JP2005205265A - Catalyst body, its production method, and hydrogen generation method - Google Patents

Catalyst body, its production method, and hydrogen generation method Download PDF

Info

Publication number
JP2005205265A
JP2005205265A JP2004012271A JP2004012271A JP2005205265A JP 2005205265 A JP2005205265 A JP 2005205265A JP 2004012271 A JP2004012271 A JP 2004012271A JP 2004012271 A JP2004012271 A JP 2004012271A JP 2005205265 A JP2005205265 A JP 2005205265A
Authority
JP
Japan
Prior art keywords
metal
catalyst
catalyst body
hydrogen
eluted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004012271A
Other languages
Japanese (ja)
Inventor
Hinko Ryu
賓虹 劉
Shuho Ri
洲鵬 李
Seijiro Suda
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Materials & Energy Res Inst To
Materials and Energy Research Institute Tokyo MERIT Ltd
Original Assignee
Materials & Energy Res Inst To
Materials and Energy Research Institute Tokyo MERIT Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materials & Energy Res Inst To, Materials and Energy Research Institute Tokyo MERIT Ltd filed Critical Materials & Energy Res Inst To
Priority to JP2004012271A priority Critical patent/JP2005205265A/en
Publication of JP2005205265A publication Critical patent/JP2005205265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To make a generation speed of hydrogen faster by making a catalytic activity and a reaction surface area of a catalyst body coming into contact with a hydrogen generating agent larger when the hydrogen is generated by making the hydrogen generating agent contact with the catalyst body. <P>SOLUTION: The catalyst body in which a surface of a metal substrate itself is constituted as Raney type catalyst is obtained by alloying the metal substrate becoming a catalyst with an eluting metal, covering with it and then eluting the eluting metal. Alternatively, the catalyst body in which the surface of the metal substrate is integrated and covered with Raney type catalyst metal is obtained. The generation speed of hydrogen is increased, for example, by applying these catalyst bodies to a hydrogen generation device. Further, there is no fear that the catalyst metal is peeled off and generation of hydrogen is stabilized for a long period of time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば水素発生用として用いられるラネー型の触媒体、その製造方法及びこの触媒体を用いて水素を発生させる方法に関する。   The present invention relates to a Raney-type catalyst used for, for example, hydrogen generation, a method for producing the same, and a method for generating hydrogen using the catalyst.

テトラヒドロホウ酸塩などの金属水素錯化合物を溶解したアルカリ水溶液から、触媒金属を用いて水素を発生させる方法は一般的に知られている。例えば特許文献1には、ニッケル(Ni)、コバルト(Co)などの金属又はマグネシウム−ニッケル(Mg−Ni)系合金などの水素吸蔵合金或いはこれらのフッ素化処理物を触媒金属として用い、これらの粉末粒子を金属水素錯化合物を溶解したアルカリ水溶液に接触させて水素を発生させる方法が提案されている。   A method of generating hydrogen from an alkaline aqueous solution in which a metal hydrogen complex compound such as tetrahydroborate is dissolved using a catalytic metal is generally known. For example, Patent Document 1 uses metals such as nickel (Ni) and cobalt (Co), hydrogen storage alloys such as magnesium-nickel (Mg-Ni) alloys, or fluorinated products thereof as catalyst metals. There has been proposed a method of generating hydrogen by bringing powder particles into contact with an aqueous alkali solution in which a metal hydrogen complex compound is dissolved.

また工業的に水素を連続で発生させる装置内では、一般に金属基材に触媒金属を担持させた触媒体に金属水素錯化合物のアルカリ水溶液を通流させる方法が有用である。このように金属基材に触媒金属を担持させた触媒体は、例えば棒状、板状、円柱状、多孔質状、多孔質ブロック状、網状或いは発泡体状などの所定形状を有する支持体である金属基材例えばニッケルなどの表面に、触媒金属例えば白金などを充填、塗布、焼付け、吹付け、メッキ或いは溶射などの方法により被覆して製造される(例えば、特許文献2参照。)。   In an apparatus for continuously generating hydrogen industrially, it is generally useful to use an alkali aqueous solution of a metal-hydrogen complex compound through a catalyst body in which a catalytic metal is supported on a metal substrate. Thus, the catalyst body in which the catalyst metal is supported on the metal substrate is a support body having a predetermined shape such as a rod shape, a plate shape, a columnar shape, a porous shape, a porous block shape, a net shape or a foam shape. The surface of a metal substrate such as nickel is manufactured by filling a catalyst metal such as platinum with a method such as filling, coating, baking, spraying, plating, or thermal spraying (see, for example, Patent Document 2).

特開2001−19401(請求項2、4、5、段落009、0010、0012、0013)JP 2001-19401 (Claims 2, 4, 5, paragraphs 009, 0010, 0012, 0013) 特開2001−29702(請求項1、段落0009、0013、0017、0018、0024)JP 2001-29702 (Claim 1, paragraphs 0009, 0013, 0017, 0018, 0024)

しかしながら、特許文献2に記載されている触媒体は、支持体である金属基材に触媒金属を単に被覆させただけのものである。ところで水素の発生速度は金属水素錯化合物と接触する触媒金属の反応表面積で決まってくるが、金属基材に単に触媒金属を担持させただけのものでは表面積が小さいことから水素発生速度が小さいという課題がある。   However, the catalyst body described in Patent Document 2 is obtained by simply coating a metal base material as a support with a catalyst metal. By the way, the hydrogen generation rate is determined by the reaction surface area of the catalytic metal in contact with the metal hydride complex, but the hydrogen generation rate is low because the surface area is small if the catalyst metal is simply supported on the metal substrate. There are challenges.

また触媒体の表面では水素ガスの発生が極めて激しいため、金属基材からの触媒金属の剥離を避けられず、触媒活性が低下し、連続的な水素発生を安定に行うことができないという問題もある。   In addition, since the generation of hydrogen gas is extremely intense on the surface of the catalyst body, peeling of the catalyst metal from the metal substrate cannot be avoided, the catalytic activity is reduced, and continuous hydrogen generation cannot be performed stably. is there.

本発明はこのような事情に鑑みてなされたものであって、その目的は、表面積が大きく、例えば水素発生用の触媒として好適な触媒体を提供することにある。また他の目的は、物理的に安定している触媒体を提供することにある。更にまた他の目的は、このような触媒体を製造する好適な方法を提供することにある。また他の目的は、この触媒体が好適に用いられる水素発生方法を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a catalyst body having a large surface area and suitable as, for example, a catalyst for generating hydrogen. Another object is to provide a catalyst body that is physically stable. Still another object is to provide a suitable method for producing such a catalyst body. Another object is to provide a hydrogen generation method in which the catalyst body is suitably used.

本発明の触媒体は、触媒となり得る金属基材の表面をラネー型触媒として構成したことを特徴とする。また本発明の他の触媒体は、金属基材の表面にラネー型触媒金属を一体化して被覆してなることを特徴とする。またラネー型触媒である金属は、ニッケル、鉄、クロム、コバルト、銅、クロム、マンガン、銀及びニッケル系合金から選ばれたものである。他の発明における金属基材は、例えばニッケル、鉄、クロム、アルミニウム、チタン、ジルコニウム、マグネシウム及びこれらの金属のうちの二種以上の合金から選ばれる。ここで「ラネー型触媒金属」とは、溶出操作(展開法)により触媒金属がラネー化されて触媒層として多孔化或いはハニカム構造化している金属のことである。   The catalyst body of the present invention is characterized in that the surface of a metal substrate that can be a catalyst is configured as a Raney-type catalyst. Another catalyst body of the present invention is characterized in that a Raney-type catalyst metal is integrally coated on the surface of a metal substrate. The metal which is a Raney type catalyst is selected from nickel, iron, chromium, cobalt, copper, chromium, manganese, silver and a nickel-based alloy. The metal substrate in the other invention is selected from, for example, nickel, iron, chromium, aluminum, titanium, zirconium, magnesium, and an alloy of two or more of these metals. Here, the “Raney-type catalyst metal” refers to a metal that has been made Raney by elution operation (development method) to make the catalyst layer porous or have a honeycomb structure.

本発明の触媒体の製造方法は、触媒として有効な金属基材の表面にアルカリ又は酸の水溶液で溶出し得る溶出金属を被覆して合金化する工程と、その後、この金属基材をアルカリ又は酸の水溶液に接触させて、溶出金属を溶出させる工程と、を備えたことを特徴とする。
また本発明の触媒体の他の製造方法は、金属基材の表面に触媒として有効な金属を一体化して被覆する工程と、次いで金属基材を被覆している金属の表面にアルカリ又は酸の水溶液で溶出し得る溶出金属を被覆して合金化する工程と、その後、この金属基材をアルカリ又は酸の水溶液に接触させて、溶出金属を溶出させる工程と、を備えたことを特徴とする。
The method for producing a catalyst body according to the present invention comprises a step of coating a metal base that is effective as a catalyst with an elution metal that can be eluted with an alkali or acid aqueous solution, and then alloying the metal base. And a step of elution of the eluted metal by contacting with an acid aqueous solution.
Another method for producing the catalyst body of the present invention includes a step of integrally coating a metal effective on the surface of the metal substrate, and then an alkali or acid surface on the surface of the metal covering the metal substrate. A step of coating and alloying an eluting metal that can be eluted with an aqueous solution, and then a step of contacting the metal substrate with an aqueous solution of an alkali or acid to elute the eluted metal. .

更に本発明の触媒体の他の製造方法は、金属基材の表面に触媒として有効な金属とアルカリ又は酸の水溶液で溶出し得る溶出金属との合金を被覆して一体化する工程と、その後、この金属基材をアルカリ又は酸の水溶液に接触させて、溶出金属を溶出させる工程と、を備えたことを特徴とする。   Furthermore, another method for producing the catalyst body of the present invention includes a step of coating and integrating an alloy of a metal effective as a catalyst and an eluting metal that can be eluted with an alkali or acid aqueous solution on the surface of the metal substrate, and thereafter And a step of bringing the metal substrate into contact with an aqueous solution of an alkali or acid to elute the eluted metal.

また本発明の触媒体を例えば水素発生装置に適用して、金属水素錯化合物のアルカリ水溶液と接触させて水素ガスを発生させてもよい。この場合、金属水素錯化合物はテトラヒドロホウ酸塩が好ましい。   Further, the catalyst body of the present invention may be applied to, for example, a hydrogen generator, and contacted with an alkali aqueous solution of a metal hydride complex compound to generate hydrogen gas. In this case, the metal hydrogen complex is preferably tetrahydroborate.

本発明における触媒体によれば、金属基材の表面部分にラネー型触媒を形成しているため、高い触媒活性と大きな表面積を確保することができるので、高い効率で例えば水素発生剤と反応させることができる。また触媒体の形態の自由度が大きいことから適用箇所に応じた形態例えば触媒体の形状、大きさについて適宜作成することができ、そのため反応装置の設計の自由度も大きくなり、取り扱いも便利になるといった効果もある。そして金属基材そのものの表面をラネー型金属とした触媒体については、触媒金属の剥離が実質起こり得ず、触媒反応が長時間安定する。このためこの触媒体を水素発生装置に適用すれば、水素の発生速度が大きくなり、制御し易く、また連続的な水素発生を安定して行うことができる。   According to the catalyst body of the present invention, since the Raney-type catalyst is formed on the surface portion of the metal substrate, high catalytic activity and a large surface area can be ensured, so that it is reacted with, for example, a hydrogen generator with high efficiency. be able to. In addition, since the degree of freedom of the form of the catalyst body is large, it is possible to appropriately create the form according to the application location, for example, the shape and size of the catalyst body, and therefore the degree of freedom in designing the reactor is increased and the handling is convenient. It also has the effect of becoming. And about the catalyst body which used the surface of the metal base material itself as Raney type metal, peeling of a catalyst metal cannot occur substantially and a catalytic reaction is stabilized for a long time. For this reason, when this catalyst body is applied to a hydrogen generator, the hydrogen generation speed increases, it is easy to control, and continuous hydrogen generation can be performed stably.

(第1の実施の形態)
本発明に係る触媒体の製造方法の第1の実施の形態について説明する。先ず、触媒として有効な金属(以下、触媒金属という)からなる例えば板状の金属基材の表面にアルカリ又は酸の水溶液に溶出し得る金属(以下、溶出金属)を被覆して合金化する。この合金化する工程は、溶出金属の粉末を、必要により粘着剤である例えばメチルセルローズと共に金属基材の表面に塗布して被覆し、加熱炉において例えば溶出金属の溶融点の温度まで加熱して、金属基材と溶出金属とを融合し、合金化させる。この合金化工程は、溶出金属を金属基材に溶射する方法を採用してもよいし、或いは溶出金属をスパッタしてそのスパッタ粒子を触媒金属からなる金属基材の表面に沈着させるようにしてもよいし、又は溶出金属を蒸着例えばCVD(Chemical Vapor Deposition)法により蒸着するようにしてもよい。
(First embodiment)
1st Embodiment of the manufacturing method of the catalyst body which concerns on this invention is described. First, a surface of a metal substrate made of a metal effective as a catalyst (hereinafter referred to as catalyst metal), for example, is coated with a metal that can be eluted into an alkali or acid aqueous solution (hereinafter referred to as an eluted metal) to form an alloy. In this alloying step, the eluted metal powder is coated on the surface of the metal base material together with, for example, a pressure sensitive adhesive such as methyl cellulose, and heated to, for example, the melting point of the eluted metal in a heating furnace. The metal base material and the eluted metal are fused and alloyed. This alloying process may employ a method in which the eluted metal is sprayed onto the metal substrate, or the eluted metal is sputtered and the sputtered particles are deposited on the surface of the metal substrate made of the catalyst metal. Alternatively, the eluted metal may be deposited by vapor deposition such as CVD (Chemical Vapor Deposition).

前記触媒金属としては、例えばニッケル(Ni)、鉄(Fe)、コバルト(Co)、銅(Cu)、クロム(Cr)、マンガン(Mn)及び銀(Ag)などの金属或いはニッケル−鉄、ニッケル−銅、ニッケル−コバルト、鉄−コバルトなどのニッケル系合金を用いることができる。金属基材の形状としては、板状に限らず、棒状、ブロック状、円筒状、円柱状、円錐状、角柱状、角錐状及びロッド状の金属基材を用いてもよいし、或いは多孔質体をこれら形状に成形したものを用いてもよい。また前記溶出金属としては、例えばアルミニウム(Al)、シリコン(Si)、マグネシウム(Mg)及び亜鉛(Zn)などを挙げることができるが、一般にアルミニウムが用いられる。   Examples of the catalyst metal include metals such as nickel (Ni), iron (Fe), cobalt (Co), copper (Cu), chromium (Cr), manganese (Mn), and silver (Ag), or nickel-iron, nickel. -Nickel alloys, such as copper, nickel-cobalt, and iron-cobalt, can be used. The shape of the metal substrate is not limited to a plate shape, and may be a rod-like, block-like, cylindrical, columnar, conical, prismatic, pyramidal or rod-like metal substrate, or porous. You may use what shape | molded the body in these shapes. Examples of the eluting metal include aluminum (Al), silicon (Si), magnesium (Mg), and zinc (Zn), and aluminum is generally used.

このような触媒金属からなる金属基材と溶出金属との合金における組成は、各金属の種類により異なるが、一般に触媒金属が50重量%以下、溶出金属が50重量%以上の組成比が好ましい。特に触媒金属は、20〜50重量%に調整して用いるとよい。上述した触媒金属からなる金属基材に溶出金属を合金化する工程では、例えば触媒金属であるニッケルに溶出金属であるアルミニウムが合金化されることになる。   The composition of the alloy of the metal substrate made of such a catalyst metal and the eluted metal varies depending on the type of each metal, but generally the composition ratio is preferably 50% by weight or less for the catalyst metal and 50% by weight or more for the eluted metal. In particular, the catalyst metal is preferably adjusted to 20 to 50% by weight. In the step of alloying the eluted metal with the metal base material made of the catalyst metal described above, for example, aluminum as the eluted metal is alloyed with nickel as the catalyst metal.

続いてこの合金化した金属基材をアルカリ又は酸の水溶液からなる溶出剤に接触例えば浸漬させて、溶出金属を溶出させる。この溶出剤はアルカリ又は酸の水溶液が溶出金属の含有量に応じて用いられるが、一般に5〜40重量%の水酸化ナトリウム(NaOH)水溶液が理論的必要量より過剰に用いられる。このような溶出操作(展開法)を行うと、触媒金属からなる金属基材の表面から溶出金属だけが抜け落ちて細孔が多数形成される。このようにして触媒となり得る金属基材の表面に多数の細孔が形成された触媒金属(ラネー型触媒金属)として構成した触媒体を得ることができる。   Subsequently, the alloyed metal base material is contacted, for example, immersed in an eluent composed of an alkali or acid aqueous solution to elute the eluted metal. As the eluent, an aqueous solution of an alkali or an acid is used depending on the content of the eluted metal, but generally 5 to 40% by weight of an aqueous solution of sodium hydroxide (NaOH) is used in excess of the theoretical amount. When such an elution operation (development method) is performed, only the eluted metal is removed from the surface of the metal substrate made of the catalyst metal, and a large number of pores are formed. In this way, a catalyst body configured as a catalyst metal (Raney-type catalyst metal) in which a large number of pores are formed on the surface of a metal substrate that can be a catalyst can be obtained.

また展開処理するためのアルカリ水溶液の温度及び金属基材の浸漬時間は合金の組成やアルカリ水溶液の濃度によって決定されるが、一般にアルカリ水溶液の温度は室温〜120℃であり、浸漬時間は1〜3時間が好ましい。溶出操作が終わった後は、リトマス中性まで金属基材の表面に形成した合金を水洗いして、空気に触れないように保存することが望ましい。   Further, the temperature of the alkaline aqueous solution and the immersion time of the metal substrate for the development treatment are determined by the composition of the alloy and the concentration of the alkaline aqueous solution, but the temperature of the alkaline aqueous solution is generally room temperature to 120 ° C., and the immersion time is 1 to 3 hours is preferred. After the elution operation is completed, it is desirable to wash the alloy formed on the surface of the metal substrate up to litmus neutrality and store it so as not to be exposed to air.

このように触媒金属からなる金属基材の表面がラネー化されて触媒層として多孔化或いはハニカム構造化することで大きな表面積を確保することができる。よってこのような触媒体を用いることで例えば水素発生剤と接触する反応表面積が大きくなるので、高い効率で金属水素錯化合物と反応させることができ、水素をより速く発生させることができる。   Thus, a large surface area can be ensured by making the surface of the metal substrate made of the catalyst metal Raney and making the catalyst layer porous or having a honeycomb structure. Therefore, by using such a catalyst body, for example, the reaction surface area in contact with the hydrogen generator is increased, so that it can be reacted with the metal hydrogen complex compound with high efficiency, and hydrogen can be generated faster.

またこの触媒体を例えば後述する水素発生装置に適用した場合、この触媒体は触媒金属である金属基材そのものの表面をラネー化しているので、触媒金属の剥離が実質起こり得ないことから触媒活性が低下することもなく、連続的な水素発生を安定に行うことができる。更にまた粒状全体をラネー化した触媒に比べて触媒体の形態の自由度が大きいことか適用箇所に応じた形態例えば触媒体の形状、大きさについて適宜作成することができ、そのため反応装置の設計の自由度も大きくなり、取り扱いも便利になるといった効果もある。   In addition, when this catalyst body is applied to, for example, a hydrogen generator, which will be described later, since this catalyst body has a Raney surface on the surface of the metal base material, which is a catalyst metal, the catalyst metal cannot be peeled off. Therefore, continuous hydrogen generation can be stably performed without lowering. Furthermore, the degree of freedom of the form of the catalyst body is greater than that of the catalyst in which the entire granular material is Raney, or the form according to the application location, for example, the shape and size of the catalyst body can be appropriately created. There is an effect that the degree of freedom increases and the handling becomes convenient.

またこの実施の形態の製造方法の他の例として、溶融した溶出金属が入った坩堝の中に上述の触媒金属からなる金属基材を短時間で浸漬させ、金属基材の表面に溶出金属の溶融物を接触させて融合し、金属基材の表面だけ合金化させた後、同様にして溶出金属を溶出させることで、上述と同様な触媒体を得ることができる。この触媒体の製造方法において、例えば溶出金属であるアルミニウムを溶融した坩堝の中にニッケル基材を浸漬させると、発熱のため温度が上昇して容易に金属基材と溶出金属との合金化を調整することができるといった利点がある。
(第2の実施の形態)
本発明に係る触媒体の製造方法の第2の実施の形態について説明する。先ず、
例えば板状の金属基材の表面に第1の実施の形態で述べた触媒金属を被覆し、加熱炉において所定の温度に加熱して、金属基材と触媒金属とを融合し、一体化させる。ここで用いられる金属基材は、上述した触媒金属と融合、一体化するものであればよく、上記した触媒金属そのものの他に、例えば鉄(Fe)、ニッケル(Ni)、クロム(Cr)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)及びマグネシウム(Mg)、或いはそれらの合金などから選択して用いられる。
As another example of the manufacturing method of this embodiment, the metal base material made of the above-mentioned catalyst metal is immersed in a crucible containing molten elution metal in a short time, and the elution metal is immersed on the surface of the metal base material. After the melt is brought into contact and fused, only the surface of the metal substrate is alloyed, and then the eluted metal is eluted in the same manner, whereby a catalyst body similar to the above can be obtained. In this method of manufacturing a catalyst body, for example, when a nickel base material is immersed in a crucible in which aluminum as an elution metal is melted, the temperature rises due to heat generation, and the metal base material and the elution metal are easily alloyed. There is an advantage that it can be adjusted.
(Second Embodiment)
A second embodiment of the method for producing a catalyst body according to the present invention will be described. First,
For example, the catalyst metal described in the first embodiment is coated on the surface of a plate-shaped metal substrate, and heated to a predetermined temperature in a heating furnace to fuse and integrate the metal substrate and the catalyst metal. . The metal substrate used here may be any material that can be fused and integrated with the catalyst metal described above. In addition to the catalyst metal itself, for example, iron (Fe), nickel (Ni), chromium (Cr), Aluminum (Al), titanium (Ti), zirconium (Zr), magnesium (Mg), or an alloy thereof is used.

続いてこの金属基材に第1の実施の形態で述べた溶出金属を被覆し、加熱炉において所定の温度に加熱して、金属基材を被覆している触媒金属の表面に溶出金属を融合し、合金化する。このような構造の一例としては、金属基材である鉄板の表面を触媒金属であるニッケルで被覆し、このニッケルと溶出金属であるアルミニウムとを合金化したものを上げることができる。そしてこの金属基材をアルカリ又は酸の水溶液に接触例えば浸漬させて、溶出金属を溶出させる。このような製造方法によれば金属基材の表面にラネー型触媒金属を一体化して被覆してなる触媒体を得ることができ、金属基材の表面がラネー化しているので大きな表面積を確保することができる。そして加熱によって金属基材と触媒金属との接合界面が融合、一体化するので、金属基材の表面に触媒金属が強固に担持しているので、例えば水素発生触媒として用いても触媒金属が剥離するおそれがなく、第1の実施の形態で得た触媒体と同等の効果がある。   Subsequently, this metal substrate is coated with the eluted metal described in the first embodiment, heated to a predetermined temperature in a heating furnace, and the eluted metal is fused to the surface of the catalytic metal covering the metal substrate. And alloyed. As an example of such a structure, the surface of an iron plate as a metal substrate is coated with nickel as a catalyst metal, and an alloy obtained by alloying this nickel with aluminum as an elution metal can be raised. Then, the metal substrate is contacted, for example, immersed in an aqueous solution of an alkali or acid to elute the eluted metal. According to such a manufacturing method, it is possible to obtain a catalyst body formed by integrally coating the surface of the metal substrate with Raney-type catalyst metal, and the surface of the metal substrate is made Raney, so that a large surface area is secured. be able to. And since the joint interface between the metal substrate and the catalyst metal is fused and integrated by heating, the catalyst metal is firmly supported on the surface of the metal substrate. There is no fear of this, and there is an effect equivalent to that of the catalyst body obtained in the first embodiment.

またこの実施の形態に係る触媒体の製造方法の他の例として、溶融した溶出金属が入った坩堝の中に、金属基材に触媒金属を被覆したものを浸漬させ、前記触媒金属の表面に溶出金属の溶融物を接触させて融合し、合金化させた後、同様にして溶出金属を溶出させてもよい。   Further, as another example of the method for producing a catalyst body according to this embodiment, a metal base coated with a catalyst metal is immersed in a crucible containing molten elution metal, and the surface of the catalyst metal is immersed in the crucible. The melted metal of the eluted metal may be brought into contact with each other, fused and alloyed, and then the eluted metal may be eluted in the same manner.

金属基材と触媒金属とを一体化させる方法としては、スパッタリング及びCVD法でもよく、触媒金属に溶出金属を合金化させる方法は、既述のように溶射法等を用いてもよい。
(第3の実施の形態)
本発明に係る触媒体の製造方法の第3の実施の形態について説明する。先ず、第1の実施の形態で述べた触媒金属及び溶出金属の粉末体を例えば容器の中に所定の量を入れて混合し、この混合物を例えば板状の第2の実施の形態で述べた金属基材に被覆し、加熱炉において所定の温度で加熱する。加熱によってこの金属基材の表面に触媒金属と溶出金属とが合金化され、また金属基材と触媒金属とが一体化される。そしてこの金属基材をアルカリ又は酸の水溶液に接触例えば浸漬させて、溶出金属を溶出させる。このような製造方法によれば第2の実施の形態と同様の触媒体を得ることができ、また第1の実施の形態で得た触媒体と同等の効果がある。
As a method for integrating the metal substrate and the catalyst metal, sputtering and CVD methods may be used, and as a method for alloying the eluted metal with the catalyst metal, a spraying method or the like may be used as described above.
(Third embodiment)
A third embodiment of the method for producing a catalyst body according to the present invention will be described. First, the catalyst metal and the eluted metal powder described in the first embodiment are mixed in a predetermined amount in, for example, a container, and this mixture is described in the plate-like second embodiment, for example. A metal base material is coated and heated at a predetermined temperature in a heating furnace. By heating, the catalyst metal and the eluted metal are alloyed on the surface of the metal substrate, and the metal substrate and the catalyst metal are integrated. Then, the metal substrate is contacted, for example, immersed in an aqueous solution of an alkali or acid to elute the eluted metal. According to such a manufacturing method, a catalyst body similar to that of the second embodiment can be obtained, and an effect equivalent to that of the catalyst body obtained in the first embodiment can be obtained.

また本発明に係る触媒体の他の製造方法として、溶融した触媒金属と溶出金属とが入った坩堝の中に金属基材を浸漬させ、金属基材の表面に触媒金属と溶出金属との溶融物を接触させて融合し、金属基材と触媒金属とを合金化させた後、同様にして溶出金属を溶出させてもよい。
(触媒体の適用例)
次に本発明の第1、第2及び第3の実施の形態で述べた触媒体おいて例えば第1の実施の形態で述べた触媒体を用いた水素発生装置の一例について図1を用いて簡単に説明する。図1は、水素発生装置の一例の平面図であって、この図において、水素発生剤は原料貯蔵部1から調整バルブ2及び原料供給管3を経て、水素発生部4の中に配置された本発明の例えば板状の触媒体5の上端部51に供給される。ここで供給する水素発生剤としては、テトラヒドロホウ酸塩などの金属水素錯化合物を溶解したアルカリ水溶液が用いられる。例えば金属水素錯化合物である水素化ホウ素ナトリウム(NaBH4)をアルカリ水溶液である水酸化ナトリウム(NaOH)水溶液に溶解したものが用いられる。この水素発生剤は通常ではアルカリ中で水素化ホウ素ナトリウムの性状が安定しているため水素ガスは発生せず、前記触媒体5に接触すると下記(1)式に示すような化学反応を起こして水素ガスが発生する。
As another method for producing the catalyst body according to the present invention, the metal base material is immersed in a crucible containing the molten catalyst metal and the eluted metal, and the catalyst metal and the eluted metal are melted on the surface of the metal base material. After the objects are brought into contact with each other and fused, and the metal substrate and the catalyst metal are alloyed, the eluted metal may be eluted in the same manner.
(Application example of catalyst body)
Next, an example of a hydrogen generator using the catalyst body described in the first embodiment in the catalyst body described in the first, second, and third embodiments of the present invention will be described with reference to FIG. Briefly described. FIG. 1 is a plan view of an example of a hydrogen generator. In this figure, a hydrogen generating agent is disposed in a hydrogen generating unit 4 from a raw material storage unit 1 through a regulating valve 2 and a raw material supply pipe 3. For example, it is supplied to the upper end portion 51 of the plate-like catalyst body 5 of the present invention. As the hydrogen generator supplied here, an alkaline aqueous solution in which a metal hydrogen complex compound such as tetrahydroborate is dissolved is used. For example, a solution obtained by dissolving sodium borohydride (NaBH4), which is a metal hydride complex compound, in an aqueous solution of sodium hydroxide (NaOH), which is an alkaline aqueous solution, is used. This hydrogen generating agent normally does not generate hydrogen gas because the properties of sodium borohydride are stable in an alkali, and when it comes into contact with the catalyst body 5, it causes a chemical reaction as shown in the following formula (1). Hydrogen gas is generated.

NaBH4+2H2O→NaBO2+4H2……(1)
供給された水素発生剤は、触媒体5の両面に沿って流展し、薄膜を形成しながら流下し、触媒体5の下端部52に達し、この間に金属水素錯化合物は上記(1)式に示した加水分解反応を行い、水素ガスを発生し、この水素ガスは水素ガス取出口6から外部に取り出される。また金属水素錯化合物はこの間に酸化されて酸化物に変化し、この酸化物を含んだアルカリ水溶液は回収部7に捕集される。図中8は原料貯蔵部1と水素発生部4とを連結するためのフランジであり、9は原料供給管3の支持用ロッド、91はその吊り具である。
NaBH4 + 2H2O → NaBO2 + 4H2 (1)
The supplied hydrogen generator flows along both surfaces of the catalyst body 5 and flows down while forming a thin film, and reaches the lower end portion 52 of the catalyst body 5, during which the metal hydrogen complex compound is expressed by the above formula (1). The hydrogenation reaction shown in FIG. 5 is performed to generate hydrogen gas, which is taken out from the hydrogen gas outlet 6 to the outside. In addition, the metal hydride complex is oxidized during this period to be converted into an oxide, and the aqueous alkali solution containing the oxide is collected in the recovery unit 7. In the figure, 8 is a flange for connecting the raw material storage unit 1 and the hydrogen generation unit 4, 9 is a support rod for the raw material supply pipe 3, and 91 is a hanger.

図2は、原料供給管3と板状の触媒体5との接触部分を示す部分側面図であり、支持用ロッド9に吊り具91を介して支持された原料供給管3の先端部の両側壁の間に触媒体5の上部が若干の隙間を保って挿入され、水素発生剤は、この隙間を通って触媒体5の両表面に流下するようになっている。   FIG. 2 is a partial side view showing a contact portion between the raw material supply pipe 3 and the plate-like catalyst body 5, and both sides of the front end portion of the raw material supply pipe 3 supported by the support rod 9 via the hanger 91. The upper part of the catalyst body 5 is inserted between the walls with a slight gap, and the hydrogen generating agent flows down to both surfaces of the catalyst body 5 through the gap.

前記触媒体5は、溶出操作(展開法)によって金属基材の表面がラネー化されているので、上述の水素発生装置に適用することで金属水素錯化合物と接触する反応表面積が大きくなり、後述の実施例に示すように水素ガスの発生量が多くなると共に触媒金属の剥離が実質起こり得ないことから触媒活性が低下することもなく、連続的な水素発生を安定に行うことができる。   Since the surface of the metal substrate is made Raney by the elution operation (development method), the catalytic body 5 has a large reaction surface area in contact with the metal hydride complex when applied to the hydrogen generator described above. As shown in this example, the amount of hydrogen gas generated is increased and the catalytic metal cannot be peeled off substantially, so that the catalytic activity does not decrease, and continuous hydrogen generation can be performed stably.

なお本発明の第2及び第3の実施の形態で述べた触媒体を用いても、同様の効果が得られる。   The same effect can be obtained even if the catalyst bodies described in the second and third embodiments of the present invention are used.

また本発明の触媒体を用いた他の態様としては、所定量の金属水素錯化合物のアルカリ水溶液が入った反応容器に例えば板状の触媒体を所定の間隔を空けて複数枚並べ立てて設置し、この反応容器内において金属水素錯化合物が触媒体に接触することで加水分解反応によりH2ガスを発生させてもよい。このように触媒体を所定の間隔を空けて設けることにより、触媒体と触媒体との間に発生したH2ガスが抜け易くなる。   Further, as another embodiment using the catalyst body of the present invention, for example, a plurality of plate-like catalyst bodies are arranged side by side with a predetermined interval in a reaction vessel containing a predetermined amount of an alkali aqueous solution of a metal hydride complex compound. In the reaction vessel, the metal hydride complex compound may contact the catalyst body to generate H2 gas by a hydrolysis reaction. By providing the catalyst bodies with a predetermined interval in this way, the H2 gas generated between the catalyst bodies can be easily released.

次に本発明の効果を確認するために行った実験について述べる。
A.実験例1
(触媒体の製造)
金属基材であるNi板(20×40mm、厚さ0.2mm)の表面に、溶出金属であるアルミニウム粉末を粘着剤であるメチルセルローズと混合させて塗布し、被覆させた。ここで塗布するアルミニウム粉末の量は、92mg、201mg、278mg、292mg、322mg、377mg、415mg、499mgの8通りに設定し、8つの試料を得た。次いで、各Ni板を加熱炉において温度660〜680℃まで昇温させ、5分間の加熱により、表面のNiと被覆したAlとを合金化させた。その後、加熱炉から取出したNi板について、表面に合金化しなかったAlを取除いた後、このNi板を20重量%の水酸化ナトリウム水溶液に浸漬し、合金化したAlを溶出して、Ni基板の表面をラネー化させた触媒体を得た。Ni板の表面に塗布させた各8種のアルミニウムの粉末(92mg〜499mg)に対応する触媒体を実施例1〜実施例8とする。
(水素発生)
10重量%の水酸化ナトリウム水溶液100mlに5.0gの水素化ホウ素ナトリウム(NaBH4)を溶解して調製した水溶液50mlに、実施例1〜実施例8の触媒体を各2枚浸漬させて、反応温度30℃で発生する水素の量を測定した。
(結果及び考察)
図3は、実施例1〜8の各触媒体について、水素発生量の経時変化を示し、縦軸は水素発生量V〔L〕を取り、横軸は時間T〔min〕を取った特性図である。実施例1〜実施例8は図3中のA1〜A8に夫々対応する。図3から分かるように溶出金属であるAl量を増やすにつれて水素の発生速度が増加するということが理解できる。また図3中のA10は理論水素発生量である。
Next, an experiment conducted for confirming the effect of the present invention will be described.
A. Experimental example 1
(Manufacture of catalyst body)
On the surface of a Ni plate (20 × 40 mm, thickness 0.2 mm) as a metal substrate, aluminum powder as an eluting metal was mixed with methyl cellulose as an adhesive and applied and coated. The amount of the aluminum powder applied here was set to eight types of 92 mg, 201 mg, 278 mg, 292 mg, 322 mg, 377 mg, 415 mg, and 499 mg to obtain eight samples. Next, each Ni plate was heated to a temperature of 660 to 680 ° C. in a heating furnace, and the surface Ni and the coated Al were alloyed by heating for 5 minutes. Then, after removing Al that was not alloyed on the surface of the Ni plate taken out from the heating furnace, this Ni plate was immersed in a 20 wt% aqueous sodium hydroxide solution to elute the alloyed Al, and Ni A catalyst body in which the surface of the substrate was made Raney was obtained. The catalyst bodies corresponding to each of the 8 types of aluminum powder (92 mg to 499 mg) applied to the surface of the Ni plate are referred to as Examples 1 to 8.
(Hydrogen generation)
Two catalyst bodies of Examples 1 to 8 were immersed in 50 ml of an aqueous solution prepared by dissolving 5.0 g of sodium borohydride (NaBH4) in 100 ml of a 10% by weight aqueous sodium hydroxide solution. The amount of hydrogen generated at a temperature of 30 ° C. was measured.
(Results and discussion)
FIG. 3 shows the change over time in the hydrogen generation amount for each of the catalyst bodies of Examples 1 to 8, with the vertical axis representing the hydrogen generation amount V [L] and the horizontal axis representing the time T [min]. It is. Examples 1 to 8 correspond to A1 to A8 in FIG. As can be seen from FIG. 3, it can be understood that the generation rate of hydrogen increases as the amount of Al as the eluted metal increases. Further, A10 in FIG. 3 is the theoretical hydrogen generation amount.

図4は、各触媒体について、合金化して溶出したAl量及び合金化したNi量に対する水素発生速度の変化量を示し、縦軸は水素発生速度〔mL/s〕を取り、横軸はAl量及びNi量〔mg〕を取った特性図である。実施例1〜実施例8は図4中のA1〜A8に夫々対応する。図4から分かるように合金化するAl量(あるいはNi量)により水素発生速度が決まってくることが理解できる。
(耐久試験)
図3に示す実験において水素発生させた後の実施例8の触媒体を用いて10重量%の水酸化ナトリウム水溶液100mlに5.0gの水素化ホウ素ナトリウム(NaBH4)を溶解して調製した水溶液50mlに浸漬させて同様の水素発生を繰り返し行い、この触媒体の耐久性を調べた。
(結果及び考察)
図5は、触媒体において、100回までの繰り返し水素発生における水素発生速度の変化を示し、縦軸は水素発生速度〔mL/s〕を取り、横軸は使用回数を取った特性図である。図5中の▲は実施例8を示す。図5から分かるように使用回数と共に水素発生速度が若干低下するが、同じ触媒体を100回繰り返して使用しても触媒性能及び機械的強度としては良好であることが分かる。
B.実験例2
(触媒体の製造)
金属基材であるNi発泡体(25×40×1.5mm)の表面に、溶出金属であるアルミニウム粉末0.1gを塗布し、被覆させた。次いで、このNi発泡体を加熱炉において660〜680℃で5分間加熱して、Ni発泡体にAlを合金化させた。その後、加熱炉から取出したNi発泡体を20重量%の水酸化ナトリウム水溶液に浸漬して、表面に残存するAl及び合金化したAlを溶出することにより、表面がラネー化したNi発泡体からなる触媒体を得た。この触媒体を実施例9とする。
FIG. 4 shows the amount of change in hydrogen generation rate with respect to the amount of Al eluted after alloying and the amount of Ni alloyed, and the vertical axis represents the hydrogen generation rate [mL / s] and the horizontal axis represents Al. It is the characteristic view which took quantity and Ni amount [mg]. Examples 1 to 8 correspond to A1 to A8 in FIG. As can be seen from FIG. 4, it can be understood that the hydrogen generation rate is determined by the Al amount (or Ni amount) to be alloyed.
(An endurance test)
In the experiment shown in FIG. 3, 50 ml of an aqueous solution prepared by dissolving 5.0 g of sodium borohydride (NaBH4) in 100 ml of 10 wt% aqueous sodium hydroxide solution using the catalyst body of Example 8 after hydrogen generation was performed. The hydrogen generation was repeated and the same hydrogen generation was repeated, and the durability of the catalyst body was examined.
(Results and discussion)
FIG. 5 shows a change in hydrogen generation rate in repeated hydrogen generation up to 100 times in the catalyst body, wherein the vertical axis represents the hydrogen generation rate [mL / s] and the horizontal axis represents the number of times of use. . The ▲ in FIG. As can be seen from FIG. 5, the hydrogen generation rate slightly decreases with the number of uses, but it can be seen that the catalyst performance and mechanical strength are good even when the same catalyst body is used 100 times.
B. Experimental example 2
(Manufacture of catalyst body)
On the surface of Ni foam (25 × 40 × 1.5 mm), which is a metal substrate, 0.1 g of aluminum powder, which is an eluted metal, was applied and coated. Next, this Ni foam was heated at 660 to 680 ° C. for 5 minutes in a heating furnace, and Al was alloyed with the Ni foam. Thereafter, the Ni foam taken out from the heating furnace is immersed in a 20% by weight sodium hydroxide aqueous solution, and the Al remaining on the surface and the alloyed Al are eluted to form a Ni foam whose surface is made Raney. A catalyst body was obtained. This catalyst body is referred to as Example 9.

また実施例9と同一形状のNi発泡体に、NiAl3粉末(粒径25〜90μm)1mgをPTFE(ポリテトラフルオロエチレン)と共に塗布し、次いで20重量%のNaOH水溶液に浸漬させて、NiAl3からAlを溶出し、Ni発泡体の表面をラネー化した触媒体を得た。この触媒体を比較例1とする。
(水素発生)
10重量%の水酸化ナトリウム水溶液100mlに5.0gの水素化ホウ素ナトリウムを溶解させて調製した水溶液に、実施例9及び比較例1で得た触媒体を浸漬させて反応温度30℃で発生する水素の発生量を測定した。
(結果及び考察)
図6は、実施例9の触媒体について、水素発生量と温度との経時変化を示し、縦軸に水素発生量V〔L〕を取り、横軸に時間T〔s〕を取った特性図である。図6中の□は実施例9の水素発生量を示し、◇は水溶液の温度を示す。図6から分かるように水素発生量Vは、約45分で理論水素発生量に達することが分かる。
(耐久試験)
図6において水素発生させた後の実施例9の触媒体を用いて、10重量%の水酸化ナトリウム水溶液100mlに5.0gの水素化ホウ素ナトリウムを溶解させて調製した水溶液に浸漬させ同様の水素発生を繰り返し行い、この触媒体の耐久性を調べた。
(結果及び考察)
図5中の◆に示すように、実施例9の触媒体についても、使用回数と共に水素発生速度が若干低下するが、同じ触媒体を100回繰り返し使用しても触媒性能及び機械的強度としては良好であることが分かる。
In addition, 1 mg of NiAl3 powder (particle size 25 to 90 μm) was applied together with PTFE (polytetrafluoroethylene) to the Ni foam having the same shape as in Example 9, and then immersed in a 20 wt% NaOH aqueous solution. Was eluted to obtain a catalyst body in which the surface of the Ni foam was made Raney. This catalyst body is referred to as Comparative Example 1.
(Hydrogen generation)
The catalyst body obtained in Example 9 and Comparative Example 1 is immersed in an aqueous solution prepared by dissolving 5.0 g of sodium borohydride in 100 ml of 10% by weight aqueous sodium hydroxide solution, and generated at a reaction temperature of 30 ° C. The amount of hydrogen generated was measured.
(Results and discussion)
FIG. 6 shows the change over time in the hydrogen generation amount and temperature of the catalyst body of Example 9, with the vertical axis representing the hydrogen generation amount V [L] and the horizontal axis representing the time T [s]. It is. In FIG. 6, □ indicates the amount of hydrogen generated in Example 9, and ◇ indicates the temperature of the aqueous solution. As can be seen from FIG. 6, the hydrogen generation amount V reaches the theoretical hydrogen generation amount in about 45 minutes.
(An endurance test)
Using the catalyst body of Example 9 after hydrogen generation in FIG. 6, the same hydrogen was immersed in an aqueous solution prepared by dissolving 5.0 g of sodium borohydride in 100 ml of 10 wt% aqueous sodium hydroxide solution. Generation | occurrence | production was repeated and durability of this catalyst body was investigated.
(Results and discussion)
As shown by ◆ in FIG. 5, the hydrogen generation rate of the catalyst body of Example 9 slightly decreases with the number of uses, but the catalyst performance and mechanical strength can be obtained even when the same catalyst body is used 100 times. It turns out that it is favorable.

一方比較例1は、1回の水素発生においてラネー化Ni粉末の剥離が生じて、水溶液が黒くなり、触媒性能及び機械的強度の低下が大きくなり継続使用が困難であった。このようにNi粉末が剥離する理由は、単にNi発泡体の表面にNiAl3を塗布しているだけであり、ラネー化NiAl3をラネーNi化しても金属基材であるNi発泡体とNiAl3内のNiとの結合が弱いからであると推測される。   On the other hand, in Comparative Example 1, the Raney Ni powder was peeled off in one generation of hydrogen, the aqueous solution became black, the catalyst performance and mechanical strength were greatly reduced, and continuous use was difficult. The reason why the Ni powder peels in this way is simply that NiAl3 is applied to the surface of the Ni foam, and even if Raney NiAl3 is converted to Raney Ni, the Ni foam as a metal substrate and Ni in NiAl3 This is presumed to be because the bond with is weak.

本発明に係る触媒体を実施するのに用いられる装置の一例を示す平面図である。It is a top view which shows an example of the apparatus used in order to implement the catalyst body which concerns on this invention. 図1の原料供給管と例えば板状の触媒体との接触部分を示す部分側面図である。It is a partial side view which shows the contact part of the raw material supply pipe | tube of FIG. 1, and a plate-shaped catalyst body, for example. 本発明の触媒体において、水素発生量と時間との関係を示した特性図である。In the catalyst body of this invention, it is the characteristic view which showed the relationship between hydrogen generation amount and time. 本発明の触媒体において、合金化して溶出したAl量及び合金化したNi量に対する水素発生速度の変化量を示した特性図である。In the catalyst body of the present invention, it is a characteristic diagram showing the amount of change in hydrogen generation rate relative to the amount of Al eluted by alloying and the amount of Ni alloyed. 本発明の触媒体において、触媒体の使用回数と水素発生速度との関係を示した特性図である。In the catalyst body of the present invention, it is a characteristic diagram showing the relationship between the number of times the catalyst body is used and the hydrogen generation rate. 本発明の触媒体において、水素発生量と温度との関係を示した特性図である。In the catalyst body of this invention, it is the characteristic view which showed the relationship between hydrogen generation amount and temperature.

符号の説明Explanation of symbols

1 原料貯蔵部
2 調節バルブ
3 原料供給管
4 水素発生部
5 触媒体
51 触媒体5の上端部
52 触媒体5の下端部
6 水素ガス取出口
7 回収部
8 フランジ
9 支持用ロッド
91 吊り具
DESCRIPTION OF SYMBOLS 1 Raw material storage part 2 Control valve 3 Raw material supply pipe 4 Hydrogen generating part 5 Catalytic body 51 Upper end part 52 of catalytic body 5 Lower end part 6 of catalytic body 5 Hydrogen gas outlet 7 Recovery part 8 Flange 9 Supporting rod 91 Hanging tool

Claims (9)

触媒となり得る金属基材の表面をラネー型触媒として構成したことを特徴とする触媒体。   A catalyst body characterized in that the surface of a metal substrate that can be a catalyst is configured as a Raney-type catalyst. 金属基材の表面にラネー型触媒金属を一体化して被覆してなることを特徴とする触媒体。   A catalyst body comprising a surface of a metal substrate and a Raney-type catalyst metal integrally coated thereon. 前記ラネー型触媒である金属は、ニッケル、鉄、コバルト、銅、クロム、マンガン、銀及びニッケル系合金から選ばれたものであることを特徴とする請求項1又は2記載の触媒体。   The catalyst body according to claim 1 or 2, wherein the metal as the Raney catalyst is selected from nickel, iron, cobalt, copper, chromium, manganese, silver, and a nickel-based alloy. 前記金属基材は、ニッケル、鉄、クロム、アルミニウム、チタン、ジルコニウム、マグネシウム及びこれらの金属のうちの二種以上の合金から選ばれたものであることを特徴とする請求項2記載の触媒体。   3. The catalyst body according to claim 2, wherein the metal substrate is selected from nickel, iron, chromium, aluminum, titanium, zirconium, magnesium, and an alloy of two or more of these metals. . 触媒として有効な金属基材の表面にアルカリ又は酸の水溶液で溶出し得る溶出金属を被覆して合金化する工程と、
その後、この金属基材をアルカリ又は酸の水溶液に接触させて、溶出金属を溶出させる工程と、を備えたことを特徴とする触媒体の製造方法。
Coating the surface of a metal base effective as a catalyst with an eluting metal that can be eluted with an aqueous solution of an alkali or acid, and alloying;
And a step of bringing the metal base material into contact with an aqueous solution of an alkali or an acid to elute the eluted metal.
金属基材の表面に触媒として有効な金属を一体化して被覆する工程と、
次いで金属基材を被覆している金属の表面にアルカリ又は酸の水溶液で溶出し得る溶出金属を被覆して合金化する工程と、
その後、この金属基材をアルカリ又は酸の水溶液に接触させて、溶出金属を溶出させる工程と、を備えたことを特徴とする触媒体の製造方法。
A process of integrating and coating a metal effective as a catalyst on the surface of a metal substrate;
Next, a step of coating the surface of the metal covering the metal substrate with an eluting metal that can be eluted with an aqueous solution of an alkali or an acid to form an alloy;
And a step of bringing the metal base material into contact with an aqueous solution of an alkali or an acid to elute the eluted metal.
金属基材の表面に触媒として有効な金属とアルカリ又は酸の水溶液で溶出し得る溶出金属との合金を被覆して一体化する工程と、
その後、この金属基材をアルカリ又は酸の水溶液に接触させて、溶出し得る金属を溶出させる工程と、を備えたことを特徴とする触媒体の製造方法。
Coating and integrating an alloy of a metal effective on the surface of the metal substrate and an eluting metal that can be eluted with an alkali or acid aqueous solution; and
And a step of bringing the metal substrate into contact with an aqueous solution of an alkali or an acid to elute a metal that can be eluted. A method for producing a catalyst body, comprising:
請求項1ないし4のいずれか一つに記載の触媒体を金属水素錯化合物のアルカリ水溶液と接触させて水素ガスを発生させることを特徴とする水素発生方法。   A method for generating hydrogen, comprising contacting the catalyst body according to any one of claims 1 to 4 with an alkali aqueous solution of a metal hydride complex compound to generate hydrogen gas. 前記金属水素錯化合物は、テトラヒドロホウ酸塩であることを特徴とする請求項8記載の水素発生方法。

9. The method for generating hydrogen according to claim 8, wherein the metal hydrogen complex compound is tetrahydroborate.

JP2004012271A 2004-01-20 2004-01-20 Catalyst body, its production method, and hydrogen generation method Pending JP2005205265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012271A JP2005205265A (en) 2004-01-20 2004-01-20 Catalyst body, its production method, and hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012271A JP2005205265A (en) 2004-01-20 2004-01-20 Catalyst body, its production method, and hydrogen generation method

Publications (1)

Publication Number Publication Date
JP2005205265A true JP2005205265A (en) 2005-08-04

Family

ID=34898696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012271A Pending JP2005205265A (en) 2004-01-20 2004-01-20 Catalyst body, its production method, and hydrogen generation method

Country Status (1)

Country Link
JP (1) JP2005205265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131591A (en) * 2008-10-24 2010-06-17 Commissariat A L'energie Atomique & Aux Energies Alternatives Catalytic system for generating hydrogen by hydrolysis reaction of metal borohydride
CN102513120A (en) * 2011-11-24 2012-06-27 无锡爱尼达新能源科技有限公司 Hydrogen production catalyst as well as preparation method thereof and catalytic hydrogen production method using same
JP2016513173A (en) * 2013-02-06 2016-05-12 アランタム ヨーロッパ ゲーエムベーハー Surface-modified metal foam, method for producing the same, and use thereof
CN114531855A (en) * 2019-09-25 2022-05-24 赢创运营有限公司 Cobalt-containing metal foam element and method for the production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131591A (en) * 2008-10-24 2010-06-17 Commissariat A L'energie Atomique & Aux Energies Alternatives Catalytic system for generating hydrogen by hydrolysis reaction of metal borohydride
CN102513120A (en) * 2011-11-24 2012-06-27 无锡爱尼达新能源科技有限公司 Hydrogen production catalyst as well as preparation method thereof and catalytic hydrogen production method using same
CN102513120B (en) * 2011-11-24 2017-02-15 安徽华宁新能源氢产业科技发展有限公司 Hydrogen production catalyst as well as preparation method thereof and catalytic hydrogen production method using same
JP2016513173A (en) * 2013-02-06 2016-05-12 アランタム ヨーロッパ ゲーエムベーハー Surface-modified metal foam, method for producing the same, and use thereof
US10596556B2 (en) 2013-02-06 2020-03-24 Alantum Europe Gmbh Surface modified metallic foam body, process for its production and use thereof
CN114531855A (en) * 2019-09-25 2022-05-24 赢创运营有限公司 Cobalt-containing metal foam element and method for the production thereof

Similar Documents

Publication Publication Date Title
Wang et al. Core–shell-structured low-platinum electrocatalysts for fuel cell applications
US9689085B2 (en) Underpotential deposition-mediated layer-by-layer growth of thin films
CN103966473B (en) Metal foam body, the Its Preparation Method And Use of surface modification
Lu Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing
CN104674045B (en) A kind of nanoporous silver alloy and preparation method thereof
CN107744822B (en) Metal phosphide-porous carbon framework composite material and preparation method and application thereof
CN104928518B (en) A kind of superfine nano porous metals and preparation method thereof
JP2019173017A (en) Latent heat storage body micro-capsule, method for manufacturing latent heat storage body, heat exchanging material, and catalytic functional latent heat storage body
US20100247944A1 (en) Hydrogen-permeable membrane made of a metal composite material
EP3265422B1 (en) A method for catalytically induced hydrolysis and recycling of metal borohydride solutions
Wang et al. Hydrogen generation from hydrolysis of sodium borohydride using nanostructured NiB catalysts
CN103402631A (en) Method of forming a catalyst with an atomic layer of platinum atoms
Patel et al. Co–P–B catalyst thin films prepared by electroless and pulsed laser deposition for hydrogen generation by hydrolysis of alkaline sodium borohydride: A comparison
US4422961A (en) Raney alloy methanation catalyst
CN109746435A (en) A kind of high laser reflectivity metal-powder and 3D printing method that surface is modified
Özkar Magnetically separable transition metal nanoparticles as catalysts in hydrogen generation from the hydrolysis of ammonia borane
CN112221502A (en) Hollow spherical shell carrier loaded nickel-based alloy catalyst and preparation method thereof
JP2005205265A (en) Catalyst body, its production method, and hydrogen generation method
CN102154635A (en) Preparation process of porous stainless steel load-type palladium or palladium alloy membrane
US20100055516A1 (en) Nickel substrates
TW201039917A (en) Magnetic catalyst and method for manufacturing the same
JP2019034256A (en) Catalyst for hydrogen production and method for producing the same, and hydrogen production device using the same
CN106611858A (en) Carbon-free air electrode and preparation method thereof
SE433408B (en) NUCLEAR FUEL ELEMENT AND PROCEDURE FOR ITS MANUFACTURING
CN101555594B (en) Preparation method for forming controllable palladium alloy composite film