JP2005353559A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2005353559A
JP2005353559A JP2004202491A JP2004202491A JP2005353559A JP 2005353559 A JP2005353559 A JP 2005353559A JP 2004202491 A JP2004202491 A JP 2004202491A JP 2004202491 A JP2004202491 A JP 2004202491A JP 2005353559 A JP2005353559 A JP 2005353559A
Authority
JP
Japan
Prior art keywords
organic polymer
negative electrode
lead
electrolyte
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202491A
Other languages
Japanese (ja)
Inventor
Shinya Kozawa
シンヤ コザワ
Masayuki Yoshio
芳尾 真幸
Tatsuya Okayasu
達也 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinya Kozawa
Original Assignee
Shinya Kozawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinya Kozawa filed Critical Shinya Kozawa
Priority to JP2004202491A priority Critical patent/JP2005353559A/en
Publication of JP2005353559A publication Critical patent/JP2005353559A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To add an organic polymer to an electrolyte solution automatically over a long time for making the activity of a negative electrode active material of a lead acid battery maintained for a long time. <P>SOLUTION: The lead acid battery comprises a container provided in the electrolyte solution having dilute sulfuric acid as the main component, the container having a gap communicating with the electrolyte solution. The container is filled with the organic polymer that dissolves in the electrolyte solution and is capable of raising a hydrogen overvoltage of the negative electrode, when charging is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、従来の鉛蓄電池に比べて著しく長期間の使用に耐える鉛蓄電池に関する。  The present invention relates to a lead-acid battery that can withstand long-term use as compared with conventional lead-acid batteries.

従来、長期間の使用により劣化した鉛蓄電池の特性を回復させる方法として、本発明者等は電解液中に、負極の水素過電圧を上昇させる効果のある特定の有機ポリマー、例えばポリビニルアルコール、ポリアクリル酸エステル、リグニン等を添加することにより鉛蓄電池の容量や内部抵抗が回復する方法を発明した(例えば、特開2001−313064号公報)。しかしながら、電解液中に添加されたこれらの有機ポリマーは、充放電をくりかえすと正極で徐々に酸化されて消滅し、その効果が次第に低下するので、毎年これらの有機ポリマーを添加する必要があった。また、電解液の補充を不要にした密閉型の鉛蓄電池においては有機ポリマーを添加することが不可能であった。  Conventionally, as a method for recovering the characteristics of a lead-acid battery that has deteriorated due to long-term use, the present inventors have incorporated a specific organic polymer, such as polyvinyl alcohol or polyacrylic, in the electrolyte, which has the effect of increasing the hydrogen overvoltage of the negative electrode. A method for recovering the capacity and internal resistance of a lead-acid battery by adding an acid ester, lignin or the like has been invented (for example, JP 2001-313064 A). However, these organic polymers added to the electrolyte solution gradually oxidize and disappear at the positive electrode when charging and discharging are repeated, and the effect gradually decreases, so it was necessary to add these organic polymers every year. . Further, it has been impossible to add an organic polymer in a sealed lead-acid battery that does not require replenishment of an electrolyte.

本発明は、有機ポリマーを長期間少量づつ電解液中に自動的に供給することにより、正極で酸化されて消滅した有機ポリマーを補充し、鉛蓄電池の特性を極めて長期間にわたり維持することを可能とするものである。  The present invention automatically replenishes the organic polymer into the electrolyte solution little by little for a long period of time, thereby replenishing the organic polymer that has been oxidized and disappeared at the positive electrode and maintaining the characteristics of the lead-acid battery for an extremely long period of time. It is what.

本発明は、希硫酸を主成分とする電解液中、または硫酸を主成分とし且つ充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーが0.01ないし0.2重量%含まれる電解液中に、該電解液に連通する間隙を有する容器を具備し、且つ該容器中には前記電解液に溶解し充電時に負極の水素過電圧を上昇せしめ得る有機ポリマー(以下「有機ポリマー」という」を充填してなる鉛蓄電池、および希硫酸を主成分とする電解液中、または硫酸を主成分とし且つ充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーが0.01ないし0.2重量%含まれる電解液中に、該電解液に対する溶性速度が極めて遅く、且つ前記電解液に溶解した場合には充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーの固形物を接触せしめてなる鉛蓄電池である。  The present invention relates to an electrolyte containing dilute sulfuric acid as a main component or an electrolyte containing 0.01 to 0.2 wt% of an organic polymer containing sulfuric acid as a main component and capable of increasing the hydrogen overvoltage of a negative electrode during charging. And a container having a gap communicating with the electrolytic solution, and the container is filled with an organic polymer (hereinafter referred to as “organic polymer”) that dissolves in the electrolytic solution and can increase the hydrogen overvoltage of the negative electrode during charging. Lead acid battery, and an electrolyte containing 0.01 to 0.2% by weight of an organic polymer containing dilute sulfuric acid as a main component or an organic polymer containing sulfuric acid as a main component and capable of increasing the hydrogen overvoltage of the negative electrode during charging. A lead storage battery in which the organic polymer solid is brought into contact with the electrolyte, which has a very low solubility rate in the electrolyte and can increase the hydrogen overvoltage of the negative electrode during charging when dissolved in the electrolyte. It is.

また好ましくは、前記電解液に連通する間隙を有する容器が、ガラス繊維、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂のいずれかで構成される鉛蓄電池であり、前記有機ポリマーがポリビニルアルコール、ポリアクリル酸、ポリアクリル酸エステル、リグニンよりなる群のうちの少なくとも一つを含む鉛蓄電池であり、前記有機ポリマーの固形物がポリビニルアルコールであり、前記有機ポリマーの固形物が負極中に存在するか又は負極表面に付着した構造である鉛蓄電池である。  Preferably, the container having a gap communicating with the electrolytic solution is a lead storage battery composed of any one of glass fiber, polyethylene resin, polypropylene resin, and fluororesin, and the organic polymer is polyvinyl alcohol, polyacrylic acid, A lead acid battery comprising at least one of the group consisting of polyacrylic acid ester and lignin, wherein the organic polymer solid is polyvinyl alcohol, and the organic polymer solid is present in the negative electrode or the negative electrode surface It is the lead acid battery which is the structure which adhered to.

本発明で用いる有機ポリマーは、希硫酸を電解液とする鉛蓄電池において、充放電時に負極表面に作用して負極の活物質である鉛粒子を著しく微細にする作用がある。この有機ポリマー共存下の電気化学反応によって生成した鉛粒子は、従来の島津式ボールミル法や溶融鉛法等の機械的な方法で造られた鉛粒子に比べて極めて活性度が高く、充放電中に新物質としての微細な鉛粒子が合成されるものである。  The organic polymer used in the present invention acts on the surface of the negative electrode during charge / discharge in a lead storage battery using dilute sulfuric acid as an electrolyte, and has the effect of remarkably reducing the lead particles that are the active material of the negative electrode. The lead particles produced by the electrochemical reaction in the presence of this organic polymer are extremely active compared to the conventional lead particles produced by mechanical methods such as the Shimadzu ball mill method and the molten lead method. In addition, fine lead particles as a new substance are synthesized.

本発明で用いる有機ポリマーは電解液中に0.001ないし0.5%存在することが望ましく、これを一時に大量に添加しても充電時に発泡して電槽から電解液があふれたり、正極で1ないし2年で酸化されてしまうので、好ましくない。有機ポリマーの効果を長期間持続させるためには、有機ポリマーを正極で酸化される量を補充する程度に自動的に少量づつ電解液中に加えるのが望ましい。  The organic polymer used in the present invention is preferably present in an amount of 0.001 to 0.5% in the electrolytic solution. Even if a large amount of the organic polymer is added at a time, it foams during charging and overflows from the battery case, Therefore, it is not preferable because it is oxidized in 1 to 2 years. In order to maintain the effect of the organic polymer for a long period of time, it is desirable to add the organic polymer to the electrolyte automatically in small amounts so as to supplement the amount oxidized at the positive electrode.

本発明者等はこの手段として、これらの有機ポリマーを、鉛蓄電池の電解液に連通する間隙を有する容器中に充填して、この容器を該電解液中に浸漬すると、有機ポリマーは電解液を吸収して一旦ゲル化しその大部分は容器中に留まり、ゲルの一部が少しづつ容器の電解液に連通する間隙を通って鉛蓄電池の電解液中に拡散することにより、長期間にわたり鉛蓄電池の電解液中の有機ポリマー濃度を必要な値に保つことができることを見出したものである。更に、電解液に対する溶性速度が極めて遅く、且つ電解液に溶解した場合には充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーの固形物を電解液に接触した状態で電池中に存在せしめると該有機ポリマーの固形物が徐々に電解液中に溶出し、充電の際に正極において酸化反応により分解される有機ポリマーを補充することによっても、長期間にわたり鉛蓄電池の電解液中の有機ポリマー濃度を必要な値に保つことができることを見出したものである。これらの方法により、鉛蓄電池の製造時に有機ポリマーを充填した容器を電池に組み込んだ場合、あるいは溶性速度が極めて遅い有機ポリマーの固形物を電解液に接触した状態で電池中に存在せした場合、有機ポリマーの拡散速度または溶解速度からの計算値として10年以上の長寿命が期待できる。  As a means for this, the inventors filled these organic polymers into a container having a gap communicating with the electrolyte of the lead storage battery, and when the container was immersed in the electrolyte, Once absorbed and gelled, most of it stays in the container, and part of the gel gradually diffuses into the electrolyte of the lead-acid battery through a gap communicating with the electrolyte of the container, leading to a long-term lead-acid battery. It has been found that the concentration of the organic polymer in the electrolyte solution can be maintained at a required value. Further, if the organic polymer solid substance that can increase the hydrogen overvoltage of the negative electrode during charging is present in the battery in the state of being in contact with the electrolyte when dissolved in the electrolyte, the solubility rate in the electrolyte is extremely slow. The organic polymer concentration in the electrolyte of the lead-acid battery can be increased over a long period of time by replenishing the organic polymer that gradually dissolves into the electrolyte and replenishes the organic polymer that is decomposed by the oxidation reaction at the positive electrode during charging. It has been found that the required value can be maintained. By these methods, when a container filled with an organic polymer is incorporated into the battery at the time of manufacturing the lead acid battery, or when an organic polymer solid substance having a very low solubility rate is present in the battery in contact with the electrolyte, A long life of 10 years or more can be expected as a calculated value from the diffusion rate or dissolution rate of the organic polymer.

本発明で用いる、鉛蓄電池の電解液に連通する間隙を有する容器としては、電解液の希硫酸に耐え得る材質の任意の形状のものを用いることができ、ガラス繊維で作った袋、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂で作った袋またはチューブ等を好適に用いることができる。その容器に設けられる空隙の大きさは、有機ポリマーの重合度、電解液中の有機ポリマー濃度、鉛電池の使用環境等に応じて適宜選択すれば良い。  As a container having a gap communicating with the electrolyte solution of the lead storage battery used in the present invention, a container of any shape that can withstand the dilute sulfuric acid of the electrolyte solution can be used, a bag made of glass fiber, a polyethylene resin A bag or tube made of polypropylene resin or fluororesin can be preferably used. The size of the void provided in the container may be appropriately selected according to the degree of polymerization of the organic polymer, the concentration of the organic polymer in the electrolytic solution, the usage environment of the lead battery, and the like.

また、本発明では、鉛蓄電池の電解液に連通する間隙を有する容器中に、有機ポリマーに加えて、負極の鉛粒子の微細化を一層促進するために、粒子径0.1〜5マイクロメートル程度のカーボン、リグニン、硫酸バリウム等の微粒子や、硫酸ソーダ、硫酸インジウム、硫酸錫等の微粒子を加えても良い。  Further, in the present invention, in order to further promote the refinement of the lead particles of the negative electrode in addition to the organic polymer in the container having a gap communicating with the electrolyte of the lead storage battery, the particle diameter is 0.1 to 5 micrometers. Fine particles such as carbon, lignin, and barium sulfate, and fine particles such as sodium sulfate, indium sulfate, and tin sulfate may be added.

鉛蓄電池の電解液に連通する間隙を有する容器に有機ポリマーを充填した形態としては例えば図1に示すように、ガラス繊維で織った布の扁平な袋1に有機ポリマー粉末2を充填し、これを密閉型電池3の負極4とセパレーター5の間に挟みこむことができる。袋1は図2に示すように負極4の表面の一部に配置すれば良い。一部の密閉型電池では電解液は多孔質のセパレーターと電極の内部のみに存在し、電槽と電極との間には殆ど存在しないので、そのような構造の鉛蓄電池においては、このように負極とセパレーターの間に有機ポリマーが入った容器を挟み込む方法は有機ポリマーの添加方法として極めて有効な方法である。また、電池上部に液栓穴6が有る電池では図3に示すように、直径0.1ないし0.01ミリメートルの複数の穴の開いたポリプロピレン樹脂製容器7に有機ポリマー粉末を充填し、これを電槽8内の上部スペースに液栓穴6から挿入しても良い。  For example, as shown in FIG. 1, a flat bag 1 of cloth woven with glass fiber is filled with organic polymer powder 2 as a form in which a container having a gap communicating with the electrolyte of a lead storage battery is filled. Can be sandwiched between the negative electrode 4 and the separator 5 of the sealed battery 3. The bag 1 may be disposed on a part of the surface of the negative electrode 4 as shown in FIG. In some sealed batteries, the electrolyte exists only inside the porous separator and the electrode, and hardly exists between the battery case and the electrode. A method of sandwiching a container containing an organic polymer between the negative electrode and the separator is an extremely effective method for adding an organic polymer. In the case of a battery having a liquid stopper hole 6 in the upper part of the battery, as shown in FIG. 3, an organic polymer powder is filled in a polypropylene resin container 7 having a plurality of holes having a diameter of 0.1 to 0.01 mm. May be inserted into the upper space in the battery case 8 through the liquid stopper hole 6.

電解液に対する溶性速度が極めて遅く、且つ電解液に溶解した場合には充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーの固形物の例としては、板状、粒状、繊維状に成形したポリビニルアルコールがあり、例えば日本合成化学工業株式会社製エコマティAX等を好適に用いることができる。これらの有機ポリマーの固形物を負極表面に貼り付けるか、負極活物質中に介在させた状態で用いることにより、有機ポリマーが徐々に電解液中に溶出し、その濃度を略一定の範囲内に長期間保つことが可能となり、その結果として負極の活物質である鉛粒子を著しく微細にする作用が長期間にわたり持続し電池寿命が延長されるものである。  Examples of organic polymer solids that have a very slow solubility rate in the electrolyte and can increase the hydrogen overvoltage of the negative electrode during charging when dissolved in the electrolyte include polyvinyl alcohol molded into plates, granules, and fibers. For example, Ecomaty AX manufactured by Nippon Synthetic Chemical Industry Co., Ltd. can be suitably used. By sticking these organic polymer solids on the negative electrode surface or using them in a state where they are interposed in the negative electrode active material, the organic polymer gradually elutes into the electrolyte, and the concentration falls within a substantially constant range. As a result, the effect of making the lead particles, which are the active material of the negative electrode, extremely fine can be maintained for a long period of time and the battery life can be extended.

断面図  Cross section 負極表面での容器の配置図  Container layout on the negative electrode surface 断面図  Cross section

符号の説明Explanation of symbols

1:ガラス繊維で織った布の袋1
2:有機ポリマー粉末
3:密閉型電池
4:負極
5:セパレーター
6:液栓穴
7:ポリプロピレン樹脂製容器
8:電槽
1: Fabric bag 1 woven with glass fiber
2: Organic polymer powder 3: Sealed battery 4: Negative electrode 5: Separator 6: Liquid stopper hole 7: Polypropylene resin container 8: Battery case

Claims (6)

希硫酸を主成分とする電解液中、または硫酸を主成分とし且つ充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーが0.01ないし0.2重量%含まれる電解液中に、該電解液に連通する間隙を有する容器を具備し、且つ該容器中には前記電解液に溶解し充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーを充填してなることを特徴とする鉛蓄電池。  In an electrolyte containing dilute sulfuric acid as a main component or in an electrolyte containing 0.01 to 0.2% by weight of an organic polymer containing sulfuric acid as a main component and capable of increasing the hydrogen overvoltage of the negative electrode during charging A lead-acid battery comprising: a container having a gap communicating with the container; and the container is filled with an organic polymer that can be dissolved in the electrolyte and increase a hydrogen overvoltage of the negative electrode during charging. 請求項1において、電解液に連通する間隙を有する容器が、ガラス繊維、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂のいずれかで構成される鉛蓄電池。  2. The lead acid battery according to claim 1, wherein the container having a gap communicating with the electrolytic solution is made of any one of glass fiber, polyethylene resin, polypropylene resin, and fluororesin. 請求項1または請求項2において、有機ポリマーがポリビニルアルコール、ポリアクリル酸、ポリアクリル酸エステル、リグニンよりなる群のうちの少なくとも一つを含む鉛蓄電池。  3. The lead acid battery according to claim 1, wherein the organic polymer includes at least one of the group consisting of polyvinyl alcohol, polyacrylic acid, polyacrylic acid ester, and lignin. 希硫酸を主成分とする電解液中、または硫酸を主成分とし且つ充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーが0.01ないし0.2重量%含まれる電解液中に、該電解液に対する溶性速度が極めて遅く、且つ前記電解液に溶解した場合には充電時に負極の水素過電圧を上昇せしめ得る有機ポリマーの固形物を接触せしめてなることを特徴とする鉛蓄電池。  In an electrolyte containing dilute sulfuric acid as a main component or in an electrolyte containing 0.01 to 0.2% by weight of an organic polymer containing sulfuric acid as a main component and capable of increasing the hydrogen overvoltage of the negative electrode during charging A lead-acid battery characterized in that it has a very slow solubility rate in contact with an organic polymer solid that can increase the hydrogen overvoltage of the negative electrode during charging when dissolved in the electrolyte. 請求項4において、有機ポリマーの固形物がポリビニルアルコールである鉛蓄電池。  5. The lead acid battery according to claim 4, wherein the organic polymer solid is polyvinyl alcohol. 請求項4または請求項5において、該有機ポリマーの固形物が負極中に存在するか又は負極表面に付着した構造である鉛蓄電池。  6. The lead-acid battery according to claim 4 or 5, wherein the organic polymer solid is present in the negative electrode or attached to the negative electrode surface.
JP2004202491A 2004-06-11 2004-06-11 Lead acid battery Pending JP2005353559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202491A JP2005353559A (en) 2004-06-11 2004-06-11 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202491A JP2005353559A (en) 2004-06-11 2004-06-11 Lead acid battery

Publications (1)

Publication Number Publication Date
JP2005353559A true JP2005353559A (en) 2005-12-22

Family

ID=35587829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202491A Pending JP2005353559A (en) 2004-06-11 2004-06-11 Lead acid battery

Country Status (1)

Country Link
JP (1) JP2005353559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528437A (en) * 2007-05-25 2010-08-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical energy storage device with storage container for additives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528437A (en) * 2007-05-25 2010-08-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrochemical energy storage device with storage container for additives

Similar Documents

Publication Publication Date Title
US20080113268A1 (en) Recombinant Hybrid Energy Storage Device
US4871428A (en) Method for in situ forming lead-acid batteries having absorbent separators
US20140072897A1 (en) System for energy generation or storage on an electrochemical basis
JP6211800B2 (en) Electrolyte flow type secondary battery
CN1639894A (en) Cylindrical alkaline cells with increased discharge performance
EP3262701B1 (en) Improved water loss separators used with lead acid batteries, systems for improved water loss performance, and methods of manufacture and use thereof
JPS627661B2 (en)
JP2005353559A (en) Lead acid battery
JP2014170715A (en) Cell
JPS58198869A (en) Lead storage battery with expansion agent storage unit disposed in electrolyte
JP2007073489A (en) Additive pellet for lead-acid battery
CN101779315B (en) Alkaline battery
JPS6237882A (en) Closed type lead storage battery
CN1832235A (en) Ago battery
JPH08329975A (en) Sealed lead-acid battery
JP2005044689A (en) Life-prolonging solution for lead storage battery
JP2011119197A (en) Gel-system lead-acid battery
JP2007103331A (en) Lead acid storage battery
CN106571491B (en) A kind of Electrolyte Stratification in Lead-Acid Batteries alleviant
JPH01128367A (en) Sealed type lead storage battery
JP2007059277A (en) Method of manufacturing lead-acid storage battery
JPH0628169B2 (en) Sealed lead acid battery
KR102483419B1 (en) Stratification prevention structure used in the battery
JP2006318879A (en) Sealed lead-acid battery
JP2000340237A (en) Alkaline battery