JP2005528605A - マルチパス干渉測定 - Google Patents
マルチパス干渉測定 Download PDFInfo
- Publication number
- JP2005528605A JP2005528605A JP2004509369A JP2004509369A JP2005528605A JP 2005528605 A JP2005528605 A JP 2005528605A JP 2004509369 A JP2004509369 A JP 2004509369A JP 2004509369 A JP2004509369 A JP 2004509369A JP 2005528605 A JP2005528605 A JP 2005528605A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- multipath interference
- light
- circuit
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/333—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/331—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by using interferometer
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
光導波型回路の一部におけるマルチパス干渉を測定するための方法及び装置が開示されている。装置は、別々の光通路を進んでいる干渉する信号がそれぞれの偏光状態が揃えられた状態で干渉することを保証するための偏光スクランブラを備える。偏光スクランブラの使用は、あらかじめ選択された時間長にわたって測定された最大マルチパス干渉を記録することと相まって、試験下にある光導波型回路の部分の性能を最も表すマルチパス干渉値を与える。
Description
本発明は光導波型回路の一部において信号のマルチパス干渉を測定するための測定装置および方法に関し、特に、信号の偏光状態を考慮するような装置に関する。
マルチパス干渉(MPI)は、光導波型回路の一部において少なくとも2つの相異なる光通路長で進行する光ビットストリーム(光信号)の干渉によって生じる雑音である。例えば、光導波型ファイバにおいて相異なるモードは光ビットストリームに対して相異なる通路長をなすことができ、よって少なくとも2つのモードに対応するファイバにおいてMPIが生じる可能性がある。二重レイリー散乱によって、または、光導波型回路の一部として用いることができる、ファイバデバイス、プレーナデバイスまたは自由空間デバイスのいずれかにおける多重反射によって、光ビットストリームから散乱された光も別々の通路長を進み得る。そのようなデバイスには、ファイバ型導波路およびプレーナ型導波路だけでなく、ファイバスプライス、プレーナスプライス、自由空間スプライス、コネクタ、フィルタ、結合器、スプリッタ、グレーティング、光アイソレータ、ダイナミックスペクトルアナライザ、または光信号に関して動作するその他の光コンポーネントがある。二重レイリー散乱では、光信号から後方散乱された光が第2のレイリー散乱を受け、元の光信号の方向に伝搬する散乱光が生じる。元の光信号と二重レイリー散乱光または多重反射を受けた光は相異なる光通路長を進み、したがって干渉し、結果としてビート雑音および劣化した信号を生じさせることがある。
さらに、干渉している電場の相対偏光状態により、電場の相互作用の強さ、ひいてはMPIによる信号内の雑音の強度が決まる。MPIの信号対雑音比への影響を適切に評価するには、マルチパスを進んでいる電場の相対偏光状態が考慮する必要がある。
したがって、光通信スパンを適切に設計するには、光伝送路、特に高データレートまたは遠距離通信システムでの使用のために設計された高性能光伝送路をともに形成する光導波路及びコンポーネントにおいて誘起されるMPIを測定する必要がある。望ましいMPIレベルは一般に−35dBから−55dBの範囲にあるから、MPI測定装置は小振幅信号を測定できなければならず、正確かつ再現可能でなければならない(本明細書においては、電気的dBであるとの明示がなされない限り、パワー比dBは光dBを指す。当業界で周知であるように、光での3dBは電気での6dBに相当する)。干渉している電場のそれぞれの相対偏光状態を考慮しなくてはならない。
高性能通信路に関するMPIの最大の影響の特性決定は、極めて重大な光回路設計要素である。
本発明の課題は、導波路または導波路に含まれるデバイスを伝搬している光信号の最大MPIを正確かつ再現可能に測定するという課題に取り組むものである。
本発明の一態様はマルチパス干渉を測定するための装置である。本装置は光導波型回路の一部に光を入射させるための光源を備える。光源は光導波型回路の前記部分の第1の末端に光結合される。光は、相異なる光通路長をもつ少なくとも2つの別々の通路に沿い、光導波型回路の前記部分を通って進行する。光導波型回路の前記部分の第2の末端にある検出器が光を電気的スペクトルアナライザに供給される電気信号に変換する。光源と光導波型回路の前記部分の第1の末端の間に偏光スクランブラが光結合される。
偏光スクランブラは入射した光の偏光状態を変えるデバイスである。偏光スクランブラの実施形態には枠に巻き付けられた光導波型ファイバなどがある。枠は、ファイバにランダムな曲げを誘起し、よって時間の経過にともなって変化する複屈折をファイバに生じさせるように動くことができる。
別の実施形態において、偏光スクランブラは、変形可能、すなわち形状または寸法を変えることができる枠に巻き付けられた光導波型ファイバを備える。枠はランダムな態様で変形されて、ファイバにランダムな複屈折を誘起する。
相異なる入射光波長におけるマルチパス干渉の測定を容易にするため、本装置は光スイッチまたは光結合器を備えることができる。光スイッチまたは光結合器は、それぞれが所望の周波数を有する1つまたはそれより多くの光源にそれぞれが結合される複数の入力ポートを有する。スイッチまたは結合器は偏光スクランブラに結合される少なくとも1つの出力ポートを有する。
本発明の別の態様は光導波型回路の一部のマルチパス干渉を測定する方法である。本発明にしたがう方法では、光を光導波型回路の前記部分の第1の末端に入射させる。入射光の偏光状態が連続的に変えられる。光は光導波型回路の前記部分を通過し、光信号を電気的スペクトルアナライザに供給される電気信号に変換する検出器に入射する。電気的スペクトルアナライザは検出された信号の分光パワー密度を測定する。分光パワー密度からマルチパス干渉が決定される。
本方法の一実施形態において、あらかじめ選択された時間長にわたり、マルチパス干渉の決定を反復させる。この時間長は、約5分以下であることが好ましく、約3分未満であることがさらに好ましく、約2分であることが最も好ましい。
本発明にしたがう方法の別の実施形態において、マルチパス干渉の決定は500回以上反復させる。1回のマルチパス干渉の測定は一般に約0.2秒未満で完了し、よって500回の個々の測定は2分以内になされ得る。
本方法のまた別の実施形態において、あらかじめ選択された時間長の間に測定されたマルチパス干渉の最大値またはあらかじめ選択された数の測定から選ばれたマルチパス干渉の最大値を記録する。
本発明のさらなる特徴及び利点は以下の詳細な説明に述べられており、ある程度は、当業者には説明から容易に明らかであろうし、以下の詳細な説明、特許請求の範囲及び添付図面も含む、本明細書に説明されるように本発明を実施することにより容易に認められるであろう。
上記の概説及び下記の詳細な説明はいずれも本発明の例示に過ぎず、特許請求される本発明の性質及び特徴の理解のための概要すなわち枠組みの提供が目的とするものであると理解すべきである。添付図面は本発明のさらなる理解を提供するために含められ、本明細書に組み入れられて本明細書の一部をなす。図面は、本発明の様々な実施形態を示し、明細書本文とともに本発明の原理及び効果を説明する役割を果たす。
図1にその一例が示される、マルチパス干渉測定装置の現在好ましい実施形態をここで詳細に参照する。図1においては、光源2が光結合器または光スイッチ4を介して偏光スクランブラ6に光結合される。光結合器または光スイッチ4は、1つより多くの波長におけるマルチパス干渉測定を容易にするに有用な、必要に応じて本発明に組み込まれる、素子である。単一の光源を用いる測定システムでは一般に、光源2が偏光スクランブラ6に直接に結合されることになろう。
偏光スクランブラ6はそれを通過する光の偏光状態を、本質的に連続的に変えるデバイスである。そのようなデバイスは、例えば、米国カリフォルニア州パロアルト(Palo Alto)のエイジレント・テクノロジーズ(Agilent Technologies)から部品番号11896Aとして市販されているものであるが、本明細書で詳細に論じることはしない。簡単に言えば、光の偏光状態の連続変化は一般に、偏光状態を変えるに有効な1つまたはそれより多くのコンポーネントの位置または特性を連続的に変えることにより達成される。例えば、光導波型ファイバの幾何学的特性及び空間的配置によって、ファイバから出射する光の偏光状態が決まる。ファイバの幾何学的特性及び空間的配置の内の1つまたはそれより多くを連続的に乱すことにより、出射光の偏光状態を連続的に変えることができる。すなわち、ファイバまたはファイバの一部を、例えば、枠に巻き付け、枠を揺するかまたは振動させることにより、ファイバの空間的配置、すなわち、ファイバの曲げの数及び性質を連続的に変えることができる。枠は、それぞれがファイバの多数の巻きを保持する、多数の個別のスピンドルを備えることができる。スピンドルは相互に移動して、ファイバの空間的配置にランダムな変化を生じさせることができる。別形態として、ファイバを、印加電圧の作用の下で形状を変える圧電スピンドルのような、変形可能な枠に巻き付けることができる。本発明にしたがう装置に用いられる偏光スクランブラがそのように呼ばれる理由は、可能な偏光状態の全てを有する光をある時間長にわたり実効的につくるからである。
偏光スクランブラの作用により、試験下にある光導波型回路の一部において別々の通路を進んでいる光の偏光状態が、共通の通路において結合するときに揃えられているであろうことが、適切な時間長にわたって保証される。別々の通路を進んでいる光の干渉は、それぞれの光の偏光状態が揃えられているときに最大マルチパス干渉を生じ、逆に、偏光が直交しているときには干渉を生じない。したがって、偏光スクランブラを備えるシステムを用いるマルチパス干渉の測定では、光回路の性能に最大の影響を有し得るマルチパス干渉の読み値が得られる。すなわち、本発明にしたがう装置及び方法により得られるマルチパス干渉測定は、光回路の性能へのMPIの影響を適切に計算するに必要とされる情報をシステム設計者に与える。
図1を続けて参照すれば、入射光は偏光スクランブラ6から光導波型回路8の一部に結合される。光導波回路のこの部分は、増幅器、スイッチ、結合器、グレーティング、光導波路自体またはこれらのいずれをの組み合わせたものなどの光導波型通信システムに用いられる、ファイバコンポーネント、プレーナコンポーネントまたは自由空間コンポーネント(上記を参照のこと)のいずれかとすることができる。少なくとも2つの別々の通路にかけて光導波型回路8の一部を進む光が検出器10により電気信号に変換される。電気信号は、電気信号の分光パワー密度を測定する電気的スペクトルアナライザ(ESA)12に供給される。代表的な分光パワー密度測定値のグラフが図2に示される。曲線14は、電気的スペクトルアナライザ12で処理された信号の周波数に対する、電気的dBmで測定された電力を表す。選択された低い側の周波数fl(16)から、選択された高い側の周波数fu(18)まで広がる周波数範囲にわたる電力分布はマルチパス干渉の効果を含み、よって、以下で詳述するように、分光パワー密度からマルチパス干渉情報を引き出すことができる。低い側の周波数16及び高い側の周波数18のそれぞれの選択は、実験データと計算結果の間の比較がなされ得るように、選択が測定データ及び計算された分光パワー密度式のいずれに対しても無矛盾であることだけが必要であるという意味で、任意である。
マルチパス干渉は、電場の干渉を表す式を用いて、分光パワー分布から決定される。周波数の関数としてパワーを表す式、すなわちESAで受け取られて解析される信号の分光パワーを表す式は、相互に時間遅延された電場の干渉を表す式、
を基にして導くことができる。ここで、Eは電場、ωは2π×周波数f,tは時間、τ0は第2の通路と比較した第1の通路を通る光との間の相対時間遅延、ψは位相角、αは第1の通路における光に対する第2の通路における光の(電場振幅)比である。2つの通路を進む光は、検出器でまたは検出器の前で再結合され、検出器で電圧に変換される。電気的スペクトルアナライザは検出器からの電圧信号のスペクトル成分を読み取り、電圧信号に含まれるそれぞれの周波数に対応する電力の形態で出力を与える。これが電気信号の分光パワー密度と呼ばれ、これからマルチパス干渉を引き出すことができる。電圧信号は式、
により電場に関係付けられ、ここで、GはESAの前におかれた電気的増幅器の利得であり、Rはボルト/アンペアを単位とする検出器の感度である。デリクソン(Derickson)著,「光ファイバの試験及び測定(Fiber Optic Test and Measurement)」,1998年,エイチピー・ブックス(HP Books),第5.3節、及び、ガリオン(Gallion)等,「単一周波数半導体レーザシステムにおける量子位相雑音及び電場相関(Quantum Phase Noise and Field Correlation in Single Frequency Semiconductor Laser Systems)」,IEEE Journal of Quantum Electronics,1984年,第20巻,第4号,p.383に見られる計算によれば、電圧信号の分光パワー密度は、
と書くことができる。ここで、εはマルチパス干渉、Δfは光源レーザの線幅、Pはワット単位の検出器に入射する信号パワー、tは時間であり、残りの記号は上述した意味のままである。Δfと、第2の通路の相対時間遅延、τ0との積が1に比較して大きくなる極限において、干渉している通路における光はインコヒーレントであり、分光パワー密度に対する式は、
に簡約される。ESAは帯域幅がBの電気的フィルタを通過するパワーを電気的dBm単位で測定する。技術上慣習的に、電気的dBmはミリワットに関係する。したがって、式をESA測定に適合する形にするためには、Siに対する式にB及び定数1000/50を乗じなければならない。50オームは検出器の出力抵抗器の値である。これらの変換因子を上で定義した増幅器の利得Gとともに挿入すれば、ESA測定に関係付けられる式は、
となる。この式は、log−1演算子を用い、その定義が上で論じられた上限周波数fu及び下限周波数flにより範囲が定められる、電圧信号の周波数範囲にわたって積分することによって、εについて解くことができる。ESAは電圧を100,000Hzステップの離散周波数で電圧をサンプリングすることから、Si(ESA)の積分はサンプリングされたi個の周波数についての合計の100,000倍で置き換えることができる。マルチパス干渉に対して得られた式を解くと、
から求められる。
本発明にしたがう装置の有効性を試験するために、既知のマルチパス干渉を有する試験回路を図3に簡略に示されるように構成した。図3の光回路の点A及びBを図1に示される装置の対応する点A及びBに光接続した。点Aは偏光スクランブラ6の直後にあり、点Bは検出器10の直前にある。図3の第1の光通路は接続点Aと接続点Bの間に延びる光導波型ファイバ24である。入射光は、入射光のあらかじめ選ばれた部分(例えば入射光の10%)が、ある長さのファイバ20及び可変減衰器22を含む第2の通路に向けられるように、光スプリッタ26で分割される。可変減衰器は例えばJDS社(JDS, Inc.)からパーツ名称VA6Bで購入できる標準コンポーネントである。可変減衰器22により減衰量を小さくすることはマルチパス干渉の増大に役立ち、よって、逆に言えば、マルチパス干渉量を可能な値の範囲にある特定の1つの値に有効に設定することができる。ファイバ20の長さによりマルチパス干渉がインコヒーレントであるかあるいはコヒーレントであるかが決まる。第2の通路における相対時間遅延が光源のコヒーレンス時間を上回る場合にはマルチパス干渉がインコヒーレントであり、逆に、第2の通路における相対時間遅延が光源のコヒーレンス時間を下回る場合にはマルチパス干渉がコヒーレントである。コーニング社(Corning, Inc.)から入手できるSMF−28(商標)の約1.3kmのファイバ長によりインコヒーレントマルチパス干渉が得られ、SMF−28の約10mのファイバ長ではコヒーレントマルチパス干渉が得られる。
測定されたマルチパス干渉に対する選択されたマルチパス干渉の比が図4に示される。期待される結果は、勾配が1の直線28である。点29は、本例ではコヒーレントマルチパス干渉の場合についてとられた、測定されたマルチパス干渉値の比を示す。本発明の測定方法にしたがい、約2分の測定時間長にかけて決定されたマルチパス干渉の最大値が可変減衰器22のそれぞれの設定値に対して記録された。測定された比と期待される比の間の差は2dBをこえることはなく、このことは本発明にしたがってなされた測定の正確さを実証するものである。
本発明の精神及び範囲を逸脱することなく本発明の様々な改変及び変形がなされ得ることは、当業者には明らかであろう。したがって、本発明の改変及び変形が添付される特許請求項及びそれらの等価物の範囲内に入れば、本発明はそれらの改変及び変形を包含するとされる。
2 光源
4 光スイッチ
6 偏光スクランブラ
8 光導波型回路
10 検出器
12 電気的スペクトルアナライザ
4 光スイッチ
6 偏光スクランブラ
8 光導波型回路
10 検出器
12 電気的スペクトルアナライザ
Claims (12)
- 光導波型回路の一部におけるマルチパス干渉を測定するための装置において、
光導波型ファイバ回路の前記部分の第1の末端に光結合された光源、
光導波型回路の前記部分の第2の末端に光結合された検出器、
前記検出器に電気的に結合された電気的スペクトルアナライザ、及び
前記光源と光導波型回路の前記部分の前記第1の末端の間に光結合された偏光スクランブラ、
を備えることを特徴とする装置。 - 前記偏光スクランブラが可動枠に巻き付けられた光導波型ファイバを含むことを特徴とする請求項1に記載の装置。
- 前記偏光スクランブラが変形可能な枠に巻き付けられた光導波型ファイバを含むことを特徴とする請求項1に記載の装置。
- 前記光源と前記偏光スクランブラの間の前記光結合が複数の入力ポート及び少なくとも1つの出力ポートを有するスイッチを含み、前記少なくとも1つの出力ポートの内の1つの出力ポートが前記偏光スクランブラに光結合され、前記光源が前記複数の入力ポートの内の1つに光結合されることを特徴とする請求項1に記載の装置。
- それぞれが特性波長を有し前記複数の入力ポートのそれぞれの入力ポートに光結合される複数の光源をさらに備えることを特徴とする請求項4に記載の装置。
- 光導波型回路の一部におけるマルチパス干渉を測定する方法において、
(a) 前記光導波型ファイバ回路の前記部分の第1の末端に光を入射させる工程、
(b) 前記入射工程の間、前記光の偏光状態を連続的に変化させる工程、
(c) 前記光導波型ファイバ回路の前記部分の第2の末端において、検出された電気信号を与えるために、前記光導波型回路の前記部分を通過した光を検出する工程、
(d) 前記検出された電気信号の分光パワー密度を測定する工程、及び
(e) 前記分光パワー密度を用いて前記マルチパス干渉を決定する工程、
を含むことを特徴とする方法。 - 前記工程(a)から前記工程(e)をあらかじめ選択された時間長にわたり連続的に反復することを特徴とする請求項6に記載の方法。
- 前記工程(a)から前記工程(e)を500回以上反復することを特徴とする請求項6に記載の方法。
- 前記工程(a)から前記工程(e)を5分以内の時間長にわたり反復することを特徴とする請求項7または8に記載の方法。
- 前記時間長が3分より短いことを特徴とする請求項9に記載の方法。
- 前記時間長が約2分であることを特徴とする請求項9に記載の方法。
- 決定されたマルチパス干渉の最大値を記録する工程(f)をさらに含むことを特徴とする請求項7または8に記載の方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/017294 WO2003102530A1 (en) | 2002-05-30 | 2002-05-30 | Multiple path interference measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005528605A true JP2005528605A (ja) | 2005-09-22 |
Family
ID=29709123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004509369A Pending JP2005528605A (ja) | 2002-05-30 | 2002-05-30 | マルチパス干渉測定 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2005528605A (ja) |
AU (1) | AU2002312223A1 (ja) |
WO (1) | WO2003102530A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130094519A (ko) * | 2012-02-16 | 2013-08-26 | 엘에스전선 주식회사 | Mpi특성이 개선된 굴곡 강화 광섬유 및 이를 위한 mpi 평가 시스템 |
WO2022230061A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本電信電話株式会社 | マルチパス干渉解析装置及びマルチパス干渉解析方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116418390A (zh) * | 2021-12-31 | 2023-07-11 | 中国移动通信有限公司研究院 | 多径干涉检测方法、装置、光模块及通信设备 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4981333A (en) * | 1989-09-27 | 1991-01-01 | Fotec, Inc. | Universal launch cable assembly and integrated idealized light source system using same |
US5408545A (en) * | 1994-01-19 | 1995-04-18 | Dicon Fiberoptics | Depolarizer for fiber optic applications and method using same |
US5619320A (en) * | 1995-10-31 | 1997-04-08 | Lucent Technologies Inc. | Method and apparatus for measuring dispersion zero along an optical fiber |
JP2000019068A (ja) * | 1998-06-30 | 2000-01-21 | Fujitsu Ltd | 波長分散測定装置及び方法 |
US6317214B1 (en) * | 1998-12-22 | 2001-11-13 | Nortel Networks Limited | Method and apparatus to determine a measurement of optical multiple path interference |
US6229606B1 (en) * | 1999-10-08 | 2001-05-08 | Mci Worldcom, Inc. | Method and apparatus for measuring PMD of a dispersion compensation grating |
EP1191320B1 (en) * | 2001-06-07 | 2007-03-07 | Agilent Technologies, Inc. | Measurement of polarization dependent characteristic of optical components |
-
2002
- 2002-05-30 WO PCT/US2002/017294 patent/WO2003102530A1/en active Application Filing
- 2002-05-30 AU AU2002312223A patent/AU2002312223A1/en not_active Abandoned
- 2002-05-30 JP JP2004509369A patent/JP2005528605A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130094519A (ko) * | 2012-02-16 | 2013-08-26 | 엘에스전선 주식회사 | Mpi특성이 개선된 굴곡 강화 광섬유 및 이를 위한 mpi 평가 시스템 |
KR101990337B1 (ko) * | 2012-02-16 | 2019-06-18 | 엘에스전선 주식회사 | Mpi특성이 개선된 굴곡 강화 광섬유를 위한 mpi 평가 시스템 |
WO2022230061A1 (ja) * | 2021-04-27 | 2022-11-03 | 日本電信電話株式会社 | マルチパス干渉解析装置及びマルチパス干渉解析方法 |
JP7568075B2 (ja) | 2021-04-27 | 2024-10-16 | 日本電信電話株式会社 | マルチパス干渉解析装置及びマルチパス干渉解析方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2002312223A1 (en) | 2003-12-19 |
WO2003102530A1 (en) | 2003-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7009691B2 (en) | System and method for removing the relative phase uncertainty in device characterizations performed with a polarimeter | |
JP3262337B2 (ja) | 光ファイバー特性測定装置 | |
EP1420238B1 (en) | Determining an optical property by using superimposed delayed signals | |
US6856400B1 (en) | Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects | |
US7426021B2 (en) | Interferometric optical analyzer and method for measuring the linear response of an optical component | |
US7920253B2 (en) | Polarization optical time domain reflectometer and method of determining PMD | |
JP4008454B2 (ja) | 偏光スクランブルへテロダイン(Polarization−ScrambledHetelodyning)を用いて使用中の光チャネルの周波数分解された偏光状態を測定する方法及び装置 | |
US20160025524A1 (en) | Brillouin optical distributed sensing device and method with improved tolerance to sensor failure | |
AU3618800A (en) | System and method for measuring polarization mode dispersion suitable for a production environment | |
US5654793A (en) | Method and apparatus for high resolution measurement of very low levels of polarization mode dispersion (PMD) in single mode optical fibers and for calibration of PMD measuring instruments | |
US6839523B1 (en) | Monitoring distributed gain in an optical transmission system | |
US6504604B1 (en) | In situ polarization mode dispersion measurement | |
US7061621B2 (en) | Interferometric-based device and method for determining chromatic dispersion of optical components using a polarimeter | |
JP2005528605A (ja) | マルチパス干渉測定 | |
WO1996036859A1 (en) | Measurement of polarization mode dispersion | |
Cyr et al. | Random-scrambling tunable POTDR for distributed measurement of cumulative PMD | |
JP2005055441A (ja) | 試験対象デバイスの光学特性を調べる方法およびシステム | |
JP2016053517A (ja) | 光ファイバの評価方法及び評価装置 | |
EP1702203B1 (en) | Method, system and device for measuring the polarisation mode dispersion of an optical fibre | |
Heffner et al. | Measurement of polarization-mode dispersion | |
JP2002509612A (ja) | 波長測定システム | |
WO2024028936A1 (ja) | 光線路試験装置及び光線路試験方法 | |
Bukshtab et al. | Propagation Losses in Fibers and Waveguides | |
Gamatham | INVESTIGATION OF POLARIZATION MODE DISPERSION MEASUREMENT PERFORMANCE IN OPTICAL FIBRE WITH A FOCUS ON THE FIXED ANALYZER | |
Artiglia et al. | Interferometer measurement of polarization-mode dispersion statistics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081104 |