JP2006000820A - Catalytic body, its manufacturing method and hydrogen generating method - Google Patents

Catalytic body, its manufacturing method and hydrogen generating method Download PDF

Info

Publication number
JP2006000820A
JP2006000820A JP2004182747A JP2004182747A JP2006000820A JP 2006000820 A JP2006000820 A JP 2006000820A JP 2004182747 A JP2004182747 A JP 2004182747A JP 2004182747 A JP2004182747 A JP 2004182747A JP 2006000820 A JP2006000820 A JP 2006000820A
Authority
JP
Japan
Prior art keywords
nickel
metal
mg2ni
catalyst body
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004182747A
Other languages
Japanese (ja)
Inventor
Seijiro Suda
精二郎 須田
Yusuke Ieda
雄介 家田
Yasuyoshi Iwase
安慶 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Materials & Energy Res Inst To
Materials and Energy Research Institute Tokyo MERIT Ltd
Original Assignee
Materials & Energy Res Inst To
Materials and Energy Research Institute Tokyo MERIT Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materials & Energy Res Inst To, Materials and Energy Research Institute Tokyo MERIT Ltd filed Critical Materials & Energy Res Inst To
Priority to JP2004182747A priority Critical patent/JP2006000820A/en
Publication of JP2006000820A publication Critical patent/JP2006000820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic body which is used for generating hydrogen by bringing, for example, a hydrogen generating agent into contact with the catalytic body, the surface area of which to be in contact with the hydrogen generating agent is enlarged so that the catalysis can be advanced in high efficiency and the catalysis of which with the hydrogen generating agent is stabilized. <P>SOLUTION: This catalytic body is manufactured by integrally covering the surface of a metallic base material with a molten nickel-based alloy being a catalytic metal. As a result, many fine cracks are produced on the surface of the catalytic metal and the surface is roughened so that the surface area of the catalytic metal to be in contact with the hydrogen generating agent is enlarged. Therefore, this catalytic body can be reacted with the hydrogen generating agent in high efficiency. Since the catalytic metal is not exfoliated from the metallic base material, the catalysis with the hydrogen generating agent is stabilized for a long time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば水素発生用として用いられる触媒体、その製造方法及びこの触媒体を用いて水素を発生させる方法に関する。   The present invention relates to a catalyst body used, for example, for hydrogen generation, a method for producing the same, and a method for generating hydrogen using the catalyst body.

テトラヒドロホウ酸塩などの金属水素錯化合物を溶解したアルカリ水溶液から、触媒金属を用いて水素を発生させる方法は一般的に知られている。例えば特許文献1には、ニッケル(Ni)、コバルト(Co)などの金属またはマグネシウム−ニッケル(Mg−Ni)系合金などの水素吸蔵合金あるいはこれらのフッ素化処理物を触媒金属として用い、これらの触媒金属を機械的に粉砕して粉体にしたものを金属水素錯化合物を溶解したアルカリ水溶液に浸漬させて水素を発生させる方法が提案されている。   A method for generating hydrogen from an alkaline aqueous solution in which a metal hydrogen complex compound such as tetrahydroborate is dissolved using a catalytic metal is generally known. For example, in Patent Document 1, a metal such as nickel (Ni) or cobalt (Co) or a hydrogen storage alloy such as magnesium-nickel (Mg—Ni) alloy or a fluorinated product thereof is used as a catalyst metal. There has been proposed a method of generating hydrogen by dipping a catalyst metal mechanically pulverized into powder into an alkaline aqueous solution in which a metal-hydrogen complex compound is dissolved.

また、工業的に水素を連続で発生させる装置内では、一般に金属基材に触媒金属を担持させた触媒体に金属水素錯化合物のアルカリ水溶液を通流させる方法が有用である。このように金属基材に触媒金属を担持させた触媒体は、例えば棒状、板状、円柱状、多孔質状、多孔質ブロック状、網状あるいは発泡体状などの所定形状を有する支持体である金属基材例えばニッケルなどの表面に、触媒金属例えば白金などを充填、塗布、焼付け、吹付け、メッキあるいは溶射などの方法により被覆して製造される(例えば、特許文献2参照。)。   Further, in an apparatus for continuously generating hydrogen industrially, a method in which an alkaline aqueous solution of a metal hydrogen complex compound is generally passed through a catalyst body in which a catalyst metal is supported on a metal substrate is useful. Thus, the catalyst body in which the catalyst metal is supported on the metal substrate is a support body having a predetermined shape such as a rod shape, a plate shape, a columnar shape, a porous shape, a porous block shape, a net shape or a foam shape. A surface of a metal substrate such as nickel is coated with a catalyst metal such as platinum by coating, coating, baking, spraying, plating or thermal spraying (for example, see Patent Document 2).

さらに、例えば特許文献3には、水素吸蔵合金の粉末を焼結して板状に成形し、これを水素発生用の触媒体として用いることが記載されている。   Further, for example, Patent Document 3 describes that a powder of a hydrogen storage alloy is sintered and formed into a plate shape, and this is used as a catalyst body for hydrogen generation.

このような背景の下で、本発明者は、金属水素錯化合物のアルカリ水溶液を接触させて水素を発生させるのに好適な水素吸蔵合金として、Mg2Niに注目し、研究を行ってきた。このMg2Niは、特許文献1では、粉体として用いられており、例えば網状の袋の中に、市販されているMg2Ni粉末を入れて、金属水素錯化合物のアルカリ水溶液が入った反応容器の中に浸漬させた場合、粉体の粒子の大きさが25〜45μmと小さいため、網状の袋から粉体が流出してしまうという問題がある。   Under such a background, the present inventor has paid attention to Mg2Ni as a hydrogen storage alloy suitable for generating hydrogen by contacting an alkali aqueous solution of a metal hydrogen complex compound, and has conducted research. This Mg2Ni is used as a powder in Patent Document 1. For example, a commercially available Mg2Ni powder is put in a net-like bag and placed in a reaction vessel containing an alkali aqueous solution of a metal hydride complex compound. When immersed, the particle size of the powder is as small as 25 to 45 μm, so that there is a problem that the powder flows out from the mesh bag.

また、特許文献2では、金属基材であるニッケル発泡体の表面に充填、付着、メッキ及びCVDの方法により触媒金属であるMg2Niを被覆させた触媒体が記載あるいは示唆されているが、触媒体の表面では水素ガスの発生が極めて激しいため、充填、付着及びメッキの方法では、支持体である金属基材から触媒金属が剥離または脱落し易いという問題がある。特に付着及びメッキの方法では、金属基材のエッジ部分の金属被膜と金属基材との境で被膜表面より激しく水素発生が起るため、このことにより金属基材のエッジ部分の金属被膜がめくれ、一旦めくれが生じるとこのめくれ面の裏側でも水素発生が起り、剥離が進行することを確認している。また、CVD法も示唆されているが、当該触媒体を製造するための装置が大掛かりであり、それに加えてニッケル発泡体の多孔部分内部まで触媒金属を蒸着することができるのか疑問である。   Patent Document 2 describes or suggests a catalyst body in which the surface of a nickel foam as a metal substrate is coated with Mg2Ni as a catalyst metal by a method of filling, adhesion, plating, and CVD. Since the generation of hydrogen gas is extremely intense on the surface, the method of filling, adhering and plating has a problem that the catalyst metal is easily peeled off or dropped off from the metal substrate as the support. In particular, in the adhesion and plating methods, hydrogen generation occurs violently from the coating surface at the boundary between the metal coating on the edge of the metal substrate and the metal substrate, which turns the metal coating on the edge of the metal substrate. It has been confirmed that once turning occurs, hydrogen is generated on the back side of the turning surface, and peeling progresses. Further, although a CVD method has been suggested, it is questionable whether an apparatus for producing the catalyst body is large, and in addition to that, it is possible to deposit a catalyst metal to the inside of the porous portion of the nickel foam.

また、溶射法によりニッケル発泡体の表面に触媒金属であるMg2Niを被覆する場合には、Mg2Niを融点600℃以上に加熱しなければならないので、その表面が平滑化するため、金属水素錯化合物と接触する触媒金属の反応表面積が小さくなり、触媒活性が損なわれるという問題がある。   In addition, when the surface of the nickel foam is coated with the catalyst metal Mg2Ni by a thermal spraying method, the Mg2Ni must be heated to a melting point of 600 ° C. or higher. There is a problem that the catalytic surface area of the catalytic metal to be contacted is reduced, and the catalytic activity is impaired.

また、特許文献3では、触媒金属であるMg2Niの粉末を焼結により板状に成形し、この板状のMg2Niを金属基材として使用する場合においても、やはりMg2Niの粉末を融点600℃以上に加熱しなければならず、その表面が平滑化するため同様な問題が生じる。   Further, in Patent Document 3, Mg2Ni powder, which is a catalyst metal, is formed into a plate shape by sintering, and when this plate-like Mg2Ni is used as a metal substrate, the Mg2Ni powder is also made to have a melting point of 600 ° C. or higher. A similar problem arises because the surface must be heated and smoothed.

また、触媒体の活性は金属水素錯化合物と接触する触媒金属の反応表面積によても決まってくるが、ニッケル発泡体自体は表面積がそれ程大きくないことから、大きな水素発生速度が得られないという課題もある。   In addition, the activity of the catalyst body is also determined by the reaction surface area of the catalyst metal in contact with the metal hydride complex compound, but the nickel foam itself does not have a very large surface area, so that a large hydrogen generation rate cannot be obtained. There are also challenges.

特開2001−19401(請求項2、4、5、段落009、0010、0012、0013)JP 2001-19401 (Claims 2, 4, 5, paragraphs 009, 0010, 0012, 0013) 特開2002−29702(請求項1、段落0009、0013、0017、0018、0024)JP 2002-29702 (Claim 1, paragraphs 0009, 0013, 0017, 0018, 0024) 特開2002−68701(請求項1、段落00014)JP-A-2002-68701 (Claim 1, paragraph 0014)

本発明はこのような事情に鑑みてなされたものであって、その目的は、表面積が大きく、且つ物理的に安定している例えば水素発生用の触媒として好適な触媒体を提供することにある。また、他の目的は、このような触媒体を製造する好適な方法を提供することにある。さらにまた、他の目的は、この触媒体が好適に用いられる水素発生方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a catalyst body suitable for a hydrogen generation catalyst, for example, having a large surface area and being physically stable. . Another object is to provide a suitable method for producing such a catalyst body. Furthermore, another object is to provide a hydrogen generation method in which the catalyst body is suitably used.

本発明の触媒体は、金属基材の表面に、ニッケル系合金を溶融一体化して被覆してなることを特徴とする。前記ニッケル系合金は、ニッケル系水素吸蔵合金であることが好ましい。このニッケル水素吸蔵合金としては例えばMg2Ni合金、Mg2NiとMgとの共晶合金のようなMg2Ni系合金、ZrNi2系合金、ZrNi2系合金、LaNi5系合金が用いられるが、この中でもマグネシウム−ニッケル系水素吸蔵合金例えばMg2Niであることが好ましい。ここで金属基材の形状としては、例えば板状、棒状、ブロック状、円筒状、円柱状、円錐状、角柱状及びロッド状が用いられ、あるいは多孔質体(発泡体)をこれら形状に成形したものを用いてもよい。この金属基材は従来技術に記載されているような粉体を含むものではなく、その金属基材を例えば直径10mmの丸穴を通過させようとしたときに、どの方向に向けても通過できない、またはある方向に向けたときに通過できない場合があるものをいう。例えば金属基材を横に向けると前記丸穴を通過することができるが、縦に向けると通すことができない場合があるという意味である。さらにまた、金属基材1個の重量は取り扱いの容易さから0.6g以上のものが好ましい。また、前記金属基材としてはニッケル基材を用いてもよいし、それ以外の金属であってもよい。   The catalyst body of the present invention is characterized in that a nickel base alloy is melt-integrated and coated on the surface of a metal substrate. The nickel-based alloy is preferably a nickel-based hydrogen storage alloy. Examples of the nickel hydrogen storage alloy include Mg2Ni alloys, Mg2Ni alloys such as eutectic alloys of Mg2Ni and Mg, ZrNi2 alloys, ZrNi2 alloys, and LaNi5 alloys. Among these, magnesium-nickel hydrogen storage alloys are used. An alloy such as Mg2Ni is preferred. Here, as the shape of the metal substrate, for example, a plate shape, a rod shape, a block shape, a cylindrical shape, a columnar shape, a conical shape, a prismatic shape, and a rod shape are used, or a porous body (foamed body) is formed into these shapes. You may use what you did. This metal base material does not contain powder as described in the prior art, and cannot pass in any direction when trying to pass the metal base material through a round hole having a diameter of 10 mm, for example. , Or something that may not pass when it is pointed in a certain direction. For example, when the metal substrate is turned sideways, it can pass through the round hole, but when it is turned vertically, it means that it may not pass. Furthermore, the weight of one metal substrate is preferably 0.6 g or more because of ease of handling. Moreover, a nickel base material may be used as the metal base material, and other metals may be used.

本発明の触媒体の製造方法は、ニッケル基材の表面にマグネシウムを被覆する工程と、次いで、前記ニッケル基材をMg2Niの共晶温度以上に加熱する工程と、を備えたことを特徴とする。このMg2Niを製造する他の方法としては、金属基材の表面に、ニッケルを溶融一体化して被覆する工程と、次いで、前記金属基材を被覆しているニッケルの表面に、マグネシウムを被覆する工程と、その後、Mg2Niの共晶温度以上に加熱する工程と、を備えた方法であってもよいし、金属基材の表面に、マグネシウムとニッケルとを被覆する工程と、次いで、Mg2Niの共晶温度以上に加熱する工程と、を備えた方法であってもよい。本発明の触媒体の好適な使用方法としては、例えば水素発生装置に適用して、金属水素錯化合物のアルカリ水溶液と接触させて水素ガスを発生させる方法を挙げることができる。この場合、金属水素錯化合物は、テトラヒドロホウ酸塩が好ましい。   The method for producing a catalyst body of the present invention comprises a step of coating magnesium on the surface of a nickel base, and then a step of heating the nickel base to a eutectic temperature of Mg2Ni or higher. . As another method of manufacturing this Mg2Ni, there are a step of coating the surface of the metal base material by melting and integrating nickel, and then a step of coating the surface of the nickel coating the metal base material with magnesium. And then heating to a temperature equal to or higher than the eutectic temperature of Mg2Ni, or a step of coating the surface of the metal substrate with magnesium and nickel, and then the eutectic of Mg2Ni And a method of heating to a temperature or higher. As a preferred method of using the catalyst body of the present invention, for example, a method of generating hydrogen gas by applying to a hydrogen generator and contacting with an alkali aqueous solution of a metal hydrogen complex compound can be mentioned. In this case, the metal hydrogen complex compound is preferably tetrahydroborate.

本発明における触媒体によれば、金属基材の表面に触媒金属であるニッケル系合金を溶融一体化させることで、触媒金属の表面に細かい多くの亀裂が生じて表面が粗れ、このことにより触媒の表面積が大きくなるので、高い効率で触媒反応を進行させることができる。また、金属基材例えばニッケル基材から触媒金属の剥離が起らないあるいは起こり難いので、例えば金属水素錯化合物との触媒反応が長時間安定する。   According to the catalyst body of the present invention, a nickel-based alloy, which is a catalyst metal, is fused and integrated on the surface of a metal substrate, so that many fine cracks are generated on the surface of the catalyst metal and the surface becomes rough. Since the surface area of the catalyst is increased, the catalytic reaction can proceed with high efficiency. Further, since the catalyst metal does not peel off or hardly occurs from a metal substrate such as a nickel substrate, for example, the catalytic reaction with a metal hydride complex compound is stabilized for a long time.

また、ニッケル系合金として例えばMg2Niを用いれば、ニッケルとマグネシウムとをMg2Niの共晶温度以上に加熱することにより当該触媒体が得られる。即ち、この方法によればMg2Niの融点まで加熱しなくも触媒が得られるのでMg2Niの粉体を融点以上まで加熱することで焼結体を得る場合に比べて大きな表面積が得られる。従って、この触媒体を水素発生装置に適用すれば、大きな水素の発生速度が得られ、制御し易く、また連続的な水素発生を安定して行うことができる。   If, for example, Mg2Ni is used as the nickel-based alloy, the catalyst body can be obtained by heating nickel and magnesium to a temperature equal to or higher than the eutectic temperature of Mg2Ni. That is, according to this method, a catalyst can be obtained without heating to the melting point of Mg2Ni, so that a larger surface area can be obtained than when a sintered body is obtained by heating the Mg2Ni powder to the melting point or higher. Therefore, when this catalyst body is applied to a hydrogen generator, a large hydrogen generation rate can be obtained, it is easy to control, and continuous hydrogen generation can be performed stably.

(第1の実施の形態)
本発明に係る触媒体の製造方法の第1の実施の形態について説明する。例えば
板状の金属基材であるニッケル基材の表面に平均粒径25μm以下のマグネシウム粉末を接着剤である例えばメチルセルロースと共にニッケル基材の表面に塗布して被覆し、加熱炉においてMg2Niの共晶温度506℃以上に加熱して、ニッケル基材とマグネシウム粉末とを融合し、合金化(溶融一体化)させてMg2Niを得る。この場合、共晶温度以上に加熱すればよいので必要以上に加熱する意味はなく、従ってこの加熱温度は当然にMg2Niの融点よりも低い温度である。なお、Mg2Niを生成した後、ニッケル基材の表面に未反応のマグネシウム粉末が多く残存する場合には、例えばサンドペーパーなどで削って除去してもよい。ニッケル金属の表面にマグネシウムを塗布して被覆する方法は、マグネシウムをニッケル基材の表面に溶射する方法を採用してもよいし、あるいは、マグネシウムをスパッタしてその粒子をニッケル基材の表面に沈着させる方法を採用してもよい。
(First embodiment)
1st Embodiment of the manufacturing method of the catalyst body which concerns on this invention is described. For example, magnesium powder with an average particle size of 25 μm or less is coated on the surface of a nickel base material, which is a plate-like metal base material, and coated with the adhesive, for example, methylcellulose, on the surface of the nickel base material. By heating to a temperature of 506 ° C. or higher, the nickel base material and the magnesium powder are fused and alloyed (melted and integrated) to obtain Mg 2 Ni. In this case, it is only necessary to heat the eutectic temperature or higher, so there is no point in heating more than necessary. Therefore, this heating temperature is naturally lower than the melting point of Mg2Ni. If a large amount of unreacted magnesium powder remains on the surface of the nickel base after producing Mg2Ni, it may be removed by, for example, sandpaper. As a method of coating and coating magnesium on the surface of the nickel metal, a method of spraying magnesium on the surface of the nickel base material may be adopted, or magnesium may be sputtered and particles thereof may be applied to the surface of the nickel base material. A deposition method may be employed.

前記金属基材の形状としては、板状に限らず、棒状、ブロック状、円筒状、円柱状、円錐状、角柱状及びロッド状の金属基材を用いてもよいし、あるいは多孔質体(発泡体)をこれら形状に成形したものを用いてもよいが、触媒の流出を防止するためには、その重量が0.6g以上であることが好ましい。   The shape of the metal substrate is not limited to a plate shape, and a rod-like, block-like, cylindrical, columnar, conical, prismatic or rod-like metal substrate may be used, or a porous body ( A foam formed into these shapes may be used, but in order to prevent the catalyst from flowing out, the weight is preferably 0.6 g or more.

このような製造方法によれば、金属基材であるニッケル基材の表面に触媒金属であるMg2Niが生成される。   According to such a manufacturing method, Mg2Ni which is a catalyst metal is generated on the surface of a nickel substrate which is a metal substrate.

このような実施の形態により製造された触媒体によれば、金属基材であるニッケル基材の表面に触媒金属であるMg2Niが溶融一体化しているので、ニッケル基材からMg2Niが剥離するおそれがない、従って例えば後述のように水素発生装置に適用した場合、水素錯化合物との触媒反応が長時間安定する。また、当該ニッケル基材をMg2Niの共晶温度506℃以上に加熱することで、Mg2Niの表面に細かい多くの亀裂が生じて表面が粗れ、またMg2Niの粉体を融点以上に加熱しなくてよいので、粗状表面の平滑化が避けられ、結果として表面積の大きな触媒体が得られる。   According to the catalyst body manufactured according to such an embodiment, Mg2Ni as the catalyst metal is fused and integrated on the surface of the nickel base that is the metal base, so there is a possibility that Mg2Ni may be peeled off from the nickel base. Therefore, for example, when applied to a hydrogen generator as described later, the catalytic reaction with the hydrogen complex compound is stabilized for a long time. Further, by heating the nickel base material to a Mg2Ni eutectic temperature of 506 ° C. or more, many fine cracks are generated on the surface of Mg2Ni and the surface becomes rough, and the Mg2Ni powder is not heated to the melting point or higher. As a result, smoothening of the rough surface is avoided, and as a result, a catalyst body having a large surface area can be obtained.

また、この触媒体を例えば後述する水素発生装置に適用した場合、この触媒体は、金属基材であるニッケルそのものの表面に触媒金属であるMg2Niが溶融一体化して形成されているので、後述の実施例から裏付けされているように触媒金属の剥離及び脱落が実質起こり得ないことから触媒活性の低下が抑えられ、連続的な水素発生を安定に行うことができる。さらにまた、触媒体の形態の自由度が大きいことから適用箇所に応じた形態(例えば形状、大きさ)について適宜作成することができ、そのため反応装置の設計の自由度も大きくなり、取り扱いも便利になるといった効果もある。   Further, when this catalyst body is applied to, for example, a hydrogen generator described later, the catalyst body is formed by melting and integrating the catalyst metal Mg2Ni on the surface of nickel itself as the metal base material. As supported by the examples, the catalyst metal can hardly be peeled off or dropped off, so that a decrease in the catalyst activity can be suppressed, and continuous hydrogen generation can be performed stably. Furthermore, since the degree of freedom of the form of the catalyst body is large, it is possible to appropriately create a form (for example, shape and size) according to the application location, so that the degree of freedom in designing the reactor is increased and the handling is convenient. It also has the effect of becoming.

(第2の実施の形態)
本発明に係る触媒体の製造方法の第2の実施の形態について説明する。先ず、例えば板状の鉄からなる金属基材の表面にニッケル(Ni)粉末を接着剤である例えばメチルセルロースと共に金属基材の表面に塗布して被覆し、加熱炉においてニッケルの融点の温度まで加熱して、金属基材にニッケルを溶融一体化し、ニッケルで被覆された金属基材を得る。続いて、この金属基材の表面に例えば平均粒径25μm以下のマグネシウム(Mg)粉末を接着剤である例えばメチルセルロースと共にニッケルの表面に塗布して被覆し、加熱炉においてMg2Niの共晶温度506℃以上に加熱して、Mg2Ni合金を得る。なお、Mg2Niを生成した後、ニッケル基材の表面に未反応のマグネシウム粉末が多く残存する場合には、例えばサンドペーパーなどで削って除去してもよい。また、金属基材の表面にニッケル粉末を被覆させる方法あるいはニッケルの表面にマグネシウム粉末を被覆させる方法は、既述のように溶射法またはスッパッタリング法などを採用してもよい。
(Second Embodiment)
A second embodiment of the method for producing a catalyst body according to the present invention will be described. First, for example, nickel (Ni) powder is coated and coated on the surface of a metal base material together with an adhesive such as methyl cellulose on the surface of a metal base material made of, for example, plate-like iron, and heated to the temperature of the melting point of nickel in a heating furnace. Then, nickel is melted and integrated with the metal substrate to obtain a metal substrate coated with nickel. Subsequently, for example, magnesium (Mg) powder having an average particle size of 25 μm or less is coated on the surface of the metal substrate and coated on the surface of nickel together with an adhesive such as methylcellulose, and the eutectic temperature of Mg 2 Ni is 506 ° C. in a heating furnace. Heat to the above to obtain an Mg2Ni alloy. If a large amount of unreacted magnesium powder remains on the surface of the nickel base after producing Mg2Ni, it may be removed by, for example, sandpaper. Further, as described above, a thermal spraying method or a sputtering method may be adopted as a method of coating the surface of the metal substrate with nickel powder or a method of coating the nickel surface with magnesium powder.

前記金属基材としては、鉄(Fe)の他、コバルト(Co)、銅(Cu)、クロム(Cr)、マンガン(Mn)、アルミニウム(Al)、チタン(Ti)及びジルコニウム(Zr)、あるいは、それらの合金などから選択して用いられる。また、ニッケル−鉄及びニッケル−コバルトなどのニッケル系合金を用いてもよい。なお、金属基材の形状としては、第1の実施の形態で述べた金属基材の形状を用いることができる。   As the metal substrate, in addition to iron (Fe), cobalt (Co), copper (Cu), chromium (Cr), manganese (Mn), aluminum (Al), titanium (Ti) and zirconium (Zr), or , Selected from these alloys and the like. Further, nickel-based alloys such as nickel-iron and nickel-cobalt may be used. As the shape of the metal substrate, the shape of the metal substrate described in the first embodiment can be used.

このような製造方法によっても、金属基材の表面に触媒金属であるMg2Niを溶融一体化して被覆してなる触媒体を得ることができる。   Also by such a manufacturing method, a catalyst body can be obtained in which the surface of the metal substrate is coated by melting and integrating the catalyst metal Mg2Ni.

このような実施の形態により製造された触媒体によれば、例えば板状の鉄からなる金属基材の表面にニッケルが溶融一体化し、そしてこのニッケルとマグネシウムとが合金化されているので、金属基材からMg2Niが剥離するおそれがなく、水素錯化合物との触媒反応が長時間安定する。また、Mg2Niの共晶温度506℃以上で加熱することによりMg2Niからなる触媒体が得られるので、第1の実施の形態と同様の効果を得ることができる。   According to the catalyst body manufactured by such an embodiment, for example, nickel is melted and integrated on the surface of a metal substrate made of plate-like iron, and the nickel and magnesium are alloyed. There is no possibility that Mg2Ni peels from the substrate, and the catalytic reaction with the hydrogen complex compound is stable for a long time. Further, since the catalyst body made of Mg2Ni can be obtained by heating at a Mg2Ni eutectic temperature of 506 ° C. or higher, the same effects as those of the first embodiment can be obtained.

また、この実施の形態の製造方法の他の例として、先ず、例えば板状の鉄からなる金属基材の表面にマグネシウム(Mg)粉末を接着剤である例えばメチルセルロースと共に金属基材の表面に塗布して被覆し、加熱炉においてマグネシウムの融点の温度まで加熱して、金属基材にマグネシウムを溶融一体化し、マグネシウムで被覆された金属基材を得る。続いて、この金属基材の表面に例えば平均粒径25μm以下のニッケル(Ni)粉末を接着剤である例えばメチルセルロースと共にマグネシウムの表面に塗布して被覆し、加熱炉においてMg2Niの共晶温度506℃以上に加熱して、Mg2Ni合金を得る。このようにしても、金属基材の表面に上述と同様なMg2Niを形成させることができる。   As another example of the manufacturing method of this embodiment, first, magnesium (Mg) powder is applied to the surface of a metal substrate together with, for example, methylcellulose as an adhesive, on the surface of a metal substrate made of, for example, plate-like iron. Then, it is heated to the temperature of the melting point of magnesium in a heating furnace, and the magnesium is melted and integrated with the metal substrate to obtain a metal substrate coated with magnesium. Subsequently, for example, nickel (Ni) powder having an average particle size of 25 μm or less is coated on the surface of the metal substrate and coated on the surface of magnesium together with, for example, methylcellulose as an adhesive, and the eutectic temperature of Mg 2 Ni is 506 ° C. in a heating furnace. Heat to the above to obtain an Mg2Ni alloy. Even in this case, Mg2Ni similar to the above can be formed on the surface of the metal substrate.

(第3の実施の形態)
本発明に係る触媒体の製造方法の第3の実施の形態について説明する。例えば板状の鉄からなる金属基材の表面に平均粒径25μm以下のニッケル粉末と平均粒径25μm以下のマグネシウム粉末とが1:2のモル比で混合されている混合粉を接着剤である例えばメチルセルロースと共に金属基材の表面に塗布して被覆し、加熱炉においてMg2Niの共晶温度506℃以上に加熱して、金属基材と混合粉とを融合し、合金化(溶融一体化)させる。ニッケル粉末とマグネシウム粉末との混合比が1:2のモル比から外れてニッケル又はマグネシウムのいずれかが過剰状態になると、ニッケル又はマグネシウムの単金属が生成したMg2Niに多数混在することになるため、結果的にMg2Ni触媒の触媒活性が劣る懸念があるため、前記混合比はできるだけ1:2に近づけることが好ましい。なお、金属基材としては、第2の実施の形態で述べた金属基材を用いることができ、金属基材の形状としては、第1の実施の形態で述べた金属基材の形状を用いることができる。
(Third embodiment)
A third embodiment of the method for producing a catalyst body according to the present invention will be described. For example, a mixed powder in which nickel powder having an average particle diameter of 25 μm or less and magnesium powder having an average particle diameter of 25 μm or less are mixed at a molar ratio of 1: 2 on the surface of a metal substrate made of plate-like iron is an adhesive. For example, it is coated and coated on the surface of a metal substrate together with methylcellulose, and heated to a Mg2Ni eutectic temperature of 506 ° C. or higher in a heating furnace to fuse the metal substrate and the mixed powder to form an alloy (melt integration). . When the mixing ratio of nickel powder and magnesium powder deviates from the molar ratio of 1: 2 and either nickel or magnesium is in an excess state, a large number of nickel or magnesium single metal is mixed in the produced Mg2Ni. As a result, there is a concern that the catalytic activity of the Mg2Ni catalyst is inferior, so that the mixing ratio is preferably as close to 1: 2 as possible. The metal substrate described in the second embodiment can be used as the metal substrate, and the shape of the metal substrate described in the first embodiment is used as the shape of the metal substrate. be able to.

このような製造方法によっても、金属基材の表面に触媒金属であるMg2Niを溶融一体化して被覆してなる触媒体を得ることができ、先の実施の形態と同様の効果が得られる。   Also by such a manufacturing method, the catalyst body formed by melting and coating the catalyst metal Mg2Ni on the surface of the metal base material can be obtained, and the same effect as the previous embodiment can be obtained.

(触媒体の適用例)
次に、上述のようにして製造された触媒体を用いた水素発生装置の一例について図1を用いて簡単に説明する。図1は、水素発生装置の一例を示す平面図であって、この図において、水素発生剤は、原料貯蔵部1から調整バルブ2及び原料供給管3を経て、水素発生部4の中の配置された本発明の例えば板状の触媒体5の上端部51に供給される。ここで供給する水素発生剤としては、テトラヒドロホウ酸塩などの金属水素錯化合物を溶解したアルカリ水溶液が用いられる。例えば金属水素錯化合物である水素化ホウ素ナトリウム(NaBH4)をアルカリ水溶液である水酸化ナトリウム(NaOH)水溶液に溶解したものが用いられる。この水素発生剤は通常ではアルカリ中で水素化ホウ素ナトリウムの性状が安定しているため水素ガスは発生せず、前記触媒体5に接触すると下記の(1)式に示すような化学反応を起こして水素ガスが発生する。
(Application example of catalyst body)
Next, an example of a hydrogen generator using the catalyst body manufactured as described above will be briefly described with reference to FIG. FIG. 1 is a plan view showing an example of a hydrogen generator. In this figure, the hydrogen generating agent is disposed in the hydrogen generating section 4 from the raw material storage section 1 through the regulating valve 2 and the raw material supply pipe 3. For example, it is supplied to the upper end portion 51 of the plate-like catalyst body 5 of the present invention. As the hydrogen generator supplied here, an alkaline aqueous solution in which a metal hydrogen complex compound such as tetrahydroborate is dissolved is used. For example, a solution obtained by dissolving sodium borohydride (NaBH4), which is a metal hydride complex compound, in an aqueous solution of sodium hydroxide (NaOH), which is an alkaline aqueous solution, is used. This hydrogen generating agent normally does not generate hydrogen gas because the properties of sodium borohydride are stable in an alkali. When this hydrogen generating agent comes into contact with the catalyst body 5, it causes a chemical reaction as shown in the following formula (1). Hydrogen gas is generated.

NaBH4+2H2O→NaBO2+4H2……(1)
供給された水素発生剤は、触媒体5の両面に沿って流展し、薄膜を形成しながら流下し、触媒体5の下端部52に達し、この間に金属水素錯化合物は上記の(1)式に示した加水分解反応を行い、水素ガスを発生し、この水素ガスは水素ガス取出口6から外部に取り出される。また、金属水素錯化合物は、この間に酸化されて酸化物に変化し、この酸化物を含んだアルカリ水溶液は回収部7に捕集される。図中8は、原料貯蔵部1と水素発生部4とを連結するためのフランジであり、9は原料供給管3の支持用ロッド、91はその吊り具である。
NaBH4 + 2H2O → NaBO2 + 4H2 (1)
The supplied hydrogen generating agent flows along both surfaces of the catalyst body 5 and flows down while forming a thin film, and reaches the lower end portion 52 of the catalyst body 5, during which the metal hydrogen complex compound (1) The hydrolysis reaction shown in the equation is performed to generate hydrogen gas, and this hydrogen gas is taken out from the hydrogen gas outlet 6. In addition, the metal hydride complex is oxidized during this period to be converted into an oxide, and the alkaline aqueous solution containing the oxide is collected in the recovery unit 7. In the figure, 8 is a flange for connecting the raw material storage unit 1 and the hydrogen generation unit 4, 9 is a support rod for the raw material supply pipe 3, and 91 is a hanger.

図2は、原料供給管3と板状の触媒体5との接触部分を示す部分側面図であり、支持用ロッド9に吊り具91を介して支持された原料供給管3の先端部の両側壁の間に触媒体5の上部が若干の隙間を保って挿入され、水素発生剤は、この隙間を通って触媒体5の両表面に流下するようになっている。   FIG. 2 is a partial side view showing a contact portion between the raw material supply pipe 3 and the plate-like catalyst body 5, and both sides of the front end portion of the raw material supply pipe 3 supported by the support rod 9 via the hanger 91. The upper part of the catalyst body 5 is inserted between the walls with a slight gap, and the hydrogen generating agent flows down to both surfaces of the catalyst body 5 through the gap.

前記触媒体5は、既述のように大きな表面積を確保することができるので、水素発生速度が大きくなると共に触媒金属の剥離及び脱落が実質起こり得ないことから触媒活性が低下することもなく、連続的な水素発生を安定に行うことができる。   Since the catalyst body 5 can secure a large surface area as described above, the hydrogen generation rate is increased and the catalytic metal cannot be peeled off or dropped off, so that the catalytic activity does not decrease. Continuous hydrogen generation can be performed stably.

また、本発明の触媒体を用いた他の様態としては、所定量の金属水素錯化合物のアルカリ水溶液が入った反応容器に例えば板状の触媒体を所定の間隔を空けて複数枚並べ立てて設置し、この反応容器内において、金属水素錯化合物が触媒体に接触することで加水分解反応により水素ガスを発生させてもよい。このように触媒体を所定の間隔を空けて設けることにより、触媒体と触媒体との間に発生した水素ガスが抜け易くなる。   Further, as another embodiment using the catalyst body of the present invention, for example, a plurality of plate-like catalyst bodies are arranged in a reaction container containing a predetermined amount of an alkali aqueous solution of a metal hydride complex and arranged at predetermined intervals. In this reaction vessel, hydrogen gas may be generated by a hydrolysis reaction by contacting the metal hydride complex compound with the catalyst body. By providing the catalyst bodies with a predetermined interval in this way, hydrogen gas generated between the catalyst bodies can be easily released.

次に本発明の効果を確認するために行った実験について述べる。   Next, an experiment conducted for confirming the effect of the present invention will be described.

A.実験例
〔触媒体の製造〕
(実施例1)
金属基材であるスポンジ状のニッケル発泡体(20mm×30mm)0.24gの表面に、粒径25μm以下のマグネシウム粉末0.19gを接着剤であるメチルセルロースと混合させて塗布し、被覆させた。このニッケル発泡体をアルゴン雰囲気下にある加熱炉において昇温速度5℃/minで660℃まで昇温させ、30分間の加熱により、表面のNiと被覆したMgとを合金化させた。その後、自然冷却して金属基材であるニッケル発泡体の表面にマグネシウムを溶融一体化して被覆し、Mg2Niからなる触媒体を得た。この触媒体を実施例1とする。
A. Experimental example [Manufacture of catalyst body]
Example 1
On a surface of 0.24 g of a sponge-like nickel foam (20 mm × 30 mm) as a metal substrate, 0.19 g of magnesium powder having a particle size of 25 μm or less was mixed with methylcellulose as an adhesive, and then coated. The nickel foam was heated to 660 ° C. at a temperature rising rate of 5 ° C./min in a heating furnace under an argon atmosphere, and the surface Ni and the coated Mg were alloyed by heating for 30 minutes. Thereafter, it was naturally cooled, and the surface of a nickel foam as a metal substrate was fused and coated with magnesium to obtain a catalyst body made of Mg2Ni. This catalyst body is referred to as Example 1.

(実施例2)
実施例1で得た触媒体を0.6重量%のHF液と0.06重量%のKF液との混合液に浸漬して、触媒体の表面をフッ化処理した。この触媒体を実施例2とする。
(Example 2)
The surface of the catalyst body was fluorinated by immersing the catalyst body obtained in Example 1 in a mixed solution of 0.6 wt% HF liquid and 0.06 wt% KF liquid. This catalyst body is referred to as Example 2.

(比較例1)
市販されている粒径25〜45μmのMg2Ni粉末2.0gを網状の袋の中に入れて触媒体とした。この触媒体を比較例1とする。
(Comparative Example 1)
A commercially available Mg2Ni powder having a particle size of 25 to 45 μm (2.0 g) was placed in a mesh bag to form a catalyst body. This catalyst body is referred to as Comparative Example 1.

(比較例2)
溶射基板:SUS304(45mm×75mm×2mm)の表面に、触媒金属である平均粒径75μm以下のMg2Niの溶射物を大気プラズマ方式により溶射温度600℃で、溶射基板に向けて溶射し、溶射基板の表面にMg2Niを被覆した触媒体を得た。この触媒体を比較例2とする。
(Comparative Example 2)
Thermal spray substrate: Sprayed on a surface of SUS304 (45 mm × 75 mm × 2 mm) with a spray metal of Mg 2 Ni having an average particle size of 75 μm or less, which is a catalyst metal, at a thermal spray temperature of 600 ° C. toward the thermal spray substrate by an atmospheric plasma method. A catalyst body with Mg2Ni coated on the surface was obtained. This catalyst body is referred to as Comparative Example 2.

〔X線回折法による結晶構造解析〕
図3の(a)は、X線回折法により市販されているMg2Ni粉末(比較例1)の結晶構造を解析したものであり、縦軸にX線計数値(cps)を取り、横軸に波数(cm−1)を取り、この結晶構造の特徴をスペクトルとして表した特性図である。図3の(b)は、X線回折法により触媒体1の結晶構造を解析したものであり、縦軸にX線計数値(cps)を取り、横軸に波数(cm−1)を取り、この結晶構造の特徴をスペクトルとして表した特性図である。図3の(b)では、2000cm−1、4000cm−1及び7200cm−1に図3の(a)と同じピークを確認することができる。従って実施例1において、Ni発泡体の表面にMg2Niが生成していることが理解できる。
[Crystal structure analysis by X-ray diffraction method]
(A) of FIG. 3 is an analysis of the crystal structure of Mg2Ni powder (Comparative Example 1) marketed by X-ray diffraction method. The X-ray count value (cps) is taken on the vertical axis, and the horizontal axis is taken. FIG. 5 is a characteristic diagram that takes a wave number (cm −1 ) and represents the characteristics of this crystal structure as a spectrum. FIG. 3 (b) is an analysis of the crystal structure of the catalyst body 1 by the X-ray diffraction method. The vertical axis represents the X-ray count value (cps), and the horizontal axis represents the wave number (cm −1 ). FIG. 5 is a characteristic diagram showing the characteristics of this crystal structure as a spectrum. In (b) of FIG. 3, 2000 cm -1, it is possible to confirm the same peaks as shown in FIG. 3 (a) to 4000 cm -1 and 7200cm -1. Therefore, in Example 1, it can be understood that Mg2Ni is generated on the surface of the Ni foam.

〔水素発生及び比表面積〕
10重量%の水酸化ナトリウム水溶液90mlに10gの水素化ホウ素ナトリウム(NaBH4)を溶解して調整した水溶液50mlが入った3つの反応容器において、実施例1、実施例2及び比較例1の触媒体を各反応容器内に夫々浸漬させて、反応温度80℃で発生する水素発生速度を測定した。また実施例1、実施例2及び比較例1の触媒体の1g当りの物質の表面積の和である比表面積を、X線回折法から得た回折ピーク半値幅からScherrerの式を用いて各粒径を計算することで求めた。図4にその結果を示す。図4から分かるように、比較例1よりも実施例1の方が水素発生の能力が大きいことが理解できる。これは比表面積の結果から推測すると、実施例1の触媒体は、ニッケル発泡体の表面にMgが合金化されてMg2Niが形成されているので、Mg2Ni表面に細かい多くの亀裂が生じて表面が粗れ、このことによってMg2Ni粉末を用いる場合よりも大きな表面積を確保することができ、その結果、水溶液と接触する反応面積が大きくなり水素発生の能力が大きくなったと推察される。
[Hydrogen generation and specific surface area]
In three reaction vessels containing 50 ml of an aqueous solution prepared by dissolving 10 g of sodium borohydride (NaBH4) in 90 ml of a 10% by weight aqueous sodium hydroxide solution, the catalyst bodies of Example 1, Example 2 and Comparative Example 1 Were immersed in each reaction vessel, and the hydrogen generation rate generated at a reaction temperature of 80 ° C. was measured. In addition, the specific surface area, which is the sum of the surface areas of the substances per gram of the catalyst bodies of Example 1, Example 2 and Comparative Example 1, was determined for each particle using the Scherrer equation from the half-value width of the diffraction peak obtained from the X-ray diffraction method. Obtained by calculating the diameter. FIG. 4 shows the result. As can be seen from FIG. 4, it can be understood that Example 1 has a larger hydrogen generation capability than Comparative Example 1. Presuming this from the results of the specific surface area, the catalyst body of Example 1 has Mg2Ni formed by alloying Mg on the surface of the nickel foam, and therefore the surface of the Mg2Ni surface has many fine cracks. As a result of roughening, a larger surface area can be secured than in the case of using Mg2Ni powder, and as a result, it is assumed that the reaction area in contact with the aqueous solution is increased and the capability of hydrogen generation is increased.

また、実施例2の水素発生速度の結果から、実施例1の触媒体をフッ化処理することで、さらに水素を発生させる能力を向上させることができる。これも実施例2の比表面積が大きくなっていることからフッ化処理することでMg2Niの表面がさらに粗れ、水溶液と接触する反応面積が大きくなり水素発生の能力がさらに大きくなったと推察される。また比較例2の触媒体を10重量%の水酸化ナトリウム水溶液90mlに10gの水素化ホウ素ナトリウム(NaBH4)を溶解して調整した水溶液50mlが入った反応容器内に浸漬して、水素発生によるMg2Niの剥離及び脱落を目視により観測した。この結果、触媒体を投入して直ぐに水素発生反応を示した。数十分後、溶射基板のエッジ部分がめくれ上がるように剥離し始め、当該反応容器を一晩放置した後再び観察すると、溶射基板のエッジ部分が剥離していることを確認した。しかし中心部分は全くはがれる様子はなかった。このことから溶射基板のエッジ部分では溶射被膜の付着力が低下しているのではないかと推測される。   Moreover, from the result of the hydrogen generation rate of Example 2, the ability to generate hydrogen can be further improved by fluorinating the catalyst body of Example 1. Since the specific surface area of Example 2 is also increased, it is surmised that the surface of Mg2Ni was further roughened by fluorination treatment, the reaction area in contact with the aqueous solution was increased, and the hydrogen generation capability was further increased. . Further, the catalyst body of Comparative Example 2 was immersed in a reaction vessel containing 50 ml of an aqueous solution prepared by dissolving 10 g of sodium borohydride (NaBH4) in 90 ml of a 10% by weight sodium hydroxide aqueous solution, and Mg2Ni produced by hydrogen generation. The exfoliation and drop-off were observed visually. As a result, a hydrogen generation reaction was shown immediately after the catalyst body was added. After several tens of minutes, peeling started so that the edge portion of the sprayed substrate turned up, and the reaction vessel was left to stand overnight and then observed again, and it was confirmed that the edge portion of the sprayed substrate was peeled off. However, the central part did not appear to peel off at all. From this, it is presumed that the adhesion of the thermal spray coating is reduced at the edge portion of the thermal spray substrate.

本発明に係る触媒体を実施するのに用いられる装置の一例を示す平面図である。It is a top view which shows an example of the apparatus used in order to implement the catalyst body which concerns on this invention. 図1の原料供給管と例えば板状の触媒体との接触部分を示す部分側面図である。It is a partial side view which shows the contact part of the raw material supply pipe | tube of FIG. 1, and a plate-shaped catalyst body. X線回折法により各触媒体の結晶構造を解析した特性図である。It is the characteristic view which analyzed the crystal structure of each catalyst body by the X ray diffraction method. 各触媒体の水素発生速度及び比表面積の結果を示した図である、It is a figure showing the results of hydrogen generation rate and specific surface area of each catalyst body,

符号の説明Explanation of symbols

1 原料貯蔵部
2 調節バルブ
3 原料供給管
4 水素発生部
5 触媒体
51 触媒体5の上端部
52 触媒体5の下端部
6 水素ガス取出口
7 回収部
8 フランジ
9 支持用ロッド
91 吊り具
DESCRIPTION OF SYMBOLS 1 Raw material storage part 2 Control valve 3 Raw material supply pipe 4 Hydrogen generating part 5 Catalytic body 51 Upper end part 52 of catalytic body 5 Lower end part 6 of catalytic body 5 Hydrogen gas outlet 7 Recovery part 8 Flange 9 Supporting rod 91 Hanging tool

Claims (10)

金属基材の表面に、ニッケル系合金を溶融一体化して被覆してなることを特徴とする触媒体。   A catalyst body, wherein a nickel base alloy is melt-integrated and coated on the surface of a metal substrate. 前記ニッケル系合金は、ニッケル系水素吸蔵合金であることを特徴とする請求項1記載の触媒体。   The catalyst body according to claim 1, wherein the nickel-based alloy is a nickel-based hydrogen storage alloy. 前記ニッケル系水素吸蔵合金は、マグネシウム−ニッケル系水素吸蔵合金であることを特徴とする請求項2記載の触媒体。   The catalyst body according to claim 2, wherein the nickel-based hydrogen storage alloy is a magnesium-nickel-based hydrogen storage alloy. 前記マグネシウム−ニッケル系水素吸蔵合金は、Mg2Niであることを特徴とする請求項3記載の触媒体。   The catalyst body according to claim 3, wherein the magnesium-nickel-based hydrogen storage alloy is Mg2Ni. 金属基材は、ニッケル基材であることを特徴とする請求項1ないし4のいずれか一に記載の触媒体。   The catalyst body according to any one of claims 1 to 4, wherein the metal substrate is a nickel substrate. ニッケル基材の表面にマグネシウムを被覆する工程と、
次いで、前記ニッケル基材をMg2Niの共晶温度以上に加熱する工程と、を備えたことを特徴とする触媒体の製造方法。
Coating the surface of the nickel base with magnesium;
And a step of heating the nickel substrate to a temperature equal to or higher than the eutectic temperature of Mg2Ni.
金属基材の表面に、ニッケルを溶融一体化して被覆する工程と、
次いで、前記金属基材を被覆しているニッケルの表面に、マグネシウムを被覆する工程と、
その後、Mg2Niの共晶温度以上に加熱する工程と、を備えたことを特徴とする触媒体の製造方法。
A step of melting and integrating nickel on the surface of the metal substrate; and
Next, a step of coating magnesium on the surface of nickel coating the metal substrate,
And a step of heating to a temperature equal to or higher than the eutectic temperature of Mg2Ni.
金属基材の表面に、マグネシウムとニッケルとを被覆する工程と、
次いで、Mg2Niの共晶温度以上に加熱する工程と、を備えたことを特徴とする触媒体の製造方法。
Coating the surface of the metal substrate with magnesium and nickel;
And a step of heating to a temperature equal to or higher than the eutectic temperature of Mg2Ni.
請求項1ないし5のいずれかに記載の触媒体を、金属水素錯化合物のアルカリ水溶液と接触させて水素ガスを発生させることを特徴とする水素発生方法。   A hydrogen generating method, wherein the catalyst body according to any one of claims 1 to 5 is brought into contact with an alkali aqueous solution of a metal hydrogen complex compound to generate hydrogen gas. 金属水素錯化合物は、テトラヒドロホウ酸塩であることを特徴とする請求項9記載の水素発生方法。
The method for generating hydrogen according to claim 9, wherein the metal hydride complex compound is tetrahydroborate.
JP2004182747A 2004-06-21 2004-06-21 Catalytic body, its manufacturing method and hydrogen generating method Pending JP2006000820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182747A JP2006000820A (en) 2004-06-21 2004-06-21 Catalytic body, its manufacturing method and hydrogen generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182747A JP2006000820A (en) 2004-06-21 2004-06-21 Catalytic body, its manufacturing method and hydrogen generating method

Publications (1)

Publication Number Publication Date
JP2006000820A true JP2006000820A (en) 2006-01-05

Family

ID=35769651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182747A Pending JP2006000820A (en) 2004-06-21 2004-06-21 Catalytic body, its manufacturing method and hydrogen generating method

Country Status (1)

Country Link
JP (1) JP2006000820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884692B2 (en) 2009-12-30 2014-11-11 Gwangju Institute Of Science And Technology Multi-band power amplifier
JP2021535056A (en) * 2018-04-17 2021-12-16 エレクトリック−グローバル・エナジー・ソリューションズ・リミテッド Replaceable modular device for hydrogen release

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884692B2 (en) 2009-12-30 2014-11-11 Gwangju Institute Of Science And Technology Multi-band power amplifier
JP2021535056A (en) * 2018-04-17 2021-12-16 エレクトリック−グローバル・エナジー・ソリューションズ・リミテッド Replaceable modular device for hydrogen release
JP7335323B2 (en) 2018-04-17 2023-08-29 エレクトリック-グローバル・エナジー・ソリューションズ・リミテッド Interchangeable modular device for hydrogen release

Similar Documents

Publication Publication Date Title
Wang et al. Core–shell-structured low-platinum electrocatalysts for fuel cell applications
Patel et al. Thin films of Co–B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions
Kim et al. Fabrication of porous Co–Ni–P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution
JP5377319B2 (en) Substrate coating method and coated product
AU2016227323B2 (en) A method for catalytically induced hydrolysis and recycling of metal borohydride solutions
US20100150826A1 (en) Microporous metals and methods for hydrogen generation from water split reaction
Guo et al. Promoting effect of W doped in electrodeposited Co–P catalysts for hydrogen generation from alkaline NaBH4 solution
JP2015513002A (en) Method for producing metal powder and powder compact, and powder and powder compact produced by the method
US9803283B1 (en) Method of electroless deposition of aluminum or aluminum alloy, an electroless plating composition, and an article including the same
Patel et al. Co–P–B catalyst thin films prepared by electroless and pulsed laser deposition for hydrogen generation by hydrolysis of alkaline sodium borohydride: A comparison
CA1208600A (en) Cathode produced by electric arc deposition of nickel and aluminum and leaching aluminum
Azarniya et al. High-temperature mechanisms of hydrogen evolution in Ni–P coated titanium hydride (TiH2) powder
CA2726859C (en) Method and system for producing electrocatalytic coatings and electrodes
CN111910166A (en) Corrosion-resistant metal porous material and preparation method and application thereof
JPS5844646B2 (en) methanation reactor
JP2006000820A (en) Catalytic body, its manufacturing method and hydrogen generating method
EP1274505A1 (en) Raney catalyst preparation by gas atomisation of molten alloy
CN102154635A (en) Preparation process of porous stainless steel load-type palladium or palladium alloy membrane
JP2019034256A (en) Catalyst for hydrogen production and method for producing the same, and hydrogen production device using the same
Roshan et al. The effect of the surface state on the hydrogen permeability and the catalytic activity of palladium alloy membranes
US20070209477A1 (en) Method for manufacturing alloy nano powders
JP2005205265A (en) Catalyst body, its production method, and hydrogen generation method
JPS581032A (en) Production of hydrogen absorbing metallic material
JP2009078227A (en) Catalyst element and its manufacturing method
Fakourihassanabadi et al. Fabrication of a Ti-based 3D porous transport layer for PEMWEs using ShockWave-induced spraying and cold spray