JP2005533546A - メッシュ適応による多数の又は構成された対象の同時セグメンテーション - Google Patents

メッシュ適応による多数の又は構成された対象の同時セグメンテーション Download PDF

Info

Publication number
JP2005533546A
JP2005533546A JP2004522392A JP2004522392A JP2005533546A JP 2005533546 A JP2005533546 A JP 2005533546A JP 2004522392 A JP2004522392 A JP 2004522392A JP 2004522392 A JP2004522392 A JP 2004522392A JP 2005533546 A JP2005533546 A JP 2005533546A
Authority
JP
Japan
Prior art keywords
model
partially deformable
surface model
deformable surface
deformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004522392A
Other languages
English (en)
Other versions
JP4575157B2 (ja
Inventor
カオス,ミヒャエル
ヴェーゼ,ユルゲン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2005533546A publication Critical patent/JP2005533546A/ja
Application granted granted Critical
Publication of JP4575157B2 publication Critical patent/JP4575157B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Image Generation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

変形可能なモデルは、3次元画像中の構造のセグメンテーションのために用いられる。かかる方法の基本的な原理は、フレキシブルなメッシュを画像に適応させることを含む。しかしながら、多数の又は構成された対象の同時セグメンテーションは、しばしば、対象間の空間的な関係が妨害されること、又は、メッシュが互いに交差することといった問題を生じさせる。本発明によれば、対象間の空間的な関係についての先験的な知識が形状モデルに導入される。このことは、対象間の空間関係を維持し、交差するメッシュを回避することを可能とする。

Description

本発明は、画像中の多数の又は構成された対象の同時セグメンテーションの方法に関連する。更に、本発明は、画像中の多数の又は構成された対象の同時セグメンテーションの方法を実行する画像処理装置、並びに、画像中の多数の又は構成された対象の同時セグメンテーションの方法を実行するための命令コードを有するコンピュータプログラムに関連する。
セグメンテーション方法は、CT画像、MR画像又はUS画像等の体積画像データから例えば器官又は骨等の幾何モデルを得るのに用いられる。かかる幾何モデルは、様々な医療用途のために、又は一般的にはパターン認識の分野で必要とされる。医療用途又は臨床用途では、重要な例として、灌流分析、壁の動きの分析、及び収縮期の駆出率の計算のために心臓の心室及び心筋の幾何モデルが必要とされる心臓診断がある。他の重要な臨床用途は、診断のために及び/又は処置パラメータの決定のために前立腺領域(大腿骨頭、直腸、前立腺、膀胱)における多数の器官及び骨のセグメンテーションが必要な放射線治療計画である。
変形可能なモデルは、3次元画像中での構造のセグメンテーションの方法の非常に一般的なクラスである。変形可能なモデルは、例えば、非特許文献1から公知である。
変形可能なモデルの基本的な原理は、例えば三角形又はシンプレックスによって表わされるフレキシブルなメッシュを画像中の関心対象に適応させることである。このために、モデルは、初期的には、画像中の関心対象の近傍又は関心対象上に置かれる。これは、ユーザによってなされうる。次に、三角形といったフレキシブルなメッシュのサーフェスエレメントの座標は、関心対象の面上に又は関心対象の面の近くに置かれるまで反復的に変更される。このような方法は、非特許文献2に更に詳述されている。
通常、前立腺領域の大腿骨頭、直腸、前立腺、膀胱といったいくつかの別々の関心となる構造はセグメンテーションされねばならない。また、関心となる構造は、しばしば、脊柱の2つの椎骨等の幾つかの対象からなる。これらの対象は、一定の空間的な形態を有するにもかかわらず、しばしば、連結されていない。このような場合、適応は問題となりうる。
複数の対象が次々にセグメンテーションされる場合、個々の対象の但しセグメンテーションは可能でないことが多い。対象間の空間的な関係、例えば、2つの対象境界間の最小距離は、維持されえないことが多い。
また、全ての対象に対して同時にセグメンテーション処理を実行することも可能である。これは、例えば、速さと実用性の理由によりなされうる。しかしながら、複数の対象の同時セグメンテーション中、空間的な関係は、維持されず、メッシュ再構成中に妨害されることが多い。これは、交差するメッシュ又は互いに対して近すぎるメッシュを生じさせ、従って誤ったセグメンテーション結果を生じさせる。
ティー・マキナーニー(T. McInerney)外、「医用画像解析における変形可能なモデル:調査(Deformable models in medical image analysis: A survey)」医用画像解析(Medical Image Analysis)、1(2)、第91〜108頁、1996年 ジェイ・ウィーズ(J. Weese)外、「3次元医用画像セグメンテーションのための形状制約された変形可能なモデル(Shape constrained deformable models for 3D medical image segmentation)」、第17回医用画像における情報処理(IPMI:Information Processing in Medical Imaging)に関する国際会議、第380〜387頁、米国カリフォルニア州デイヴィス、2001年、Springer Verlag出版。
従って、本発明は、多数の又は構成された対象の改善された同時セグメンテーションを可能とする画像中の多数の又は構成された対象の同時セグメンテーションの方法を提供することを目的とする。
上述の目的は、画像中の多数の又は構成された対象の同時セグメンテーションの方法であって、変形可能なサーフェスモデルは、第1の対象の第1の面及び第2の対象の第2の面に適応されるべきものであり、変形可能なサーフェスモデルは、第1の部分的な変形可能なサーフェスモデル及び第2の部分的な変形可能なサーフェスモデルを含み、
(a)第1の対象の第1の面の構造を記述する第1の部分的な変形可能なサーフェスモデルを適用する段階と、
(b)第2の対象の第2の面の構造を記述する第2の部分的な変形可能なサーフェスモデルを適用し、第1の部分的な変形可能なサーフェスモデルと第2の部分的な変形可能なサーフェスモデルは、第1の対象と第2の対象の空間的な関係に対応する規定された空間的な関係を有する、段階と、
(c)第1の部分的な変形可能なモデルを第1の面に適応させ、第2の部分的な変形可能なモデルを第2の面に適応させ、第1の部分的な変形可能なサーフェスモデルと第2の部分的な変形可能なサーフェスモデルの規定された空間的な関係は適応に用いられる段階とを有する、方法によって達成される。
換言すれば、本発明による典型的な実施例によるこの方法では、適応のために、第1及び第2の対象の空間的な関係についての先験的な知識(a priori knowledge)が用いられる。有利には、本発明の典型的な実施例によるこの方法は、メッシュを作っている間、複数の対象間の空間的な関係を維持しつつ、同時セグメンテーションを実行することを可能とする。有利には、この方法は、交差するメッシュ及び/又は互いに近すぎるメッシュを回避する。
請求項2に記載の本発明の典型的な実施例によれば、請求項1の段階(c)に従って適応のために第1及び第2の対象の空間的な関係についての先験的な知識を適用する段階は、2つの変形可能なサーフェスモデルの面を連結する追加的なエッジ、又は、2つの変形可能なサーフェスモデルの頂点を連結する複数の追加的なエッジを用いることを含む。請求項2に記載の方法は、最小限の計算努力で実行されうる簡単な方法を提供する。更に、追加的なエッジの使用は、更なる修正なしに、非特許文献2から公知であるような他のセグメンテーション方法に組み入れられうる。
請求項3に記載の本発明の他の典型的な実施例によれば、対象間の追加的なエッジは特徴のない三角形である。このことは、三角形を有するメッシュを想定すると、第1の変形可能なサーフェスモデルの頂点と第2の変形可能なサーフェスモデルの頂点の間に追加的な三角形が定義されることを意味する。追加的な三角形は、三角形の頂点を1、2、3と付番すると、追加的な三角形の頂点1と3が同一であるよう導入される。従って、追加的な三角形は、面を有さない。従って、この追加的な三角形は、セグメンテーション中の外部エネルギーの計算に寄与しない。外部エネルギーがないこと(即ち、サーフェス特徴を探索しないこと)についての動機付けは、2つの変形可能なサーフェスモデル間の連結が対象の面に対応しないことである。
請求項4及び5に記載の本発明による更なる典型的な実施例は、計算努力を最小限としつつ、2つの対象の高速且つ効率的な同時セグメンテーションを提供する。
請求項6に記載の本発明の他の典型的な実施例によれば、追加的なエッジのベクトル差と2つの対象間の距離に略関連する拡張された内部エネルギーがセグメンテーションに導入される。拡張された内部エネルギーを伴う内部エネルギーの最小化は、2つの対象の空間的な関係を維持することを可能とする。
請求項7は、本発明による方法を実行するのに適切に適応された画像処理装置の典型的な実施例に関連する。有利には、この画像処理装置は、交差するメッシュを回避しつつ、また、対象の空間的な関係の妨害を回避しつつ、非常に正確な同時セグメンテーションを可能とする。
請求項8は、本発明による方法を実行するコンピュータプログラムの典型的な実施例に関連する。有利には、このコンピュータプログラムは、交差するメッシュ又は対象間の空間的な関係の妨害なしに、多数の又は構成された対象の同時セグメンテーションを可能とする。
本発明の趣旨は、2つの対象の空間的な関係についての先験的な知識をセグメンテーションに含めることである。このために、形状モデルの頂点間に、内部エネルギーに対してのみ寄与するが、特徴点の検出には使用されず、従って外部エネルギーには寄与しない、追加的な連結が導入される。例えば、2つの面の間の距離が略知られている場合、これらの面の間の追加的な連結が導入される。これらの連結の長さを維持すること(即ち、拡張された内部エネルギーを最小限とすること)により、対象間の元の距離の偏りが最小化される。
本発明の上述の及び他の面について、以下説明する実施例を参照することにより明らかとなろう。本発明の典型的な実施例について、添付の図面を参照して以下詳述する。
図1は、本発明による画像処理装置の典型的な実施例の簡単化された概略的な表現を示す図である。図1中、変形可能なサーフェスモデルをメッシュ適応により多数の又は構成された(composed)対象の面へ適応させる中央処理装置(CPU)又はイメージプロセッサ1を示す。望ましくは、この適応は、画像中の複数の対象に対して同時に行われる。イメージプロセッサ1は、第1及び第2の部分的な変形可能なサーフェスモデルを有する変形可能なサーフェスモデルを格納し関心となる対象を描写する画像を格納するメモリ2に接続される。イメージプロセッサ1は、バスシステム3を介して、図1には図示しない複数の周辺装置又は入力/出力装置に接続されうる。例えば、イメージプロセッサ1は、バスシステム3を介して、MR装置、CT装置、プロッタ、又はプリンタ等へ接続されうる。更に、イメージプロセッサ1は、セグメンテーション結果又は情報を出力するコンピュータ画面4といったディスプレイに接続される。更に、イメージプロセッサ1に接続されたキーボード5が設けられ、これによりユーザ又は操作者は、イメージプロセッサ1と対話することができ、又は、セグメンテーション処理に必要な又は所望のデータを入力することができる。
図2は、図1に示す画像処理装置上で実行される本発明の典型的な実施例による方法又はコンピュータプログラムを示すフローチャートである。
ステップ100における初期化の後、ステップ101において、変形可能なモデルM及び関心となる構造を含む画像Iは、メモリ2からイメージプロセッサ1へロードされる。次に、モデルは、画像I中の関心対象の上に粗く位置決めされる。これは、例えば、キーボード5、マウス、或いは、同様の対話用装置を用いてユーザによって、又は、従来技術で知られている適当な自動化された初期位置決め方法を用いてなされうる。
構成された変形可能なモデルMは、いくつかの解剖学的対象の面及びそれらの空間的な配置を表わす。図3は、2つの椎骨のサーフェスモデルの一例を示す。ここで、変形可能なサーフェスモデルMは、第1の椎骨の面に適応されるべき第1の部分的な変形可能なサーフェスモデルと、第2の椎骨の面に適応されるべき第2の部分的な変形可能なサーフェスモデルとを有する。2つの椎骨が図示されているが、例えば大腿骨と股関節、又は心室の内側或いは外側の壁といった他の構造が可能である。2つよりも多い対象が同時にセグメンテーションされるべきである場合、多数の部分的に変形可能なサーフェスモデルが提供されうる。
図示の構成された第1及び第2の部分的な変形可能なモデルは、2つの椎骨の面からなる。各対象は、多角形メッシュによって表わされる。本例では、頂点xiは三角形tjによって連結される。それでも、シンプレックス又は一般的なポリゴンメッシュといった他の表現が可能である。このようなサーフェス表現は、例えば、ダブリュ・イー・ローレンセン(W.E.Lorensen)外、「マーチング・キューブ:高解像度3次元サーフェス構成アルゴリズム(Marching cubes: A high resolution 3D surface construction algorithm)」、コンピュータグラフィックス、第21巻(3)、第163〜169頁、1987年に記載されるような単一の訓練対象の三角分割(triangulation)法によって得ることができる。
図4中、本発明の典型的な実施例によれば、2つの椎骨の空間的な関係についての先験的な(a priori)知識がモデルに含まれる。図4に示すように、モデルは、第1の椎骨の頂点を第2の椎骨の頂点に連結する追加的なエッジによって増大されている。図4中、2つの椎骨のメッシュの近傍の三角形間のこれらの追加的な専用の連結は、例えば下側椎骨の上側終板と上側椎骨の下側終板の間にはっきりと見える。これらの専用の連結は、対象間の空間的な関係についての先験的な知識を表わす。近傍の椎骨の頂点間のこれらの連結は、以下のように得ることができる。
夫々が一組の頂点xi1及びxi2を有する2つの対象O1及びO2(2つの椎骨)が所与であるとする。対象O1の各頂点xi1に対して、対象O2の最も近い頂点xi2が探索される。この結果、頂点対のリスト{(x01,x1k1),(x11,x1k2),...}が得られる。各頂点対に対して、長さ|x01−x1k1|が計算され、一定の閾値Tよりも小さい長さの対のみが維持される。この結果、連結は、図4に示すように、互いに距離が離れすぎていない頂点間にのみ導入されることとなる。図4からわかるように、閾値Tを調整すると、連結は2つの椎骨の近傍の三角形の間にのみ導入される。結果として得られる対は、追加的な又は「連結」三角形Ckとしてモデルに格納され、点0及び点2は対象O1の頂点x01であり、三角形の点1は対象O2の対応する頂点X1k1である。これは、図5に更に詳細に示されている。
図5中、対象O1の面上の第1の三角形10と、対象O2の面上の第2の三角形20とがある。明瞭性のため、各対象O1及びO2に対してメッシュの1つの三角形のみが示されている。図5からわかるように、対象O1の面上の頂点x01は対象O2の面上の頂点X1k1と連結されている。この連結は、追加的な又は「連結」三角形Ckである。三角形20には、三角形20のコーナへの付番が示されている。頂点x1k1の三角形20のコーナは0’と示され、左側の下方のコーナは1’と示され、三角形20の右側の下方のコーナは2’と示される。このような三角形のコーナの付番方法を用いると、図5から、三角形ckのコーナ0及び2は頂点x01であり、三角形ckのコーナ1は頂点x1k1であることがわかる。このため、三角形は面を有さない。換言すれば、連結三角形ckは縮退した三角形であり、即ち、点0と2の間のエッジは長さがゼロであり、点0と1の間のエッジは点2と点1の間のエッジと同一である。また、0と1の間のエッジと、2と1の間のエッジは、夫々、頂点x01とx1k1と同じ距離にある。従って、全体として、モデルは、一組のサーフェスボクセル{xi}と、一組のサーフェス三角形{tj}と、一組の連結三角形{ck}とを含む。従って、図4からわかるように、変形可能なモデル中、上側椎骨と下側椎骨の間の追加的な連結三角形はサーフェス三角形に追加されたものである。
構成された変形可能なモデルを生成し、画像中の開始点を初期化した後、ステップ102及び103において反復的な適応手順が行われる。ここで、第1及び第2の部分的な変形可能なサーフェスモデルは、第1及び第2の対象、即ち2つの椎骨に適応される。手順は、関心となる構造、即ち2つの椎骨の面に頂点座標が最適に当てはまるよう、頂点座標を反復的に変化させる。
変形可能なサーフェスモデルを画像中の対象に適応させるために、非特許文献1の方法が使用されうる。しかしながら、望ましくは、非特許文献2に基づく修正された方法が使用される。よりよい理解のために、非特許文献2に記載の修正された方法について、単一の対象に関して簡単に概説し、次に連結三角形を伴う多数の対象への拡張について説明する。
対象の初期サーフェスモデルが与えられているとき、各反復は、特徴検出段階(ステップ102)と、メッシュ再構成段階(ステップ103)とを含む。ステップ102において、各三角形に対して、画像中の対象の境界上に潜在的にある
(外1)
Figure 2005533546
を見つけるよう三角形の法線に沿って探索が行われる。
ステップ103において、頂点座標に関するエネルギー最小化により、メッシュ頂点の位置が再計算される。エネルギーは、2つの項の加重和であり、
Figure 2005533546
である。
外部エネルギーEextは、メッシュ頂点を検出された特徴点に関連付けられるサーフェスエレメントへ向かって動かし、非特許文献2に記載のように計算されうる。
内部エネルギーは、メッシュ頂点の動きを制限する。初期テンプレートメッシュ上の頂点の分布はサーフェス湾曲に関して最適であるため、有利には、その分布は近傍の頂点間の距離の変化を犠牲とすることによって維持される。従って、
Figure 2005533546
と定義され、Nは対象の数であり、tiはi番目の対象に属する一組の頂点であり、Vjはi番目の対象の頂点の数であり、
(外2)
Figure 2005533546
は、ステップ102で見つけられるような変形可能なメッシュの2つの近傍の頂点を表わし、Δjkは頂点jと参照モデルのその近傍のkの間の対応するベクトル差である。初期モデルと変形されたモデルの間のスケーリングs及び回転行列Rも推定される。
この最小化の結果として、画像中で検出されるサーフェス点に近いことと、初期の変形可能なモデルに類似したままであることとの間のトレードオフを反映する新しい頂点座標が得られる。これらの新しい頂点座標から、ステップ102において新しい境界点が探索され、以下同様である。これらの2つのステップは、一定の回数繰り返され、関心となる対象の面に近い変形されたモデルが得られる。
以下、非特許文献2の方法を、構成された変形可能なモデルの適応について拡張する。関心となる構造が、連結されていないが何らかの方法で空間的に関連する幾つかの対象から構成される場合、正しい適応が課題となりうる。空間的な関係は、メッシュ再構成中に妨害されえ、互いに交差する又は近すぎるメッシュを生じさせる。主な理由の一つは、公知の方法では適応を行っているときに、異なったメッシュの頂点の空間的な結合に関する情報を考慮に入れていないことである。
本発明の典型的な実施例によれば、メッシュ間の一定の空間的な関係を維持するために、2つの対象間の距離を略維持するよう、又は、図3及び図4を参照するに、2つの椎骨間の空間的な関係を維持するよう、「連結三角形」が導入される。以下の説明からわかるように、空間的な関係は適応を行っている際に用いられる。
上述のように、本発明の典型的な実施例によれば、夫々が下側椎骨の頂点を上側椎骨の頂点に連結する追加的な連結三角形ckが導入される。椎骨間の初期の距離を略維持するために、望ましくは、連結三角形の初期の形態が維持される。これは、追加的なエネルギー(式(1)参照)を加えることによって行うことができ、即ち、
Figure 2005533546
で表わせる。
connectionsは、連結三角形の変化を制限するためのものである。連結エネルギーは、
Figure 2005533546
の式で表わすことができる。
ここで、一組の連結三角形ciに属する頂点のみが考慮に入れられる。従って、頂点xjと同じ連結三角形に属する頂点近傍Nc(j)のみが考慮に入れられる。Δjkは、連結三角形の2つの点の間のベクトル距離である。
三角形のみが導入されるが、追加的な頂点は導入されないことが重要である(これは、追加的な三角形は利用可能なサーフェス頂点から生成されたためであることに留意すべきである)。内部エネルギーEint及び連結エネルギーEconnectionは、1つの内部エネルギーへと組み合わされ、
Figure 2005533546
で表わすことができる。
これは、構成された変形可能なモデルの新しいエネルギー関数、
Figure 2005533546
を生じさせる。
次に、エネルギーは最小化される。ここで、連結三角形ckは面を有さないため、ステップ102において連結三角形ckについて特徴探索は行われないことに留意すべきである。従って、特徴探索は、サーフェス三角形tjについてのみ実行される。これは有利には、計算努力を最小限とすることを可能とする。
次に、変形可能なモデルを表示するために、頂点xj及び三角形tiは、ステップ104において選択され、コンピュータ画面4上に表示される。しかしながら、変形されたモデル全体を表示する代わりに、頂点座標を数値的に出力することも可能であることに留意すべきである。次に、方法はステップ105へ進み、方法は終了する。
簡単に説明すると、本発明によれば、対象の空間的な関係は、変形可能なサーフェスモデルを対象へ適応させるときに用いられる。従って、内部エネルギーにのみ寄与するが特徴点の検出には用いられず、従って外部エネルギーに寄与しない頂点に対する追加的な連結を形状モデルに含めることにより、多数の又は構成された対象の間の空間的な関係は、内部エネルギーを最小化することにより非常に容易に維持されうる。これは、同時にセグメンテーションされる対象間の空間的な関係を正確に維持することを可能とする。特に、対象間の空間的な関係が妨害されること及び構成された変形可能なモデルが互いに交差することといった危険が回避される。多数の対象の同時のセグメンテーションはまた、変形可能なモデルを用いたセグメンテーションのロバストさ及び速度を改善する。
本発明の典型的な実施例による方法を実行するよう適応された本発明の典型的な実施例による画像処理装置を概略的に示す図である。 本発明による方法の典型的な実施例を示すフローチャートである。 本発明の典型的な実施例を説明するための脊柱の2つの椎骨の三角形サーフェスモデルを示す図である。 本発明の典型的な実施例を説明するための上側椎骨と下側椎骨の間の追加的な連結と共に2つの椎骨を示す図である。 本発明の典型的な実施例による特徴のない頂点連結を説明するための簡単化された図である。

Claims (8)

  1. 画像中の多数の又は構成された対象の同時セグメンテーションの方法であって、
    変形可能なサーフェスモデルは、第1の対象の第1の面及び第2の対象の第2の面に適応されるべきものであり、前記変形可能なサーフェスモデルは、第1の部分的な変形可能なサーフェスモデル及び第2の部分的な変形可能なサーフェスモデルを含み、前記方法は、
    (a)前記第1の対象の前記第1の面の構造を記述する前記第1の部分的な変形可能なサーフェスモデルを適用する段階と、
    (b)前記第2の対象の前記第2の面の構造を記述する前記第2の部分的な変形可能なサーフェスモデルを適用し、前記第1の部分的な変形可能なサーフェスモデルと前記第2の部分的な変形可能なサーフェスモデルは、前記第1の対象と前記第2の対象の空間的な関係に対応する規定された空間的な関係を有する、段階と、
    (c)前記第1の部分的な変形可能なモデルを前記第1の面に適応させ、前記第2の部分的な変形可能なモデルを前記第2の面に適応させ、前記第1の部分的な変形可能なサーフェスモデルと前記第2の部分的な変形可能なサーフェスモデルの前記規定された空間的な関係は前記適応に用いられる、段階と、を有する方法。
  2. 前記第1の部分的な変形可能なサーフェスモデルと前記第2の部分的な変形可能なサーフェスモデルの前記空間的な関係は、前記第1の部分的な変形可能なサーフェスモデルの第1の頂点を前記第2の部分的な変形可能なサーフェスモデルの第2の頂点と連結する追加的なエッジにより規定される、請求項1記載の方法。
  3. 前記追加的なエッジは特徴のない頂点連結である、請求項2記載の方法。
  4. 前記第1及び第2の部分的な変形可能なサーフェスモデルは夫々、複数のサーフェスエレメントを有するメッシュを有し、
    前記第1及び第2の対象の前記第1及び第2の面における前記サーフェスエレメントについての特徴点を検出する段階と、
    前記メッシュの前記サーフェスエレメントの座標を前記特徴点を表わすよう再計算する段階とを有する、請求項1記載の方法。
  5. 前記再計算する段階は、
    前記特徴点と前記サーフェスエレメントの間の距離を最小化する段階と、
    前記第1及び第2の部分的な変形可能なサーフェスモデルの内部エネルギーを最小化する段階とを有する、請求項4記載の方法。
  6. 前記内部エネルギーは、前記追加的なエッジの長さと、前記第1及び第2の部分的な変形可能なモデル間の距離との差に関連する拡張された内部エネルギーを含む、請求項5記載の方法。
  7. 第1の変形可能なサーフェスモデル及び第2の変形可能なサーフェスモデルを含む変形可能なサーフェスモデルを格納し、第1の対象及び第2の対象を描写する画像を格納するメモリと、
    前記変形可能なサーフェスモデルを前記第1の対象の第1の面及び前記第2の対象の第2の面に適応させるイメージプロセッサとを有する、画像処理装置であって、
    前記プロセッサは、
    (a)前記第1の対象の前記第1の面の構造を記述する前記第1の部分的な変形可能なサーフェスモデルを適用し、
    (b)前記第2の対象の前記第2の面の構造を記述する前記第2の部分的な変形可能なサーフェスモデルを適用し、前記第1部分的な変形可能なサーフェスモデルと前記第2の部分的な変形可能なサーフェスモデルは、前記第1の対象と前記第2の対象の空間的な関係に対応する規定された空間的な関係を有し、
    (c)前記第1の部分的な変形可能なモデルを前記第1の面に適応させ、前記第2の部分的な変形可能なモデルを前記第2の面に適応させ、前記第1の部分的な変形可能なサーフェスモデルと前記第2の部分的な変形可能なサーフェスモデルの前記規定された空間的な関係は前記適応に用いられる、動作を行うイメージプロセッサと、
    を有する画像処理装置。
  8. 第1の部分的な変形可能なサーフェスモデル及び第2の部分的な変形可能なサーフェスモデルを有する変形可能なサーフェスモデルを第1の対象の第1の面及び第2の対象の第2の面に適応させる、請求項6記載の画像処理装置用のコンピュータプログラムであって、
    (a)前記第1の対象の前記第1の面の構造を記述する前記第1の部分的な変形可能なサーフェスモデルを適用する段階と、
    (b)前記第2の対象の前記第2の面の構造を記述する前記第2の部分的な変形可能なサーフェスモデルを適用し、前記第1部分的な変形可能なサーフェスモデル及び前記第2の部分的な変形可能なサーフェスモデルは、前記第1の対象及び前記第2の対象の空間的な関係に対応する規定された空間的な関係を有する、段階と、
    (c)前記第1の部分的な変形可能なモデルを前記第1の面に適応させ、前記第2の部分的な変形可能なモデルを前記第2の面に適応させ、前記第1の部分的な変形可能なサーフェスモデルと前記第2の部分的な変形可能なサーフェスモデルの前記規定された空間的な関係は前記適応に用いられる段階とを有する、コンピュータプログラム。
JP2004522392A 2002-07-19 2003-07-15 メッシュ適応による多数の対象又は複合的な対象の同時セグメンテーション Expired - Lifetime JP4575157B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02016060 2002-07-19
PCT/IB2003/002795 WO2004010374A2 (en) 2002-07-19 2003-07-15 Simultaneous segmentation of multiple or composed objects by mesh adaptation

Publications (2)

Publication Number Publication Date
JP2005533546A true JP2005533546A (ja) 2005-11-10
JP4575157B2 JP4575157B2 (ja) 2010-11-04

Family

ID=30470226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004522392A Expired - Lifetime JP4575157B2 (ja) 2002-07-19 2003-07-15 メッシュ適応による多数の対象又は複合的な対象の同時セグメンテーション

Country Status (5)

Country Link
US (1) US7421122B2 (ja)
EP (1) EP1525558A2 (ja)
JP (1) JP4575157B2 (ja)
AU (1) AU2003246989A1 (ja)
WO (1) WO2004010374A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289699A (ja) * 2006-04-20 2007-11-08 Gham Hur Ct値の標準偏差を使って冠状動脈のct血管撮影における照射線量を最適化する方法及び装置
JP2008508977A (ja) * 2004-08-09 2008-03-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 領域が競合する変形可能なメッシュ適合に基づくセグメント化
JP2008547103A (ja) * 2005-06-21 2008-12-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 漸進的モデル・ベースの適応
JP2011516957A (ja) * 2008-04-07 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ メッシュ衝突回避

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101167105B (zh) * 2005-04-29 2013-03-27 皇家飞利浦电子股份有限公司 多表面建模
US8571278B2 (en) * 2005-06-24 2013-10-29 The University Of Iowa Research Foundation System and methods for multi-object multi-surface segmentation
US7764817B2 (en) * 2005-08-15 2010-07-27 Siemens Medical Solutions Usa, Inc. Method for database guided simultaneous multi slice object detection in three dimensional volumetric data
DE602006008040D1 (de) * 2005-12-19 2009-09-03 Koninkl Philips Electronics Nv Verfahren zur erleichterung der nachbearbeitung von bildern über verformbare netze
US8660329B2 (en) * 2007-05-25 2014-02-25 Ecole Nationale Superieure D'arts Et Metiers (Ensam) Method for reconstruction of a three-dimensional model of a body structure
RU2505860C2 (ru) * 2008-04-04 2014-01-27 Конинклейке Филипс Электроникс Н.В. Одновременная основанная на модели сегментация объектов, удовлетворяющих заранее заданным пространственным соотношениям
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
US8265363B2 (en) * 2009-02-04 2012-09-11 General Electric Company Method and apparatus for automatically identifying image views in a 3D dataset
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
JP5767242B2 (ja) 2009-12-16 2015-08-19 コーニンクレッカ フィリップス エヌ ヴェ 処理方法及び画像処理装置
US8157742B2 (en) 2010-08-12 2012-04-17 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
DK2788958T3 (da) * 2011-12-05 2019-12-16 Commw Scient Ind Res Org Fremgangsmåde og system til at karakterisere plantefænotype
US8548778B1 (en) 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
US8989472B2 (en) * 2013-02-13 2015-03-24 Mitsubishi Electric Research Laboratories, Inc. Method for simulating thoracic 4DCT
JP6382050B2 (ja) * 2014-09-29 2018-08-29 キヤノンメディカルシステムズ株式会社 医用画像診断装置、画像処理装置、画像処理方法及び画像処理プログラム
WO2017093852A1 (en) 2015-12-02 2017-06-08 Koninklijke Philips N.V. Ultrasonic cardiac assessment of hearts with medial axis curvature and transverse eccentricity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501538A (ja) * 1995-03-03 1999-02-09 アーチ ディヴェロプメント コーポレイション 医用画像において病巣を検出する方法及びシステム
JP2002329216A (ja) * 2001-03-09 2002-11-15 Koninkl Philips Electronics Nv 対象物に含まれる三次元画像をセグメント化する方法
JP2004536374A (ja) * 2001-03-09 2004-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像セグメンテーション

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886702A (en) * 1996-10-16 1999-03-23 Real-Time Geometry Corporation System and method for computer modeling of 3D objects or surfaces by mesh constructions having optimal quality characteristics and dynamic resolution capabilities
US5945996A (en) * 1996-10-16 1999-08-31 Real-Time Geometry Corporation System and method for rapidly generating an optimal mesh model of a 3D object or surface
US6246784B1 (en) * 1997-08-19 2001-06-12 The United States Of America As Represented By The Department Of Health And Human Services Method for segmenting medical images and detecting surface anomalies in anatomical structures
US6169817B1 (en) * 1998-11-04 2001-01-02 University Of Rochester System and method for 4D reconstruction and visualization
US6342886B1 (en) * 1999-01-29 2002-01-29 Mitsubishi Electric Research Laboratories, Inc Method for interactively modeling graphical objects with linked and unlinked surface elements
US6498607B1 (en) * 1999-01-29 2002-12-24 Mitsubishi Electric Research Laboratories, Inc. Method for generating graphical object represented as surface elements
US6480190B1 (en) * 1999-01-29 2002-11-12 Mitsubishi Electric Research Laboratories, Inc Graphical objects represented as surface elements
US6396492B1 (en) * 1999-08-06 2002-05-28 Mitsubishi Electric Research Laboratories, Inc Detail-directed hierarchical distance fields
US6970171B2 (en) * 2001-05-10 2005-11-29 Pixar Global intersection analysis for determining intesections of objects in computer animation
US7200251B2 (en) * 2001-09-28 2007-04-03 The University Of North Carolina Methods and systems for modeling objects and object image data using medial atoms
US7363198B2 (en) * 2001-10-29 2008-04-22 The Board Of Trustees Of The Leland Stanford Junior University Long elements method for simulation of deformable objects
ATE342555T1 (de) * 2003-01-15 2006-11-15 Koninkl Philips Electronics Nv Bildverarbeitungsverfahren zur automatischen anpassung eines deformierbaren 3d-modells auf eine im wesentlichen röhrenförmige oberfläche eines 3d-objekts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501538A (ja) * 1995-03-03 1999-02-09 アーチ ディヴェロプメント コーポレイション 医用画像において病巣を検出する方法及びシステム
JP2002329216A (ja) * 2001-03-09 2002-11-15 Koninkl Philips Electronics Nv 対象物に含まれる三次元画像をセグメント化する方法
JP2004536374A (ja) * 2001-03-09 2004-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像セグメンテーション

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6009019500, "多項式モデルを用いた心臓X線陰影の自動診断", 医用電子と生体工学, 1975, p.16−22, JP *
JPN6009019684, "Deformable Models in Medical Image Analysis", IEEE Proceedings of MMBIA (Mathematical Methods in Biomedical Image Analysis), 199606, p.171−180, US *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508977A (ja) * 2004-08-09 2008-03-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 領域が競合する変形可能なメッシュ適合に基づくセグメント化
JP2008547103A (ja) * 2005-06-21 2008-12-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 漸進的モデル・ベースの適応
JP2007289699A (ja) * 2006-04-20 2007-11-08 Gham Hur Ct値の標準偏差を使って冠状動脈のct血管撮影における照射線量を最適化する方法及び装置
JP4512609B2 (ja) * 2006-04-20 2010-07-28 鑑 許 Ct値の標準偏差を使って冠状動脈のct血管撮影における照射線量を最適化する装置
JP2011516957A (ja) * 2008-04-07 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ メッシュ衝突回避

Also Published As

Publication number Publication date
AU2003246989A1 (en) 2004-02-09
WO2004010374A2 (en) 2004-01-29
WO2004010374A3 (en) 2004-05-21
US20060110037A1 (en) 2006-05-25
EP1525558A2 (en) 2005-04-27
US7421122B2 (en) 2008-09-02
AU2003246989A8 (en) 2004-02-09
JP4575157B2 (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4575157B2 (ja) メッシュ適応による多数の対象又は複合的な対象の同時セグメンテーション
JP4152648B2 (ja) 対象物に含まれる三次元画像をセグメント化する方法
US7995810B2 (en) System and methods for image segmentation in n-dimensional space
JP5654557B2 (ja) 患者特異的なモデルを用いた画像誘導による処置のためのコンピュータ化されたシミュレーションを実行するためのシステムおよび方法
Baka et al. Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration
US8571278B2 (en) System and methods for multi-object multi-surface segmentation
EP1695287B1 (en) Elastic image registration
US20070109299A1 (en) Surface-based characteristic path generation
US20080317308A1 (en) System and methods for image segmentation in N-dimensional space
US8064673B2 (en) Combined segmentation and registration framework for parametric shapes
US9697600B2 (en) Multi-modal segmentatin of image data
CN108738300B (zh) 用于医学乳房图像的校正的设备、成像系统和方法
JP4880220B2 (ja) 変形可能なモデルを用いた対象の自動測定
JP2006527619A (ja) 時系列イメージにおけるイメージセグメンテーション
US20060210158A1 (en) Object-specific segmentation
US20230260129A1 (en) Constrained object correction for a segmented image
US9558568B2 (en) Visualization method for a human skeleton from a medical scan
CN102138159B (zh) 满足预定义空间关系的对象的基于模型的同步分割
Zimeras et al. Shape analysis in radiotherapy and tumor surgical planning using segmentation techniques
Shah Non-Rigid Image Registration based on Parameterized Surfaces: Application to 3D Cardiac Motion Image Analysis
Sonka et al. System and methods for multi-object multi-surface segmentation
Stecker et al. Modelling of 3D Heart Motion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Ref document number: 4575157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term