JP2005500966A - 水素の生成 - Google Patents

水素の生成 Download PDF

Info

Publication number
JP2005500966A
JP2005500966A JP2002585329A JP2002585329A JP2005500966A JP 2005500966 A JP2005500966 A JP 2005500966A JP 2002585329 A JP2002585329 A JP 2002585329A JP 2002585329 A JP2002585329 A JP 2002585329A JP 2005500966 A JP2005500966 A JP 2005500966A
Authority
JP
Japan
Prior art keywords
stream
fuel
water
hydrogen
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002585329A
Other languages
English (en)
Inventor
ウッド,リチャード,アール.
デュレスワミイ,カンダスワミイ
Original Assignee
ハイドロジェン バーナー テクノロジイ,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイドロジェン バーナー テクノロジイ,インク. filed Critical ハイドロジェン バーナー テクノロジイ,インク.
Publication of JP2005500966A publication Critical patent/JP2005500966A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00083Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/0425In-situ adsorption process during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

水素を生成するための水素製造装置は、液体の水ストリーム(17)をフィード・ガス(21)と混合して、フィード・ガス−水混合物ストリーム(19)をつくるための第1の投入(85)、及び、そのフィード・ガス−水混合物ストリーム(19)を、そのフィード・ガス−水混合物ストリーム(19)の中の水を水蒸気に蒸発させるのに十分な温度へ加熱して、加湿されたフィード・ガス・ストリーム(84)をつくるための加熱機構(66)で構成される。第2の投入(68)は、その加湿されたフィード・ガス・ストリーム(84)を炭化水素燃料(11)と混合して、燃料、酸化剤、及び水蒸気の改質反応混合物(69)をつくるために供給される。水蒸気−メタン改質成分(70)は炭化水素燃料及び改質反応混合物(69)の中の水蒸気と反応させられ、水素を豊富に含む改質生成物ガス(72)をつくる。
【選択図】図2

Description

【技術分野】
【0001】
本発明は、産業上及び燃料電池の適用における利用のため水素ガスを生成するためのシステムに関するものである。
【背景技術】
【0002】
水素ガスは、硬化油脂をつくるための油脂の水素化、またはシクロヘキサノールのためのフェノールの水素化、またはアンモニアのための窒素の水素化、またはメタノールのための一酸化炭素の水素化など数多くの産業上の適用に用いられる。ほとんどの場合、水素は水の電気分解によって製造される。そうした方法によって製造された水素は、その後、高圧下でタンクに貯蔵される。これらのタンクは、鉄道または道路輸送によって最終消費者へ輸送される。
【0003】
水素は引火性が高いため、その貯蔵と輸送は一般社会にとって危険を生じさせる。従って、ますます多くの最終消費者が、メタンやプロパンなど容易に利用できる炭化水素の低酸化などの代替製造法を用いる、水素の現場での製造を選択している。水素を現場で製造する別の方法は、メタンやプロパンなど炭化水素の触媒による部分酸化である。水素を現場で製造するさらに別の方法は、十分周知であるが、メタンなど軽い炭化水素を水素及び一酸化炭素に転換する水蒸気メタン改質プロセスである。
【0004】
最終消費者の現場で水素を生成するための商業的に利用可能なシステムは、UOB (TM) system by Phoenix Gas Systems of Long Beach, Californiaとして市販されている。UOB (TM) systemのフローチャートを図1に示す。低酸化されたバーナーの詳細な説明は、例えば、米国特許第5,207,185号及び第5,728,183号各明細書に記載されている。そうしたシステムにおいて、メタンなど好適な炭化水素燃料は準化学量論量の酸素と混合され、反応チェンバに導入されて、その反応チェンバ内で水素及び一酸化酸素を豊富に含む中間生成物ガス・ストリームを生成してメタンの部分酸化が起きる。その中間生成物ガス・ストリームをその後、脱塩水で急冷する。その中間生成物ガス及び水性混合物をその後、転化反応器に導入し、そこで適切な触媒の存在下で生成物ガス・ストリーム内の一酸化炭素を水と反応させて、殆どが水素、二酸化炭素、窒素で構成される最終生成物ガス・ストリームを生成する。過剰な水蒸気の凝縮及び水素の圧力スイング吸着によって最終生成物ガス・ストリームをさらに精製すると、99%よりも多くの水素を含んでいる精製された生成物ガス・ストリームが提供される。
【0005】
上に述べられた市販されているシステムは高温高圧下で運転する。さらに、低酸化プロセスは、炭化水素の部分酸化を起こすために大量の炭化水素を用いて炭化水素と水の混合物を高温にしなければならないので、炭化水素燃料の消費においてかなり寄生的である。炭化水素燃料の寄生的消費により、水素生成プラントの運転費用に相当額が加算される。さらに、反応器内の高い運転温度により、高温合金や特別な耐熱合金など高価な構成材料の使用が必要になる。これらの材料により、反応器の資本コストに相当額が加算される。
【0006】
部分酸化プロセスは、SMR及びATRプロセスのようなその他の水素生成プロセスと比較して水素の収率が低いという欠点を持つ。1モルのメタンにつき約1.5モルがUOBTM部分酸化プロセスでつくり出される。SMRシステム及びATRシステムのような触媒改質システムからは約70から100%多い水素を産出することが可能である。
【0007】
しかし、現行の触媒改質システムの1つの欠点は、水蒸気に転化反応が起きるためのプロセスを追加する必要があることである。この欠点は、転化反応のために大量の水蒸気が必要とされる大容量のシステムで特に顕著である。そのような場合、燃料で点火されるボイラーが一般に用いられて水蒸気を供給する。しかし、大型ボイラーの運転は政府機関によって規制されており、政府機関は、予め設定された量よりも大容量の蒸気ボイラーの運転は資格を持つオペレーターによって管理されるよう命じる場合がある。資格を持つボイラー・オペレーターを使うことにより、部分酸化システムの運転コストは大幅に加算され、資格を持つオペレーターが不要なシステムの利用と比較して、それらは相対的に非経済的になる。従って、低温で運転し、寄生的燃料をより少なく消費し、ボイラーで生成される蒸気を必要とせず、そして、熟練作業者を使わずに運転できる、改良された水素生成システムに対するニーズが存在する。
【発明の開示】
【発明の概要】
【0008】
本発明の1つの態様によれば、水素を生成するための水素製造装置が提供され、その水素製造装置は;液体の水のストリームをフィード・ガスのストリームと混合し、フィード・ガス−水混合物ストリームをつくるための第1の手段;そのフィード・ガス−水混合物ストリームの中の水が水蒸気に蒸発するのに十分な温度にそのフィード・ガス−水混合物ストリームを加熱し、加湿されたフィード・ガス・ストリームをつくるための手段;及び、その改質反応混合物内のその炭化水素燃料とその水蒸気を水蒸気−メタン改質反応で反応させ、その改質反応混合物内の炭化水素燃料を改質して、水素を豊富に含む改質生成物ガスをつくるための水蒸気−メタン改質手段で構成される。加湿されたフィード・ガス・ストリームを炭化水素燃料と混合し、燃料、酸化剤、及び水蒸気の改質反応混合物を生成するための第2の手段があってもよい。
【0009】
本発明の別の態様によれば、水素を生成するための水素製造装置が提供され、その水素製造装置は;液体の水のストリームを酸化剤のストリームと混合し、酸化剤−水混合物ストリームをつくるための第1の手段;その酸化剤−水混合物ストリームの中の液体の水が蒸発するのに十分な温度にその酸化剤−水混合物ストリームを加熱し、加湿された酸化剤ストリームをつくるための手段;その水蒸気−酸化剤混合物ストリームを炭化水素燃料と混合し、燃料、酸化剤、及び水蒸気の改質反応混合物をつくるための第2の手段;そして、その酸化剤が改質反応混合物内の炭化水素燃料を部分酸化することを可能にし、その水蒸気が改質反応混合物内の炭化水素燃料を改質することを可能にして、水素を豊富に含む改質生成物ガスをつくるための改質手段で構成される。
【0010】
さらに別の態様で、本発明は水素を生成するための水素製造装置のためのものであり、その水素製造装置は;液体の水のストリームを炭化水素燃料ストリームと混合し、燃料−水混合物ストリームをつくるための第1の手段;その水が水蒸気に蒸発するのに十分な温度にその燃料−水混合物ストリームを加熱し、加湿された燃料ストリームをつくるための手段;その加湿された燃料ストリームを酸化剤と混合し、燃料、酸化剤、及び水蒸気の改質反応混合物をつくるための第2の手段;そして、その酸化剤が改質反応混合物内の炭化水素燃料を部分酸化することを可能にし、その水蒸気が改質反応混合物内の炭化水素燃料を改質することを可能にして、水素を豊富に含む改質生成物ガスをつくるための改質手段で構成される。
【0011】
本発明の別の態様によれば、水素を生成するための水素製造装置が提供され、その水素製造装置は、液体の水の第1のストリームを酸化剤のストリームと混合し、酸化剤−水混合物ストリームをつくるための第1の手段;その液体の水が水蒸気に蒸発するのに十分な温度にその酸化剤−水混合物ストリームを加熱し、加湿された酸化剤ストリームをつくるための手段;液体の水の第2のストリームを炭化水素燃料ストリームと混合し、燃料−液体の水混合物ストリームをつくるための第2の手段;その燃料−液体の水混合物ストリームをその液体の水が水蒸気に蒸発するのに十分な温度に加熱し、加湿された燃料ストリームをつくるための手段;その加湿された燃料ストリームを加湿された酸化剤ストリームと混合し、燃料、酸化剤、及び水蒸気の改質反応混合物をつくるための第3の手段;そして、その酸化剤が改質反応混合物内の炭化水素燃料を部分酸化することを可能にし、その水蒸気が改質反応混合物内の炭化水素燃料を改質することを可能にして、水素を豊富に含む改質生成物ガスをつくるための改質手段で構成される。
【発明を実施するための最良の形態】
【0012】
(発明の詳細な説明)
次に、本発明による改良された水素生成プロセスの説明である図2について述べる。その改良された水素生成システムは、燃料調整システム(FPS)12、酸化剤供給システム(OSS)22、PSA排ガス燃焼器80、加湿システム(HS)83、自熱改質器(ATR)70、転化反応器30、熱回収蒸気発生器(HRSG)90、中間冷却器34、凝縮ブロー・タンク(CBT)40、及び、圧力スイング吸着器(PSA)50で構成される。
【0013】
次に、燃料調整システム12について述べると、メタン、プロパン、ブタン、またはその他のそうした好適な軽い炭化水素などの燃料10が燃料処理システム12に導入される。燃料処理システム12は、ガス・フィルタ、コンプレッサ、脱硫システム、または後の処理段階で用いるため燃料10を調整するために必要ないずれかの装置などの構成要素(図示せず)を含んでいる。燃料10が、ケロシン、ガソリン、メタノールなど液体の炭化水素燃料であるとき、FCS 12は、液体燃料をガス状態に転換する手段(図示せず)も含んでいる。そうした手段は、蒸発器、またはスプレー・ミスト、または噴霧器、または点火式気化器のような処理装置を含んでいてもよい。図2で番号11が付されている調整された燃料は、その後パイプ13を通って自熱改質器(ATR)取入ゾーン68へ運ばれ、そこで燃料11は下に述べられるように他のガスと混合される。
【0014】
次に、酸化剤供給システム(OSS)22について述べると、空気などの酸素含有ガス・ストリーム20がOSS 22に導入される。OSS 22はエア・フィルタ、コンプレッサ、または後の処理段階で用いるための酸素含有ガス・ストリーム20を調整するために必要ないずれかのその他の装置などの構成要素(図示せず)を含んでいてもよい。図2で番号21が付されている調整された酸素含有ガス・ストリームは、その後、下に述べられるように加湿のためにパイプ24を通ってHS 83へ運ばれる。HS 83は、液体の水17を調整された空気ストリーム21に添加して、液体の水と空気の混合物19を形成する手段85、及び、その混合物19を加熱して混合物19内の液体の水を蒸発させる手段66で構成される。
【0015】
HS 83において、水ストリーム17は、調整された酸素含有ガス・ストリーム21の加湿のため、パイプ82を通って導入される。水ストリーム17は、HS 83内に位置する混合装置85内のガス・ストリーム21と接触させられる。混合装置85は、液体ストリームとガス・ストリームが緊密に接触し、その液体で飽和されたガス・ストリームの製造を可能にするどんな装置でもよい。例えば、混合装置85はスプレー・ノズル、噴霧器、加湿塔などでよい。加湿され、調整された酸化剤ストリームは番号19として図2に示されており、HS 83からパイプ87を通ってPSA排ガス燃焼器80へ運ばれる。PSA排ガス燃焼器80において、加湿され、調整された酸素含有ガス・ストリームは熱伝達通路66を通り抜け、そこで、熱い燃焼排ガス・ストリーム62によって約75から300℃で間接的に加熱される。熱い燃焼排ガス・ストリーム62の生成プロセス及びPSA排ガス燃焼器の操作のより詳しい説明は、この説明の後に続く部分で行われる。
【0016】
加熱され、加湿された酸素含有ストリームは番号84として図2に示されるが、その後反応器取入ゾーン68と接続するパイプ86を通って運ばれる。反応器取入ゾーン68において、調整された燃料11は熱く、加湿された酸素含有ストリーム84と混合される。水蒸気パイプ98を通って反応器取入ゾーン68へ運ばれる燃料と水蒸気の混合物99も反応器取入ゾーン68に添加される。天然ガス−水蒸気の混合物99に用いられる水蒸気は別個のボイラー(図示せず)内で生成されるか、または、好ましくは、後に続く部分で説明されるような、HRSG 90内で生成される。調整された燃料11の混合物、熱く加湿された酸素含有ガス・ストリーム84、及び燃料−水蒸気の混合物99は、下にさらに説明されるように、水素、一酸化炭素、及び二酸化炭素への転換のためにATR 70内へ導入されるATR反応混合物69を形成する。
【0017】
本明細書で定義されるように、自熱改質器(ATR)は、炭化水素、水蒸気、及び酸素の混合物を、副産物として一酸化炭素も含んでいる場合とそうでない場合がある、水素を豊富に含むガスへ転換するための装置である。
【0018】
ATRは上記の転換を行うための触媒を用いても、用いなくてもよい。しかし、ATRでの触媒の使用によって転換反応の平均作用温度が低下し、従って、工業用のATRの適用において好ましい。
【0019】
ATRにおいて、炭化水素の水素を豊富に含んでいるガスへの転換を容易にする主要な反応は、部分酸化反応と水蒸気メタン改質反応(SMR)である。触媒が転換のために用いられるとき、その部分酸化反応は一般に触媒部分酸化(CPO)反応と呼ばれる。メタンの転換のための部分酸化反応は以下のように示される。
CH4+0.5 (O2) → CO+2(H2)
【0020】
CPO反応は発熱反応であり、従って、燃料電池からの水素需要の変化にきわめて迅速に対応できるという利点を持つ。部分酸化反応は触媒作用によって、または非触媒作用によって促進される。触媒作用によって促進される部分酸化反応には一般に、白金、パラジウム、及びロジウムなど貴金属を含んでいるモノリス触媒を用いる。触媒作用によって促進される部分酸化反応は約600から900℃で起きる。非触媒作用によって促進される部分酸化反応は一般に、約1,000から1,500℃で起きる。従って、触媒によるCPO反応で消費されるときと比較して、より多くの燃料が、非触媒によるCPO反応の高い温度を達成するため寄生的に消費される。
【0021】
ATRで起きる第2の反応はSMR反応であり、以下の化学反応で表される。
CH4+H2O → CO+3H2
【0022】
上記の反応は高吸熱反応であり、触媒がなくても起きることがある。しかし、Engelhard Corporationが提供するSMR-5のような触媒を用いて、より低温で、より低い熱エネルギーの投入でその反応が起きることを可能にすることもできる。しかしながら、United CatalystsまたはHaldor Topsoeが提供する触媒のようにニッケルを含んでいるその他の触媒を用いて、より低温で、より低い熱エネルギーの投入でその反応が起きることを可能にすることもできる。そうした触媒の使用は、一般にSMR反応が約600から900℃で起きることを可能にする。その反応の吸熱性はSMR反応に対する反応時間を増加させ、燃料電池の水素付加需要に対応して、より多くの水素を供給する。吸熱性SMR反応に対する熱エネルギーは、触媒塊の中に埋め込まれた熱伝達コイルのような外部加熱手段を通じて、または先に述べられたCPO反応での炭化水素の部分酸化によって内部で生成されて供給されることが可能である。従って、ATRにおいて、CPO反応からの発熱反応は、SMR反応の吸熱によって均衡される。
【0023】
ATR でのCPO及びSMR反応の組み合わせは、CPO反応のみによって生じるガス・ストリームよりも水素濃度が高いガス・ストリームを提供する。さらに、この組み合わせは、SMR反応のみで可能な燃料電池の水素付加需要への反応よりも早い反応も提供する。
【0024】
ATRは主にCPO及びSMR反応で構成されるのが、一部の水性ガス転化(WGS)反応も以下の化学反応式で示されるように、ATR内で起きることが可能である。
CO+H2O → CO2+H2
【0025】
WGS反応は、CPO反応の間に生成されたCOの一部を水蒸気の一部と反応させ、追加的な水素をつくる。
【0026】
別個の触媒をCPO反応及びSMR反応に用いることが可能である。従って、白金−パラジウム触媒をCPO反応を行うために用い、白金−ロジウム触媒をSMR反応を行うために用いることができよう。あるいは、CPO及びSMR反応を行うために白金−パラジウム及び白金−ロジウムの組み合わせを含んでいる改良された触媒を用いることも可能であろう。
【0027】
ATR生成物ガスは図2において番号72が付されており、概ね30から40%の水素、5から7%の一酸化炭素、7から14%の二酸化炭素、0.1から3%の反応を起こしていない炭化水素またはメタン、10から35%の過剰な水蒸気、及び20から30%の空気中からの窒素(空気が酸素含有ストリーム20として用いられる場合)で構成される。ATRガスまたは改質生成物72はパイプ74を通って過熱器60へ運ばれ、そこで改質生成物72は、改質生成物72との熱伝達のやり取りのために過熱器60内に位置する熱伝達通路91に流される加湿された燃料混合物94への熱伝達によって冷却される。加湿された燃料混合物94を生成し、過熱器60へ運ぶ方法の説明は下に述べられる。過熱器60において、その熱い、改質された生成物ガスは、下に述べられる転化反応器30の運転に適した約300から400℃(約600から700F)の中間的な温度へ冷却される。その加湿された燃料混合物94は、HRSG 90からパイプ96を通って過熱器60内の加熱器熱伝達通路91へ流される。その過熱され、加湿された燃料混合物は図2で番号99として示され、加熱器熱伝達通路91からパイプ98を通って流され、そのパイプ98は、先に述べられたように調整された燃料11及び加湿された空気84と混合するためのATR取入ゾーン68へ過熱され、加湿された燃料混合物99を運ぶ。
【0028】
冷却された改質生成物ガスは図2で番号77として示されるが、過熱器60からパイプ79によって取り除かれ、そのパイプ79はそれらを転化反応器30へ運び、そこで改質生成物ガス72内の一酸化炭素は過剰な水蒸気と反応し、上に述べられた転化反応に従って二酸化炭素及び水素を形成する。従って、転化反応器30は、望ましくない一酸化炭素を用いて過剰な水蒸気を水素に還元するためのシステムによって産出される水素の収率をさらに増加させる。転化反応器の別の利点は、PEM燃料電池の電極は水素の供給源として用いられる改質ガス・ストリーム中の高濃度の一酸化炭素によって悪影響を受けるので、ATR生成物ガス・ストリーム72中の一酸化炭素濃度を減少させることによってPEM燃料電池の作用を向上させることである。
【0029】
本明細書で定義されるように、転化反応器は、一酸化炭素及び水蒸気を含んでいるガス・ストリームが上に述べられた水性ガス転化反応を通じて二酸化炭素及び水素を含んでいる生成物ガス・ストリームに転換される装置である。その転換は一般に一酸化炭素及び水蒸気の混合物を酸化鉄触媒に通すことによって行われる。しかし、その他の触媒を用いて上に述べられた化学反応を行うことも可能であろう。
【0030】
転化反応器は1段階または多段階装置でもよい。一般に、転化反応は2段階で行われる。第1段階は、一酸化炭素及び水蒸気の混合物が約300から400℃の温度に維持された触媒を通される高温転化(HTS)反応と一般に称される。そのような高温では、WGS反応に対する反応速度は比較的速いが、二酸化炭素と水素へ転換される一酸化炭素と水の量は比較的少ない。これは、WGS反応がわずかに発熱性であり、従って、水蒸気の水素への転換を減少させる傾向を持つ熱がつくりだされる。WGS反応における転換を増強するため、高温転化反応から部分的に転換された生成物は、通常約170から200℃へ中間冷却器(図示せず)内で冷却され、低温転化(LTS)反応器と従来称されている第2段階へ導入される。LTS反応器において、HTS反応器からの反応の部分的に転換された生成物は、約170から200℃の温度に維持された銅−亜鉛酸化物触媒を通される。基本的に、一酸化炭素の平衡転換はLTS触媒内で起き、30から70%の水素、0.1から10%の一酸化炭素、10から20%の二酸化炭素、15から30%の水、微量の炭化水素燃料、及び0から35%の窒素(空気が酸素含有ガス・ストリーム20の供給源として用いられる場合)を含んでいる熱いガス・ストリーム(図2で番号73が付される)をつくる。
【0031】
簡略化する目的のため、図2では転化反応器を1つのブロックによって示す。しかし、述べられた転化反応器ブロックは、図2に示されない複数の段階及び中間生成物冷却器を含むことが可能である。
【0032】
その熱い転化反応器生成物ガス・ストリーム73はパイプ76によって転化反応器30からHRSG 90へ運ばれる。その熱い転化反応器生成物ガス・ストリーム73は温度が約600℃であり、水素の分離のためPSAへ向けられる前にさらに冷却される。冷却はHRSG 90及び中間冷却器34内で行われる。図2に番号93として示される水飽和燃料ガス・ストリームもパイプ92を通ってHRSG 90へ導入される。水飽和燃料ガス・ストリーム93は、調整された燃料11の後流をパイプ14を通って混合装置95へ通すことによってつくられ、その混合装置95も、水17がその内部を流されているパイプ18に接続される。混合装置95は燃料11を水17と緊密に接触させ、水飽和燃料ガス・ストリーム93をつくる。混合装置85について前に述べられたように、混合装置95は、スプレー・ノズル、噴霧器、加湿塔などいずれの混合要素でもよい。その水飽和燃料ガス・ストリーム93はパイプ92を通ってHRSG 90へ流される。HRSG 90において、熱い転化反応器生成物ガス・ストリーム73は熱伝達通路97の加熱側を通され、水飽和燃料ガス混合物93は同じ熱伝達通路97の冷却側を通される。熱は熱いガス・ストリーム73から比較的冷たい水飽和燃料ガス混合物93へ運ばれる。その熱の吸収は、水飽和燃料ガス混合物93内の水17の蒸発と水蒸気への転換を引き起こす。従って、熱伝達通路97は水飽和燃料ガス混合物93を加湿された燃料ガス・ストリーム94へ転換させるが、先に述べられたように、その燃料ガス・ストリーム94はパイプ96を通って過熱器60の熱伝達通路91へ運ばれる。熱いガス・ストリーム73は、その熱をHRSG 90内の水飽和燃料ガス・ストリーム93へ運ぶことによって冷却されるが、図2で番号100として示されており、HRSG 90からパイプ102を通って運ばれ、そのパイプ102はその熱いガス・ストリーム73を中間冷却器34へ導く。
【0033】
中間冷却器34は、転化反応器生成物ガス100の露点より低温へさらに冷却する機能を持ついずれの熱交換装置でもよく、従って、そのガス・ストリーム100の中の過剰な水蒸気は、下に述べられるような次の凝縮ステップで凝縮されることになる。例えば、中間冷却器34は管状熱交換器であってもよく、そこで冷却水36は、熱伝達通路35の1つの熱伝達表面上を通され、熱伝達通路35の他方の熱伝達表面上を通される熱いガス・ストリーム100を冷却する。あるいは、中間冷却器34は空冷式熱交換器であってもよく、そこで熱伝達通路35は、熱い転化反応器生成物ガス・ストリーム100がその内部を通って流される1組のフィン付き管であり、冷たい外気がそのフィン付き管のフィンの表面上を通って流されて熱いガス・ストリーム100の冷却を行う。あるいは、中間冷却器34は管状熱交換器であってもよく、そこで冷たい処理ストリームが用いられ、エネルギー節約のため余熱されている熱い転化反応器生成物ガス・ストリーム100を冷却する。これらの装置のいずれもが中間冷却器34として用いられて、単相のガス・ストリーム100を図2で番号104が付されている二相ガス・ストリームへ変換することができる。二相ガス・ストリーム104は、中間冷却器34からパイプ106を通って凝縮ブロー・タンク40へ運ばれる。その凝縮ブロー・タンク40において、二相ガス・ストリーム104は、断熱膨張を通じてその露点よりも低い温度へ冷却される。二相ガス・ストリーム104のその露点より低い温度への冷却は、二相ガス・ストリーム104内の過剰な水蒸気の凝縮を引き起こす。
【0034】
凝縮突き出しタンク40は、そこで二相ガス・ストリーム104が断熱的に膨張可能ないずれの膨張した容積であってもよい。さらに、凝縮突き出しタンク40の構成は、二相ガス・ストリーム104の速度が減少して、二相ガス・ストリーム104内のガス相から凝縮された水が合体し、重力または遠心力によって二相ガス・ストリーム104から分離するように選択されることが可能である。しかし、凝縮ブロー・タンク40はガス・ストリームから液体の滴を除去する他の手段を含むこともできる。そうした方法には、デミスタ、及び充填塔などの装置が含まれる。凝縮物42は凝縮除去パイプ43を用いて凝縮ブロー・タンク40から除去される。液面の維持管理手段(図示せず)が凝縮ブロー・タンク40内で用いられて、凝縮ブロー・タンク40内に一定の液面を維持し、そのシステムから凝縮除去パイプ43を通っての生成物ガスのあらゆる偶発的な損失を防ぐことができる。ガス・ストリーム104は、過剰な水が除去された後、図2で番号44が付される。その脱水されたガス・ストリーム44はパイプ48によってCBT 40からPSA 50へ運ばれ、そこで、下にさらに説明されるように高濃度の水素ガス・ストリームがつくり出される。
【0035】
PSA 50は、圧力スイング吸着の原理を用いてガス・ストリーム44内の水素を吸着及び脱着するどんな装置でもよい。そのような圧力スイング吸着サイクルは十分周知であり、ガス・ストリーム44の中の水素が高圧化で適切な吸着物質上に吸着され、ガス・ストリーム44のその他の成分は通り抜けることが可能な吸着サイクルで構成される。PSAサイクルの第2相は、PSAシステム内の圧力が低下して、吸着された水素を吸着剤から脱着することを可能にする脱着サイクルである。通例、吸着物質を含んでいる2つの床が用いられ、1つの床は吸着用に運転し、第2の床は脱着用に運転することができる。一定時間の後、既に吸着用に運転していた床を脱着用に切り換え、一方、既に脱着用に運転していた床を吸着用に切り換える。そうした処置によって、精製が必要な処理ガスを流れを中断させずに連続的に処理することが可能になる。高濃度水素ガス・ストリームを脱湿されたガス・ストリーム44からつくるために用いられる市販のPSAの1つの例は、Questor Corporation of Vancouver, Canadaによって販売されているPSAシステムである。
【0036】
圧力スイング吸着システムが本明細書で述べられているが、他の型の濃縮装置が水素濃縮器として用いられてもよい。例えば、温度スイング吸着装置は、水素の濃縮されたストリームを脱湿されたガス・ストリーム44からつくるためにも用いられてよい。その他の非吸着式水素濃縮装置が用いられてもよい。例えば、その水素濃縮装置は、分子ふるいまたは水素分離膜でもよい。そうした装置は種々の製造メーカーから市販されている。
【0037】
図2に示されるように、吸着サイクルの間、PSA 50は、約30から75%の水素を含んでいるガス・ストリーム44を約98から99.9999%の水素を含んでいる濃縮されたガス・ストリーム52に転換する。その水素ガス・ストリーム52は、PSA 50からパイプ54を通って運ばれ、そのパイプ54は水素ガス・ストリーム52を最終消費者の加工設備(図示せず)またはタンク充填所(図示せず)へ導く。図2でも示されるように、脱着サイクルの間、PSA 50は、約30から70%の水素を含んでいるガス・ストリーム44を約5から15%の水素を含んでいる低濃度のガス・ストリーム56に転換する。さらにその低濃度のガス・ストリームは、約15から30%の酸化炭素、そして、窒素、水蒸気、及び転換されていないメタンなどその他の成分も含んでいる。その低濃度のガス・ストリーム56は、PSA排ガス・ストリームまたはPSA排ガス・ストリームとしても周知である。PSA排ガス・ストリーム56は、PSA 50からパイプ58を通って運ばれ、そのパイプ58はPSA排ガス・ストリーム56を先に述べられたPSA排ガス酸化器燃焼器80へ導く。
【0038】
PSA排ガス酸化器80において、排ガス・ストリーム56は、番号89として示される燃料バーナーを通り抜ける。燃料バーナー89は、Maxon, North American, Coen, Eclipseなどの米国の製造メーカーから入手可能なダクト・バーナーまたは予め混合されたガス・バーナーのようないずれの適切な可燃性ガス・バーナーでよい。燃料バーナー89は、例えば、Acotechのような米国の製造メーカーから入手可能な金属繊維バーナーでもよい。PSA排ガス・ストリーム56の燃焼のための酸素は、酸素含有ガス・ストリーム20を燃料バーナー89へ送り込むパイプ81によってバーナー89へ供給される。従って、排ガス56は、排ガス56内の可燃物の燃焼がバーナー89内で起きる前に、酸素含有ガス・ストリーム20と混合される。しかし、その2つのストリームが必ずしも混合される必要はない、ダクト・バーナーが用いられるとき、排ガス・ストリーム56のみがバーナー89を通り抜けることができ、酸素含有ガス・ストリーム20はそのバーナーを通って、排ガス・ストリーム56内の可燃物燃焼のための酸素を提供する。さらに天然ガス10の供給源がパイプ75を通ってバーナー89へ接続される。この天然ガス10は、その装置の始動の間に燃焼され、PSA燃焼器をPSA排ガス56を受け取る前の温度まで上げるために用いられる。従って、PSA排ガス56の完全な燃焼が確保される。さらに、天然ガス10のバーナー89内での燃焼は、その装置の始動中の熱を酸素含有ガス及び水の混合物19に供給し、その混合物19は、先に述べられたように熱伝達通路66を通って流され、始動時のATRの加熱を間接的に助ける。
【0039】
排ガス・ストリーム56が燃料バーナー89を通り抜ける間、水素及び排ガス・ストリーム56の中のその他の炭化水素は、酸素含有ガス・ストリーム20の中の酸素と結合し、主に二酸化炭素、水、及び窒素で構成される燃焼の熱いガス生成物(図2で番号62が付される)をつくる。その燃焼の熱い生成物62は、PSA燃焼器80内に位置する熱伝達通路の熱伝達表面上を通される。その熱伝達通路は図2で番号66として示される。先に述べられた酸素含有ガス・ストリーム21と水17の混合物19は、PSA燃焼器80の熱伝達通路66の他方の熱伝達表面上を通される。従って、その燃焼の熱い生成物62は、その熱の一部を酸素含有ガス・ストリーム21と水17の比較的低温の混合物19へ渡す。その冷却された燃焼の生成物は図2に番号63として示され、パイプ64によってHS 80から取り除かれる。冷却された燃焼の生成物63は、パイプ64によって大気または後の処理段階へ導かれる。
【0040】
燃料電池システムに用いることができる改良された水素生成システムのさらに別の実施の形態が図3に示される。図3のその改良された水素生成システムは、図2のために先に述べられた水素生成システムと殆どの構成要素を共有している。従って、図2及び図3の同様な構成要素は同様な番号が付されて示されている。
【0041】
燃料10は、パイプ13を通って反応器取入ゾーン68へ送られる前に、燃料調整システム12を通り抜けることによって調整される。調整された燃料11の一部は混合器95へ送られ、そこで水17と混合されて水飽和燃料・ストリーム93を提供し、その水飽和燃料ガス・ストリーム93は先ずHRSG 90の熱伝達通路97を通され、その後、過熱器60の熱伝達コイル91を通り抜ける。水飽和燃料・ストリーム93の中の水17は熱伝達通路97及び91内で蒸発させられ、そして、過熱され、加湿された燃料ストリーム99はパイプ98または195を通って反応器取入ゾーン68へ送られる。下に述べられるように、加湿された空気ストリーム115もATR取入ゾーン68へ送られて、調整された燃料11と混合され、そして過加湿された燃料ストリーム196は燃料、水蒸気、及び酸素を含んでいるATR反応混合物169をつくる。
【0042】
混合器85及び95に導入される水17の量はATR 70の運転モードによって変化する。そのシステムの始動の間、ATR 70のために必要とされる水のうち基本的に全てが混合器85へ導入され、混合器95に水は導入されない。ATR 70が通常の運転モードに達した後、混合器85へ導入された水は、ATR 70のための水の全必要量の約66%に減らされる。次に、ATR 70のために必要とされる水の差し引き33%が混合器95へ導入される。従って、今度はATR 70のための水の全必要量は2:1の割合でそれぞれ混合器85及び95へ導入される。
【0043】
ATR反応混合物169はATR 70へ送られ、そこで主にCPO及びSMR反応が起き、水素を豊富に含むガス・ストリーム72を提供する。ATR 70は、ATRの触媒塊内部に埋め込まれた加熱コイル166を備えている。下に述べられるように、陽極ガス酸化剤(AGO)180からの燃焼の熱い生成物163は加熱コイル166の熱伝達表面上を通って、ATR 70の触媒塊内部で起きている吸熱SMR反応のための熱を供給する。従って、図2のATR 70と比較して、ATR 70からは相対的に高収率の水素が得られる。水素を豊富に含むガス・ストリーム72は次にパイプ74によって転化反応器30へ運ばれる。
【0044】
水素を豊富に含むガス・ストリーム72は、その後第2のHRSG 160を通り抜け、そこで熱い水素を豊富に含むストリーム72は、その熱受取側の面上に液体の水−加湿された燃料混合物193を含んでいる熱伝達通路91の冷却側の面上に通されることによって部分的に冷却される。液体の水−加湿された燃料混合物193を生成し、それを第2のHRSG 160内の熱伝達通路91へ送り込む方法は下に述べられる。第2のHRSG 160を出ていく、部分的に冷却された熱い水素を豊富に含むストリームは図3に番号77として示される。部分的に冷却された熱い水素を豊富に含むストリーム77は、パイプ79によって第2のHRSG 160から転化反応器30へ運ばれる。熱伝達通路91において、液体の水−加湿された燃料混合物193内の液体の水は蒸発する。従って、過加湿された燃料ストリーム196は熱伝達通路91内でつくり出される。過加湿された燃料ストリーム196は、熱伝達通路91からパイプ195によって取り除かれ、そのパイプ195は過加湿された燃料ストリーム196を第2のHRSG 160からATR取入ゾーン68へ運ぶ。先に述べられたようにATR取入ゾーン68において、過加湿された燃料ストリーム196は、調整された燃料11及び加湿された空気ストリーム115と混合され、ATR反応混合物169をつくりだす。
【0045】
液体の水−加湿された燃料混合物193は、液体の水ストリーム17を混合器190内のHRSG 90で生成され、加湿された燃料ストリーム94と混合することによってつくられる。HRSG 90内の加湿された燃料ストリーム94の製造は下に述べられる。加湿された燃料ストリーム94はHRSG 90からパイプ96を通って混合器190へ運ばれ、液体の水17はパイプ192を通って混合器190へ運ばれる。混合器190は先に述べられたいずれの異なる種類の混合器でもよい。混合器190によってつくられた液体の水と加湿された燃料ストリームの混合物は、図3に番号193として示されており、パイプ194によって混合器190から第2のHRSG 160の熱伝達通路91へ運ばれる。
【0046】
部分的に冷却された、熱い水素を豊富に含むガス77は、パイプ79によって第2のHRSG 160から転化反応器30へ運ばれる。転化反応器30において、上に述べられた転化反応が起き、水素を豊富に含むガス・ストリーム72内の水蒸気と一酸化炭素を反応させて、より多くの水素を発熱的につくる。その熱い水素を豊富に含むガス・ストリーム73は、その後、転化反応器30からパイプ76を通って取り除かれ、そのパイプ76はそのガス・ストリーム73をHRSG 90へ運ぶ。HRSG 90において、その熱い水素を豊富に含むガス・ストリーム73は熱伝達通路97の熱伝達表面上を通され、熱伝達通路97の熱伝達表面の反対側に通される加湿された燃料ストリーム93を加熱する。その熱い水素を豊富に含むガス・ストリームは、熱伝達通路97内の比較的低温の加湿された燃料ストリーム93によって部分的に冷却される。その部分的に冷却された、水素を豊富に含むガス・ストリーム100はパイプ102によってHRSG 90から取り除かれ、ガス混合器110へ運ばれる。
【0047】
ガス混合器110において、部分的に冷却された、水素を豊富に含むガス・ストリーム100は、パイプ112を通って混合器110へ導入される酸素含有ガス・ストリーム20と混合される。水素を豊富に含むガス・ストリーム100と酸素含有ガス20の混合物は図3で番号114として示されるが、パイプ117によって混合器110から選択的酸化(PROX)反応器120へ運ばれる。
【0048】
本明細書で述べられるように、PROX反応器120は、ガス・ストリームの中の他の酸化可能成分の酸化よりは、むしろ一酸化炭素の酸化を促進する触媒を含んでいる反応器である。従って、PROX反応器120において、その触媒は、水素が酸素と反応して水になるのを妨げながら、一酸化炭素の酸素との反応を促進して二酸化炭素をつくる。その触媒の1つの反応と別の反応に対する選択性は温度に依存する。従って、より低い温度では、その触媒は次の式により:CO+O2 → CO2、一酸化炭素の酸化に対してより選択的であり、次の式により:H2+O2 → H2O、水素の酸化に対しては選択性が少ない。
【0049】
従って、酸化による水素の損失は低い温度でより少ない。実際に、低温でのPROX反応器の運転は、低温では発熱反応のために存在する、より低い反応速度によって制限される。従って実際には、PROX反応器は、各発熱反応の段階で生成される熱を取り除くための中間冷却熱交換器を使って複数の段階で運転される。
【0050】
PROX反応器120の中間冷却はコイル132を使って行われる。単一の連続したコイルが図3に示されるが、コイル132は直列に接続された複数のコイルで構成され、PROX反応器120の隣接する段階の間に位置することが可能である。しかし、コイル132は、複数のコイルが並列接続されて、PROX反応器120の隣接する段階の間に位置することも可能である。加湿された空気128は、コイル132を通り抜けて、反応段階の間の反応ガスのコイルの役割を果たす。加湿された空気128は、水ストリーム17を混合器130内の空気ストリーム20と接触させることによってつくり出される。水ストリーム17はパイプ122を通って混合器130へ導入され、空気ストリーム20はパイプ124を通って混合器130へ導入される。先に述べられた混合装置のいずれでも混合器130として用いることができる。加湿された空気128は混合器130からパイプ126を通ってコイル132へ通される。その加湿された空気128はコイル132内で加熱される。
【0051】
加熱され加湿された空気は図3に番号134として示されており、パイプ136を通って混合器140へ送られる。混合器140及びシステム内でのその運転については下でさらに詳しく述べられる。
【0052】
図2のシステムに関して先に述べられたように、図3のシステムの混合器85、95及び130へ導入される水17の量も、ATR 70の運転モードによって変化する。システムの始動の間、ATR 70のために必要とされる水のうち基本的に全てが混合器85へ導入され、混合器95及び130に水は導入されない。ATRが通常の運転モードに達した後、混合器85へ導入される水は、ATR 70のための水の全必要量の約0%に減らされる。次に、ATR 70のために要求される水の差し引き100%が混合器95及び130へ2:1の割合で導入される。従って、今度はATR 70のための水の全必要量は2:1の割合で混合器95及び130へそれぞれ導入され、混合器85へ水は導入されない。
【0053】
PROX反応器120の冷却コイル内の加湿された空気ストリーム134の利用は、冷却剤として水を用いる先行技術のPROX反応器と比較して、より低い温度でPROX触媒が作用することを可能にする。PROX反応に、より低い温度を用いることによって、一酸化炭素対水素に関するPROX反応の選択性は大きくなる。PROX反応器内の冷却剤としての加湿された空気ストリーム134の利用を上に詳しく述べたが、その他のガス混合物が用いられることも可能であろう。例えば、ガス・ストリーム134は加湿された天然ガス・ストリーム(天然ガスと水蒸気の混合物)でもよい。PROX生成物ガスは、一酸化炭素が通常10から50 ppmの範囲の低濃度の改質ガスである。PROX反応器120によってつくり出されるPROX生成物ガスは図3で改質ガス144として示されており、パイプ148によってPROX反応器120から取り除かれる。改質ガス144はパイプ148によって燃料電池150の陽極へ送られ、その燃料電池150の陽極は改質ガス144内の水素を消費して電気152を生み出し、その電気152は導電体154によって燃料電池150から取り出される。図3で番号156として示される燃料電池150からの消費された陽極ガスは、燃料電池SRが1.2で15から50%の間の水素(乾燥重量ベース)を含んでおり、一般にアノード・オフ・ガス(AOG)と呼ばれる。AOG 156はパイプ158によって燃料電池150から取り出され、そのパイプ158はAOG 156をアノード・オフ・ガス酸化器酸化剤(AGO)180のバーナー89へ運ぶ。
【0054】
酸素含有ガス20もパイプ81を通ってバーナー89へ導入される。さらに、燃料10もパイプ75を通ってバーナー89へ導入される。燃料10は、AOG 156が利用できないとき、装置の始動の間に用いられることができる。酸素含有ガス・ストリーム20も燃料電池150の陽極側からの、約15%の酸素を含んでいるアノード・オフ・ガスであってもよい。
【0055】
AGO 180内の水素及びその他の可燃物はバーナー89で燃焼されて熱い燃焼排ガス162を提供し、その熱い燃焼排ガス162は、AGO 180内に位置する熱伝達通路66の熱伝達表面上を通される。加湿された酸素含有ストリーム19は、熱伝達通路66の熱伝達表面の反対側を通って、熱い燃焼排ガス162を冷却する。その部分的に冷却された、熱い燃焼排ガスは図3に番号163として示されるが、パイプ164によってAGO 180から取り除かれ、そのパイプ164は、先に述べられたATR 70内の熱交換通路166へ接続される。付加的な熱がATR 70内の部分的に冷却された燃焼排ガス163から取り除かれ、ATR 70内の吸熱SMR反応を維持するための熱を提供するため用いられる。さらに冷却され酸化されたAOGは図3で番号168として示されるが、パイプ171によって熱交換通路166から取り除かれる。
【0056】
先に述べられたように、加湿された酸素含有ストリーム19は熱伝達通路66の熱伝達表面上を通され、AGO 189のバーナー89内のアノード・オフ・ガス156の燃焼によってつくられた燃焼排ガス162を冷却する。加湿された酸素含有ガス・ストリーム19は、調整された酸素含有ガス・ストリーム21を加湿システム83のガス混合器85内の水ストリーム17と緊密に接触させることによって生成される。その加湿された酸素含有ガス・ストリーム19は、パイプ87を接続することによって熱伝達通路66へ通される。熱伝達通路66を出ていく、加熱され加湿された酸素含有ガス・ストリームは図3に番号184として示されるが、パイプ186によって熱伝達通路66からガス混合器140へ運ばれる。ガス混合器140において、加熱され加湿された酸素含有ガス・ストリーム184は、先に述べられたように、PROX反応器120の熱伝達ガス通路132内で加熱された、加熱され加湿された酸素含有水蒸気134と混合される。加熱され加湿された酸素含有ガス・ストリーム184と加熱され加湿された酸素含有水蒸気134の混合物は図3に番号115として示されるが、混合器140をパイプ116を通って出ていき、そのパイプ116はその混合物をATR取入ゾーン68へ運び、先に述べられたように、そこでその混合物は調整された燃料11及び加湿された燃料ストリーム196と混合され、ATR反応混合物169を形成する。先に述べられたように、ATR反応混合物169は、ATR生成ガス72への転換のためにATR 70へ通される。
【0057】
本発明による改良された水素生成システムのさらに別の実施の形態も可能である。例えば、図4は1つの改良された水素生成システムのプロセスの流れの説明を示し、図1に示される転化反応器30は除かれている。そうしたシステムは、一酸化炭素ガスの回収が経済的に実行可能な場合、またはプロセスの簡略化が望まれる場合に用いられる。従って、ATR内で生成された一酸化炭素は、転化反応器内の水を水素へ転換するためには用いられず、PSA 50の排ガス56で分離される。PSA排ガス56はその後、別の分離装置(図示せず)で処理され、一酸化炭素を回収する。あるいは、図4に示されるように、PSA排ガス56内の一酸化炭素はPSA燃焼器80のバーナー89内で燃焼され、ガス・ストリーム84をより高温で予熱することによってATR 70へ付加的な熱エネルギー入力を提供することができる。従って、ATR 70のより迅速な始動が達成される。図4のシステムも過熱器60に関して図1のシステムとは異なる。図2のシステムの熱伝達通路によって行われる過熱作用は、図4のHRSG 90の熱伝達通路97によって行われる。従って、図4のシステムでは、HRSG 90の熱伝達通路97は、加湿された燃料ストリーム93を過熱された燃料ストリーム99へ直接転換する過熱手段を含むために一定の大きさにつくられる。図4のシステムでは、パイプ98は熱伝達通路97へ接続され、過熱され加湿された燃料ストリームを熱伝達通路97からATR取入ゾーン68へ運び、そこでその過熱され加湿された燃料ストリームは、その他の反応物成分と混合され、先に述べられたようなATR反応混合物69を形成する。
【0058】
改良された水素生成システムのさらに別の実施の形態が図5に示されており、ATR 70はSMR反応器270に差し替えられる。そうしたシステムは、プロセスの簡略化が望まれる場合に用いられることが可能である。さらに、このシステムでは、空気が酸素含有ガス・ストリームとして用いられるとき、窒素による改質ガス・ストリームの希釈が回避される。従って、より高濃度の水素を含む改質ガス・ストリームが、燃料電池での使用のためにつくり出される。そうしたシステムは、酸化剤供給システム22及び加湿システム83の必要性を排除する。このシステムにおいて、PROX反応器内の冷却剤は燃料10(パイプ224によって供給される)とパイプ122によって供給される水ストリーム17のガス混合物226であり、混合器230内で混合される。ガス混合物226はPROX反応器120の熱伝達通路132内で加熱され、加熱されたガス混合物234を供給し、その加熱されたガス混合物234はパイプ236によって反応器取入ゾーン68へ運ばれる。反応器取入ゾーン68において、加熱されたガス混合物234は調整された燃料11及び加湿された燃料196と混合され、SMR反応混合物269をつくる。主に燃料及び水で構成されるそのSMR反応混合物269はSMR反応器270内のSMR触媒へ送られて水素を豊富に含むガス・ストリーム72をつくり出し、そのガス・ストリーム72はパイプ74を通って第2のHRSG 160へ運ばれる。第2のHRSG 160を出ていく、冷却された水素を豊富に含むガス・ストリーム77は、その後改質ガス内の過剰な水蒸気及び一酸化炭素を付加的な水素及び二酸化炭素へさらに転換するために転化反応器30へ送られる。
【図面の簡単な説明】
【0059】
【図1】先行技術によるUOBTMプロセスのフローチャートである。
【図2】ATR(自熱改質装置)を用い、圧力スイング吸着システムと共に用いられて、産業上の目的のための相対的に純粋な水素ガスを生成するための本発明による改良された水素生成システムのフローチャートである。
【図3】ATRを用い、燃料電池と共に用いられて発電するための本発明による改良された水素生成システムの別の実施の形態のフローチャートである。
【図4】転化反応器を含まず、圧力スイング吸着システムと共に用いられて、産業上の目的のための相対的に純粋な水素ガスを生成するための本発明による改良された水素生成システムのフローチャートである。
【図5】SMR反応器を用い、燃料電池と共に用いられて発電するための本発明による改良された水素生成システムの別の実施の形態のフローチャートである。
【符号の説明】
【0060】
10 燃料
12 燃料調整システム(FPS)
17 水ストリーム
20 酸素含有ガス・ストリーム
22 酸化剤供給システム(OSS)
30 転化反応器
34 中間冷却器
40 凝縮ブロー・タンク(CBT)
50 圧力スイング吸着器(PSA)
52 水素ガス・ストリーム
60 加熱器
70 自熱改質器(ATR)
80 PSA排ガス燃焼器80
83 加湿システム(HS)
90 熱回収蒸気発生器(HRSG)

Claims (4)

  1. 水素を生成するための水素製造装置において、前記水素製造装置が:
    液体の水のストリームをフィード・ガスのストリームと混合し、フィード・ガス−水混合物ストリームをつくるための第1の手段;
    前記フィード・ガス−水混合物ストリームの中の水が水蒸気に蒸発するのに十分な温度にそのフィード・ガス−水混合物ストリームを加熱し、加湿されたフィード・ガス・ストリームをつくるための手段;
    前記加湿されたフィード・ガス・ストリームを炭化水素燃料と混合し、燃料、酸化剤、及び水蒸気の改質反応混合物を生成するための第2の手段;そして、
    前記改質反応混合物内の前記炭化水素燃料と前記水蒸気を水蒸気−メタン改質反応で反応させ、その改質反応混合物内の炭化水素燃料を改質して、水素を豊富に含む改質生成物ガスをつくるための水蒸気−メタン改質手段
    により構成される装置。
  2. 水素を生成するための水素製造装置において、前記水素製造装置が:
    液体の水のストリームを酸化剤のストリームと混合し、酸化剤−水混合物ストリームをつくるための第1の手段;
    前記酸化剤−水混合物ストリームの中の液体の水が蒸発するのに十分な温度にその酸化剤−水混合物ストリームを加熱し、加湿された酸化剤ストリームをつくるための手段;
    前記水蒸気−酸化剤混合物ストリームを炭化水素燃料と混合し、燃料、酸化剤、及び水蒸気の改質反応混合物をつくるための第2の手段;そして、
    前記酸化剤が前記改質反応混合物内の炭化水素燃料を部分酸化することを可能にし、前記水蒸気がその改質反応混合物内の炭化水素燃料を改質することを可能にして、水素を豊富に含む改質生成物ガスをつくるための改質手段
    で構成される装置。
  3. 水素を生成するための水素製造装置において、前記水素製造装置が:
    液体の水のストリームを炭化水素燃料ストリームと混合し、燃料−水混合物ストリームをつくるための第1の手段;
    前記水が水蒸気に蒸発するのに十分な温度に前記燃料−水混合物ストリームを加熱し、加湿された燃料ストリームをつくるための手段;
    前記加湿された燃料ストリームを酸化剤と混合し、燃料、酸化剤、及び水蒸気の改質反応混合物をつくるための第2の手段;そして、
    前記酸化剤が前記改質反応混合物内の炭化水素燃料を部分酸化することを可能にし、前記水蒸気がその改質反応混合物内の炭化水素燃料を改質することを可能にして、水素を豊富に含む改質生成物ガスをつくるための改質手段
    で構成される装置。
  4. 水素を生成するための水素製造装置において、前記水素製造装置が:
    液体の水の第1のストリームを酸化剤のストリームと混合し、酸化剤−水混合物ストリームをつくるための第1の手段;
    前記液体の水が水蒸気に蒸発するのに十分な温度に前記酸化剤−水混合物ストリームを加熱し、加湿された酸化剤ストリームをつくるための手段;
    液体の水の第2のストリームを炭化水素燃料ストリームと混合し、燃料−液体の水混合物ストリームをつくるための第2の手段;
    前記燃料−液体の水混合物ストリームを前記液体の水が水蒸気に蒸発するのに十分な温度に加熱し、加湿された燃料ストリームをつくるための手段;
    前記加湿された燃料ストリームを前記加湿された酸化剤ストリームと混合し、燃料、酸化剤、及び水蒸気の改質反応混合物をつくるための第3の手段;そして、
    前記酸化剤が前記改質反応混合物内の炭化水素燃料を部分酸化することを可能にし、前記水蒸気がその改質反応混合物内の炭化水素燃料を改質することを可能にして、水素を豊富に含む改質生成物ガスをつくるための改質手段
    で構成される装置。
JP2002585329A 2001-05-02 2002-05-02 水素の生成 Pending JP2005500966A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28801601P 2001-05-02 2001-05-02
PCT/US2002/013593 WO2002088022A1 (en) 2001-05-02 2002-05-02 Hydrogen generation

Publications (1)

Publication Number Publication Date
JP2005500966A true JP2005500966A (ja) 2005-01-13

Family

ID=33309362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002585329A Pending JP2005500966A (ja) 2001-05-02 2002-05-02 水素の生成

Country Status (5)

Country Link
US (2) US20030046867A1 (ja)
EP (1) EP1392597A1 (ja)
JP (1) JP2005500966A (ja)
CA (1) CA2446333A1 (ja)
WO (1) WO2002088022A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350345A (ja) * 2004-06-07 2005-12-22 Samsung Sdi Co Ltd 改質装置及び燃料電池システム
JP2008543020A (ja) * 2005-06-10 2008-11-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 自熱改質装置
US8029580B2 (en) 2004-06-29 2011-10-04 Samsung Sdi Co., Ltd. Fuel cell reformer and system

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069981B2 (en) * 2002-11-08 2006-07-04 Modine Manufacturing Company Heat exchanger
JP2004277189A (ja) * 2003-03-13 2004-10-07 Honda Motor Co Ltd 燃料ガス発生装置
RU2343109C2 (ru) * 2003-03-18 2009-01-10 КЕЛЛОГГ БРАУН ЭНД РУТ ЭлЭлСи Способ получения потока, обогащенного водородом, способ генерирования электрического тока, способ гидроочистки, устройство для получения потока, обогащенного водородом
US20040226217A1 (en) * 2003-05-16 2004-11-18 University Of Chicago Fuel processor for producing hydrogen from hydrocarbon fuels
KR100820664B1 (ko) * 2003-07-14 2008-04-11 도시바 넨료 덴치 시스템 가부시키가이샤 연료 처리 장치 및 그 방법
DE10361890B4 (de) 2003-12-23 2007-03-29 Airbus Deutschland Gmbh Vorrichtung zum labormäßigen Testen von abgeschlossenen Teilkabinen für Verkehrsflugzeuge
US8690972B2 (en) * 2004-07-12 2014-04-08 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and reforming apparatus
DK1645540T3 (en) * 2004-10-06 2017-10-16 Kt - Kinetics Tech S P A APPARATUS AND PROCEDURE FOR PREPARING HYDROGEN AND SYN-TESEGAS FROM LIQUID HYDROCARBON.
US7964176B2 (en) * 2005-03-29 2011-06-21 Chevron U.S.A. Inc. Process and apparatus for thermally integrated hydrogen generation system
US7439273B2 (en) * 2006-03-10 2008-10-21 Intelligent Energy, Inc. Hydrogen purification process and system
US7670587B2 (en) * 2006-03-10 2010-03-02 Intelligent Energy, Inc. Fuel steam reformer system and reformer startup process
US7695708B2 (en) * 2007-03-26 2010-04-13 Air Products And Chemicals, Inc. Catalytic steam reforming with recycle
US8003073B2 (en) * 2007-04-16 2011-08-23 Air Products And Chemicals, Inc. Autothermal hydrogen storage and delivery systems
US8894967B2 (en) 2008-03-28 2014-11-25 IFP Energies Nouvelles Process for the production of highly thermally-integrated hydrogen by reforming a hydrocarbon feedstock
US20100327231A1 (en) * 2009-06-26 2010-12-30 Noah Whitmore Method of producing synthesis gas
KR20130069610A (ko) * 2010-03-31 2013-06-26 카운실 오브 사이언티픽 엔드 인더스트리얼 리서치 수소/합성가스 발생기
WO2013025875A1 (en) 2011-08-18 2013-02-21 212 Resources Distillation solids removal system and method
KR101328151B1 (ko) * 2013-04-11 2013-11-13 고천일 개질연료 제조장치 및 제조방법
RU2561077C2 (ru) * 2013-07-11 2015-08-20 Общество с ограниченной ответственностью "ВТР" Способ получения водорода из углеводородного сырья
US10549991B2 (en) * 2015-02-27 2020-02-04 Haldor Topsøe A/S4 Method for production of a hydrogen rich gas
CN110873325A (zh) * 2019-11-27 2020-03-10 潍柴动力股份有限公司 一种蒸汽发生器的供水系统和方法
PL434074A1 (pl) 2020-05-26 2021-11-29 New Energy Transfer Spółka Z Ograniczoną Odpowiedzialnością Urządzenie do produkcji wodoru i sposób produkcji wodoru z wykorzystaniem tego urządzenia
US11897769B2 (en) 2021-08-20 2024-02-13 Air Products And Chemicals, Inc. Process for H2 and syngas production
US11753299B2 (en) * 2021-08-20 2023-09-12 Air Products And Chemicals, Inc. Process for H2 and syngas production

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615300A (en) * 1969-06-04 1971-10-26 Chevron Res Hydrogen production by reaction of carbon with steam and oxygen
US3794116A (en) * 1972-05-30 1974-02-26 Atomic Energy Commission Situ coal bed gasification
US3976507A (en) * 1975-02-12 1976-08-24 United Technologies Corporation Pressurized fuel cell power plant with single reactant gas stream
US4670359A (en) * 1985-06-10 1987-06-02 Engelhard Corporation Fuel cell integrated with steam reformer
US4946667A (en) * 1985-06-10 1990-08-07 Engelhard Corporation Method of steam reforming methanol to hydrogen
IT1211957B (it) * 1987-12-07 1989-11-08 Kinetics Technology Procedimento,apparato e relativo metodo di funzionamento per la generazione di vapore ed il recupero dicalore in impianti di produzione di idrogeno e gas di sintesi
JPH07315801A (ja) * 1994-05-23 1995-12-05 Ngk Insulators Ltd 高純度水素製造システム、高純度水素の製造方法及び燃料電池システム
US5786104A (en) * 1996-12-31 1998-07-28 The Dow Chemical Company Method and apparatus for humidification of incoming fuel cell process gases
JPH10330101A (ja) * 1997-05-27 1998-12-15 Sanyo Electric Co Ltd 水素製造装置及び水素製造方法
US6120923A (en) * 1998-12-23 2000-09-19 International Fuel Cells, Llc Steam producing hydrocarbon fueled power plant employing a PEM fuel cell
US6485853B1 (en) * 2000-06-27 2002-11-26 General Motors Corporation Fuel cell system having thermally integrated, isothermal co-cleansing subsystem

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350345A (ja) * 2004-06-07 2005-12-22 Samsung Sdi Co Ltd 改質装置及び燃料電池システム
JP4484767B2 (ja) * 2004-06-07 2010-06-16 三星エスディアイ株式会社 改質装置及び燃料電池システム
US8053119B2 (en) 2004-06-07 2011-11-08 Samsung Sdi Co., Ltd. Reformer and fuel cell system having the same
US8029580B2 (en) 2004-06-29 2011-10-04 Samsung Sdi Co., Ltd. Fuel cell reformer and system
JP2008543020A (ja) * 2005-06-10 2008-11-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 自熱改質装置

Also Published As

Publication number Publication date
CA2446333A1 (en) 2002-11-07
EP1392597A1 (en) 2004-03-03
US20060216228A1 (en) 2006-09-28
WO2002088022A1 (en) 2002-11-07
WO2002088022A8 (en) 2004-09-10
US20030046867A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
JP2005500966A (ja) 水素の生成
US8216323B2 (en) System and method for hydrogen production
AU2010334600B2 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
RU2516527C2 (ru) Системы и способы производства сверхчистого водорода при высоком давлении
EP0093502B1 (en) Ammonia production process
US9102534B2 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
AU2007325180B2 (en) Systems and processes for producing hydrogen and carbon dioxide
US20230174378A1 (en) Process for producing hydrogen
US7569085B2 (en) System and method for hydrogen production
WO2006112725A1 (en) Process for production of electric energy and co2 from a hydrocarbon feedstock
HU222969B1 (hu) Eljárás villamos energia, gőz és szén-dioxid termelésére szénhidrogén nyersanyagból
JPH11312527A (ja) 製鉄副生ガスを利用した溶融炭酸塩型燃料電池発電−排ガス回収複合システム
CA2672208A1 (en) Hybrid combustor for fuel processing applications
US20120129064A1 (en) Hydrogen production by an autothermal heat exchanger packed-bed membrane gas reformer
AU2022389791A1 (en) Method for hydrogen production
WO2002048027A1 (en) Process and apparatus for the production of ammonia
CA3223306A1 (en) Ammonia cracking process
JPS58190821A (ja) アンモニア生産方法
JP2024524096A (ja) 水素発生アセンブリ
GB2617660A (en) Low-carbon hydrogen process
Shirasaki et al. Development of membrane reformer for hydrogen production from natural gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805