JP2005351160A - Exhaust emission control method and device - Google Patents

Exhaust emission control method and device Download PDF

Info

Publication number
JP2005351160A
JP2005351160A JP2004172387A JP2004172387A JP2005351160A JP 2005351160 A JP2005351160 A JP 2005351160A JP 2004172387 A JP2004172387 A JP 2004172387A JP 2004172387 A JP2004172387 A JP 2004172387A JP 2005351160 A JP2005351160 A JP 2005351160A
Authority
JP
Japan
Prior art keywords
reduction catalyst
exhaust
selective
selective catalytic
catalytic reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172387A
Other languages
Japanese (ja)
Inventor
Yuugo Kudo
有吾 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004172387A priority Critical patent/JP2005351160A/en
Publication of JP2005351160A publication Critical patent/JP2005351160A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To markedly improve NOx reduction efficiency more than conventional reduction efficiency when reducing and purifying NOx with urea water as a reducing agent. <P>SOLUTION: This exhaust emission control method reduces and purifies the NOx by adding the urea water 17 (reducing agent) on the upstream side of a selective reducing catalyst 10 by equipping the selective reducing catalyst 10 in the middle of an exhaust pipe 9. A first reaction area 19 for decomposing NH<SB>3</SB>generated from the urea water 17 up to NH<SB>2</SB>and a second reaction area 20 for reducing and purifying NO by the NH<SB>2</SB>are divided, and the exhaust temperature is lowered when the NH<SB>2</SB>is generated in the first reaction area 19, and reaction is advanced under a temperature condition lower than the first reaction area 19 in the second reaction area 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、尿素水を還元剤としてNOxを還元浄化する排気浄化方法及び装置に関するものである。   The present invention relates to an exhaust purification method and apparatus for reducing and purifying NOx using urea water as a reducing agent.

従来より、ディーゼルエンジンにおいては、排出ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排出ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas circulates. A required amount of reducing agent is added upstream of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラントなどにおける工業的な排煙脱硝処理の分野では、還元剤にNH3(アンモニア)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、NH3そのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている(例えば、特許文献1や特許文献2参照)。
特開2002−161732号公報 特開2002−166130号公報
On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using NH 3 (ammonia) as a reducing agent is already widely known. Since it is difficult to ensure safety when traveling with NH 3 itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied (for example, Patent Document 1 and Patent Document 2).
JP 2002-161732 A JP 2002-166130 A

即ち、尿素水を選択還元型触媒の上流側で排出ガス中に添加すれば、約170℃以上の温度条件下で前記尿素水がNH3とCOに分解され、選択還元型触媒上で排出ガス中のNOxがNH3により良好に還元浄化されることになる。 That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is decomposed into NH 3 and CO under a temperature condition of about 170 ° C. or higher, and the exhaust gas is exhausted on the selective catalytic reduction catalyst. The inside NOx is reduced and purified well by NH 3 .

この種の尿素水を還元剤としたNOxの還元浄化反応においては、NOxを直接還元浄化する反応の本体がNH2であることが判っており、しかも、尿素水をNH3を経てNH2まで分解するのに約600〜700℃以上の高温条件が必要であることも判っているので、排気温度が低い軽負荷時などに選択還元型触媒に到る排出ガスの温度を積極的に高めてNOx低減効果の向上を図り得るようにすることが今までにも数多く提案されている。 In the NOx reduction and purification reaction using this type of urea water as a reducing agent, it is known that the main body of the reaction that directly reduces and purifies NOx is NH 2 , and the urea water passes through NH 3 to NH 2. Since it is also known that a high temperature condition of about 600 to 700 ° C. or more is necessary for the decomposition, the temperature of the exhaust gas reaching the selective catalytic reduction catalyst is positively increased when the exhaust temperature is low and the load is low. Many proposals have been made so far to improve the NOx reduction effect.

しかしながら、NH2によりNOを還元浄化する反応には、NH2を生成するのに必要なほどの高温条件は不要であり、寧ろ500℃以下まで温度条件を下げた方がNOの還元浄化反応の活性が高いという知見が得られているという事実があるが、今までに提案されているものでは、NH2を多く生成することばかりが第一義として考えられてきており、NH2が生成された後の温度管理まで考慮に入れたものが全く考えられていなかった。 However, the reaction that reduces and purifies NO by NH 2, high temperature enough necessary to generate the NH 2 is unnecessary, rather better to lower the temperature conditions of the reduction purification reaction of NO to 500 ° C. or less Although the fact that activity is finding that high is obtained, the one that has been proposed so far, only to produce a large amount of NH 2 has been considered as a primary, and NH 2 is generated No consideration was given to temperature control after that.

即ち、図5に示す如く、NH2とNOの反応速度定数の温度変化を、縦軸に反応速度定数を対数表示し且つ横軸に温度T分の1の形式で温度を表示したアレニウスプロットによりグラフ化すると、ここに曲線Xで示してある通り、NH2によるNOの還元反応は、グラフ中の左側の高温領域にて最も反応速度定数が低下し、グラフ中の右側の温度の低い領域へ移るに従い反応速度定数が徐々に高まる傾向となる。 That is, as shown in FIG. 5, the temperature change of the reaction rate constant of NH 2 and NO is represented by an Arrhenius plot in which the vertical axis represents the reaction rate constant logarithmically and the horizontal axis represents temperature in the form of temperature T / T. When graphed, as shown by curve X here, the reduction reaction of NO by NH 2 has the lowest reaction rate constant in the high temperature region on the left side of the graph, and moves to the low temperature region on the right side of the graph. The reaction rate constant tends to increase gradually as it moves.

然るに、このグラフに曲線Yで併記してある通り、尿素水から生じたNH3がNH2に分解される反応は、グラフ中の左側の温度の高い領域へ移るに従い反応速度定数が徐々に高まる傾向を示すので、このNH2が生成される反応速度定数が高い左側の温度領域では、NH2によるNOの還元反応の反応速度定数が落ち込んでしまうことになる。 However, as indicated by the curve Y in this graph, the reaction rate constant of the reaction in which NH 3 generated from urea water is decomposed into NH 2 gradually increases as it moves to the higher temperature region on the left side of the graph. Since it shows a tendency, the reaction rate constant of the NO reduction reaction with NH 2 falls in the temperature region on the left side where the reaction rate constant at which NH 2 is generated is high.

本発明は上述の実情に鑑みてなしたもので、尿素水を還元剤としてNOxを還元浄化するにあたり、NOx還元効率を従来より大幅に向上し得る排気浄化方法及び装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an exhaust purification method and apparatus that can significantly improve NOx reduction efficiency as compared with conventional NOx reduction purification using urea water as a reducing agent. Yes.

本発明は、排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化する排気浄化方法であって、尿素水から生じたNH3をNH2まで分解する第一の反応領域と、NH2によりNOを還元浄化する第二の反応領域とを分け、第一の反応領域でNH2が生成されたところで排気温度を下降せしめ、第二の反応領域では第一の反応領域よりも低い温度条件下で反応を進めることを特徴とするものである。 The present invention is an exhaust purification method for reducing and purifying NOx by installing a selective catalytic reduction catalyst in the middle of an exhaust pipe and adding urea water as a reducing agent upstream of the selective catalytic reduction catalyst. A first reaction region that decomposes the generated NH 3 to NH 2 and a second reaction region that reduces and purifies NO with NH 2 are separated, and when NH 2 is generated in the first reaction region, the exhaust temperature is reduced. The second reaction region is lowered and the reaction proceeds under a temperature condition lower than that of the first reaction region.

而して、このようにすれば、尿素水から生じたNH3をNH2まで分解するのに適した高温条件を第一の反応領域に与える一方、この第一の反応領域よりも低い温度条件を第二の反応領域に与えてNH2によるNOの還元浄化反応を効率良く進めることが可能となる。 Thus, in this way, a high temperature condition suitable for decomposing NH 3 generated from urea water to NH 2 is given to the first reaction region, while a temperature condition lower than the first reaction region is provided. To the second reaction region, the reduction and purification reaction of NO by NH 2 can be efficiently advanced.

本発明の排気浄化方法を実施するにあたっては、例えば、排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化する排気浄化装置であって、選択還元型触媒を排出ガスの流れ方向に向け流路断面積が急拡大するように形成したものを使用すると良い。   In carrying out the exhaust purification method of the present invention, for example, a selective reduction catalyst is provided in the middle of the exhaust pipe, and urea water is added as a reducing agent upstream of the selective reduction catalyst to reduce and purify NOx. It is preferable to use an exhaust purification device in which a selective catalytic reduction catalyst is formed so that the cross-sectional area of the flow path suddenly increases in the exhaust gas flow direction.

このような排気浄化装置を使用すれば、選択還元型触媒内を流れる排出ガスが下流側に向かうにつれ断熱膨張して温度低下するので、この温度低下により選択還元型触媒の後方部分の温度条件が前方部分より低くなり、該選択還元型触媒の前方部分が第一の反応領域として機能する一方、選択還元型触媒の後方部分が第二の反応領域として機能することになる。   If such an exhaust purification device is used, the exhaust gas flowing in the selective catalytic reduction catalyst adiabatically expands and decreases in temperature as it goes downstream, and this temperature decrease causes the temperature condition of the rear portion of the selective catalytic reduction catalyst. It becomes lower than the front part, and the front part of the selective catalytic reduction catalyst functions as the first reaction region, while the rear part of the selective catalytic reduction catalyst functions as the second reaction region.

また、この排気浄化装置に替えて、選択還元型触媒を前後二段に分割構成し且つ後段の選択還元型触媒を前段の選択還元型触媒よりも流路断面積が大きなものとなるように形成した排気浄化装置を使用しても良い。   Also, instead of this exhaust purification device, the selective catalytic reduction catalyst is divided into two stages in the front and rear, and the downstream selective catalytic reduction catalyst is formed so as to have a larger cross-sectional area than the selective catalytic reduction catalyst in the previous stage. An exhaust emission control device that has been used may be used.

このような排気浄化装置を使用すれば、前段の選択還元型触媒内を流れ出た排出ガスが後段の選択還元型触媒に拡散して流れ込むことで断熱膨張して温度低下するので、この温度低下により後段の選択還元型触媒の温度条件が前段の選択還元型触媒より低くなり、該前段の選択還元型触媒が第一の反応領域として機能する一方、後段の選択還元型触媒が第二の反応領域として機能することになる。   If such an exhaust purification device is used, the exhaust gas flowing out from the upstream selective reduction catalyst diffuses and flows into the downstream selective reduction catalyst, so that it adiabatically expands and the temperature decreases. The temperature condition of the downstream selective reduction catalyst is lower than that of the upstream selective reduction catalyst, and the upstream selective reduction catalyst functions as the first reaction region, while the downstream selective reduction catalyst functions as the second reaction region. Will function as.

更には、選択還元型触媒を抱持するケーシングの後方部分に冷却手段を外装した排気浄化装置を使用することも可能であり、このようにすれば、選択還元型触媒の後方部分が冷却手段による冷却作用を受けて温度低下するので、この選択還元型触媒の後方部分の温度条件が前方部分より低くなり、該選択還元型触媒の前方部分が第一の反応領域として機能する一方、選択還元型触媒の後方部分が第二の反応領域として機能することになる。   Furthermore, it is also possible to use an exhaust purification device in which a cooling means is mounted on the rear part of the casing that holds the selective catalytic reduction catalyst. In this way, the rear part of the selective catalytic reduction catalyst is caused by the cooling means. Since the temperature lowers due to the cooling action, the temperature condition of the rear part of the selective catalytic reduction catalyst is lower than that of the front part, and the front part of the selective catalytic reduction catalyst functions as the first reaction region, while the selective catalytic reduction type The rear part of the catalyst will function as the second reaction zone.

また、選択還元型触媒を前後二段に分割構成し且つ両選択還元型触媒の相互間に冷却手段を介装した排気浄化装置を使用することも可能であり、このようにすれば、前段の選択還元型触媒内を流れ出た排出ガスが冷却手段による冷却作用を受けて温度低下するので、この温度低下により後段の選択還元型触媒の温度条件が前段の選択還元型触媒より低くなり、該前段の選択還元型触媒が第一の反応領域として機能する一方、後段の選択還元型触媒が第二の反応領域として機能することになる。   It is also possible to use an exhaust purification device in which the selective catalytic reduction catalyst is divided into two stages before and after and a cooling means is interposed between the two selective catalytic reduction catalysts. Since the exhaust gas flowing out of the selective catalytic reduction catalyst is cooled by the cooling means and the temperature is lowered, the temperature condition of the selective catalytic reduction catalyst at the latter stage becomes lower than that of the selective catalytic reduction catalyst at the former stage due to this temperature drop, The selective catalytic reduction catalyst functions as the first reaction region, while the selective catalytic reduction catalyst at the latter stage functions as the second reaction region.

上記した本発明の排気浄化方法及び装置によれば、尿素水から生じたNH3をNH2まで分解するのに適した高温条件を第一の反応領域に与える一方、この第一の反応領域よりも低い温度条件を第二の反応領域に与えてNH2によるNOの還元浄化反応を効率良く進めることができるので、NOx還元効率を従来より大幅に向上することができるという優れた効果を奏し得る。 According to the exhaust gas purification method and apparatus of the present invention described above, the first reaction region is provided with a high temperature condition suitable for decomposing NH 3 generated from urea water to NH 2. The NO 2 reduction and purification reaction by NH 2 can be efficiently performed by applying a low temperature condition to the second reaction region, and therefore, it is possible to achieve an excellent effect that the NOx reduction efficiency can be significantly improved as compared with the conventional case. .

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の第一形態例を示すもので、図1中における符号1はディーゼル機関であるエンジンを示し、ここに図示しているエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された空気4が更にインタークーラ6へと送られて冷却され、該インタークーラ6から図示しないインテークマニホールドへと空気4が導かれてエンジン1の各シリンダに導入されるようにしてある。   FIG. 1 shows a first embodiment of the present invention. Reference numeral 1 in FIG. 1 denotes an engine which is a diesel engine. In the engine 1 shown here, a turbocharger 2 is provided, and an air cleaner is provided. 3 is sent to the compressor 2a of the turbocharger 2 through the intake pipe 5, and the air 4 pressurized by the compressor 2a is further sent to the intercooler 6 to be cooled. The air 4 is guided from 6 to an intake manifold (not shown) and introduced into each cylinder of the engine 1.

また、このエンジン1の各シリンダから排出された排出ガス7がエキゾーストマニホールド8を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排出ガス7が排気管9を介し車外へ排出されるようにしてある。   Further, exhaust gas 7 discharged from each cylinder of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 that has driven the turbine 2b goes out of the vehicle through the exhaust pipe 9. It is supposed to be discharged.

そして、排出ガス7が流通する排気管9の途中には、排出ガス7の流れ方向に向け流路断面積が急拡大するように形成された選択還元型触媒10がケーシング11に抱持されて装備されており、この選択還元型触媒10は、フロースルー形式のハニカム構造物となっていて、酸素共存下でも選択的にNOxをアンモニアと反応させ得るような性質を有している。   In the middle of the exhaust pipe 9 through which the exhaust gas 7 circulates, the selective reduction catalyst 10 formed so that the cross-sectional area of the flow path suddenly increases in the flow direction of the exhaust gas 7 is held by the casing 11. The selective catalytic reduction catalyst 10 is a flow-through type honeycomb structure, and has a property capable of selectively reacting NOx with ammonia even in the presence of oxygen.

更に、ケーシング11の上流側に電磁式の添加弁13が配置されていると共に、該添加弁13と所要場所に設けた尿素水タンク14との間が供給ポンプ16を有する尿素水供給ライン15により接続されていて、該尿素水供給ライン15の途中に装備した供給ポンプ16の駆動により尿素水タンク14内の尿素水17(還元剤)を添加弁13を介し選択還元型触媒10の上流側に添加し得るようになっており、これら添加弁13と尿素水タンク14と尿素水供給ライン15と供給ポンプ16とにより尿素水添加手段18が構成されている。   Further, an electromagnetic addition valve 13 is arranged on the upstream side of the casing 11, and a urea water supply line 15 having a supply pump 16 is provided between the addition valve 13 and a urea water tank 14 provided at a required place. The urea water 17 (reducing agent) in the urea water tank 14 is driven to the upstream side of the selective catalytic reduction catalyst 10 through the addition valve 13 by driving a supply pump 16 that is connected and is provided in the middle of the urea water supply line 15. These addition valves 13, urea water tank 14, urea water supply line 15, and supply pump 16 constitute urea water addition means 18.

而して、このような排気浄化装置を使用すれば、選択還元型触媒10内を流れる排出ガス7が下流側に向かうにつれ断熱膨張して温度低下するので、この温度低下により選択還元型触媒10の後方部分の温度条件が前方部分より低くなり、該選択還元型触媒10の前方部分が、尿素水17から生じたNH3をNH2まで分解する第一の反応領域19として機能する一方、選択還元型触媒10の後方部分が、NH2によりNOを還元浄化する第二の反応領域20として機能することになる。 Thus, when such an exhaust purification device is used, the exhaust gas 7 flowing in the selective catalytic reduction catalyst 10 adiabatically expands and decreases in temperature as it goes downstream. The temperature condition of the rear part of the catalyst is lower than that of the front part, and the front part of the selective catalytic reduction catalyst 10 functions as the first reaction region 19 that decomposes NH 3 generated from the urea water 17 to NH 2. The rear portion of the reduction catalyst 10 functions as a second reaction region 20 that reduces and purifies NO with NH 2 .

即ち、尿素水17から生じたNH3をNH2まで分解するのに適した約600〜700℃以上の高温条件を第一の反応領域19に与える一方、この第一の反応領域19よりも低い500℃以下の温度条件を第二の反応領域20に与えてNH2によるNOの還元浄化反応を効率良く進めることができるので、NOx還元効率を従来より大幅に向上することができる。 That is, a high temperature condition of about 600 to 700 ° C. or more suitable for decomposing NH 3 generated from the urea aqueous solution 17 to NH 2 is given to the first reaction region 19, while lower than the first reaction region 19. Since the temperature reduction condition of 500 ° C. or less can be applied to the second reaction region 20 and the NO reduction / purification reaction with NH 2 can be carried out efficiently, the NOx reduction efficiency can be greatly improved as compared with the prior art.

また、図2は本発明の第二形態例を示すもので、本形態例においては、選択還元型触媒10を前後二段に分割構成し且つ後段の選択還元型触媒10Bを前段の選択還元型触媒10Aよりも流路断面積が大きなものとなるように形成し、両選択還元型触媒10A,10Bの相互間を排出ガス7の流れ方向に流路断面積が急拡大するようにした連絡管21を介して接続したものとなっている。   FIG. 2 shows a second embodiment of the present invention. In this embodiment, the selective catalytic reduction catalyst 10 is divided into two front and rear stages, and the subsequent selective catalytic reduction catalyst 10B is replaced with the upstream selective reduction catalyst. The connecting pipe is formed so that the cross-sectional area of the flow path is larger than that of the catalyst 10A, and the cross-sectional area of the flow path rapidly increases in the flow direction of the exhaust gas 7 between the two selective reduction catalysts 10A and 10B. 21 is connected.

尚、この連絡管21内には、前段の選択還元型触媒10Aから流れ出た排出ガス7が良好に拡散するように邪魔板やガイド部材(特に図示せず)を適宜に装備させても良い。   In addition, a baffle plate or a guide member (not shown) may be appropriately provided in the communication pipe 21 so that the exhaust gas 7 flowing out from the selective catalytic reduction catalyst 10A in the previous stage is diffused well.

而して、このような排気浄化装置を使用すれば、前段の選択還元型触媒10A内を流れ出た排出ガス7が後段の選択還元型触媒10Bに拡散して流れ込むことで断熱膨張して温度低下するので、この温度低下により後段の選択還元型触媒10Bの温度条件が前段の選択還元型触媒10Aより低くなり、前段の選択還元型触媒10Aが第一の反応領域19として機能する一方、後段の選択還元型触媒10Bが第二の反応領域20として機能することになる。   Thus, if such an exhaust purification device is used, the exhaust gas 7 flowing out from the upstream selective reduction catalyst 10A diffuses and flows into the downstream selective reduction catalyst 10B, thereby adiabatically expanding and lowering the temperature. Therefore, due to this temperature decrease, the temperature condition of the downstream selective reduction catalyst 10B becomes lower than that of the upstream selective reduction catalyst 10A, and the upstream selective reduction catalyst 10A functions as the first reaction region 19, while The selective catalytic reduction catalyst 10B functions as the second reaction region 20.

従って、斯かる第二形態例においても、尿素水17から生じたNH3をNH2まで分解するのに適した約600〜700℃以上の高温条件を第一の反応領域19に与える一方、この第一の反応領域19よりも低い500℃以下の温度条件を第二の反応領域20に与えてNH2によるNOの還元浄化反応を効率良く進めることができるので、前述した図1の第一形態例の場合と同様にNOx還元効率を従来より大幅に向上することができる。 Therefore, even in the second embodiment, the first reaction region 19 is given a high temperature condition of about 600 to 700 ° C. or more suitable for decomposing NH 3 generated from the urea water 17 to NH 2. Since the temperature condition of 500 ° C. or lower which is lower than that of the first reaction region 19 is given to the second reaction region 20, the reduction and purification reaction of NO by NH 2 can be advanced efficiently. As in the case of the example, the NOx reduction efficiency can be greatly improved as compared with the conventional case.

更に、図3は本発明の第三形態例を示すもので、本形態例においては、選択還元型触媒10を抱持するケーシング11の後方部分に冷却手段として放熱を促進するためのフィン22を外装したものとなっている。   FIG. 3 shows a third embodiment of the present invention. In this embodiment, fins 22 for promoting heat dissipation are provided as cooling means in the rear part of the casing 11 that holds the selective catalytic reduction catalyst 10. It has become an exterior.

このようにすれば、選択還元型触媒10の後方部分がフィン22による放熱促進作用により冷却されて温度低下するので、この選択還元型触媒10の後方部分の温度条件が前方部分より低くなり、該選択還元型触媒10の前方部分が第一の反応領域19として機能する一方、選択還元型触媒10の後方部分が第二の反応領域20として機能することになる。   By doing so, the rear portion of the selective catalytic reduction catalyst 10 is cooled by the heat radiation promoting action by the fins 22 and the temperature is lowered, so that the temperature condition of the rear portion of the selective catalytic reduction catalyst 10 becomes lower than the front portion, The front part of the selective catalytic reduction catalyst 10 functions as the first reaction region 19, while the rear part of the selective catalytic reduction catalyst 10 functions as the second reaction region 20.

従って、斯かる第三形態例においても、尿素水17から生じたNH3をNH2まで分解するのに適した約600〜700℃以上の高温条件を第一の反応領域19に与える一方、この第一の反応領域19よりも低い500℃以下の温度条件を第二の反応領域20に与えてNH2によるNOの還元浄化反応を効率良く進めることができるので、前述した図1の第一形態例や図2の第二形態例の場合と同様にNOx還元効率を従来より大幅に向上することができる。 Therefore, even in the third embodiment, the first reaction region 19 is given a high temperature condition of about 600 to 700 ° C. or more suitable for decomposing NH 3 generated from the urea water 17 to NH 2. Since the temperature condition of 500 ° C. or lower which is lower than that of the first reaction region 19 is given to the second reaction region 20, the reduction and purification reaction of NO by NH 2 can be advanced efficiently. As in the case of the example and the second embodiment of FIG. 2, the NOx reduction efficiency can be significantly improved as compared with the prior art.

また、図4は本発明の第四形態例を示すもので、本形態例においては、選択還元型触媒10を前後二段に分割構成し且つ両選択還元型触媒10A,10Bの相互間に、水冷ジャケット23により被包された連絡管24を冷却手段として介装したものとなっており、前記水冷ジャケット23には冷却水12が給排されるようにしてある。   FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, the selective catalytic reduction catalyst 10 is divided into two stages in the front and rear, and between the selective catalytic reduction catalysts 10A and 10B, The connecting pipe 24 encapsulated by the water cooling jacket 23 is interposed as a cooling means, and the cooling water 12 is supplied to and discharged from the water cooling jacket 23.

このようにすれば、前段の選択還元型触媒10A内を流れ出た排出ガス7が連絡管24を通過する間に水冷ジャケット23による冷却作用を受けて温度低下するので、この温度低下により後段の選択還元型触媒10Bの温度条件が前段の選択還元型触媒10Aより低くなり、該前段の選択還元型触媒10Aが第一の反応領域19として機能する一方、後段の選択還元型触媒10Bが第二の反応領域20として機能することになる。   In this way, the temperature of the exhaust gas 7 that has flowed out of the selective catalytic reduction catalyst 10A in the preceding stage is lowered by the cooling action of the water cooling jacket 23 while passing through the connecting pipe 24. The temperature condition of the reduction catalyst 10B is lower than that of the selective reduction catalyst 10A in the preceding stage, and the selective reduction catalyst 10A in the preceding stage functions as the first reaction region 19, while the selective reduction catalyst 10B in the subsequent stage is in the second state. It will function as the reaction region 20.

従って、斯かる第四形態例においても、尿素水17から生じたNH3をNH2まで分解するのに適した約600〜700℃以上の高温条件を第一の反応領域19に与える一方、この第一の反応領域19よりも低い500℃以下の温度条件を第二の反応領域20に与えてNH2によるNOの還元浄化反応を効率良く進めることができるので、前述した図1の第一形態例や図2の第二形態例、図3の第三形態例の場合と同様にNOx還元効率を従来より大幅に向上することができる。 Therefore, in the fourth embodiment as well, the first reaction region 19 is given a high temperature condition of about 600 to 700 ° C. or more suitable for decomposing NH 3 generated from the urea aqueous solution 17 to NH 2. Since the temperature condition of 500 ° C. or lower which is lower than that of the first reaction region 19 is given to the second reaction region 20, the reduction and purification reaction of NO by NH 2 can be advanced efficiently. As in the case of the example, the second embodiment shown in FIG. 2, and the third embodiment shown in FIG. 3, the NOx reduction efficiency can be significantly improved as compared with the prior art.

尚、本発明の排気浄化方法及び装置は、上述の形態例にのみ限定されるものではなく、冷却手段には図示以外の様々な冷却方式を適宜に採用し得ること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust purification method and apparatus of the present invention are not limited to the above-described embodiments, and various cooling methods other than those shown in the drawings can be adopted as appropriate for the cooling means. Of course, various changes can be made without departing from the scope of the invention.

本発明の第一形態例を示す概略図である。It is the schematic which shows the example of 1st form of this invention. 本発明の第二形態例を示す概略図である。It is the schematic which shows the 2nd form example of this invention. 本発明の第三形態例を示す概略図である。It is the schematic which shows the 3rd form example of this invention. 本発明の第四形態例を示す概略図である。It is the schematic which shows the example of a 4th form of this invention. NH2とNOの反応速度定数の温度変化を示すグラフである。Is a graph showing the temperature change of the reaction rate constants of the NH 2 and NO.

符号の説明Explanation of symbols

7 排出ガス
9 排気管
10 選択還元型触媒
10A 選択還元型触媒
10B 選択還元型触媒
11 ケーシング
12 冷却水
17 尿素水
18 尿素水添加手段
19 第一の反応領域
20 第二の反応領域
22 フィン(冷却手段)
23 水冷ジャケット(冷却手段)
24 連絡管(冷却手段)
7 exhaust gas 9 exhaust pipe 10 selective reduction catalyst 10A selective reduction catalyst 10B selective reduction catalyst 11 casing 12 cooling water 17 urea water 18 urea water addition means 19 first reaction region 20 second reaction region 22 fin (cooling) means)
23 Water cooling jacket (cooling means)
24 Communication pipe (cooling means)

Claims (5)

排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化する排気浄化方法であって、尿素水から生じたNH3をNH2まで分解する第一の反応領域と、NH2によりNOを還元浄化する第二の反応領域とを分け、第一の反応領域でNH2が生成されたところで排気温度を下降せしめ、第二の反応領域では第一の反応領域よりも低い温度条件下で反応を進めることを特徴とする排気浄化方法。 An exhaust purification method for reducing and purifying NOx by installing a selective reduction catalyst in the middle of an exhaust pipe and adding urea water as a reducing agent to the upstream side of the selective reduction catalyst, the NH 3 generated from urea water The first reaction region in which NH 2 is decomposed to NH 2 and the second reaction region in which NO 2 is reduced and purified by NH 2 are separated. When NH 2 is generated in the first reaction region, the exhaust temperature is lowered, An exhaust purification method characterized in that the reaction proceeds in the second reaction region under a temperature condition lower than that in the first reaction region. 排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化する排気浄化装置であって、選択還元型触媒を排出ガスの流れ方向に向け流路断面積が急拡大するように形成したことを特徴とする排気浄化装置。   An exhaust emission control device that is equipped with a selective reduction catalyst in the middle of an exhaust pipe and that reduces and purifies NOx by adding urea water as a reducing agent upstream of the selective reduction catalyst, wherein the selective reduction catalyst is discharged as an exhaust gas. An exhaust emission control device formed so that a cross-sectional area of a flow path suddenly expands toward a flow direction of the exhaust gas. 排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化する排気浄化装置であって、選択還元型触媒を前後二段に分割構成し且つ後段の選択還元型触媒を前段の選択還元型触媒よりも流路断面積が大きなものとなるように形成したことを特徴とする排気浄化装置。   An exhaust purification device that is equipped with a selective catalytic reduction catalyst in the middle of an exhaust pipe and that reduces and purifies NOx by adding urea water as a reducing agent upstream of the selective catalytic reduction catalyst. An exhaust emission control device characterized by being divided into stages and having a downstream selective catalytic reduction catalyst having a larger channel cross-sectional area than a selective catalytic reduction catalyst in the previous stage. 排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化する排気浄化装置であって、選択還元型触媒を抱持するケーシングの後方部分に冷却手段を外装したことを特徴とする排気浄化装置。   An exhaust emission control device that is equipped with a selective catalytic reduction catalyst in the middle of an exhaust pipe and adds urea water as a reducing agent upstream of the selective catalytic reduction catalyst to reduce and purify NOx, and holds the selective catalytic reduction catalyst An exhaust emission control device comprising a cooling means externally mounted on a rear portion of a casing. 排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化する排気浄化装置であって、選択還元型触媒を前後二段に分割構成し且つ両選択還元型触媒の相互間に冷却手段を介装したことを特徴とする排気浄化装置。   An exhaust gas purification apparatus equipped with a selective catalytic reduction catalyst in the middle of an exhaust pipe and reducing and purifying NOx by adding urea water as a reducing agent upstream of the selective catalytic reduction catalyst. An exhaust emission control device characterized in that it is divided into stages and a cooling means is interposed between the selective reduction catalysts.
JP2004172387A 2004-06-10 2004-06-10 Exhaust emission control method and device Pending JP2005351160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172387A JP2005351160A (en) 2004-06-10 2004-06-10 Exhaust emission control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172387A JP2005351160A (en) 2004-06-10 2004-06-10 Exhaust emission control method and device

Publications (1)

Publication Number Publication Date
JP2005351160A true JP2005351160A (en) 2005-12-22

Family

ID=35585841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172387A Pending JP2005351160A (en) 2004-06-10 2004-06-10 Exhaust emission control method and device

Country Status (1)

Country Link
JP (1) JP2005351160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126877A1 (en) * 2007-04-05 2008-10-23 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
EP2439384A1 (en) * 2009-06-03 2012-04-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126877A1 (en) * 2007-04-05 2008-10-23 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
EP2439384A1 (en) * 2009-06-03 2012-04-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
JP5429286B2 (en) * 2009-06-03 2014-02-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8813480B2 (en) 2009-06-03 2014-08-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2439384A4 (en) * 2009-06-03 2014-09-10 Toyota Motor Co Ltd Exhaust gas purification device for internal combustion engine

Similar Documents

Publication Publication Date Title
KR101722834B1 (en) Scr system and control method thereof
WO2006022214A1 (en) Exhaust gas purifier
JP5173308B2 (en) Exhaust purification device
JP2009114930A (en) Exhaust purification device
JP2006009608A (en) Exhaust emission control device
JPWO2012127645A1 (en) Air purification equipment for vehicles
JP2007182804A (en) Exhaust emission control device
JP4728124B2 (en) Exhaust purification device
JP2005248823A (en) Reducing agent supply device
JP4290026B2 (en) Exhaust purification equipment
JP2011012564A (en) Exhaust gas purification apparatus
JP2007182803A (en) Exhaust emission control device
JP2008303786A (en) Exhaust emission control device of internal combustion engine
JP2011099333A (en) Exhaust emission control device
JP6746530B2 (en) Reactor
JP2009091983A (en) Exhaust emission control device
JP4214073B2 (en) Urea water addition device
CN116927934A (en) Tail gas purification device and method for ammonia-hydrogen engine for vehicle
JP2005351160A (en) Exhaust emission control method and device
JP2010248955A (en) Exhaust emission control device
JP2007077957A (en) Exhaust emission control device
JP2005264894A (en) Exhaust emission control device
JP5500959B2 (en) Exhaust purification device
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JP5632195B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302