JP2005504458A - 高レベル変調方法および装置 - Google Patents

高レベル変調方法および装置 Download PDF

Info

Publication number
JP2005504458A
JP2005504458A JP2003501048A JP2003501048A JP2005504458A JP 2005504458 A JP2005504458 A JP 2005504458A JP 2003501048 A JP2003501048 A JP 2003501048A JP 2003501048 A JP2003501048 A JP 2003501048A JP 2005504458 A JP2005504458 A JP 2005504458A
Authority
JP
Japan
Prior art keywords
current
voltage
circuit
transistor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003501048A
Other languages
English (en)
Other versions
JP4276936B2 (ja
Inventor
デント、ポール、ダブリュ
ペールク、デイヴィッド、アール
ハッジクリストス、アリストートル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ericsson Inc
Original Assignee
Ericsson Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Inc filed Critical Ericsson Inc
Publication of JP2005504458A publication Critical patent/JP2005504458A/ja
Application granted granted Critical
Publication of JP4276936B2 publication Critical patent/JP4276936B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/331Sigma delta modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/462Indexing scheme relating to amplifiers the current being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/471Indexing scheme relating to amplifiers the voltage being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier

Abstract

電力増幅器に供給される検出電流および検出電圧に基づいて、電力増幅器を振幅変調するための方法およびシステムを提供する。検出電流および検出電圧を加算して、電流および電圧フィードバックの両方を提供することによって電力増幅器に供給される電力を変調する。あるいは、電流フィードバックおよび電圧フィードバックの両方を選択的に用いることによって、電力増幅器に供給される電力を変調する。

Description

【技術分野】
【0001】
本発明は振幅変調に関し、更に詳細には無線送信機用の振幅変調に関するものである。
【背景技術】
【0002】
送信機の電力増幅器が、単側波帯音声信号、あるいは16値直交振幅変調(16QAM)や線形の8レベルの位相シフト・キーイング(8−PSK)のようなデジタル変調された信号のように振幅および位相が変動する信号を忠実に増幅しなければならないときには、従来技術では線形増幅器が最も頻繁に使用されてきた。線形増幅器は典型的には飽和型の一定の包絡線を有する増幅器よりも効率が低く、また完全には線形でないため混変調歪を生ずる。従って、従来技術では、効率や線形性の改善を目標に、線形増幅技術に対して各種の改良が試みられた。
【0003】
任意に変調された信号は、非線形、例えば、飽和型の電力増幅器を用いて、目的信号の変動振幅で以って電力増幅器を振幅変調しながら目的信号の変動位相で変調された駆動信号を増幅することによっても増幅することができる。従来は、振幅変調の中には増幅器への電源電圧を変調する高レベルの振幅変調が含まれ、その中にはパルス幅変調された電源を使用して電圧を変調するものが含まれていた。
【0004】
しかし、そのような高レベルの振幅変調では、目的の振幅あるいは出力電力レベルの広いダイナミック・レンジをカバーして電力増幅器を変調することが難しく、また負荷インピーダンスが理想的な整合から外れた場合に何らかの歪が発生する。従来は、負荷インピーダンス不整合から電力増幅器を分離するためにアイソレータが用いられた。しかし、多くのアイソレータは大きくて高価な部品であるため、アイソレータを利用することが実際的でない場合もある。
【0005】
図1Aは、その電源電圧を制御することによって高レベルの振幅変調が行なわれる従来の電力増幅器を示している。目的の振幅を零から100%までで表現することは、例えば、デジタル信号処理によって行なわれる。例えば、デジタル信号処理は目的の振幅変調波形をシグマ・デルタ表現で表すことができ、零と100%との間の瞬間的な変調レベルをデジタル・ビット・ストリーム中の2進数“1”の割合で表す。一般に、そのような表現が有利な点は、アナログ波形への変換のために単に低域通過フィルタを通すだけでよいということである。このように、図1Aはレベル・シフタ20の入力に供給されるシグマ・デルタ振幅波形を示しており、それはデジタル信号をスケーリングする機能を持っていて、“1”が最大の電力増幅器電源電圧“Vbattery”によって表され、他方、2進数“0”が零電圧あるいは、もし零電圧でなければ逆極性の電源電圧で表される。スケーリングされたシグマ・デルタ波形は、次に、シグマ・デルタ量子化雑音を減衰させながらすべての重要な振幅変調成分を通過させるのに十分な帯域幅を有するフィルタ21を用いて低域通過フィルタリングされる。シグマ・デルタ変換器は高次(例えば2次あるいは3次)タイプのものでよく、フィルタ21の通過帯域幅に含まれる量子化雑音を抑制する。
【0006】
フィルタを通過したフィルタ21からの振幅変調(AM)表現の中には、零とVbatteryとの間に瞬間的に存在しそれらの両端間で変動する電圧波形が含まれる。電力増幅器24に対する実際の電源電圧は、フィルタを通したAM波形と比較器22によって比較される。もし電源電圧のほうがAM電圧よりも低ければ、比較器22は直列になった調整トランジスタ13の制御電極電圧を変更して電源電圧を増加させ、あるいは逆の場合にはその逆の制御を行い、それによって電力増幅器(PA)24への電圧が目的のAM波形に追随するように制御する。直列になった調整トランジスタ13は拡散型の金属酸化物半導体(DMOS)あるいはVMOSプロセスで作製されたp形電界効果トランジスタでよく、低いオン状態抵抗を与え、それによりAM信号が最大電圧を要求するときの電圧損失を防止するのが普通である。Vbatteryがアースに対して負となる逆極性の回路の場合には、n形のVMOS電界効果トランジスタ(FET)を使用することができる。
【0007】
PA24をガリウム砒素(GaAs)金属半導体電界効果トランジスタ(MESFET)デバイスで構成する場合には、負荷に供給される出力信号振幅は、小電圧および低信号出力レベルまで極めて忠実にPA電源電圧に供給される目的のAM波形に追随するのが普通である。しかし、PA24としてGaAsヘテロ接合バイポーラ・トランジスタ(HBT)を使用するときは、出力信号の振幅は変調された電源電圧の変化に対して低レベルまで追随しないことが多い。典型的には、HBT増幅器の出力は低レベルでは電源電圧よりも急速に低下する傾向がある。しかし、MESFETおよびHBTの両PAとも、出力信号振幅と電流消費との間でより線形な関係を示す傾向がある。このことは図1Bおよび1Cのグラフに示す測定データによって実証される。これらの図はFETおよびHBT電力増幅器について、出力RF振幅を、変調された電源電圧の関数として(図1B)、および変調された電源電流の関数として(図1C)示している。
【0008】
図2は電力増幅器を示しているが、それの電源電圧ではなく、電源電流を制御することによって高レベルの振幅変調が行なわれている。レベル・シフタ20およびフィルタ21は図1Aと同じAM波形を生成する。比較器22は瞬間的なAM波形電圧を電流・電圧変換器27からの電圧信号と比較する。後者は検出抵抗26および演算増幅器25を含むことができ、例えば0.1オームの電流検出抵抗26の両端間の電圧降下を増幅器25を用いて増幅することにより、直列になった調整器トランジスタ13を通ってPA24に流れる電流を検出する。電流検出回路のスケーリングは抵抗26および増幅器25によって、電流レンジ(零から最大電流まで)が零からVbatteryまでの出力電圧を発生するように決められる。このように、フィルタ21からのAM信号は0とVbatteryとの間にあって、PA電流を零からImaxまでの対応する範囲で制御する。Imaxは、PA24への電源電圧がVbatteryに等しく、負荷インピーダンスが定格(整合)の場合にPA24に流れる電流である。このように、図1Aの電圧制御あるいは図2の電流制御で、少なくとも2つの両極端(電圧変調に関しては零からVbattery、電流変調に関しては零からImax)において、PA24は同じ出力電力および振幅(少なくとも負荷インピーダンスが正しく定格であるとき)を供給する。
【発明の開示】
【発明が解決しようとする課題】
【0009】
もし負荷インピーダンスが正しくなくて、例えば、理想値の半分であれば(例えば、下側の電圧定在波比(VSWR)が2:1のように)、図1Aの電圧制御回路は一般に負荷インピーダンスが正しく定格である場合と同じ電源電圧波形をPA24に供給し、PA24は負荷に対して同じ出力電圧を供給するようにしてみる。しかし、負荷インピーダンスが半分のときは、負荷電流およびPA電流は2倍となり、PA24の電流供給能力を超えるかもしれない。その場合には、PA24は飽和から外れて、電源電圧がVbatteryの100%まで変調される前に電力出力は限度に達するかクリッピングされるため、変調歪が発生する。
【0010】
同様に、もし負荷インピーダンスが理想値の2倍であれば(上側でVSWRが2)、図2の電流制御回路はPA電流を定格負荷の場合と同じになるように制御するのが普通であるが、同じ出力電流が2倍のインピーダンスに流れると負荷電圧は2倍になる。これは負荷に電圧を供給するPA24の能力を超える可能性があるため、出力電力は電流変調がImaxの100%まで達する前に制限あるいはクリッピングされるので、変調歪の原因となる。
【課題を解決するための手段】
【0011】
本発明の実施の形態は、電力増幅器に供給される検出電流および検出電圧に基づいて、電力増幅器を振幅変調するための方法およびシステムを提供する。特定の実施の形態では、検出電流および検出電圧が加算されて、電力増幅器に供給される電力を変調するための電流および電圧の両フィードバックが供給される。別の実施の形態では、電流フィードバックおよび電圧フィードバックを選択的に利用して、電力増幅器に供給される電力を変調する。
【実施例】
【0012】
ここで、本発明について以下のように、本発明の実施例を示す添付図面を参照しながらより完全な説明を行なうことにする。ただし、本発明は多くの異なる形態で実施することが可能であり、ここで提示する実施の形態に限定されるものではなく、ここに提示する実施の形態は、本開示が完全なものとなるように、また当業者に本発明のスコープを完全に伝えるために提供されるものである。全体を通して同様な参照符号は同様な要素を参照する。更に、各々の実施の形態は相補的な伝導形の実施の形態を含むことができる。
【0013】
図3に示すように、本発明の実施の形態は電力増幅器50に供給される電流および電圧の両方を制御することができる。電源52は電源調整器回路54を通して電力増幅器50に電力を供給する。電流検出回路56は電力増幅器50によって引き出される電流を検出し、電圧検出回路58は増幅器50に供給される電圧を検出する。検出電流および検出電圧は電源制御回路60に供給され、後者は電源調整器回路54に制御信号を供給することにより、検出電流、検出電圧、および振幅変調された波形を表す振幅入力信号に基づいて、電力増幅器50に供給される電圧および/または電流を制御する。
【0014】
振幅入力信号は、例えば、振幅変調された電圧または電流、振幅変調された波形のシグマ・デルタ表現、振幅変調された波形の瞬時的な振幅値のデジタル表現、あるいはその他、電源制御回路60に振幅情報を伝える入力信号でよい。説明の便宜上、ここで説明する例示的実施の形態では、振幅入力は振幅変調された波形のシグマ・デルタ表現とする。しかし、本発明はそのような実施の形態に限定すべきではない。更に、電源制御回路60は振幅入力のタイプに依存して変化しよう。例えば、入力がシグマ・デルタ表現である場合には、電源制御回路はシグマ・デルタ表現を振幅変調された電圧へ変換するための低域通過フィルタを含むことになろう。しかし、入力が振幅変調された電圧レベルである場合には、そのようなフィルタは不要となり、電圧はここで述べるようにそのまま利用されるかレベル・シフトされ、増幅あるいはその他の操作を受けて目的の範囲にわたる振幅変調された電圧とされる。更に、振幅入力が振幅変調された波形の瞬時的なデジタル表現である場合には、電源制御回路60はその情報を直接利用するかあるいはデジタル・アナログ変換器を用いてデジタル表現をアナログ表現に変換する。
【0015】
電流検出回路56は電力増幅器50に供給される電流を検出するのに適した任意の回路でよい。特定の実施の形態では、電流検出回路56は、“電力増幅器の埋め込み式セル・バイアス検出および電力増幅器におけるバイアス検出方法”と題する同じように譲渡された米国特許出願第 号(事件番号第8194−480号)に述べられた埋め込みセル技術、および“電流モード変調器用のシステムおよび方法”と題する米国特許出願第 号(事件番号第4015−867号)に述べられた電流変調方式を用いることができる。これらの開示は参照によってここに全体を取り込む。あるいは、その他の電流検出技術、例えば直列抵抗などを利用してもよい。ここでは、本発明の特定の実施の形態を参照しながら、各種の電流検出技術について説明する。しかし、本発明はそれらの技術のみに限定されるべきではない。更に、電源制御回路60に供給される検出電流信号はアナログ信号でもデジタル信号でも構わない。本発明は主として検出電流のアナログ電圧表現を例に取りながら説明するが、本発明はそのような実施の形態に限定されるべきではない。例えば、本発明のデジタル的な実施の形態では、電流検出回路56は、検出電流に対応する電圧をデジタル値に変換して、電源制御回路60にデジタル値を供給するためにアナログ・デジタル変換器を含むことになろう。
【0016】
電圧検出回路58は電力増幅器50に供給される電圧を検出するのに適した任意の回路でよい。本発明の各種の実施の形態では、電圧検出回路58は、電力増幅器50に供給される電圧を電源制御回路60に供給する導体でもよい。しかし、その他の実施の形態では、電圧検出回路58に対して付加的な回路を含めることができる。例えば、電圧をレベル・シフトしたり、その他の操作を施したりする必要があれば、そのような回路を電圧検出回路58に含めることができる。このように、本発明の実施の形態について、主として電力増幅器電圧を電源制御回路61に供給するために導体を利用する電圧検出技術に関して詳細に説明するが、本発明はそのような技術に限定すべきではない。更に、電源制御回路60に供給される検出電圧信号はアナログでもデジタル信号でも構わない。本発明は検出電圧のアナログ表現を例に取って詳細に説明するが、本発明はそのような実施の形態に限定すべきではない。例えば、本発明のデジタル的な実施の形態では、電圧検出回路58は、検出電圧に対応する電圧をデジタル値に変換し、そのデジタル値を電源制御回路60に供給するためのアナログ・デジタル変換器を含むことができる。
【0017】
電源調整器回路54は電力増幅器50への直流電流(DC)電源を調整するのに適した回路でよい。以下で述べるように、各種の実施の形態において、電源調整器は1または複数のトランジスタでよく、それらのトランジスタはバイポーラ型でも電界効果型でもよく、あるいはバイポーラ・トランジスタによって制御されるMOSFETのようにそれらの組合せでもよい。本発明は特定のトランジスタ構成を例に取って詳細に説明するが、本発明はそのような実施の形態に限定されるべきではない。
【0018】
電源制御回路60は振幅入力、検出電流、および検出電圧を受信して、制御信号を電源調整器回路54に供給する。各種の実施の形態において、電源制御回路60は検出電流、検出電圧、および振幅入力信号を、重み付けしあるいは重み付けなしで比較し、そのような比較に基づいて電源調整器回路54を制御する。本発明の特定の実施の形態では、電源調整器回路54は、検出電流および検出電圧に基づいて、電力増幅器50への電力を一定に保つように制御される。別の実施の形態では、電源調整器回路54は、検出電流および検出電圧の電圧表現が振幅入力と比較して大きいかどうかの比較に基づいて制御される。電源調整器回路54は低い電力レベルで動作する場合には検出電流に基づいて、それよりも高い電力レベルで動作する場合には検出電圧に基づいて制御されよう。電流および電圧の両フィードバックを使用することによって、電力増幅器50が不整合な負荷状態で動作するときの変調歪やクリッピングを回避でき、それによりアイソレータなしで使用できる可能性がある。更に、本発明の特定の実施の形態では、より低い電力レベルで動作するときには、電圧でなくPA電流を制御することが自動的に選ばれよう。本発明によって、このことは多様な増幅器技術に関してより線形な変調特性を提供できることが分かった。
【0019】
ここで、本発明の実施の形態について図4Aを参照しながら説明する。図4Aは電圧および電流の組合せを制御するための本発明の実施の形態を示している。図4Aから分かるように、電源制御回路60’はデルタ・シグマ振幅入力を受信し、それをレベル・シフタ70によってVbatteryに対応するようにレベル・シフトし、フィルタ回路71に供給する。フィルタ回路71は抵抗R3およびR4と、キャパシタC1およびC2とを含み、入力を低域通過フィルタリングして、比較器72への1つの入力として振幅変調された電圧を供給する。そのようなシグマ・デルタ変換は当業者には理解されるであろうため、ここでこれ以上説明することはしない。
【0020】
電源制御回路60’はまた、比較器72への第2入力として、抵抗R1とR2とを加算することによって構成される電圧と電流との重み付け和を提供する組合せ回路74を含む。電圧は電圧検出回路58によって検出されるが、これは電力増幅器50に直流(DC)電力を供給する電源調整器回路54の出力に加算抵抗R2をつなぐように機能する導体である。電流は電流検出回路56によって検出されるが、これは例えば0.1オームの抵抗である検出抵抗76と、増幅器75とを含む。検出抵抗76の両端の電圧は増幅器75によって増幅されて、Vcurrent=IRmの関係に従って、電流に関連する電圧信号を生成する。ここでRmは電流検出回路56の電流対電圧変換因子(トランスレジスタンス)である。Rmは例えば、3ボルト/アンペア、すなわち3オームでよく、これはVbattery=3ボルトの場合、0ないし1アンペアの電流範囲および0ないし3ボルトのPA電圧範囲に対応する。このような電圧および電流範囲は、例えば、セルラー電話やその他の無線装置では典型的な値である。
【0021】
電流Iが0ないしImax=1アンペアの範囲にあり、同時にPA電圧が0ないしVmax=Vbattery=3ボルトの範囲にある限り、比較器72への電圧フィードバック信号Vおよび電流フィードバック信号IRmは等しく、どちらも0ないし3ボルトの範囲にある。抵抗値が等しい場合、抵抗R1とR2との和は電圧および電流フィードバック信号の和を2で割ったものとなり、従って、抵抗性加算網中で電圧および電流フィードバック信号を組み合わせることによって作られる組合せ信号はこれも0ないし3ボルトの範囲にあることになろう。このように、入力AM信号が比較器72の出力を制御し、それが電源調整器回路54のトランジスタ73に与えられ、それによって検出電流および検出電圧の和を2で割ったもの((V+IRm)/2)が目的の変調に追随する。抵抗R1およびR2は目的の変調比を達成するために、電流と電圧の間で電気的に動的に変化する。更に/または、図4Cに示され以下で説明するように、完全な電流変調あるいは完全な電圧変調を選ぶように、スイッチ方式の形で実施することもできる。
【0022】
電力増幅器50の負荷インピーダンス(RL)が理想の定格値の半分であれば、電力増幅器50に供給される電圧Vが同じとして、電力増幅器50の電流Iは2倍になる。しかし、図4Aの回路はV+IRmを目的の値に保ち、そしてもしIRmが期待される値よりも大きくなれば、フィードバック回路が直列調整器トランジスタ73を働かせて、補償するためにVを下げる。例えば、もしAM波形がそのピーク値Vmaxにあれば、RLが定格の場合、VおよびIは値VmaxおよびImax=Vmax/Rmになるように制御される。しかし、RLが半分になると、V+IRmはなおも2Vmaxに等しくなるように制御されるが、このときV/IはRm/2に等しい。従って、電力増幅器50に供給される電圧は、VとIRmが等しくなるまで減らされて、それによってV=0.666×Vmax、I=1.333×Imaxとなる。このようにすれば、電流Iは図1Aの電圧制御回路で起こったように2倍になるのを回避できる。同様に、電圧Vも図3の電流制御回路を用いる場合に起こったように半分にならずにすむ。こうして出力電力は、ピーク値(1.333Imax)2RL/2=理想的な値(ImaxRLの8/9に制御される。従って、図4Aの回路は、負荷インピーダンスがRLよりも下側へ外れる場合の出力電力をほぼ一定に保持し、他方で、電流または電圧のいずれか一方のみを制御する場合と比べて、電流または電圧のクリッピングが発生する可能性を減らす。
【0023】
もし負荷インピーダンスRLが高いほうへずれると、電力増幅器50への電源電圧Vは同じでも電力増幅器50の消費電流はIよりも少なくなる。従って、図4Aの電源制御回路60’は低いIを補償するために電圧Vを増加させる。RLが定格値の2倍になると、制御回路はVを1.333倍に増やそうとし、他方、Iは0.666倍に減らそうとする。もしVmax=Vbatteryを要求すれば電圧のクリッピングが発生するが、この場合の電圧クリッピングは、図2のように排他的な電流制御の場合に発生する6dBのクリッピングと比べて1.333倍(2.4dB)だけ理想から減るだけである。
【0024】
負荷インピーダンスの不整合に対する許容度が非対称なため、制御される電圧と電流の組合せはバイアスされて、負荷インピーダンスが定格より高いほうにおいて電流および電圧が等しいフィードバックを与えるようにされ、これにより定格よりもインピーダンスが高くても、あるいは低くてもクリッピングが回避されよう。あるいはクリッピングの制御は、別の電圧と電流の組合せを制御パラメータとするやり方でも可能である。
【0025】
図4Bは本発明の更に別の実施の形態を示す。図4Bから分かるように、電力増幅器50は、トランジスタ100に供給される振幅変調された入力によって変調される。トランジスタ100は、それぞれ例えば1000および100オームの抵抗R8およびR9を流れる電流を制御し、それにより電力増幅器50に供給される電力を制御するトランジスタ102および104に対して電圧を供給する。図4Bに示すように、トランジスタ104は面積Aを有し、またトランジスタ102は面積nAを有し、トランジスタ102の面積はトランジスタ104の面積のn倍になっている。トランジスタ104は抵抗R11と直列になっており、抵抗R11は電力増幅器50によって与えられる抵抗値RPAのn倍の値を有し、そのため抵抗R11はnRPAの値を有する。従って、同じ入力電圧に対して、トランジスタ104を流れる電流はトランジスタ102を流れる電流の1/nとなる。更に、トランジスタ102を流れる電流は電力増幅器にIPAとして供給され、従って抵抗R11を流れる電流はIPA/nとなるため、抵抗R11の両端間の電圧は電力増幅器50に供給される電流IPAを反映する。
【0026】
図4Bから更に分かるように、抵抗R2’は、並列になった直列抵抗R1’、R11、および直列抵抗R10、R9に直列につながって動作する。抵抗R1’およびR2’の値は上で述べたように選ばれ、また抵抗R10は例えば400オームである。こうして、トランジスタ100のコレクタの電圧は、抵抗R2’を通して検出される、電力増幅器50に供給される電圧に基づくことになり、その電圧は抵抗R11によって検出される電流に対応することになる。
【0027】
図4Cは本発明の更に別の実施の形態を示しているが、ここでは組合せ抵抗R1’およびR2’がスイッチ106および108で置き換えられている。図4Cに示すように、スイッチ106および108は電力増幅器50において検出される電圧(スイッチ106)あるいは抵抗R11を通して検出される電流に対応する電圧(スイッチ108)のいずれかを選択的に抵抗R10に供給することによって、電流検出または電圧検出型振幅変調のいずれかを選択的に提供する。例えば、インバータ110によって提供されるAM制御信号およびそれの相補がスイッチ106および108のどちらが活動的でどちらが不活動的かを制御する。従って、AM制御入力は、電流制御または電圧制御のフィードバックのいずれかを選択的に提供するように制御される。
【0028】
検出電流または検出電圧のいずれかに基づいて電力調整器54を選択的に制御する本発明の実施の形態が図5に示されている。例えば、図5に示すように、VあるいはIRmの大きいほうの組合せ回路を使用することができる。図5から分かるように、図4の組合せ網74は電源制御回路60’’では組合せ網84で置き換えられている。図5に示す実施の形態では、電流フィードバック信号IRmおよび電圧フィードバック信号Vは、抵抗R1およびR2の代わりにダイオードD1およびD2を介して比較器72につながれており、これらのダイオードはVまたはIRmの大きいほうが支配的となり、制御パラメータとして利用されるように作用する。第3のダイオードD3がフィルタ71からのAM信号ラインに配置されている。−ve電源ラインにつながれた2つのブリーダ抵抗R5およびR6はダイオードを少し順方向バイアスさせる。−ve電源ラインは好ましくは0.6ボルトのダイオード電圧降下よりも大きい値を有し、例えば、−1ボルトあるいは−3ボルトが適当である。ダイオードD2両端間の入力ダイオード電圧降下はダイオードD1およびD3両端間のフィードバックダイオード電圧降下を補償するため、制御されるパラメータはここでも本質的にAM信号に追随する。
【0029】
ダイオードを利用する方法に替わるものとして、3入力比較器を使用するものがあり、それはそれへの入力のうちの2つに対する“〜より大きい”関数を等価的に統合する。例えば、入力1が入力3よりも大きいかあるいは入力2が入力3よりも大きい場合に、出力信号を増大させる3入力比較器を使用できる。フィードバック動作は次のように、すなわち、2つのフィードバック信号の片方のみがAM入力信号を超えるようにし、フィードバックの結果としてAM入力信号よりも小さい他のフィードバック信号を抑制するように行われる。この機能のために、“ワイヤードOR”出力を備える2つの比較器を使用することができる。
【0030】
図6は、電圧または電流制御のために3入力比較器82を使用する電源制御回路60’’’の別の実施の形態を示す。電圧検出回路58から比較器82の+入力への電圧フィードバック信号Vが、電流検出回路56から比較器82の他方の+入力への電流フィードバック信号を超え、更に比較器82の−入力へ出力信号を供給するフィルタ71からのAM信号を超えるときは、比較器82は電源調整器回路54の直列になった調整トランジスタ73に出力信号を与えて、電圧信号VがAM信号電圧に等しくなるまでPA50へのDC電源電圧を下げるが、その時点で電流フィードバック信号IRmはAM信号電圧よりも低くなるはずである。逆に、電流検出回路56からの電流フィードバック信号IRmが電圧検出回路58からの電圧フィードバック信号Vよりも大きく、またフィルタ71からのAM信号電圧よりも大きいときは、比較器82は電源調整器回路54のトランジスタ73に信号を与えて、電流フィードバック信号IRmがAM信号に等しくなるまでPA50への電源電圧を下げるが、その時点で電圧フィードバック信号VはAM信号電圧よりも低くなるはずである。
【0031】
図7は本発明の実施の形態に使用するのに適した3入力比較器のCMOS構成を示す。裾の長い一対の差動増幅器が使用されているが、2つの正入力を提供するように、正入力用のトランジスタが2つになっている。N形差動入力段704およびP形差動入力段702の両方が設けられていて、対応する入力および出力が並列化されて本質的にレイル・ツー・レイルの共通モード・レンジが設けられている。電流和の差動出力が電流ミラーを用いてミラー化され組み合わされて、シングルエンドの電流源出力を提供している。バイアス電流を設定する抵抗R700も設けられている。バイアス電流設定用抵抗の値は、すべてのデバイス中の静止電流が小さくなるように選ばれ、静止電流は適正な利得および帯域幅を提供するように選ばれる。電流源出力は、図6のトランジスタ73のゲートにつながる抵抗R5およびキャパシタC3によって提供されるループ・フィルタと組み合わされて、主要な積分器とともに一次の制御ループを構成し、零周波数において本質的に無限利得を提供することによって定常状態でのエラーを低減している。ループ・フィルタのキャパシタC3の値は、目的の変調帯域全体で良好なトラッキング性能(すなわち、少ないトラッキング・エラー)を与えるように選ばれよう。ループ・フィルタの抵抗R5の値は、ループ中のその他の位相シフトを補償して良好な減衰を達成するように選ばれよう。
【0032】
VまたはIRmの大きいほうが変調に追随するように制御されるとき、電力増幅器の負荷(PL)が定格よりも小さい場合には電流フィードバックが支配的にPA電流を制御し、他方、RLが定格よりも大きい場合には電圧フィードバックが支配的にPA電源電圧を変調に追随するように制御する。こうして、電流および電圧のクリッピングは減少あるいは解消される。
【0033】
振幅変調の提供のために必要とされる線形なダイナミック・レンジはそれほどのものではない。例えば、0dBないし−20dBの変調で、電圧または電流のいずれかによってHBTまたはMESFET PAのいずれかを変調することで十分である。しかし、もし変調のダイナミック・レンジに加えて、例えば0dBないし−30dBのレンジにおいてPA出力の電力レベル全体を制御したいのであれば、電力レベルが低下するにつれて電流制御へ移行することが望ましい。このことは、電流フィードバックのスケーリングあるいは重み付け因子を増やして、PAが狭い電流スイングで制御されるようにし、同時に電力レベルがスケール・ダウンするにつれて、徐々に電流フィードバックが電圧フィードバックよりも優位に立つようにすることで行なわれよう。
【0034】
図8は可変電流スケーリングを採用する本発明の実施の形態を示す。図8は、電流検出回路56が、スイッチ84およびスイッチで選択される複数の抵抗R10、R11、R12、およびR13と、セレクタ・スイッチ84を含む電流検出回路56’で置き換わっていることを除いて図6と同じである。一例として、4個のスイッチ選択式抵抗が示されている。抵抗R10、R11、R12、およびR13は例えば、2:1のステップで徐々にスケーリングされよう。すなわち、最初の1個の0.1オームの抵抗が抵抗R10に相当し、それが次々と切り離されて、例えば0.2オームの抵抗R11、0.4オームの抵抗R12、および0.8オームの抵抗R13等によって置き換えられよう。これにより、電流フィードバック信号IRmは、徐々に少ないPA電流レンジ、0−1A、0−0.5A、0−250mA、および0−125mAで実現できるようになる。PA電源電圧Vを下げる調整器トランジスタ73によってもたらされる、より少ないPA電流によって電流フィードバック電圧が実現できれば、3入力比較器82への電圧Vのフィードバックは電流フィードバック信号IRmよりも低くなり、比較器82によって無視されよう。より低い電力レベルの選択により、フィードバック制御ループは電圧でなく電流制御へ移行する。最大値から6dB1個分(2:1)の電力ステップダウンに対して、また上側でVSWRが2の負荷に対して、電圧フィードバックは減少した電流フィードバックとちょうど等しく、従って、この低減された電力レベルでもクリッピング防止のために電圧制御と電流制御が両方とも機能している。しかし、更に低い電力レベルにおいては、VSWRが2では電圧クリッピングは起こりえず、電流制御のみが有効である。
【0035】
図8に示すように、電力レベルの低減はAM信号入力のスケール・ダウンではなく、電流フィードバックのスケール・アップによって実現するほうが好ましい。しかし、0.1オームのような低い抵抗をスイッチ選択することは困難で、スイッチ84の抵抗値が0.1オームよりもかなり大きくなろう。従って、図9はスイッチ式電流検出に関する別の実施の形態を示している。
【0036】
図9に示すように、電源調整器回路54’が提供されている。電源調整器回路54’では、トランジスタ73が、元のトランジスタ73の寸法の例えば99%であるトランジスタ73’と、元のトランジスタ73の残りの1%であるトランジスタ73’’とに分割されている。もしこれら両方の部分73’および73’’が同じチップ上に一緒に作製されるか、あるいはそれらのトランジスタが別の形で整合すれば、トランジスタ73’を流れる電流が99%、73’’を流れる電流が1%というように、それらは99:1の比で整合することになる。このスイッチ式電流検出抵抗は73’’を流れる電流の1%を検出するため、これらの抵抗は図8の対応する抵抗の抵抗値の100倍になろう。スイッチ84によって切り換えることのできる抵抗値には、10オームの抵抗R10’、20オームの抵抗R11’、40オームの抵抗R12’、および80オームの抵抗R13’が含まれる。従って、スイッチ84は抵抗R10’、R11’、R12’、およびR13’の値と比べて小さい抵抗値を持つことになろう。トランジスタ73’’はドレイン回路に電流検出抵抗R10’、R11’、R12’、およびR13’を有し、トランジスタ73’はそうでないため、電流分割は正確に99:1にはならない。しかし、校正が可能であり、電流検出抵抗の各々の選択によって目的の電力レベルを生ずるようにできる。
【0037】
本発明の別の実施の形態では、図9の回路を、複数の部分的トランジスタ73’’を提供することによって修正することができる。ここで各々の部分的トランジスタは適切にスケーリングされた電流検出抵抗へ永久的につながれる。増幅器75にどの検出電流を送るかを選択するスイッチを設けることができ、スイッチを電流経路から外すことによって、より低いスイッチ抵抗値への要求を更に低減できる。
【0038】
図10は、別の電流検出回路56’’を採用する本発明の別の実施の形態を示す。ここでも、トランジスタ73は、上でトランジスタ73’および73’’に関連して述べたように、部分73’と部分93とに99:1で分割されている。トランジスタ93は抵抗R6によってドレイン負荷を与えられ、それはPA50によってトランジスタ73’に与えられるドレイン負荷の99倍である。特別な例では、抵抗R6は297オームの値を持つ。このように、トランジスタ73’および93はそれらのスケーリングに比例した負荷を与えられ、その結果、それらのドレイン電圧は同じように保たれる。更に、トランジスタ93は最早ソース負荷を持たないため、トランジスタ73’とトランジスタ93との間で99:1の電流分割をゆがめる多くの差異は取り除かれる。このため、抵抗R6は直接的にはスイッチされない。代わりに、抵抗R6を流れる電流は、N形電流ミラー92およびP形電流ミラー91を用いてスイッチ式抵抗R20、R21、R22、およびR23中にミラー化されている。これらの抵抗は、例えば、それぞれ300、600、1200、および2400オームの値を有し、スイッチ94で選択される。こうすることによって、トランジスタ73’および93は、目的の電流分割99:1を混乱させる変動を直接受けずにすむ。図10で、検出電流はさらに増幅されて、0ないしVbatteryの範囲の電流フィードバック信号IRmを直接提供することにより、増幅器75を不要とする。
【0039】
図11は、別の電流検出回路56’’’を採用する本発明の別の実施の形態を示す。図11から分かるように、電力はトランジスタ95によってインダクタL11を通して増幅器50に供給され、比較器82の出力によって制御される。比較器82はまた、電流ミラー97に附属するトランジスタ96も制御する。電流ミラー97を流れる電流は抵抗R50によって検出され、検出電流に対応する電圧を供給し、その電圧は比較器82にフィードバックされる。増幅器に供給される電圧もまた検出される。単一の電流ミラーを使用することにより、トランジスタの基板効果は低減されよう。
【0040】
図12は本発明の実施の形態に従う動作を示すフローチャートである。図12からわかるように、電力増幅器に供給される電流が検出される(ブロック1000)。更に、電力増幅器に供給される電圧も検出される(ブロック1002)。振幅変調された入力も受信され(ブロック1006)、振幅変調された入力は検出電圧および/または検出電流と比較される(ブロック1006)。そのような比較は、既に述べたように検出電圧および検出電流の組合せに対して行なわれるか、あるいは検出電圧または検出電流のいずれかを選択し、選ばれたものを振幅変調された入力と比較する。そのような選択は検出電流と検出電圧の大きいほうを選ぶことで行なわれよう。更に、検出電流または検出電圧はそのような比較の前にスケーリングされる。いずれの場合でも、電力増幅器に供給されるDC電源はそのような比較に基づいて制御される(ブロック1008)。そのような制御はここで説明するように、電力増幅器に供給される電流または電圧を調整することによって行われ、それによって、選ばれた検出電流または電圧、あるいは検出電流と検出電圧の組合せと、振幅変調された入力との間の差が零になるようにされる。
【0041】
本発明の各種の実施の形態について、特定の比率などに関連して説明してきたが、当業者には明らかなように、本開示に照らしてその他の比率を使用することも可能であり、また本発明の教えはなお有益であることは明らかであろう。更に、本発明について、特定のアナログ回路に関して説明してきたが、ここに述べた回路の動作を実行するために、その他のアナログ回路、デジタル回路、プロセッサ等、およびアナログとデジタル回路の組合せのほか、ソフトウエアとハードウエアの組合せも利用できる。
【0042】
図面および説明の中で、本発明の典型的な実施の形態を開示し、特定の項目を取り上げたが、それらは一般的な意味で、説明の便宜上取り上げたものであり、限定的な意図のものではなく、本発明のスコープは以下の特許請求の範囲に提示される。
【図面の簡単な説明】
【0043】
【図1A】電源電圧を制御することによって変調される従来の電力増幅器を示す模式図。
【図1B】FETおよびHBT増幅器について、出力電圧を電源電圧の関数として示すグラフ。
【図1C】FETおよびHBT増幅器について、出力電圧を電源電流の関数として示すグラフ。
【図2】電源電流を制御することによって変調される従来の電力増幅器を示す模式図。
【図3】本発明の実施の形態に従う増幅器システムのブロック図。
【図4A】電流および電圧制御の両方を採用する本発明の実施の形態を示す模式図。
【図4B】電流および電圧制御の両方を採用する本発明の別の実施の形態を示す模式図。
【図4C】電流および電圧制御の両方を採用し、電流変調と電圧変調との間で切り換えられる本発明の実施の形態を示す模式図。
【図5】選択的な電圧制御または電流制御を採用する本発明の実施の形態を示す模式図。
【図6】選択的な電圧制御または電流制御方式の3入力比較器を採用する本発明の実施の形態を示す模式図。
【図7】例えば図6に示すような、本発明の実施の形態に使用するのに適した3入力比較器の模式図。
【図8】スイッチで選択される電流スケーリングを採用する本発明の実施の形態の模式図。
【図9】スイッチで選択される電流スケーリングを採用する本発明の別の実施の形態の模式図。
【図10】スイッチで選択される電流スケーリングを採用する本発明の更に別の実施の形態の模式図。
【図11】本発明の更に別の実施の形態の模式図。
【図12】本発明の実施の形態に従う動作を示すフローチャート。

Claims (53)

  1. 電力増幅器を振幅変調するためのシステムであって、
    制御入力信号に応答して、前記電力増幅器への直流(DC)電源を調整するように構成された電源調整器回路、
    前記電力増幅器への前記DC電源の電流を検出して、検出電流信号を与える電流検出回路、
    前記電力増幅器への前記DC電源の電圧を検出して、検出電圧信号を与える電圧検出回路、
    振幅変調された波形に対応する振幅入力信号、前記検出電流信号、および前記検出電圧信号を受信して、前記振幅入力信号、前記検出電流信号、および前記検出電圧信号に基づいて、前記電源調整器回路に対して前記制御入力信号を供給するように構成された電源制御回路、
    を含むシステム。
  2. 請求項1に記載のシステムであって、前記電源制御回路は、更に、
    前記検出電流信号および前記検出電圧信号の重み付け和を与えるように構成された組合せ回路、および
    第1入力に受信された前記検出電流信号と前記検出電圧信号との重み付け和を、第2入力に受信された前記振幅変調された波形とを比較して、前記電源調整器回路への前記制御入力信号として差分値を供給するように構成された比較器、
    を含んでいるシステム。
  3. 請求項1に記載のシステムであって、前記電圧検出回路は前記電源調整器回路の出力へ電気的につながれた導体を含んでおり、また前記電流検出回路は、
    前記電源調整器回路と直列の検出抵抗、および
    前記検出抵抗の両端間の電圧降下を増幅して、前記検出抵抗を流れる電流に対応する電圧を与える増幅器、
    を含んでいるシステム。
  4. 請求項3に記載のシステムであって、前記組合せ回路は、
    前記導体および前記比較器の前記第1入力に直列の第1の抵抗、および
    前記検出抵抗の両端間の電圧降下を増幅する前記増幅器および前記比較器の前記第1入力と直列の第2の抵抗、
    を含んでいるシステム。
  5. 請求項1に記載のシステムであって、前記電源制御回路は、更に、
    前記検出電流および前記検出電圧の1つを選択するように構成された組合せ回路、および
    前記比較器の第1入力に受信される前記検出電流および前記検出電圧のうちの前記選ばれた1つを、前記比較器の第2入力に受信される前記振幅変調された波形と比較して、前記電源調整器回路への前記制御入力信号として差分値を供給するように構成された比較器、
    を含んでいるシステム。
  6. 請求項5に記載のシステムであって、前記電圧検出回路は前記電源調整器回路の出力に電気的につながれた導体を含んでおり、また前記電流検出回路は、
    前記電源調整器回路と直列になった検出抵抗、および
    前記検出抵抗の両端間の電圧降下を増幅して、前記検出抵抗を流れる電流に対応する電圧を供給する出力を有する増幅器、
    を含んでいるシステム。
  7. 請求項6に記載のシステムであって、前記組合せ回路が、
    前記比較器の前記第1入力および、前記検出抵抗の両端間の電圧降下を増幅する前記増幅器の前記出力と直列になって、前記検出抵抗の両端間の電圧降下を増幅する前記増幅器の前記出力が前記比較器の前記第1入力よりも大きい電圧レベルにあるときに、正にバイアスされるようになった第1ダイオード、
    前記導体および前記比較器の前記第1入力と直列になって、前記導体が前記比較器の前記第1入力よりも大きい電圧レベルにあるときに、正にバイアスされるようになった第2ダイオード、および
    前記振幅入力信号および前記比較器の前記第2入力と直列になって、前記振幅入力信号が前記比較器の前記第2入力よりも大きい電圧レベルにあるときに、正にバイアスされるようになった第3ダイオード、
    を含んでいるシステム。
  8. 請求項7に記載のシステムであって、更に、前記比較器の前記第1および第2入力に付属して動作する2つのブリーダ抵抗を含み、それによって前記第1、第2、および第3ダイオードを順方向にバイアスするようにしたシステム。
  9. 請求項1に記載のシステムであって、前記電源制御回路は、更に、前記検出電流と前記検出電圧のうちの1つを選択して、前記検出電流と前記検出電圧とのうちの選ばれた前記1つと、前記振幅変調された波形との差分値を、前記電源調整器回路への前記制御入力信号として供給するように構成されているシステム。
  10. 請求項9に記載のシステムであって、前記電源制御回路は、入力として前記検出電流信号、前記検出電圧信号、および前記振幅変調された波形に対応する信号を有する3入力比較器を含んでいるシステム。
  11. 請求項1に記載のシステムであって、前記電源調整器回路は、前記電力増幅器に供給される電源と直列のトランジスタを含んでいるシステム。
  12. 請求項1に記載のシステムであって、前記電源調整器は前記電力増幅器に供給される電源と直列の複数のトランジスタ要素を含んでおり、また前記電流検出回路が前記複数のトランジスタ要素の1つと直列になった1つの検出抵抗を含んでいるシステム。
  13. 請求項12に記載のシステムであって、前記電流検出回路は、更に、前記複数のトランジスタ要素のサブセットと直列の複数の検出抵抗を含んでおり、前記複数の検出抵抗は、前記電力増幅器に供給される電源と直列になるように切り替えて接続されるようにして、それによって前記複数のトランジスタ要素の1つと前記複数の検出抵抗の対応する1つとが、電源ラインおよび前記電力増幅器に直接つながれた前記トランジスタ要素の別の1つを通る電源ラインと並列になるようにしたシステム。
  14. 請求項1に記載のシステムであって、前記電流検出回路は、
    複数の検出抵抗、
    前記複数の検出抵抗の選ばれた1つを前記電源調整器回路と直列に置くスイッチ回路、および
    前記複数の検出抵抗の前記選ばれた1つの両端間の電圧降下を増幅して、前記複数の検出抵抗の前記選ばれた1つを流れる電流に対応する電圧を供給する増幅器、
    を含んでいるシステム。
  15. 請求項1に記載のシステムであって、前記電源調整器回路は、前記電力増幅器への電源ラインと直列になった第1トランジスタを含んでおり、また、前記電流検出回路は、
    前記電源ラインに付随して動作する第2トランジスタ、
    前記第2トランジスタを流れる電流をミラー化する第1電流ミラー回路、および
    前記電源制御回路に付随して動作し、前記検出電流に対応する電圧を供給する検出抵抗、
    を含んでいるシステム。
  16. 請求項15に記載のシステムであって、前記電流検出回路は、更に、
    前記第2トランジスタと直列の負荷抵抗であって、前記電力増幅器によって提供される負荷に対して予め定められた関係を有する抵抗値を有し、また前記第1電流ミラーが負荷抵抗を流れる電流をミラー化するようになった負荷抵抗、および
    前記第1電流ミラー回路および前記検出抵抗に付随して動作する第2電流ミラー回路であって、それによって前記第1電流ミラー回路によってミラー化された電流に比例した電流を前記検出抵抗を通して供給するようにした第2電流ミラー回路、
    を含んでいるシステム。
  17. 請求項16に記載のシステムであって、前記検出抵抗が複数の検出抵抗を含み、前記電流検出回路は、更に、
    前記複数の検出抵抗のうちの選ばれた1つを、前記第2電流ミラー回路の出力と電気的につなぐスイッチ回路、
    を含んでいるシステム。
  18. 請求項17に記載のシステムであって、前記第2電流ミラー回路は、更に、前記第1電流ミラー回路によってミラー化される電流を増幅するように構成されているシステム。
  19. 請求項15に記載のシステムであって、前記第2トランジスタは前記第1トランジスタの一部を含んでいるシステム。
  20. 請求項1に記載のシステムであって、前記電力増幅器は無線装置の送信機の電力増幅器を含んでいるシステム。
  21. 請求項1に記載のシステムであって、前記電源調整器回路が前記DC電源および前記電力増幅器と直列の第1トランジスタを含んでおり、
    前記電流検出回路は、
    前記第1トランジスタの面積に比例する面積を有し、前記制御入力に応答する第2トランジスタ、および
    前記第2トランジスタと直列になって、前記第2トランジスタが前記第1トランジスタに比例するのと同じ割合で前記電力増幅器の抵抗値に比例する寸法を有する電流検出抵抗、
    を含んでおり、
    前記電圧検出回路は、前記第1トランジスタおよび前記電力増幅器につながれた第1端子を有する第1トランジスタを含んでおり、
    前記電源制御回路は、
    制御入力として前記振幅変調された波形を有する第3トランジスタ、
    前記第3トランジスタおよび前記DC電源の第1電圧と直列になった第2抵抗であって、前記第1トランジスタおよび前記第2トランジスタへの制御入力が前記第2抵抗および前記第3トランジスタにつながれるようにした第2抵抗、
    前記第3トランジスタおよび前記DC電源の第2電圧と直列になった第3抵抗、
    第1端子を前記第1抵抗の第2端子へつながれ、また第2端子を前記第2トランジスタおよび前記検出抵抗につながれた第4抵抗、および
    前記第4抵抗の前記第1端子と前記第1抵抗の前記第2端子とにつながれた第1端子と、前記第3トランジスタと前記第3抵抗につながれた第2端子と、を有する第5抵抗、
    を含んでいるシステム。
  22. 請求項1に記載のシステムであって、前記電源制御回路は、前記検出電流信号と前記検出電圧信号との間で選択を行い、前記検出電流信号および前記検出電圧信号のうちの前記選ばれたほうと、前記振幅変調された波形とに基づいて、前記電源調整器回路への前記制御入力信号を提供するように構成されているシステム。
  23. 請求項22に記載のシステムであって、前記電源調整器回路は、前記DC電源および前記電力増幅器と直列になった第1トランジスタを含んでおり、
    前記電流検出回路は、
    前記第1トランジスタの面積に比例する面積を有し、前記制御入力に応答する第2トランジスタ、および
    前記第2トランジスタと直列になって、前記第2トランジスタが前記第1トランジスタに比例するのと同じ割合で前記電力増幅器の抵抗値に比例する寸法を有する電流検出抵抗、
    を含んでおり、
    前記電圧検出回路は、前記第1トランジスタの前記出力と前記電力増幅器とにつながれた導体を含んでおり、また
    前記電源制御回路は、
    制御入力として前記振幅変調された波形を有する第3トランジスタ、
    前記第3トランジスタおよび前記DC電源の第1電圧と直列になった第1抵抗であって、前記第1トランジスタおよび前記第2トランジスタへの制御入力が前記第1抵抗および前記第3トランジスタにつながれている第1抵抗、
    前記第3トランジスタおよび前記DC電源の第2電圧と直列になった第2抵抗、
    前記電圧検出回路につながれた第1スイッチ、
    前記電流検出抵抗につながれた第2スイッチ、および
    前記第2抵抗および前記第3トランジスタにつながれ、前記第1スイッチの出力および前記第2スイッチの出力と直列になった第3抵抗、
    を含んでいるシステム。
  24. 無線装置の送信機の電力増幅器の振幅変調用回路であって、
    目的の波形を持つ振幅変調信号を発生する振幅変調信号発生器、
    制御入力信号に応答して、前記送信機電力増幅器への直流(DC)電源を調整する調整器回路、
    前記調整されたDC電源の電圧を検出して、電圧フィードバック信号を供給する電圧検出器、
    前記送信機電力増幅器が前記調整されたDC電源から引き出す電流を検出して、電流フィードバック信号を供給する電流検出器、
    前記電圧フィードバック信号および前記電流フィードバック信号を前記振幅変調信号と比較して、前記制御入力信号を供給する比較器、
    を含む回路。
  25. 請求項24に記載の回路であって、前記比較器は、前記電流フィードバック信号と前記電圧フィードバック信号とを組み合わせて、前記振幅変調信号と比較するための組合せフィードバック信号を生成するように構成された組合せ回路を含んでいる回路。
  26. 請求項25に記載の回路であって、前記組合せ回路は、前記振幅変調信号と比較するために、前記電圧フィードバック信号と前記電流フィードバック信号との重み付け和を提供するように構成された回路。
  27. 請求項26に記載の回路であって、前記重み付け和に対する前記電圧フィードバック信号と前記電流フィードバック信号との寄与が、前記送信機電力増幅器に供給される調整されたDC電圧と前記送信機電力増幅器によって引き出される電流との比に対応する比率にした回路。
  28. 請求項25に記載の回路であって、前記組合せ回路は、前記電圧フィードバック信号が支配的なときは、前記組合せフィードバック信号として前記電圧フィードバック信号を選び、しかも前記電流フィードバック信号が支配的なときは、前記組合せフィードバック信号として前記電流フィードバック信号を選ぶように構成された回路。
  29. 請求項24に記載の回路であって、前記比較器は3入力と1出力を有しており、入力の2つが第1符号の出力への信号利得を有することを特徴とし、かつ第3の入力が前記第1符号とは逆の符号の出力への利得を有することを特徴とする回路。
  30. 請求項24に記載の回路であって、前記振幅変調信号発生器は、目的の波形を表すシグマ・デルタのビット・ストリーム表現をフィルタリングする低域通過フィルタを含んでいる回路。
  31. 請求項30に記載の回路であって、前記ビット・ストリームがレベル・シフトされて、2進数“1”値が、前記送信機電力増幅器で利用可能な最大の電源電圧に本質的に等しい電圧レベルを有するようにされる回路。
  32. 請求項31に記載の回路であって、前記ビット・ストリームがレベル・シフトされて、2進数“0”値が、前記送信機電力増幅器の電源電圧のアース・リターン電位に本質的に等しい電圧レベルを有するようにされる回路。
  33. 請求項24に記載の回路であって、前記調整器回路は、前記DC電源および前記送信機電力増幅器と直列につながれた電界効果トランジスタを含んでおり、また前記制御入力信号が前記電界効果トランジスタのゲートに供給されるようにした回路。
  34. 請求項33に記載の回路であって、前記電界効果トランジスタ電極のドレインは前記送信機電力増幅器につながれ、前記電界効果トランジスタのソースは電流検出抵抗を介して前記DC電源につながれている回路。
  35. 請求項34に記載の回路であって、前記電流検出抵抗の両端間の電圧降下が増幅されて、前記電流フィードバック信号を生成するようにした回路。
  36. 請求項34に記載の回路であって、前記電界効果トランジスタが多重ソース電界効果トランジスタを含んでおり、しかも前記電流検出抵抗につながれた前記多重ソース電界効果トランジスタのソースが前記電界効果トランジスタの第1部分に対応し、前記電界効果トランジスタの第2ソースが前記電界効果トランジスタの残りの部分に対応して前記DC電源につながれている回路。
  37. 請求項34に記載の回路であって、前記電流検出抵抗はスイッチによって選ばれて差分抵抗値を提供することにより、前記電圧フィードバック信号に対する前記電流フィードバック信号の相対的重み付けを変化させるようにした回路。
  38. 請求項33に記載の回路であって、前記電界効果トランジスタは、前記DC電源につながれたソース電極と前記送信機電力増幅器につながれたドレイン電極とを有し、前記電力増幅器に対して調整されたDC電源を供給するようにした回路。
  39. 請求項38に記載の回路であって、前記電界効果トランジスタは少なくとも2つのドレイン電極を有し、しかも前記ドレイン電極の第1のものは前記電界効果トランジスタの第1部分に対応すると共に、前記ドレイン電極の第2のものは前記電界効果トランジスタの残りの部分に対応するようにした回路。
  40. 請求項39に記載の回路であって、前記第2ドレイン電極が電流検出抵抗につながれて前記電流フィードバック信号を供給するようにした回路。
  41. 請求項40に記載の回路であって、前記電流検出抵抗がスイッチによって異なる抵抗値に選ばれることによって、前記電流フィードバック信号の前記電圧フィードバック信号に対する相対的重み付けを変化させるようにした回路。
  42. 請求項39に記載の回路であって、更に、
    前記電界効果トランジスタの第1部分の第2部分に対する比に等しく、前記送信機電力増幅器の等価なDC電源負荷抵抗に対する比に対応する値を有する抵抗、および
    電流ミラー回路であって、前記電界効果トランジスタの前記第2ドレイン電極が前記抵抗を介して前記電流ミラー回路につながれている電流ミラー回路、
    を含む回路。
  43. 請求項42に記載の回路であって、更に、スイッチで選択される複数の電流検出抵抗を含み、また前記電流ミラー回路が、前記スイッチで選択される電流検出抵抗の選ばれたものに出力電流を供給して、前記電圧フィードバック信号に相対的に選択可能な重み付けを行った電流フィードバック信号を提供するようにした回路。
  44. 電力増幅器を振幅変調するための方法であって、
    前記電力増幅器に供給される電流を検出して、検出電流値を与える工程、
    前記電力増幅器に供給される電圧を検出して、検出電圧値を与える工程、
    振幅変調された波形に対応する入力信号を受信する工程、
    前記検出電流値と前記電圧検出値とを組み合わせることによって、組合せ値を与える工程;および
    前記電力増幅器に電力を供給する直流(DC)電源を、前記組合せ値および前記振幅変調された波形に基づいて制御する工程;
    を含む方法。
  45. 請求項44に記載の方法であって、前記検出電流値と前記検出電圧値とを組み合わせて組合せ値を提供する工程は、前記検出電流値と前記検出電圧値とを加算する工程を含んでいる方法。
  46. 請求項46に記載の方法であって、前記検出電流値および前記検出電圧値が加算の前に重み付けされる方法。
  47. 請求項44に記載の方法であって、前記検出電流値と前記検出電圧値とを組み合わせて組合せ値を提供する工程が、前記組合せ値として、前記検出電圧値と前記検出電流値の1つを選択する工程を含んでいる方法。
  48. 請求項47に記載の方法であって、前記検出電流値と前記検出電圧値の大きいほうが前記組合せ値として選ばれる方法。
  49. 請求項44に記載の方法であって、前記電力増幅器に電力を供給する直流(DC)電源を、前記組合せ値および前記振幅変調された波形に基づいて制御する工程は、
    前記組合せ値と前記振幅変調された波形との間の差分を決定する工程、および
    前記決定された差分に基づいて、前記電力増幅器に供給される電圧を制御する工程、
    を含んでいる方法。
  50. 送信機の電力増幅器を振幅変調するための方法であって、
    前記電力増幅器に供給される電源電圧に対する引き出される電流の比が、予め決められた比よりも大きいときに、前記電力増幅器によって引き出される電流を変調する工程、および
    前記電源電圧に対する引き出される電流の比が前記予め決められた比よりも小さいときに、前記電力増幅器に供給される電源電圧を変調する工程、
    を含む方法。
  51. 請求項50に記載の方法であって、更に、
    前記送信機を動作させるための電力出力レベルを選択する工程、および
    前記選ばれた電力出力レベルに基づいて、前記予め決められた比を変化させる工程、
    を含む方法。
  52. 電力増幅器を振幅変調するためのシステムであって、
    前記電力増幅器に供給される電流を検出して、検出電流値を与えるための手段、
    前記電力増幅器に供給される電圧を検出して、検出電圧値を与えるための手段、
    振幅変調された波形に対応する入力信号を受信するための手段、
    前記検出電流値と前記検出電圧値とを組み合わせて、組合せ値を与えるための手段、および
    前記電力増幅器に電力を供給する直流(DC)電源を、前記組合せ値および前記振幅変調された波形に基づいて制御するための手段、
    を含むシステム。
  53. 送信機の電力増幅器を振幅変調するためのシステムであって、
    前記電力増幅器に供給される電源電圧に対する引き出される電流の比が予め決められた比よりも大きいときに、前記電力増幅器によって引き出される電流を変調するための手段、および
    前記電源電圧に対する引き出される電流の比が前記予め決められた比よりも小さいときに、前記電力増幅器に供給される電源電圧を変調するための手段、
    を含むシステム。
JP2003501048A 2001-05-29 2002-05-29 高レベル変調方法および装置 Expired - Lifetime JP4276936B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/866,934 US6665525B2 (en) 2001-05-29 2001-05-29 High-level modulation method and apparatus
PCT/US2002/016654 WO2002097972A2 (en) 2001-05-29 2002-05-29 Power amplifier control

Publications (2)

Publication Number Publication Date
JP2005504458A true JP2005504458A (ja) 2005-02-10
JP4276936B2 JP4276936B2 (ja) 2009-06-10

Family

ID=25348758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003501048A Expired - Lifetime JP4276936B2 (ja) 2001-05-29 2002-05-29 高レベル変調方法および装置

Country Status (6)

Country Link
US (1) US6665525B2 (ja)
EP (1) EP1451926B1 (ja)
JP (1) JP4276936B2 (ja)
AU (1) AU2002310148A1 (ja)
DE (1) DE60223713T2 (ja)
WO (1) WO2002097972A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203854A (ja) * 2004-12-21 2006-08-03 Renesas Technology Corp 送信機及びそれを用いた移動体通信端末
JP2008072210A (ja) * 2006-09-12 2008-03-27 Denso Corp 車載用無線送信装置
KR101004851B1 (ko) * 2008-12-23 2010-12-28 삼성전기주식회사 출력 제어 기능을 갖는 전력증폭기 시스템
JP2012033986A (ja) * 2010-07-28 2012-02-16 Renesas Electronics Corp 包絡線増幅器
JP2015080182A (ja) * 2013-10-14 2015-04-23 角田 行男 定電流定電圧アンプ
JP2016072877A (ja) * 2014-09-30 2016-05-09 株式会社Jvcケンウッド 電力増幅装置および電力増幅方法
JP2016072876A (ja) * 2014-09-30 2016-05-09 株式会社Jvcケンウッド 電力増幅装置および電力増幅方法
KR102662272B1 (ko) * 2018-12-11 2024-05-02 삼성전자주식회사 증폭기에 공급되는 전력을 감지하는 감지 회로를 이용하여 증폭기의 출력을 조정하는 방법 및 그 전자 장치

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134891A1 (de) * 2000-03-06 2001-09-19 Infineon Technologies AG Schaltungsanordnung zur Arbeitspunkteinstellung eines Hochfrequenztransistors und Verstärkerschaltung
US7333778B2 (en) * 2001-03-21 2008-02-19 Ericsson Inc. System and method for current-mode amplitude modulation
US7151914B2 (en) * 2001-08-21 2006-12-19 Medtronic, Inc. Transmitter system for wireless communication with implanted devices
GB2389275B (en) * 2002-05-31 2006-10-25 Hitachi Ltd Apparatus for mobile communication system
TWI288528B (en) * 2002-06-21 2007-10-11 Realtek Semiconductor Corp Impedance matching circuit
US7394445B2 (en) 2002-11-12 2008-07-01 Power-One, Inc. Digital power manager for controlling and monitoring an array of point-of-load regulators
US7456617B2 (en) 2002-11-13 2008-11-25 Power-One, Inc. System for controlling and monitoring an array of point-of-load regulators by a host
US7737961B2 (en) 2002-12-21 2010-06-15 Power-One, Inc. Method and system for controlling and monitoring an array of point-of-load regulators
US7836322B2 (en) 2002-12-21 2010-11-16 Power-One, Inc. System for controlling an array of point-of-load regulators and auxiliary devices
US7882372B2 (en) 2002-12-21 2011-02-01 Power-One, Inc. Method and system for controlling and monitoring an array of point-of-load regulators
US7743266B2 (en) 2002-12-21 2010-06-22 Power-One, Inc. Method and system for optimizing filter compensation coefficients for a digital power control system
US7266709B2 (en) 2002-12-21 2007-09-04 Power-One, Inc. Method and system for controlling an array of point-of-load regulators and auxiliary devices
US7673157B2 (en) * 2002-12-21 2010-03-02 Power-One, Inc. Method and system for controlling a mixed array of point-of-load regulators through a bus translator
US7710092B2 (en) 2003-02-10 2010-05-04 Power-One, Inc. Self tracking ADC for digital power supply control systems
US6897730B2 (en) * 2003-03-04 2005-05-24 Silicon Laboratories Inc. Method and apparatus for controlling the output power of a power amplifier
US7260368B1 (en) * 2003-04-07 2007-08-21 Intel Corporation Linear amplification with non-linear components (LINC) modulator and method for generating out-phased signals for a LINC transmitter
US6987417B2 (en) * 2003-06-24 2006-01-17 Northrop Grumman Corpoation Polar and linear amplifier system
US7043213B2 (en) * 2003-06-24 2006-05-09 Northrop Grumman Corporation Multi-mode amplifier system
EP1542357B1 (en) 2003-12-12 2006-11-29 Freescale Semiconductor, Inc. A power amplifier module and a time division multiple access radio
US7023292B2 (en) * 2003-12-17 2006-04-04 Telefonaktiebolaget L.M. Dericsson Polar modulation using amplitude modulated quadrature signals
CN1938942A (zh) * 2004-02-06 2007-03-28 三菱电机株式会社 功率放大装置、通信终端装置及功率放大装置的控制方法
JP3961498B2 (ja) * 2004-02-27 2007-08-22 松下電器産業株式会社 高周波回路装置
JP4514485B2 (ja) * 2004-03-19 2010-07-28 パナソニック株式会社 高周波電力増幅器
US8315588B2 (en) * 2004-04-30 2012-11-20 Lsi Corporation Resistive voltage-down regulator for integrated circuit receivers
US7193474B2 (en) * 2004-11-02 2007-03-20 Skyworks Solutions, Inc. Current limit circuit for power amplifiers
US7873335B2 (en) * 2004-11-29 2011-01-18 Nxp B.V. Current limiting circuit for RF power amplifier
US7154338B2 (en) * 2004-12-30 2006-12-26 Motorola, Inc. Power control circuit and method
US7288991B2 (en) * 2005-02-17 2007-10-30 Skyworks Solutions, Inc. Power control circuit for accurate control of power amplifier output power
GB2440702B (en) * 2005-05-20 2009-07-08 Paragon Comm Ltd Method for implementation and parameter settings of a voltage enhancement circuit for amplifiers as an integrated circuit (IC)
US7109897B1 (en) 2005-10-07 2006-09-19 Rf Micro Devices, Inc. Power amplifier control reducing output power variation
JP4481962B2 (ja) * 2006-07-12 2010-06-16 株式会社東芝 電源装置、増幅装置、無線装置および再生装置
CN101490949B (zh) * 2006-12-27 2012-01-18 松下电器产业株式会社 极化调制发送装置
US7834613B2 (en) * 2007-10-30 2010-11-16 Power-One, Inc. Isolated current to voltage, voltage to voltage converter
TWI339008B (en) * 2007-12-05 2011-03-11 Ite Tech Inc Class-d amplifier and multi-level output signal generated method thereof
GB2456005B (en) * 2007-12-28 2013-03-06 Wolfson Ltd Amplifier circuit
US8145147B2 (en) * 2008-03-05 2012-03-27 Panasonic Corporation Power amplifier edge evaluation-alternative envelope modulator
US8179705B2 (en) * 2008-05-27 2012-05-15 Power-One, Inc. Apparatus and method of optimizing power system efficiency using a power loss model
JP5594980B2 (ja) * 2009-04-03 2014-09-24 ピーエスフォー ルクスコ エスエイアールエル 非反転増幅回路及び半導体集積回路と非反転増幅回路の位相補償方法
US8559873B2 (en) * 2009-11-20 2013-10-15 Qualcomm Incorporated Forward link signaling within a wireless power system
KR101109242B1 (ko) 2009-12-15 2012-01-30 삼성전기주식회사 전력 증폭 장치
EP2432118B1 (en) * 2010-09-15 2012-12-26 Agence Spatiale Européenne Radio-frequency power amplifier with fast envelope tracking
US8742843B2 (en) * 2011-12-19 2014-06-03 Intel Corporation Power management in transceivers
US9160284B2 (en) * 2013-01-08 2015-10-13 Aviat U.S., Inc. Systems and methods for biasing amplifiers using adaptive closed-loop control and adaptive predistortion
WO2014110187A1 (en) 2013-01-08 2014-07-17 Aviat Networks, Inc. Systems and methods for biasing amplifiers with adaptive closed loop control
EP3114761A4 (en) * 2014-03-07 2017-11-22 Nokia Technologies OY Device and method for current sensing and power supply modulator using the same
KR102140191B1 (ko) * 2015-07-14 2020-08-03 삼성전기주식회사 전력 증폭기용 전력 공급 장치
CN110349535B (zh) * 2018-04-02 2021-01-12 联咏科技股份有限公司 增益放大器
WO2020122596A1 (en) * 2018-12-11 2020-06-18 Samsung Electronics Co., Ltd. Method for adjusting output of amplifier by using sensing circuit configured to sense power supplied to amplifier and electronic device therefor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3086512B2 (ja) 1990-11-14 2000-09-11 エリクソン−ジーイー モービル コミュニケーションズ ホールディング インコーポレイテッド 送信機及びその電力増幅回路
US5423078A (en) 1993-03-18 1995-06-06 Ericsson Ge Mobile Communications Inc. Dual mode power amplifier for analog and digital cellular telephones
US5574967A (en) 1994-01-11 1996-11-12 Ericsson Ge Mobile Communications, Inc. Waste energy control and management in power amplifiers
US5424685A (en) * 1994-02-10 1995-06-13 Rockwell International Corporation High-level modulator with bipolar modulation reference
US5694433A (en) 1994-09-14 1997-12-02 Ericsson Inc. Efficient linear power amplification
US5570062A (en) 1994-10-12 1996-10-29 Ericsson Ge Mobile Communications Inc. AM-FM transmitter power amplifier using class-BC
JPH08154022A (ja) 1994-11-29 1996-06-11 Nec Corp 過電流保護回路付き増幅回路
US6061568A (en) 1996-10-01 2000-05-09 Ericsson Inc. Method and apparatus for mitigating intermodulation effects in multiple-signal transmission systems
US5933766A (en) 1996-12-16 1999-08-03 Ericsson Inc. Intermodulation compensation in multi-channel amplifiers
US6025754A (en) * 1997-11-03 2000-02-15 Harris Corporation Envelope modulated amplifier bias control and method
US5930128A (en) 1998-04-02 1999-07-27 Ericsson Inc. Power waveform synthesis using bilateral devices
JP2000004173A (ja) * 1998-06-17 2000-01-07 Denso Corp デジタル送信機の歪検出方法及び装置
KR100357619B1 (ko) * 1998-06-23 2003-01-15 삼성전자 주식회사 이동 통신단말기의 출력전력 제어장치 및 방법
US6590940B1 (en) * 1999-05-17 2003-07-08 Ericsson Inc. Power modulation systems and methods that separately amplify low and high frequency portions of an amplitude waveform
US6566944B1 (en) * 2002-02-21 2003-05-20 Ericsson Inc. Current modulator with dynamic amplifier impedance compensation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203854A (ja) * 2004-12-21 2006-08-03 Renesas Technology Corp 送信機及びそれを用いた移動体通信端末
JP4690835B2 (ja) * 2004-12-21 2011-06-01 ルネサスエレクトロニクス株式会社 送信機及びそれを用いた移動体通信端末
JP2008072210A (ja) * 2006-09-12 2008-03-27 Denso Corp 車載用無線送信装置
JP4662211B2 (ja) * 2006-09-12 2011-03-30 株式会社デンソー 車載用無線送信装置
KR101004851B1 (ko) * 2008-12-23 2010-12-28 삼성전기주식회사 출력 제어 기능을 갖는 전력증폭기 시스템
US8008974B2 (en) 2008-12-23 2011-08-30 Samsung Electro-Mechanics Co., Ltd. Power amplifier system with power control function
JP2012033986A (ja) * 2010-07-28 2012-02-16 Renesas Electronics Corp 包絡線増幅器
JP2015080182A (ja) * 2013-10-14 2015-04-23 角田 行男 定電流定電圧アンプ
JP2016072877A (ja) * 2014-09-30 2016-05-09 株式会社Jvcケンウッド 電力増幅装置および電力増幅方法
JP2016072876A (ja) * 2014-09-30 2016-05-09 株式会社Jvcケンウッド 電力増幅装置および電力増幅方法
KR102662272B1 (ko) * 2018-12-11 2024-05-02 삼성전자주식회사 증폭기에 공급되는 전력을 감지하는 감지 회로를 이용하여 증폭기의 출력을 조정하는 방법 및 그 전자 장치

Also Published As

Publication number Publication date
DE60223713D1 (de) 2008-01-03
US6665525B2 (en) 2003-12-16
WO2002097972A3 (en) 2004-06-10
WO2002097972A2 (en) 2002-12-05
AU2002310148A1 (en) 2002-12-09
EP1451926A2 (en) 2004-09-01
DE60223713T2 (de) 2008-10-30
US20020183019A1 (en) 2002-12-05
EP1451926B1 (en) 2007-11-21
JP4276936B2 (ja) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4276936B2 (ja) 高レベル変調方法および装置
US6781452B2 (en) Power supply processing for power amplifiers
US10038461B2 (en) RF amplifier having a transition shaping filter
KR101467231B1 (ko) 포락선 추적 모드 또는 평균 전력 추적 모드로 동작하는 멀티 모드 바이어스 변조기 및 이를 이용한 포락선 추적 전력 증폭 장치
US7696818B2 (en) Amplifying apparatus
US7068096B2 (en) EER modulator with power amplifier having feedback loop providing soft output impedance
US6300826B1 (en) Apparatus and method for efficiently amplifying wideband envelope signals
US6734724B1 (en) Power control and modulation of switched-mode power amplifiers with one or more stages
US6982593B2 (en) Switching amplifier architecture
US20090289720A1 (en) High-Efficiency Envelope Tracking Systems and Methods for Radio Frequency Power Amplifiers
US7193460B1 (en) Circuit for controlling power amplifier quiescent current
US6486733B2 (en) Method and apparatus for high efficiency power amplification
CN102265504A (zh) 功率放大装置
US7265627B2 (en) Self adaptable bias circuit for enabling dynamic control of quiescent current in a linear power amplifier
US7106606B2 (en) Voltage-current converter with adjustable quiescent current
US20030169112A1 (en) Variable gain amplifier with low power consumption
JPH03222524A (ja) 線形送信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060331

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4276936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term