とし、残りの5、4、3、2単位を加熱保持筒2の蓄積量とすると、生成量と蓄積量の比は1:5、1:4、1:3、1:2となる。 Further, since the number of shots with a time difference of 5 minutes is 12 shots, the number of shots per accumulation time is equally divided into 6, 5, 4, and 3 units, respectively. If one unit is the amount of semi-solid M 3 produced per time and the remaining 5, 4, 3, 2 units are accumulated amounts in the heated holding cylinder 2, the ratio of the generated amount to the accumulated amount is 1: 5. 1: 4, 1: 3, 1: 2.

成形サイクル25秒で12ショット分を射出するのに要する時間は5分であるから、5分ごとに12ショット分(600〜1200g)のセミソリッドM3 を、生成槽34から加熱保持筒2に供給蓄積して行けば、生成槽34における貯留時間を含めても、そこに設定の蓄積時間内に加熱保持筒2に蓄積したセミソリッドM3 を順に金型に射出することができる。また生成量と供給時間は何れの蓄積時間に対しても一定であるから、蓄積時間(蓄積量)の変更は加熱保持筒2の蓄積量を1単位ごとに加減するだけで済む。したがって、加熱保持筒2の容積と製品重量に応じて蓄積量を任意に設定することができる。 Since the time required for injecting 12 shots in a molding cycle of 25 seconds is 5 minutes, 12 shots (600 to 1200 g) of semi-solid M 3 are fed from the production tank 34 to the heating and holding cylinder 2 every 5 minutes. If supply and accumulation are performed, the semi-solid M 3 accumulated in the heating and holding cylinder 2 within the set accumulation time can be sequentially injected into the mold even if the storage time in the production tank 34 is included. Further, since the generation amount and the supply time are constant with respect to any accumulation time, the accumulation time (accumulation amount) can be changed only by adding or subtracting the accumulation amount of the heating and holding cylinder 2 for each unit. Therefore, the accumulation amount can be arbitrarily set according to the volume of the heating and holding cylinder 2 and the product weight.

この発明に係る低融点金属合金の成形方法に用いられる金属成形機の縦断側面図である。It is a vertical side view of the metal forming machine used for the forming method of the low melting point metal alloy according to the present invention. 逆止弁付き射出プランジャの断面図である。It is sectional drawing of an injection plunger with a check valve. マグネシウム合金(AZ91D)のチクソトロピー性状を有するセミソリッドの生成後の金属顕微鏡による組織図である。It is a structure | tissue chart by the metallographic microscope after the production | generation of the semisolid which has the thixotropic property of a magnesium alloy (AZ91D). 同上のセミソリッドを固液共存温度領域の温度で30分間保持した場合の金属顕微鏡による組織図である。It is a structure | tissue figure by a metal microscope at the time of hold | maintaining the semisolid same as the above for 30 minutes at the temperature of a solid-liquid coexistence temperature range.

符号の説明Explanation of symbols

1 金属成形機
2 加熱保持筒
3 セミソリッド生成供給装置
21 筒体
22 射出ノズル
24,36,37 加熱手段
26 射出手段
26a 射出プランジャ
31 溶解炉
32 冷却部
33 傾斜冷却板
34 生成槽
35 流通路
38,39 バルブ装置
DESCRIPTION OF SYMBOLS 1 Metal molding machine 2 Heating holding cylinder 3 Semi-solid production | generation supply apparatus 21 Cylindrical body 22 Injection nozzle 24,36,37 Heating means 26 Injection means 26a Injection plunger 31 Melting furnace 32 Cooling part 33 Inclined cooling plate 34 Generation tank 35 Flow path 38 , 39 Valve device

Claims (4)

低融点金属合金の固形素材を溶解炉により液相線温度以上の温度の液体合金に溶解する工程と、
その液体合金を、溶解炉と生成槽との間に配設した傾斜冷却板の板面上を流下させて急冷し、固液共存温度領域の温度に設定された生成槽に貯留して、固相が微細に球状化されたチクソトロピー性状を有するセミソリッドに生成する工程と、
上記生成槽から所要ショット数分のセミソリッドを、先端にノズルを有し外周囲に加熱手段を有する加熱保持筒に供給蓄積し、該加熱保持筒により固液共存温度領域の温度に保持する工程と、
加熱保持筒に蓄積したセミソリッドを、チクソトロピー性状を保持し、かつ固相の成長により流動性が悪くなる前の時間内に、加熱保持筒内の射出プランジャの強制後退により1ショット分ずつ計量し、強制前進により上記ノズルから金型に射出して金属製品に成形する工程と、
からなることを特徴とする低融点金属合金の射出成形方法。
Melting a low melting point metal alloy solid material into a liquid alloy having a temperature equal to or higher than the liquidus temperature in a melting furnace;
The liquid alloy is rapidly cooled by flowing down on the surface of the inclined cooling plate disposed between the melting furnace and the generation tank, and stored in the generation tank set to a temperature in the solid-liquid coexistence temperature region. Producing a semisolid having thixotropic properties in which the phase is finely spheroidized;
A step of supplying and accumulating the required number of semi-solids from the generation tank to a heating and holding cylinder having a nozzle at the tip and a heating means on the outer periphery, and maintaining the temperature in the solid-liquid coexistence temperature region by the heating and holding cylinder. When,
The semi-solid accumulated in the heating and holding cylinder is measured one shot at a time by the forced retraction of the injection plunger in the heating and holding cylinder within the time before the fluidity deteriorates due to solid phase growth while maintaining thixotropic properties. , A process of injecting into the mold from the nozzle by forced advance and forming into a metal product;
An injection molding method for a low-melting-point metal alloy comprising:
上記セミソリッドの供給と蓄積は、許容される蓄積時間を成形サイクル時間で除した値を、その蓄積時間での総ショット数とし、該総ショット数を3等分以上に等分して1等分を生成量とし、他を蓄積量として1等分の射出に要した時間ごとに、1等分のセミソリッドを上記生成槽から新たに上記加熱保持筒に供給して行うことを特徴とする請求項1記載の低融点金属合金の成形方法。 For the supply and accumulation of the semi-solid, the value obtained by dividing the allowable accumulation time by the molding cycle time is taken as the total number of shots in the accumulation time, and the total number of shots is equally divided into three or more equal parts. A semi-solid of one equivalent is newly supplied from the generation tank to the heating and holding cylinder every time required for injection of one equivalent, with the amount as the generation amount and the other as the accumulation amount. The method for forming a low melting point metal alloy according to claim 1. 上記セミソリッドはマグネシウム合金からなり、そのセミソリッドの金型への射出は、加熱保持筒に蓄積した後30分を超えない蓄積時間内に行うことを特徴とする請求項1記載の低融点金属合金の射出成形方法。   2. The low melting point metal according to claim 1, wherein the semi-solid is made of a magnesium alloy, and the injection of the semi-solid into the mold is performed within an accumulation time not exceeding 30 minutes after accumulation in the heated holding cylinder. Alloy injection molding method. 上記固形素材は、低融点金属合金を完全溶解して鋳造した樹枝状晶のインゴット、短柱体からなることを特徴とする請求項1記載の低融点金属合金の成形方法。   2. The method of forming a low-melting-point metal alloy according to claim 1, wherein the solid material is composed of a dendritic crystal ingot and a short column that are cast by completely melting the low-melting-point metal alloy.
JP2004023165A 2004-01-30 2004-01-30 Low melting point metal alloy forming method Expired - Fee Related JP3927957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023165A JP3927957B2 (en) 2004-01-30 2004-01-30 Low melting point metal alloy forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023165A JP3927957B2 (en) 2004-01-30 2004-01-30 Low melting point metal alloy forming method

Publications (2)

Publication Number Publication Date
JP2005211958A JP2005211958A (en) 2005-08-11
JP3927957B2 true JP3927957B2 (en) 2007-06-13

Family

ID=34906281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023165A Expired - Fee Related JP3927957B2 (en) 2004-01-30 2004-01-30 Low melting point metal alloy forming method

Country Status (1)

Country Link
JP (1) JP3927957B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4051350B2 (en) * 2004-03-05 2008-02-20 日精樹脂工業株式会社 Low melting point metal alloy forming method
JP2011036863A (en) * 2007-05-17 2011-02-24 Yamashiro Seiki Seisakusho:Kk Metal molding apparatus
JP4051393B2 (en) * 2007-06-13 2008-02-20 日精樹脂工業株式会社 Low melting point metal alloy forming method
CN110039026A (en) * 2019-05-09 2019-07-23 宁夏中太镁业科技有限公司 A kind of semi-solid magnesium alloy high pressure Jet forming machine

Also Published As

Publication number Publication date
JP2005211958A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP3211754B2 (en) Equipment for manufacturing metal for semi-solid molding
EP0765198B2 (en) Method and apparatus for injection molding of semi-solid metals
US10118219B2 (en) Semisolid casting/forging apparatus and method as well as a cast and forged product
US8141616B2 (en) Gravity casting method
US10384262B2 (en) Die-casting apparatus, die-casting method, and diecast article
JP3927957B2 (en) Low melting point metal alloy forming method
JPH1133693A (en) Method and device for injection molding of semi-solidified metal
CN204022878U (en) In alloy graining process, different steps liquid is quenched sampling unit
US7032640B2 (en) Method of molding low melting point metal alloy
JP6017203B2 (en) Semi-solid metal manufacturing apparatus, semi-solid forming apparatus, semi-solid metal manufacturing method and semi-solid forming method
US7036551B2 (en) Method of molding low melting point metal alloy
JP4062688B2 (en) Metal material melting and feeding device in metal forming machine
CN104959557A (en) Method and device for electromagnetic continuous casting of bimetallic multilayer round billet
CN104625026B (en) A356.2 aluminum alloy casting method
JP4051350B2 (en) Low melting point metal alloy forming method
JP3848936B2 (en) Semi-melt forming method and molding machine for low melting point metal alloy
JP2004160507A (en) Direct casting apparatus
JP2014237172A (en) Manufacturing apparatus of solid-liquid coexistent state metal, manufacturing method of solid-liquid coexistent state metal, and molding method using solid-liquid coexistent state metal
JP4051393B2 (en) Low melting point metal alloy forming method
JP4273045B2 (en) Method of melting metal material in metal forming machine
CN100562384C (en) Phase change cooling brings out the method for solidifying the control material structure
TW593689B (en) Method for fabricating thixotropic feedstock materials
JPH10156508A (en) Formation of molten metal
CN108746566A (en) A kind of wheel hub casting method that can reinforce ear intensity on wheel hub
Kirkwood et al. Raw Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees